WO2016192255A1 - Oled显示器件及其制作方法、显示装置 - Google Patents

Oled显示器件及其制作方法、显示装置 Download PDF

Info

Publication number
WO2016192255A1
WO2016192255A1 PCT/CN2015/090499 CN2015090499W WO2016192255A1 WO 2016192255 A1 WO2016192255 A1 WO 2016192255A1 CN 2015090499 W CN2015090499 W CN 2015090499W WO 2016192255 A1 WO2016192255 A1 WO 2016192255A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
oled display
anode
drain
Prior art date
Application number
PCT/CN2015/090499
Other languages
English (en)
French (fr)
Inventor
张玉婷
吴俊纬
于剑伟
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/129,992 priority Critical patent/US10283729B2/en
Publication of WO2016192255A1 publication Critical patent/WO2016192255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an OLED display device, a method for fabricating the same, and a display device.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • a display device manufactured using an OLED display device is regarded as a display device having a great application prospect.
  • the basic structure of an OLED display device is a sandwich-like structure composed of an anode, a cathode, and an organic light-emitting layer between the anode and the cathode.
  • the anode is usually a thin, transparent and indium tin oxide (ITO) layer having semiconductor characteristics
  • the cathode is usually a metal layer or a metal oxide layer.
  • ITO indium tin oxide
  • the OLED display device of the basic structure has a low light-emitting intensity and luminous efficiency of the OLED display device due to its own structure.
  • An object of the present disclosure is to provide an OLED display device to improve light-emitting intensity and luminous efficiency of an OLED display device.
  • An OLED display device comprising an illuminating pixel unit, the illuminating pixel unit comprising: an anode disposed above the substrate, a cathode disposed opposite the anode, and a microcavity formed between the anode and the cathode Wherein the microcavity comprises an organic light emitting layer, the anode comprising: an indium tin oxide ITO layer opposite to the cathode, and the ITO layer facing away from the cathode Metal oxide conductor layer on the side.
  • the anode of the illuminating pixel unit includes an ITO layer and a metal oxide conductor layer.
  • a voltage is applied to the above OLED display device, electrons of holes and cathodes of the ITO layer and the metal oxide conductor layer are transmitted to the organic light-emitting layer.
  • the holes and electrons meet in the organic light-emitting layer, and the organic light-emitting layer is excited to emit light formed by a combination of photons of a plurality of energy states.
  • Photons of different energy states are redistributed in the microcavity between the anode and the cathode such that light of a wavelength consistent with the resonant cavity mode exits the exterior of the OLED display device from the light emitted from the organic light-emitting layer, and the OLED display device begins to emit light.
  • the ITO layer and the metal oxide conductor layer serve as the anode of the illuminating pixel unit, and the cavity length of the microcavity can be adjusted, thereby improving the OLED display.
  • the microcavity effect of the device is Compared with the anode in the prior art that only the ITO layer is used as the illuminating pixel unit, the ITO layer and the metal oxide conductor layer serve as the anode of the illuminating pixel unit, and the cavity length of the microcavity can be adjusted, thereby improving the OLED display.
  • the microcavity effect of the device is Compared with the anode in the prior art that only the ITO layer is used
  • the anode formed by the ITO layer and the metal oxide conductor layer improves the work function of the anode, thereby increasing the light intensity of light of a certain wavelength from the light emitted from the organic light-emitting layer, thereby improving the light-emitting intensity of the OLED display device. And luminous efficiency.
  • the microcavity is formed between the cathode and the anode composed of the ITO layer and the metal oxide conductor layer, the full width at half maximum of the light emitted by the OLED display device can be narrowed, that is, a narrowed spectrum is obtained, and light of different colors is reduced. The phenomenon of interference occurs, so that the color purity of the OLED display device can be improved.
  • Another object of the present disclosure is to provide a display device to improve light extraction intensity and luminous efficiency of an OLED display device.
  • the present disclosure provides the following technical solutions:
  • a display device provided with an OLED display device as described in the above technical solution is described.
  • the present disclosure provides the following technical solutions:
  • the microcavity comprises an organic light emitting layer
  • the anode comprises a metal oxide conductor layer and an indium tin oxide ITO layer adjacent to the microcavity.
  • the manufacturing method of the OLED display device has the same advantages as the above OLED display device with respect to the prior art, and details are not described herein again.
  • FIG. 1 is a schematic structural diagram of an OLED display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another OLED display device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a microcavity according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for fabricating an OLED display device according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for fabricating another OLED display device according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of still another method for fabricating an OLED display device according to an embodiment of the present disclosure.
  • an OLED display device provided by an embodiment of the present disclosure includes a luminescence pixel unit.
  • the illuminating pixel unit includes: an anode disposed above the substrate substrate 11, a cathode 14 disposed opposite the anode, and a microcavity 15 formed between the anode and the cathode 14; wherein the microcavity 15 includes an organic luminescent layer, and the anode includes An indium tin oxide ITO layer 12 opposite the cathode 14 and a metal oxide conductor layer 13 on the side of the ITO layer 12 facing away from the cathode 14.
  • the anode of the illuminating pixel unit includes an ITO layer 12 and a metal oxide conductor layer 13.
  • the holes of the ITO layer 12 and the metal oxide conductor layer 13 and the electrons of the cathode 14 are transferred to the organic light-emitting layer.
  • the holes and electrons meet in the organic light-emitting layer, and the organic light-emitting layer is excited to emit light formed by a combination of photons of a plurality of energy states.
  • Photons of different energy states are redistributed in the microcavity between the anode and the cathode 14, such that light of a wavelength consistent with the resonant cavity mode exits the exterior of the OLED display device from the light emitted from the organic light-emitting layer, and the OLED display device begins to emit light.
  • the ITO layer 12 and the metal oxide conductor layer 13 are disposed as anodes of the illuminating pixel unit as compared with the anode in the prior art in which only the ITO layer 12 is used as the illuminating pixel unit, and the anode and the cathode 14 can be adjusted.
  • the anode formed by the ITO layer 12 and the metal oxide conductor layer 13 can improve the work function of the anode, so that the light intensity of light of a certain wavelength is enhanced from the light emitted from the organic light-emitting layer, thereby improving the light output of the OLED display device. Strength and luminous efficiency.
  • the microcavity 15 is formed between the cathode 14 and the anode composed of the ITO layer 12 and the metal oxide conductor layer 13, the half-height width of the light emitted by the OLED display device can be narrowed, that is, the narrowed spectrum is obtained, and the spectrum is reduced.
  • the interference of light of different colors can improve the color purity of the OLED display device.
  • the material of the cathode may be metal or metal oxide.
  • the cathode adopts a metal having high reflectivity or a metal oxide having a higher reflectance than the anode as a cathode material, so that light emitted from the OLED display device is transmitted from the anode;
  • the cathode uses a transparent or translucent metal oxide as a cathode material and increases the reflectance of the anode so that light emitted from the OLED display device is transmitted from the cathode.
  • the substrate substrate 11 includes a plurality of the illuminating pixel units, each of the illuminating pixel units including at least one R pixel unit, at least one B pixel unit, and at least one G pixel. Unit; since the cavity lengths of the microcavities of the R, G, and B pixel units are different, in order to improve the color purity of the light emitted by the OLED display device, the anodes of the R, G, and B pixel units may be selected or not provided with metal oxidation as needed.
  • the conductor layer 13 since the cavity lengths of the microcavities of the R, G, and B pixel units are different, in order to improve the color purity of the light emitted by the OLED display device, the anodes of the R, G, and B pixel units may be selected or not provided with metal oxidation as needed.
  • the OLED display device further includes a thin film transistor on the substrate substrate 11 .
  • the thin film transistor includes a gate electrode 21 on the substrate substrate 11, a gate insulating layer 22 covering the substrate substrate 11 and the gate electrode 21, and a source electrode 23 and a drain electrode 24 located above the gate insulating layer 22 and Active layer 25.
  • the source 23 and the drain 24 are disposed in the same layer and are not connected, and the drain 24 is connected to the anode.
  • the metal oxide conductor layer 13 in the anode of the luminescent pixel unit is located between the ITO layer 12 of the anode and the gate insulating layer 22.
  • the thin film transistor is used as a switch of the illuminating pixel unit for controlling whether the illuminating pixel unit emits light.
  • the material of the active layer 25 and the metal oxide conductor layer 13 are both metal oxides.
  • the metal oxide forming the active layer 25 and the metal oxide forming the metal oxide conductor layer 13 may be the same or different.
  • the metal oxide conductor layer 13 in the luminescent pixel unit is disposed in the same layer as the active layer 25 in the thin film transistor.
  • the metal oxide conductor layer 13 is formed by an ion surface treatment process on a metal oxide deposited in the luminescent pixel unit.
  • the metal oxide conductor layer 13 and the active layer 25 can be simultaneously formed by one patterning process, which reduces the number of process steps for fabricating the OLED display device and the number of mask plates used, thereby saving time for manufacturing the OLED display device, and cut costs.
  • the thickness of the metal oxide conductor layer 13 can be controlled by a halftone mask to adjust the cavity length of the microcavity 15, thereby improving the microcavity effect of the OLED display device and facilitating the narrowing of the spectrum, thereby further improving the OLED display.
  • the light intensity and luminous efficiency of the device and improve the color purity of the light emitted by the OLED display device.
  • the material of the active layer 25 and the metal oxide conductor layer 13 may be various, for example, indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), or zinc oxide (ZnO). It is worth mentioning that after the pattern of the active layer 25 and the metal oxide conductor layer 13 is formed over the base substrate 11, the surface of the metal oxide conductor layer 13 is subjected to an ion surface treatment process to improve the metal oxide conductor layer. Conductivity of 13. The active layer 25 may be connected to the metal oxide conductor layer 13 or may be disconnected.
  • IGZO indium gallium zinc oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the anode of the illuminating pixel unit may further include an auxiliary metal layer 16 between the ITO layer 12 and the gate insulating layer 22 of the anode, and the auxiliary metal layer 16 and the metal oxide.
  • the conductor layers 13 are stacked.
  • the auxiliary metal layer 16 is disposed at the anode, and the thickness of the auxiliary metal layer 16 can be adjusted to adjust the cavity length of the microcavity 15, thereby improving the microcavity effect of the OLED display device, and conveniently obtaining a narrowed spectrum, thereby further improving the OLED display.
  • the light intensity and luminous efficiency of the device and improve the color purity of the light emitted by the OLED display device.
  • the thickness of the anode can be adjusted, so that the cavity length of the microcavity 15 can be adjusted to improve the microcavity effect of the OLED display device, so that the thickness of the auxiliary metal layer 16 can be adjusted to obtain a better Microcavity effect OLED display device.
  • the OLED display device is a top emitting device
  • the auxiliary metal layer 16 at the anode the reflectance of the anode can be increased, thereby improving the light-emitting intensity and luminous efficiency of the OLED display device.
  • the auxiliary metal layer 16 may be provided independently or in the same layer as the source 23 and the drain 24.
  • the auxiliary metal layer 16 is disposed in the same layer as the source 23 and the drain electrode 24, and the material of the auxiliary metal layer 16 is the same as that of the source 23 and the drain 24.
  • the source 23, the drain 24, and the auxiliary metal layer 16 can be simultaneously formed by one patterning process, thereby reducing the number of process steps for fabricating the OLED display device and the number of mask plates used, thereby further saving time and cost.
  • the auxiliary metal layer 16 may or may not be connected to the drain 24.
  • the auxiliary metal layer 16 When the auxiliary metal layer 16 is connected to the drain electrode 24, the anode of the illuminating pixel unit is connected to the drain electrode 24, and the ITO layer 12 of the anode is not connected to the drain electrode 24 through a via hole disposed above the drain electrode 24, that is, A via hole is disposed above the drain electrode 24, thereby reducing the number of process steps for fabricating the OLED display device and the number of mask plates used, saving time for manufacturing the OLED display device, and saving cost.
  • the formation order of the metal oxide conductor layer 13 and the auxiliary metal layer 16 of the anode may be in accordance with the active layer 25 in the thin film transistor.
  • the formation of the source 23 and the drain 24 is sequentially set. In the specific implementation, the following two implementation manners can be adopted.
  • the source 23 and the drain 24 are located on the gate insulating layer 22
  • the active layer 25 is located at the source 23 , the drain 24 , and the source 23 and the drain 24 .
  • the auxiliary metal layer 16 is on the gate insulating layer 22, and the metal oxide conductor layer 13 is on the auxiliary metal layer 16.
  • Embodiment 2 referring to FIG. 2, in the thin film transistor, the active layer 25 is located on the gate insulating layer 22, the source 23 and the drain 24 are located on the active layer 25; in the luminescent pixel unit, metal oxidation The material conductor layer 13 is on the gate insulating layer 22, and the auxiliary metal layer 16 is on the metal oxide conductor layer 13. Since no oxide insulating layer may be disposed between the drain electrode 24 and the ITO layer 12 of the anode, one end of the ITO layer 12 of the anode may be directly formed on the drain electrode 24, and the ITO layer 12 of the anode and the drain electrode 24 may be directly connected.
  • the anode layer ITO layer 12 is prevented from being connected to the drain electrode 24 through via holes formed over the drain electrode 24, which reduces the number of process steps for fabricating the OLED display device and the number of mask plates used, thereby saving time for fabricating the OLED display device. And save costs.
  • the microcavity 15 further includes: between the ITO layer 12 and the organic luminescent layer 153 of the anode. a hole injection layer 151 and a hole transport layer 152, wherein the hole transport layer 152 is located between the organic light-emitting layer 153 and the hole injection layer 151; and an electron injection layer 155 between the cathode 14 and the organic light-emitting layer 153 and The electron transport layer 154 is disposed between the organic light emitting layer 153 and the electron injection layer 155.
  • the cavity length of the hole injection layer 151, the hole transport layer 152, the electron injection layer 155, the electron transport layer 154, and/or the organic light-emitting layer 153 is convenient to obtain a narrowed spectrum, thereby further improving the light-emitting intensity and luminous efficiency of the OLED display device, and improving the color purity of light emitted by the OLED display device.
  • the embodiment of the present disclosure further provides a display device provided with the OLED display device as described in the above technical solution.
  • the display device has the same advantages as the above OLED display device with respect to the prior art, I will not repeat them here.
  • the display device may specifically be any product or component having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • an embodiment of the present disclosure further provides a method for fabricating an OLED display device, which is used to fabricate an OLED display device according to the above technical solution.
  • Step 101 providing a substrate substrate
  • Step 102 sequentially forming an anode, a microcavity and a cathode above the substrate;
  • the microcavity comprises an organic light emitting layer
  • the anode comprises an indium tin oxide ITO layer opposite to the cathode, and a metal oxide conductor layer between the indium tin oxide ITO layer and the base substrate.
  • the manufacturing method of the OLED display device has the same advantages as the above OLED display device with respect to the prior art, and details are not described herein again.
  • the method for manufacturing the OLED display device further includes:
  • An active layer, a source and a drain are formed over the gate insulating layer, the source and the drain are disposed in the same layer and are not connected, and the drain is connected to the anode;
  • the metal oxide conductor layer of the anode is located between the ITO layer of the anode and the gate insulating layer.
  • the metal oxide conductor layer in the luminescence pixel unit is disposed in the same layer as the active layer in the thin film transistor, and the metal oxide conductor layer is ion-surface-treated by the metal oxide deposited in the luminescence pixel unit. form.
  • the anode of the illuminating pixel unit further includes an auxiliary metal layer between the ITO layer and the gate insulating layer of the anode, and the auxiliary metal layer and the metal oxide conductor layer are laminated.
  • the auxiliary metal layer is placed in the same layer as the source and drain.
  • a source and a drain are located on a gate insulating layer, and an active layer is located at a source, a drain, and a trench between the source and the drain.
  • the auxiliary metal layer is located on the gate insulating layer, and the metal oxide conductor layer is located on the auxiliary metal layer;
  • the active layer is on the gate insulating layer, and the source and the drain are on the active layer;
  • the metal oxide conductor layer is on the gate insulating layer, and the auxiliary metal layer is on the metal oxide conductor layer.
  • the active layer in the thin film transistor is located on the source, the drain, and the channel between the source and the drain, and the metal oxide conductor layer in the illuminating pixel unit is located on the auxiliary metal layer.
  • the manufacturing method of the OLED display device includes:
  • Step 101 providing a substrate substrate
  • Step 201 forming a gate electrode and a gate insulating layer on the base substrate;
  • Step 202 forming a source and a drain and an auxiliary metal layer on the gate insulating layer
  • Step 203 forming an active layer on the channel between the source and the drain and the source and the drain, and forming a metal oxide conductor layer on the auxiliary metal layer;
  • Step 102 sequentially forming an ITO layer, a microcavity and a cathode on the active layer and on the metal oxide conductor layer.
  • the OLED display device when the source and the drain of the thin film transistor are on the active layer and the auxiliary metal layer in the OLED unit is on the metal oxide conductor layer, the OLED display device is manufactured by:
  • Step 101 providing a substrate substrate
  • Step 201 forming a gate electrode and a gate insulating layer on the base substrate;
  • Step 202' forming an active layer and a metal oxide conductor layer on the gate insulating layer
  • Step 203' forming a source and a drain on the active layer, and forming an auxiliary metal layer on the metal oxide conductor layer;
  • Step 102 sequentially forming an ITO layer, a microcavity and a cathode on the source and the drain and on the auxiliary metal layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示器件及其制作方法、显示装置。所述OLED显示器件包括:发光像素单元。发光像素单元包括:位于衬底基板(11)上方的阳极,与阳极相对设置的阴极(14),以及形成于阳极和阴极(14)之间的微腔(15);其中,微腔(15)包括有机发光层(153),阳极包括:与阴极(14)相对的铟锡氧化物ITO层(12),以及位于ITO层(12)背向阴极(14)的侧面上的金属氧化物导体层(13)。

Description

OLED显示器件及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2015年6月1日在中国提交的中国专利申请号No.201510297822.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种OLED显示器件及其制作方法、显示装置。
背景技术
有机电致发光(Organic Light Emitting Diode,以下简称OLED)显示器件,又称有机电致发光二极管显示器件,因具有自发光、色彩丰富、响应速度快、视角宽、重量轻、厚度薄、耗电少、可实现柔性显示等优点,受到广泛关注。而且,采用OLED显示器件制得的显示装置被视为具有巨大应用前景的显示装置。
OLED显示器件的基本结构是一种由阳极、阴极和位于阳极和阴极之间的有机发光层构成的如三明治的结构。其中,阳极通常为薄而透明且具有半导体特性的铟锡氧化物(ITO)层,阴极通常为金属层或金属氧化物层。当对OLED显示器件施加电压时,由阳极输出的空穴在有机发光层与由阴极输出的电子结合,使OLED显示器件发光。OLED显示器件发出的光经阳极或阴极射出。然而,基本结构的OLED显示器件由于其自身结构的影响,使得OLED显示器件的出光强度和发光效率较低。
发明内容
本公开的目的在于提供一种OLED显示器件,以提高OLED显示器件的出光强度和发光效率。
为了实现上述目的,本公开提供如下技术方案:
一种OLED显示器件,包括发光像素单元,所述发光像素单元包括:位于衬底基板上方的阳极,与所述阳极相对设置的阴极,以及形成于所述阳极和所述阴极之间的微腔;其中,所述微腔包括有机发光层,所述阳极包括:与所述阴极相对的铟锡氧化物ITO层,以及位于所述ITO层背向所述阴极的 侧面上的金属氧化物导体层。
本公开提供的OLED显示器件中,所述发光像素单元的阳极包括ITO层和金属氧化物导体层。当在上述OLED显示器件上加载电压,ITO层和金属氧化物导体层的空穴和阴极的电子传输至有机发光层。空穴和电子在有机发光层中相遇,并激发有机发光层发出由多种能态的光子组合形成的光。不同能态的光子在阳极和阴极之间的微腔中被重新分配,使得从有机发光层发出的光中,波长符合共振腔模式的光射出OLED显示器件的外部,OLED显示器件开始发光。与现有技术中仅采用ITO层作为所述发光像素单元的阳极相比,ITO层和金属氧化物导体层作为所述发光像素单元的阳极,可以调节微腔的腔长,从而改善了OLED显示器件的微腔效应。且ITO层和金属氧化物导体层形成的阳极改善了阳极的功函数,因而使得从有机发光层发出的光中,某一特定波长的光的光强增强,从而可以提高OLED显示器件的出光强度和发光效率。另外,由于阴极与由ITO层和金属氧化物导体层组成的阳极之间形成微腔,可以使得OLED显示器件发出的光的半高宽变窄,即得到窄化的光谱,减少不同颜色的光发生干涉的现象,从而可以提高OLED显示器件的色纯。
本公开的另一目的在于提供一种显示装置,以提高OLED显示器件的出光强度和发光效率。为了实现上述目的,本公开提供如下技术方案:
一种显示装置,所述显示装置设置有如上述技术方案所述的OLED显示器件。
所述显示装置与上述OLED显示器件相对于现有技术所具有的优势相同,在此不再赘述。
本公开的再一目的在于提供一种OLED显示器件的制作方法,以提高OLED显示器件的出光强度和发光效率。为了实现上述目的,本公开提供如下技术方案:
一种OLED显示器件的制作方法,用于制作如上述技术方案所述的OLED显示器件,其中,
提供一衬底基板;
在所述衬底基板的上方依次形成阳极、微腔以及阴极;
其中,所述微腔包括有机发光层,所述阳极包括金属氧化物导体层和与所述微腔相邻的铟锡氧化物ITO层。
所述OLED显示器件的制作方法与上述OLED显示器件相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的一种OLED显示器件的结构示意图;
图2为本公开实施例提供的另一种OLED显示器件的结构示意图;
图3为本公开实施例提供的微腔的结构示意图;
图4为本公开实施例提供的一种OLED显示器件的制作方法的流程图;
图5为本公开实施例提供的另一种OLED显示器件的制作方法的流程图;
图6为本公开实施例提供的再一种OLED显示器件的制作方法的流程图。
附图标记:
11-衬底基板,                            12-ITO层,
13-金属氧化物导体层,                    14-阴极,
15-微腔,                                16-辅助金属层;
21-栅极,                                22-栅极绝缘层,
23-源极,                                24-漏极,
25-有源层;
151-空穴注入层,                         152-空穴传输层,
153-有机发光层,                         154-电子注入层,
155-电子传输层。
具体实施方式
为了进一步说明本公开实施例提供的OLED显示器件及其制作方法、显示装置,下面结合说明书附图进行详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权 利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
请参阅图1或图2,本公开实施例提供的OLED显示器件包括发光像素单元。所述发光像素单元包括:位于衬底基板11上方的阳极,与阳极相对设置的阴极14,以及形成于阳极和阴极14之间的微腔15;其中,微腔15包括有机发光层,阳极包括与阴极14相对的铟锡氧化物ITO层12,以及位于ITO层12背向阴极14的侧面上的金属氧化物导体层13。
本公开实施例提供的OLED显示器件中,所述发光像素单元的阳极包括ITO层12和金属氧化物导体层13。当在上述OLED显示器件上加载电压,ITO层12和金属氧化物导体层13的空穴和阴极14的电子传输至有机发光层。空穴和电子在有机发光层中相遇,并激发有机发光层发出由多种能态的光子组合形成的光。不同能态的光子在阳极和阴极14之间的微腔中被重新分配,使得从有机发光层发出的光中,波长符合共振腔模式的光射出OLED显示器件的外部,OLED显示器件开始发光。与现有技术中仅采用ITO层12作为所述发光像素单元的阳极相比,设置ITO层12和金属氧化物导体层13作为所述发光像素单元的阳极,可以调节阳极和阴极14之间的微腔15的腔长,即,阴极14朝向微腔15的表面与阳极朝向微腔15的表面之间的距离,从而改善了OLED显示器件的微腔效应。且ITO层12和金属氧化物导体层13形成的阳极可以改善阳极的功函数,使得从有机发光层发出的光中,某一特定波长的光的光强增强,从而可以提高OLED显示器件的出光强度和发光效率。另外,由于阴极14与由ITO层12和金属氧化物导体层13组成的阳极之间形成微腔15,可以使得OLED显示器件发出的光的半高宽变窄,即得到窄化的光谱,减少不同颜色的光发生干涉的现象,从而可以提高OLED显示器件的色纯。
值得一提的是,阴极的材料可以为金属,也可以为金属氧化物。一般地, 需要制作底发射OLED显示器件时,阴极采用具有高反射率的金属或具有比阳极更高反射率的金属氧化物作为阴极材料,以使OLED显示器件发出的光从阳极透射出来;需要制作顶发射OLED显示器件时,阴极采用透明或半透明的金属氧化物作为阴极材料,并增加阳极的反射率,以使OLED显示器件发出的光从阴极透射出来。
采用上述OLED显示器件制作彩色的显示装置时,衬底基板11上包括多个所述发光像素单元,每个所述发光像素单元包括至少一个R像素单元、至少一个B像素单元和至少一个G像素单元;由于R、G、B像素单元的微腔的腔长不同,因而为了改善OLED显示器件发出的光的色纯,R、G、B像素单元的阳极可以根据需要选择设置或不设置金属氧化物导体层13。
请继续参阅图1或图2,本公开实施例提供的OLED显示器件还包括位于衬底基板11上的薄膜晶体管。所述薄膜晶体管包括:位于衬底基板11上的栅极21,覆盖衬底基板11和栅极21的栅极绝缘层22,以及位于栅极绝缘层22上方的源极23、漏极24和有源层25。源极23与漏极24同层设置且不相连,漏极24与阳极连接。所述发光像素单元的阳极中的金属氧化物导体层13位于阳极的ITO层12与栅极绝缘层22之间。所述薄膜晶体管作为所述发光像素单元的开关,用于控制所述发光像素单元是否发光。
在上述实施例中,有源层25和金属氧化物导体层13的材料均为金属氧化物。形成有源层25的金属氧化物和形成金属氧化物导体层13的金属氧化物可以相同,也可以不同。为了减少生产OLED显示器件的工艺步骤,优选地,请参阅图1或图2,所述发光像素单元中的金属氧化物导体层13与所述薄膜晶体管中的有源层25同层设置。金属氧化物导体层13由对沉积在所述发光像素单元中的金属氧化物进行离子表面处理工艺形成。如此设计,可以经过一次构图工艺同时形成金属氧化物导体层13和有源层25,减少了制作OLED显示器件的工艺步骤以及掩膜板的使用数量,从而可以节省制作OLED显示器件的时间,并节省成本。金属氧化物导体层13的厚度可以通过半色调掩膜板控制,以调节微腔15的腔长,因而可以改善OLED显示器件的微腔效应,并方便获得窄化的光谱,从而进一步提高OLED显示器件的出光强度和发光效率,并改善OLED显示器件发出的光的色纯。
有源层25和金属氧化物导体层13的材料可以有多种,例如,铟镓锌氧化物(IGZO),铟锌氧化物(IZO),或,氧化锌(ZnO)。值得一提的是,在衬底基板11上方形成有源层25和金属氧化物导体层13的图形后,对金属氧化物导体层13的表面进行离子表面处理工艺,可以提高金属氧化物导体层13的导电性。有源层25与金属氧化物导体层13可以连接,也可以断开。
请参阅图1或图2,上述发光像素单元的阳极还可以包括辅助金属层16,辅助金属层16位于阳极的ITO层12与栅极绝缘层22之间,且辅助金属层16与金属氧化物导体层13层叠设置。在阳极设置辅助金属层16,可以通过调节辅助金属层16的厚度,以调节微腔15的腔长,因而可以改善OLED显示器件的微腔效应,并方便得到窄化的光谱,进一步提高OLED显示器件的出光强度和发光效率,并改善OLED显示器件发射的光的色纯。在阳极设置辅助金属层16,可以调节阳极的厚度,因而可以调节微腔15的腔长,以改善OLED显示器件的微腔效应,从而可以通过调整辅助金属层16的厚度来获得具有较佳的微腔效应的OLED显示器件。另外,当OLED显示器件为顶发射器件时,在阳极设置辅助金属层16,可以增加阳极的反射率,从而提高OLED显示器件的出光强度和发光效率。
辅助金属层16可以是独立设置,也可以与形成源极23和漏极24同层设置。优选地,请继续参阅图1或图2,辅助金属层16与形成源极23和漏极24同层设置,且辅助金属层16的材料与源极23和漏极24的材料相同。如此设计,可以通过一次构图工艺同时形成源极23、漏极24和辅助金属层16,减少制作OLED显示器件的工艺步骤及掩膜板的使用数量,从而进一步节省了时间和成本。值得指出的是,辅助金属层16可以与漏极24连接,也可以不与漏极24连接。当辅助金属层16与漏极24连接时,所述发光像素单元的阳极与漏极24连接,则阳极的ITO层12不用通过设置在漏极24上方的过孔与漏极24连接,即不用在漏极24上方设置过孔,从而减少了制作OLED显示器件的工艺步骤以及掩膜板的使用数量,节省了制作OLED显示器件的时间,并节省了成本。
在上述OLED显示器件中,所述发光像素单元中,阳极的金属氧化物导体层13和辅助金属层16的形成顺序可以根据所述薄膜晶体管中有源层25与 源极23和漏极24的形成顺序设置。具体实施时,可以采用下面两种实施方式。
实施方式一,请参阅图1,所述薄膜晶体管中,源极23和漏极24位于栅极绝缘层22上,有源层25位于源极23、漏极24以及源极23和漏极24之间的沟道上;所述发光像素单元中,辅助金属层16位于栅极绝缘层22上,金属氧化物导体层13位于辅助金属层16上。如此设置,可以避免在有源层25上形成源极23和漏极24的图形时,因所用的刻蚀液与有源层25接触而导致有源层25被刻蚀,从而影响薄膜晶体管的特性。
实施方式二,请参阅图2,所述薄膜晶体管中,有源层25位于栅极绝缘层22上,源极23和漏极24位于有源层25上;所述发光像素单元中,金属氧化物导体层13位于栅极绝缘层22上,辅助金属层16位于金属氧化物导体层13上。由于漏极24与阳极的ITO层12之间可以不设置氧化物绝缘层,因而可以将阳极的ITO层12的一端直接形成在漏极24上,使阳极的ITO层12与漏极24直接连接,避免了阳极的ITO层12通过形成在漏极24上方的过孔与漏极24连接,减少了制作OLED显示器件的工艺步骤以及掩膜板的使用数量,从而节省了制作OLED显示器件的时间,并节省了成本。
在上述实施例中,为了进一步方便对所述发光像素单元的微腔15的腔长进行调节,请参阅图3,微腔15还包括:位于阳极的ITO层12与有机发光层153之间的空穴注入层151和空穴传输层152,其中,空穴传输层152位于有机发光层153与空穴注入层之间151;以及位于阴极14与有机发光层153之间的电子注入层155和电子传输层154,其中,电子传输层154位于有机发光层153与电子注入层155之间。如此设计,还可以通过调节空穴注入层151、空穴传输层152、电子注入层155、电子传输层154和/或有机发光层153的厚度,以调节微腔15的腔长,因而可以改善OLED显示器件的微腔效应,并方便获得窄化的光谱,从而进一步提高OLED显示器件的出光强度和发光效率,并改善OLED显示器件发出的光的色纯。
本公开实施例还提供一种显示装置,所述显示装置设置有如上述技术方案所述的OLED显示器件。
所述显示装置与上述OLED显示器件相对于现有技术所具有的优势相同, 在此不再赘述。
所述显示装置具体可以为电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
请参阅图4,本公开实施例还提供一种OLED显示器件的制作方法,用于制作如上述技术方案所述的OLED显示器件,所述OLED显示器件的制作方法包括:
步骤101、提供一衬底基板;
步骤102、在衬底基板的上方依次形成阳极、微腔以及阴极;
其中,微腔包括有机发光层,阳极包括与阴极相对的铟锡氧化物ITO层,以及位于铟锡氧化物ITO层与衬底基板之间的金属氧化物导体层。
所述OLED显示器件的制作方法与上述OLED显示器件相对于现有技术所具有的优势相同,在此不再赘述。
上述实施例中,在衬底基板的上方依次形成阳极、微腔以及阴极之前,所述OLED显示器件的制作方法还包括:
在衬底基板上形成栅极、栅极绝缘层;
在栅极绝缘层上方形成有源层、源极和漏极,源极和漏极同层设置且不相连,漏极与阳极连接;
其中,阳极的金属氧化物导体层位于阳极的ITO层与栅极绝缘层之间。
在本公开实施例中,发光像素单元中的金属氧化物导体层与薄膜晶体管中的有源层同层设置,金属氧化物导体层由对沉积在发光像素单元中的金属氧化物进行离子表面处理形成。
上述实施例提供的OLED显示器件的制作方法,发光像素单元的阳极还包括辅助金属层,辅助金属层位于阳极的ITO层与栅极绝缘层之间,且辅助金属层与金属氧化物导体层层叠设置;辅助金属层与源极和漏极同层设置。
在本公开实施例提供的OLED显示器件的制作方法中,薄膜晶体管中,源极和漏极位于栅极绝缘层上,有源层位于源极、漏极以及源极和漏极之间的沟道上;
发光像素单元中,辅助金属层位于栅极绝缘层上,金属氧化物导体层位于辅助金属层上;
或者,
薄膜晶体管中,有源层位于栅极绝缘层上,源极和漏极位于有源层上;
发光像素单元中,金属氧化物导体层位于栅极绝缘层上,辅助金属层位于金属氧化物导体层上。
具体实施时,请参阅图5,薄膜晶体管中的有源层位于源极、漏极以及源极和漏极之间的沟道上,发光像素单元中的金属氧化物导体层位于辅助金属层上时,OLED显示器件的制作方法包括:
步骤101、提供一衬底基板;
步骤201、在衬底基板上形成栅极、栅极绝缘层;
步骤202、在栅极绝缘层上形成源极和漏极以及辅助金属层;
步骤203、在源极和漏极以及源极和漏极之间的沟道上形成有源层,在辅助金属层上形成金属氧化物导体层;
步骤102、在有源层的上方以及金属氧化物导体层上依次形成ITO层、微腔和阴极。
请参阅图6,薄膜晶体管中的源极、漏极位于有源层上,发光像素单元中的辅助金属层位于金属氧化物导体层上时,OLED显示器件的制作方法包括:
步骤101、提供一衬底基板;
步骤201、在衬底基板上形成栅极、栅极绝缘层;
步骤202’、在栅极绝缘层上形成有源层以及金属氧化物导体层;
步骤203’、在有源层上形成源极和漏极,在金属氧化物导体层上形成辅助金属层;
步骤102、在源极和漏极的上方以及辅助金属层上依次形成ITO层、微腔和阴极。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种OLED显示器件,包括发光像素单元,
    其中,所述发光像素单元包括:
    位于衬底基板上方的阳极,
    与所述阳极相对设置的阴极,以及
    形成于所述阳极和所述阴极之间的微腔;
    其中,所述微腔包括有机发光层,
    所述阳极包括与所述阴极相对的铟锡氧化物ITO层,以及位于所述ITO层背向所述阴极的侧面上的金属氧化物导体层。
  2. 根据权利要求1所述的OLED显示器件,还包括位于所述衬底基板上的薄膜晶体管,
    其中,所述薄膜晶体管包括:
    位于衬底基板上的栅极,
    覆盖所述衬底基板和所述栅极的栅极绝缘层,以及
    位于所述栅极绝缘层上方的有源层、源极和漏极,所述源极和所述漏极同层设置且不相连,所述漏极与所述阳极连接;
    所述阳极的金属氧化物导体层位于所述阳极的ITO层与所述栅极绝缘层之间。
  3. 根据权利要求2所述的OLED显示器件,其中,所述发光像素单元中的金属氧化物导体层与所述薄膜晶体管中的有源层同层设置。
  4. 根据权利要求2所述的OLED显示器件,其中,所述金属氧化物导体层由对沉积在所述发光像素单元中的金属氧化物进行离子表面处理形成。
  5. 根据权利要求2所述的OLED显示器件,其中,所述发光像素单元的阳极还包括辅助金属层,所述辅助金属层位于所述阳极的ITO层与所述栅极绝缘层之间,且所述辅助金属层与所述金属氧化物导体层层叠设置。
  6. 根据权利要求5所述的OLED显示器件,其中,所述辅助金属层与所述源极和所述漏极同层设置。
  7. 根据权利要求5所述的OLED显示器件,其中,所述辅助金属层与所 述源极和漏极的材料相同。
  8. 根据权利要求5所述的OLED显示器件,其中,所述辅助金属层与所述漏极连接。
  9. 根据权利要求6所述的OLED显示器件,其中,
    所述薄膜晶体管中,所述源极和所述漏极位于所述栅极绝缘层上,所述有源层位于所述源极、所述漏极以及所述源极和所述漏极之间的沟道上;
    所述发光像素单元中,所述辅助金属层位于所述栅极绝缘层上,所述金属氧化物导体层位于所述辅助金属层上。
  10. 根据权利要求6所述的OLED显示器件,其中,
    所述薄膜晶体管中,所述有源层位于所述栅极绝缘层上,所述源极和所述漏极位于所述有源层上;
    所述发光像素单元中,所述金属氧化物导体层位于所述栅极绝缘层上,所述辅助金属层位于所述金属氧化物导体层上。
  11. 根据权利要求1-10任一所述的OLED显示器件,其中,所述微腔还包括:
    位于所述阳极的ITO层与所述有机发光层之间的空穴注入层和空穴传输层,其中,所述空穴传输层位于所述有机发光层与所述空穴注入层之间;以及
    位于所述阴极与所述有机发光层之间的电子注入层和电子传输层,其中,所述电子传输层位于所述有机发光层与所述电子注入层之间。
  12. 一种显示装置,其中,所述显示装置设置有如权利要求1-11任一所述的OLED显示器件。
  13. 一种OLED显示器件的制作方法,用于制作如权利要求1-11任一所述的OLED显示器件,其中,所述OLED显示器件的制作方法包括:
    提供一衬底基板;
    在所述衬底基板的上方依次形成阳极、微腔以及阴极;
    其中,所述微腔包括有机发光层,所述阳极包括与所述阴极相对的铟锡氧化物ITO层,以及位于所述ITO层与所述衬底基板之间的金属氧化物导体层。
  14. 根据权利要求13所述的OLED显示器件的制作方法,其中,在所述衬底基板的上方依次形成所述阳极、所述微腔以及所述阴极之前,所述OLED显示器件的制作方法还包括:
    在所述衬底基板上形成栅极、栅极绝缘层;
    在所述栅极绝缘层上方形成有源层、源极和漏极,所述源极和所述漏极同层设置且不相连,所述漏极与所述阳极连接;
    其中,所述阳极的金属氧化物导体层位于所述阳极的ITO层与所述栅极绝缘层之间。
  15. 根据权利要求14所述的OLED显示器件的制作方法,其中,所述发光像素单元中的金属氧化物导体层与所述薄膜晶体管中的有源层同层设置。
  16. 根据权利要求14所述的OLED显示器件的制作方法,其中,所述金属氧化物导体层由对沉积在所述发光像素单元中的金属氧化物进行离子表面处理形成。
  17. 根据权利要求14所述的OLED显示器件的制作方法,其中,所述发光像素单元的阳极还包括辅助金属层,所述辅助金属层位于所述阳极的ITO层与所述栅极绝缘层之间,且所述辅助金属层与所述金属氧化物导体层层叠设置;所述辅助金属层与所述源极和所述漏极同层设置。
  18. 根据权利要求17所述的OLED显示器件的制作方法,其中,
    所述薄膜晶体管中,所述源极和所述漏极位于所述栅极绝缘层上,所述有源层位于所述源极、所述漏极以及所述源极和所述漏极之间的沟道上;
    所述发光像素单元中,所述辅助金属层位于所述栅极绝缘层上,所述金属氧化物导体层位于所述辅助金属层上;
    或者,
    所述薄膜晶体管中,所述有源层位于所述栅极绝缘层上,所述源极和所述漏极位于所述有源层上;
    所述发光像素单元中,所述金属氧化物导体层位于所述栅极绝缘层上,所述辅助金属层位于所述金属氧化物导体层上。
PCT/CN2015/090499 2015-06-01 2015-09-24 Oled显示器件及其制作方法、显示装置 WO2016192255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/129,992 US10283729B2 (en) 2015-06-01 2015-09-24 Organic light-emitting diode display element, its manufacturing method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510297822.5 2015-06-01
CN201510297822.5A CN105097874B (zh) 2015-06-01 2015-06-01 一种oled显示器件及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016192255A1 true WO2016192255A1 (zh) 2016-12-08

Family

ID=54577925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090499 WO2016192255A1 (zh) 2015-06-01 2015-09-24 Oled显示器件及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10283729B2 (zh)
CN (1) CN105097874B (zh)
WO (1) WO2016192255A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679763A (zh) * 2016-01-05 2016-06-15 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、显示面板
CN108123053A (zh) * 2016-11-29 2018-06-05 京东方科技集团股份有限公司 发光器件和显示装置
CN107170789B (zh) 2017-06-06 2021-09-03 京东方科技集团股份有限公司 有机发光二极管显示器件及制备方法和显示装置
CN107275501A (zh) * 2017-06-13 2017-10-20 上海天马有机发光显示技术有限公司 有机发光结构、显示装置以及移动终端
CN107994059B (zh) * 2017-11-27 2020-05-26 京东方科技集团股份有限公司 阵列基板及其制造方法
US10528168B2 (en) * 2017-12-14 2020-01-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED touch display panel and manufacturing method thereof
CN109300912B (zh) * 2018-09-17 2021-01-22 京东方科技集团股份有限公司 基于电致发光器件的显示基板及其制备方法、显示装置
CN109461841B (zh) * 2018-11-02 2021-11-09 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN110047904B (zh) * 2019-04-30 2021-07-23 Tcl华星光电技术有限公司 Oled显示面板和电子设备
CN112786803A (zh) * 2021-01-04 2021-05-11 深圳市华星光电半导体显示技术有限公司 Oled背板及其制备方法
CN112820845B (zh) * 2021-03-08 2023-03-10 安徽熙泰智能科技有限公司 改善oled阴极断裂的阳极结构及其制备方法
JP2022155692A (ja) * 2021-03-31 2022-10-14 キヤノン株式会社 発光装置、表示装置、撮像装置、及び電子機器
CN113871431A (zh) * 2021-09-17 2021-12-31 深圳市华星光电半导体显示技术有限公司 显示面板和移动终端
CN114267804A (zh) * 2021-12-14 2022-04-01 武汉华星光电半导体显示技术有限公司 一种显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439589A2 (en) * 2003-01-17 2004-07-21 Eastman Kodak Company Microcavity oled devices
CN102110783A (zh) * 2010-12-22 2011-06-29 西安文景光电科技有限公司 低电压驱动的空穴注入层作为发光调节层的oled器件
CN102651455A (zh) * 2012-02-28 2012-08-29 京东方科技集团股份有限公司 Oled器件、amoled器件及其制造方法
CN103000638A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555759B2 (ja) * 2001-06-15 2004-08-18 ソニー株式会社 表示装置
US7268485B2 (en) 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
KR100573154B1 (ko) * 2004-06-26 2006-04-24 삼성에스디아이 주식회사 전계 발광 디스플레이 장치 및 이의 제조 방법
KR100731739B1 (ko) * 2005-04-28 2007-06-22 삼성에스디아이 주식회사 유기전계발광소자 및 그의 제조 방법
KR100824880B1 (ko) * 2006-11-10 2008-04-23 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 제조 방법
KR101407585B1 (ko) * 2011-01-10 2014-06-13 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
CN102157563B (zh) * 2011-01-18 2012-09-19 上海交通大学 金属氧化物薄膜晶体管制备方法
KR102000932B1 (ko) * 2012-12-18 2019-07-26 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
CN103441222A (zh) 2013-07-17 2013-12-11 五邑大学 基于纳米硅薄膜复合阳极的微腔式oled及其制作方法
CN103500754B (zh) * 2013-09-29 2016-11-02 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439589A2 (en) * 2003-01-17 2004-07-21 Eastman Kodak Company Microcavity oled devices
CN102110783A (zh) * 2010-12-22 2011-06-29 西安文景光电科技有限公司 低电压驱动的空穴注入层作为发光调节层的oled器件
CN102651455A (zh) * 2012-02-28 2012-08-29 京东方科技集团股份有限公司 Oled器件、amoled器件及其制造方法
CN103000638A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置

Also Published As

Publication number Publication date
CN105097874A (zh) 2015-11-25
CN105097874B (zh) 2019-02-19
US10283729B2 (en) 2019-05-07
US20170117499A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016192255A1 (zh) Oled显示器件及其制作方法、显示装置
US11005056B2 (en) Flexible display panel and manufacturing method for the same
US9825106B2 (en) OLED display substrate and method for manufacturing the same, and display apparatus
US9881985B2 (en) OLED device, AMOLED display device and method for manufacturing same
US9673421B2 (en) OLED display and manufacturing method thereof
US20140363913A1 (en) Organic light-emitting diode and method of fabricating the same
TW201631756A (zh) 有機發光顯示裝置
CN104779269B (zh) Oled显示器件
KR20120061106A (ko) 유기 발광 표시 장치
KR101084247B1 (ko) 유기 발광 표시 장치
US10396135B2 (en) OLED substrate and manufacturing method thereof, and display device
JPWO2015141143A1 (ja) 有機el表示パネル、それを備えた表示装置および有機el表示パネルの製造方法
CN104779268A (zh) Oled显示器件
JP2011061016A (ja) 有機エレクトロルミネッセンス素子
KR101352237B1 (ko) 유기전계발광표시장치의 제조방법
US20210336177A1 (en) Oled display panel and oled display device
WO2016188095A1 (zh) 有机发光显示器件及其制作方法和显示装置
JP2009064605A (ja) 有機el装置及び電子機器
KR20150080153A (ko) 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
TWI610481B (zh) 有機發光元件和製造有機發光元件的方法
JP2014127303A (ja) 有機elデバイスの製造方法
KR102049241B1 (ko) 유기전계 발광소자 및 그 제조방법
KR101744874B1 (ko) 유기발광소자
CN104795429A (zh) Oled显示器件
KR20120042435A (ko) 유기전계 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15129992

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893907

Country of ref document: EP

Kind code of ref document: A1