WO2016190333A1 - 蓄熱ゲル材、その利用およびその製造方法 - Google Patents

蓄熱ゲル材、その利用およびその製造方法 Download PDF

Info

Publication number
WO2016190333A1
WO2016190333A1 PCT/JP2016/065398 JP2016065398W WO2016190333A1 WO 2016190333 A1 WO2016190333 A1 WO 2016190333A1 JP 2016065398 W JP2016065398 W JP 2016065398W WO 2016190333 A1 WO2016190333 A1 WO 2016190333A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
gel material
agar
water separation
heat
Prior art date
Application number
PCT/JP2016/065398
Other languages
English (en)
French (fr)
Inventor
雄一 上村
夕香 内海
大治 澤田
別所 久徳
輝心 黄
山下 隆
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016190333A1 publication Critical patent/WO2016190333A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a heat storage gel material using heat stored or released during phase change, its use, and a manufacturing method thereof.
  • the heat storage material as described above is used, for example, as a building material or a component of a transport box, and depending on the application, there are cases where it is desired to place the heat storage material not only horizontally but also vertically. However, when a layered heat storage material with insufficient gel strength is placed vertically, the shape cannot be maintained.
  • the present invention has been made in view of such circumstances, a heat storage gel that can prevent the shape from collapsing when a layered heat storage gel material is placed vertically and can be repeatedly used by utilizing latent heat due to phase transition. It is an object to provide a material, its use and its manufacturing method.
  • the heat storage gel material of the present invention has a heat storage liquid in which a heat storage main agent is dispersed in water and has a predetermined phase transition temperature, and a network structure of organic molecules.
  • a shape holder made of 0.2% by weight or more of agar.
  • the heat storage gel material can be generated with a low-cost material that can be easily obtained.
  • the present invention it is possible to prevent the shape from collapsing when a layered heat storage gel material is placed vertically, and it can be repeatedly used by utilizing latent heat due to phase transition.
  • the heat storage gel material of the present invention includes a heat storage liquid that is a latent heat storage material having heat storage performance and a shape holder.
  • the heat storage liquid is composed of a heat storage main agent and water.
  • the heat storage main agent include inorganic salts, organic solvents, and quaternary ammonium salts shown in Table 1. Specifically, sodium chloride (NaCl), ammonium chloride (NH 4 Cl), potassium chloride (KCl), sodium carbonate (Na 2 CO 3 ), potassium hydrogen carbonate (KHCO 3 ) as inorganic salts, and tetrahydrofuran (KHCO 3 ) as an organic solvent.
  • THF tetrabutyl ammonium bromide
  • TBAC tetrabutyl ammonium chloride
  • TBAF tetrabutyl ammonium fluoride
  • Inorganic salts show the state of an aqueous solution in which the heat storage agent is dissolved in water as a solvent
  • organic solvents and quaternary ammonium salts show the state of an aqueous solution in which the heat storage agent is hydrophobic hydrated.
  • These have a predetermined phase transition temperature determined by their respective concentrations and compositions when a phase change between a liquid and a solid occurs, and can be used as a heat storage material by utilizing latent heat accompanying the phase transition. The use of the heat storage liquid with this phase change can be stably repeated.
  • the heat storage liquid in which the heat storage main agent is an inorganic salt exhibits a phase transition temperature below the freezing point due to the phenomenon of molar freezing point depression.
  • a heat storage liquid in which an organic solvent or a quaternary ammonium salt is the main heat storage agent has a structure called an inclusion compound or a semi-clathrate hydrate, that is, a structure in which several tens of water molecules surround the heat storage main agent. The generated heat when the compound is generated is used as the latent heat storage performance.
  • the shape holder is an organic polymer called agar, which is dispersed almost uniformly to form a so-called colloid. These shape holders are preferably added in an amount of 0.2% by weight or more based on the heat storage liquid. Agars form a network structure in the heat storage liquid, and the heat storage liquid is filled in the voids of the network structure. Since sufficient intensity
  • the shape holder preferably has an elastic modulus of 500 Pa or more.
  • Agar is a dry matter obtained by hot water extraction of viscous substances present in red algae to remove moisture.
  • the agar includes forms such as powder agar, flake agar, solid agar, horn agar, and thread agar, but the present invention is not limited to the form of agar and has effects.
  • the agar component is composed of a polysaccharide having galactose as a basic skeleton, and is classified into agarose rich in neutral gelling ability and agaropectin not having ionic gelling ability. Agarose is partially rich in sulfate, methoxyl, pyruvate and carboxyl groups.
  • the agar used in the invention is not limited by the molecular weight, the side chain of agaropectin, or the degree of purification. Such agars are easily available materials, and can produce a heat storage gel material at low cost. If the concentration of agar is 0.2% or more, the shape can be maintained as a layered heat storage gel material. In addition, as a shape holding body, what is strong to an acid alkali and can be gelatinized in a small amount is preferable. Other than agars, curdlan, gellan gum, locust bean gum + xanthan gum (1: 1 weight ratio) composite gelling agent, and synthetic gelling agents such as acrylamide can be mentioned.
  • FIG. 1 is a schematic diagram showing agar network formation.
  • agar exists as a random coil molecule, but upon cooling, a three-dimensional network with a double helix structure is formed and transferred from the sol to the gel.
  • a three-dimensional network having a double helix structure associates and gels with water molecules as a solvent, a hydrogel is formed.
  • Hydrogel water molecules and agar networks are weak in bonding strength, and when external stimuli (for example, repeated freezing and thawing, pressure, rupture, etc.), water molecules can easily leave the network and maintain their shape. Disappear.
  • a cellulose derivative as a water separation preventing agent for use in a heat storage gel material using latent heat.
  • Any water separation inhibitor may be used as long as it increases the viscosity with a 1% viscosity of 100 mPa ⁇ s or more, and a cellulose derivative capable of imparting high viscosity is particularly preferable. Thereby, even if it uses repeatedly, it can prevent that water separation arises with a phase change, and can suppress the fall of a function. In addition, it is not known that such an effect is exerted on a heat storage liquid that is an aqueous solution in which a heat storage main agent is dissolved at a high concentration.
  • Viscosity is a value measured using a B-type viscometer in an environment of 20 ° C. The higher the 1% viscosity (concentration when the concentration is 1%), the easier the water separation is suppressed. Stirring becomes difficult and it becomes difficult to enclose in a pack.
  • FIG. 2A is a schematic diagram showing an agar-only network
  • FIG. 2B is a schematic diagram showing an agar network enhanced by a water separation inhibitor.
  • the synergistic effect of the three-dimensional structure refers to the synergistic effect of the network of the agar network and the water separation inhibitor (for example, cellulose derivative).
  • the agar network basically has a straight chain structure with side chains.
  • the water separation inhibitor also has a straight chain structure.
  • FIG. 2B since the agar enhanced by the water separation preventing agent has linear structures associated with each other and intertwined closely, the network is enhanced.
  • FIG. 3A is an SEM photograph showing an agar-only network
  • FIG. 3B is an SEM photograph showing an agar network enhanced by a water separation inhibitor.
  • the agar network in the meeting state has a large gap and the bond between water molecules and the agar network is weak, so it can move freely. In this state, water molecules easily leave the network. From the comparison between FIG. 3A and FIG. 3B, it can be seen that the agar network is thickened by adding a water separation inhibitor to the network. In addition, a network of the water separation inhibitor itself is formed.
  • the network formation of the water separation inhibitor itself is supported by the new 1.8 nm periodicity from the small-angle X-ray scattering measurement.
  • the number of bonds between water molecules and each network increases, and it can be seen that the water molecules are bound. For this reason, even when there is an external stimulus, water molecules are unlikely to leave the network, and water separation is considered to be suppressed.
  • such an effect is not recognized in the side chain structure with a branch. This is because the network cannot be intertwined closely due to steric hindrance. That is, cellulose is a linear polymer in which glucose is connected by ⁇ (1-4) bonds, and a synergistic effect with agar having the same linear structure is likely to occur.
  • starch which is a mixture of amylose and amylopectin.
  • glucose is not ⁇ , but has a linear structure with ⁇ (1-4) bonds.
  • a synergistic effect is unlikely to occur. That is, the synergistic effect is not ensured in the case of a linear structure, and is also influenced by the way of bonding. Such a synergistic effect is unlikely to occur with a water separation inhibitor that does not have a linear structure.
  • insoluble CMC does not form a sufficient network, so such a synergistic effect is unlikely to occur.
  • glucose having five OH groups for each six-membered ring can be expected to have such an effect from the viewpoint of hydrogen bonding, but the effect is actually small. This is because glucose is a monosaccharide and is not networked alone, and the viscosity is not sufficient.
  • a water-absorbing polymer for example, polyacrylic acid
  • the concentration of the water separation preventing agent is required to be 1% or more when TBAB is used as a heat storage main agent, and 3% or more when KCl is used.
  • the addition amount of the water separation inhibitor is preferably within a range where the latent heat reduction rate is within 10%.
  • whether the heat storage main agent is TBAB or the heat storage main agent is KCl Each is preferably 4.5% or less.
  • the required amount of CMC when the agar is 1.5% is 1.0% or more for TBAB and 3.0% or more for KCl.
  • the required amount of CMC when agar is 1.0% is 2.0% or more for TBAB and 4.0% or more for KCl.
  • the required amount of CMC when the agar is 0.5% is 3.0% or more for TBAB and 6.0% or more for KCl.
  • Examples of the cellulose derivative include a linear structure and ⁇ -bonded glucose, and examples thereof include carboxymethyl cellulose (CMC), methyl cellulose (MC), and hydroxymethyl cellulose.
  • CMC carboxymethyl cellulose
  • MC methyl cellulose
  • hydroxymethyl cellulose examples of the cellulose derivatives.
  • FIG. 4 is a diagram showing a chemical formula of carboxymethylcellulose.
  • Carboxymethylcellulose is composed of the chemical formula shown in FIG. 4 and is formed by binding a carboxymethyl group (_CH2_COOH) to a part of the hydroxy group of the cellulose skeleton.
  • a graft polymerization type starch-based resin water-absorbing resin can also be used as a water separation inhibitor.
  • water separation inhibitor even if water separation is suppressed, if the contact surface between the pack and the gel is too small with respect to the weight, the shape cannot be maintained completely.
  • the heat storage gel material of the present invention when a layered heat storage gel material is placed vertically by combining a shape retention body composed of agarose and the like and a water separation preventing agent composed of a cellulose derivative, which are composed of agarose.
  • the shape can be prevented from collapsing, and the heat storage function can be maintained for repeated use.
  • heat storage gel material Even if it is going to maintain a function only with a shape maintenance body, heat storage gel material will generate water separation and cannot be used repeatedly. On the other hand, when the water retention is improved by the cellulose derivative, it is difficult to separate the water, but the shape cannot be maintained only by this. Therefore, the heat storage gel material shares the function complementarily by both. In this way, it is possible to realize a heat storage gel material that can suppress water separation and further suppress a decrease in the amount of latent heat.
  • a cold storage device can be configured by applying a heat storage gel material.
  • the cold insulation device includes a heat storage pack and a holding body, cools the heat storage pack, holds the heat storage pack on the holding body, and keeps the object cold by contacting the object.
  • a heat storage gel material is sealed in a resin bag body such as a nylon bag, and the heat storage pack is formed in a layer shape.
  • the holding body holds the layered heat storage pack along the inner wall surface.
  • the icing supporter includes a heat storage pack and a supporter main body, and can be fixed by bringing the cooled heat storage pack into contact with the target portion.
  • a heat storage gel material is hermetically sealed in a resin bag body such as nylon bag, Si rubber, stretchable elastomer or the like, and is formed in layers.
  • the supporter body can be fixed to a part of the human body while holding the heat storage pack. As a result, it is possible to provide an icing support that is easy to use because the shape of the heat storage pack does not easily collapse.
  • FIG. 5 is a schematic diagram showing a method for manufacturing the heat storage gel material 10 and the heat storage pack 20 using the same.
  • a heat storage agent is mixed with water to produce an aqueous solution as a heat storage liquid.
  • a solution having a concentration to achieve a desired phase transition temperature is prepared.
  • the aqueous solution is prepared by weighing and mixing so as to be a 40% by weight aqueous solution.
  • the agar is dispersed in the aqueous solution by mixing and heating the agar such as agarose in the aqueous solution.
  • the uniform heat storage gel material which agars disperse
  • a water separation inhibitor such as CMC is mixed in the aqueous solution in which the agar is dispersed.
  • a water separation inhibitor is added, and the temperature is raised to gel.
  • CMC is used as the water separation inhibitor. Then, while cooling from the upper side as it is, boiling is continued for 15 minutes or more to stop the temperature rise, and the heat storage gel material 10 is obtained.
  • a gelation process in the case of dissolving a salt a method of first mixing a gelling agent with water, raising the temperature to a dissolution temperature, and mixing the salt during the cooling process is general.
  • some clathrate hydrate systems have hygroscopicity, and are not suitable for mixing salts in the cooling process.
  • the obtained thermal storage gel material 10 is enclosed in the pack 15, and it leaves still until temperature becomes normal temperature.
  • the heat storage pack 20 using the heat storage gel material 10 and also the heat storage gel material 10 can be manufactured.
  • FIG. 6 is a schematic diagram showing an example of a procedure for water separation evaluation.
  • the water separation evaluation was performed according to the following procedure. First, the evaluation object and the weight of the pack are measured, and a predetermined amount (20 g) of the evaluation object is enclosed in a pack having a certain size. Next, the sealed pack is put in a refrigerator at ⁇ 18 ° C. or lower for 12 hours or longer. Thereafter, the pack is thawed at room temperature (25 ° C.) over 6 hours, and then sealed. Then, the amount of water separation is determined by sucking water into the paper waste.
  • FIG. 7 is a graph showing the water separation rate for each water separation inhibitor.
  • CMCs (1) to (4) are classified according to molecular weight, and the viscosity at a concentration of 1% by weight of an aqueous solution varies depending on the molecular weight, as shown in the following table.
  • FIG. 8 is a table showing the amount of each agar added to the TBAB aqueous solution and the water separation rate for each water separation inhibitor.
  • the surface-attached water was 2.9% in the aqueous solution to which 35% by weight of TBAB was added, and it can be determined that there is a water separation effect when the water separation amount is less than that. It was also found that the amount of CMC (4) added was 1% or more and 5% or less depending on the amount of agar added (see the thick frame in the figure).
  • FIG. 9 is a table showing the amount of each agar added to the KCl aqueous solution and the water separation rate for each water separation inhibitor.
  • the surface-attached water is 3.4% in the aqueous solution to which 35% by weight of TBAB has been added. It was found that the addition amount of CMC (4) was required to be 3% or more and 7% or less depending on the addition amount of agar (see the thick frame in the figure).
  • FIG. 10 is a photograph showing a pack of a comparative example after the experiment.
  • the heat storage gel material after the melting is repeated 100 cycles has water separation in the downward direction, and the following problems occur.
  • a heat storage gel material prepared by adding 1.5% agar and 2.0% CMC (4) to a 30% by weight THF aqueous solution is 150 mm ⁇ 200 mm.
  • a product enclosed in a nylon pack was prepared. This was frozen, brought into contact with the skin to be cooled, and used (thawed).
  • the heat storage gel material after use was subjected to freeze-thaw and water separation evaluation in the same manner as in FIG. As a result, the water separation rate was 1.5%, which was lower than 4.6%, which is surface adhering water, indicating that water separation was suppressed.
  • a heat storage gel material prepared by additionally adding 1.5% agar and 2.0% CMC (4) to a 35% by weight aqueous solution of TBAB is 150 mm ⁇ 200 mm.
  • a product enclosed in a nylon pack was prepared. This was used in the same manner as in the eleventh example, and freeze thaw and water separation evaluation were performed in the same manner as in FIG. As a result, the water separation rate was 2.2%, which was lower than the surface adhesion water of 5.2%, indicating that water separation was suppressed.
  • a heat storage gel material prepared by additionally adding 1.5% agar and 2.0% CMC (4) to a 30% by weight aqueous solution of TBAF is 150 mm ⁇ 200 mm.
  • a product enclosed in a nylon pack was prepared. This was used in the same manner as in the eleventh example, and freeze thaw and water separation evaluation were performed in the same manner as in FIG. As a result, the water separation rate was 2.7%, which was lower than 6.4%, which is surface adhering water, and thus it was found that water separation was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ相転移による潜熱を利用して繰り返し使用できる蓄熱ゲル材およびその製造方法を提供する。蓄熱ゲル材は、水に蓄熱主剤が分散され、所定の相転移温度を有する蓄熱液と、有機分子によるネットワーク構造を有し、蓄熱液に対して0.2重量%以上の寒天類で形成されている形状保持体と、を備える。これにより、層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ相転移による潜熱を利用して繰り返し使用できる。また、容易に入手できる低コストな材料で、蓄熱ゲル材を生成できる。

Description

蓄熱ゲル材、その利用およびその製造方法
 本発明は、相変化時に蓄積または放出する熱を利用した蓄熱ゲル材、その利用およびその製造方法に関する。
 現在、蓄熱材は様々な用途に使用されつつあり、自由に蓄熱材の形状を成形できるゲル化技術に期待が集まっている。このようなゲル化技術についてはこれまでにも様々な報告がなされている。例えば、特定の材料では、凍結および融解等の相変化によりゲル構造が破壊され、ゲル内から水が出る離水により、ゲルの潜熱量が劇的に小さくなる現象が報告されている(特許文献1参照)。また、ゼリー状食品において、離水防止のため、セルロースをゲル化剤に用いた技術が提案されている(特許文献2参照)。
特開2002-88351号公報 特開2007-319048号公報
 上記のような蓄熱材は、例えば、建材、輸送ボックスの構成部材に用いられ、用途によっては蓄熱材を平置きだけでなく、縦置きしたい場合がある。しかしながら、ゲルの強度が不十分な層状の蓄熱材を縦置きにすると、その形状を維持できない。
 本発明は、このような事情に鑑みてなされたものであり、層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ相転移による潜熱を利用して繰り返し使用できる蓄熱ゲル材、その利用およびその製造方法を提供することを目的とする。
 上記の目的を達成するため、本発明の蓄熱ゲル材は、水に蓄熱主剤が分散され、所定の相転移温度を有する蓄熱液と、有機分子によるネットワーク構造を有し、前記蓄熱液に対して0.2重量%以上の寒天類で形成されている形状保持体と、を備える。
 これにより、層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ相転移による潜熱を利用して繰り返し使用できる。また、容易に入手できる低コストな材料で、蓄熱ゲル材を生成できる。
 本発明によれば、層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ相転移による潜熱を利用して繰り返し使用できる。
寒天のネットワーク形成を示す模式図である。 寒天のみのネットワークを示す模式図である。 離水防止剤により増強された寒天のネットワークを示す模式図である。 寒天のみのネットワークを示すSEM写真である。 離水防止剤により増強された寒天のネットワークを示すSEM写真である。 カルボキシメチルセルロースの化学式を示す図である。 本発明の蓄熱ゲル材およびこれを用いた蓄熱パックの製造方法を示す模式図である。 離水評価の手順の一例を示す模式図である。 各離水防止剤に対する離水率を示すグラフである。 TBAB水溶液に対し各寒天類の添加量および各離水防止剤に対する離水率を示す表である。 KCl水溶液に対し各寒天類の添加量および各離水防止剤に対する離水率を示す表である。 実験後の比較例のパックを示す写真である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。
 [第1の実施形態]
 (蓄熱材の構成)
 本発明の蓄熱ゲル材は、蓄熱性能を有する潜熱蓄熱材である蓄熱液と形状保持体とを備えている。蓄熱液は蓄熱主剤と水で構成される。蓄熱主剤とは、例えば表1に示す無機塩類や有機溶剤、4級アンモニウム塩類が挙げられる。具体的には、無機塩類として塩化ナトリウム(NaCl)、塩化アンモニウム(NHCl)、塩化カリウム(KCl)、炭酸ナトリウム(NaCO)、炭酸水素カリウム(KHCO)、有機溶剤としてテトラヒドロフラン(THF)、シクロヘキサン、4級アンモニウム塩類としてノルマルペンチルアンモニウムブロミド、テトラブチルアンモニウムブロミド(TBAB)、テトラブチルアンモニウムクロリド(TBAC)、テトラブチルアンモニウムフロリド(TBAF)等が挙げられるがこれらに限らない。
 無機塩類は蓄熱主剤が溶質として、溶媒である水に溶解している水溶液の様態、有機溶剤や4級アンモニウム塩類は、それら蓄熱主剤が疎水性水和している水溶液の様態を示す。これらは、液体と固体の相変化を生じる際、それぞれの濃度や組成によって決まる所定の相転移温度を有しており、相転移に伴う潜熱を利用して蓄熱材として使用できる。この相変化を伴う蓄熱液の使用は安定的に繰り返し可能である。
 なお、蓄熱主剤が無機塩類である蓄熱液は、モル凝固点降下現象によって氷点下の相転移温度を示す。有機溶剤や4級アンモニウム塩類が蓄熱主剤である蓄熱液は、包接化合物、セミクラスレートハイドレートと称される構造、すなわち、数十個以上の水分子がそれら蓄熱主剤を取り囲むような構造で、化合物が生成される際の生成熱を潜熱蓄熱性能として利用する。
Figure JPOXMLDOC01-appb-T000001
 形状保持体とは、寒天類と称される有機高分子であり、これらがほぼ均一に分散され、いわゆるコロイドと称される様態を形成する。これら形状保持体は蓄熱液に対して0.2%重量以上添加することが好ましい。寒天類は蓄熱液中で、ネットワーク構造を形成し、ネットワーク構造の空隙に蓄熱液が充填される。このような構成より、十分な強度を維持できるため、例えば蓄熱ゲル材を薄いシート状に形成してこれを垂直に縦置きしても形状が崩れるのを防止できる。形状保持体は、500Pa以上の弾性率を有することが好ましい。
 寒天類とは、紅藻類に存在する粘性物質を熱水抽出し、水分を除去した乾物のことである。寒天には粉末寒天、フレーク寒天、固形寒天、角寒天、糸寒天等の形態があるが、本発明は寒天の形態に限らず、効果を有する。寒天の成分はガラクトースを基本骨格とする多糖類からなり、中性のゲル化能に富むアガロースとイオン性のゲル化能を持たないアガロペクチンに分類される。アガロースには部分的に硫酸エステル、メトキシル基、ピルビン酸基、カルボキシル基を多く含んでいる。
 発明に用いる寒天類は、分子量やアガロペクチンの側鎖、精製度には制限されない。このような寒天類は、容易に入手できる材料であり、低コストに蓄熱ゲル材を生成できる。寒天類の濃度は0.2%以上であれば、層状の蓄熱ゲル材として形状を保持できる。なお、形状保持体としては、酸アルカリに強く、少量でゲル化できるものが好ましい。寒天類以外では、カードラン、ジェランガム類、ローカストビーンガム+キサンタンガム(1:1重量比)複合ゲル化剤、アクリルアミド等の合成系ゲル化剤が挙げられる。
 寒天のネットワーク形成(ゲル化)について説明する。図1は、寒天のネットワーク形成を示す模式図である。図1に示すように、溶液状態では寒天はランダムコイルの分子として存在しているが、冷却によりダブルヘリックス構造の三次元ネットワークを形成し、ゾルからゲルへ転移する。その際に溶媒として水分子を抱え込む形でダブルヘリックス構造の三次元ネットワークが会合しゲル化すると、ハイドロゲルができる。ハイドロゲルの水分子と寒天ネットワークの結合強度は弱く、外部からの刺激(例えば、凍結融解の繰り返し、圧力、破断等)があると、簡単に水分子がネットワークから離れてしまい、形状を維持できなくなる。
 一般に食品添加物として寒天類が使われる場合、ローカストビーンガム等の水溶性天然多糖類を添加することで離水を防止し、ゲル強度を高め弾力性を与えることが知られている(鈴木一成監修、化粧品成分用語事典2012、中央書院P603-604)。しかし、このような方法は、凍結融解を何度も繰り返すような蓄熱ゲル材、特に食品には供されない高濃度の塩類が含まれているゲルからの離水を抑制するには効果がないことが発明者らの検討によって明らかとなった。
 発明者らは、潜熱を利用する蓄熱ゲル材に用いるための離水防止剤として、セルロース誘導体の添加が好ましいことを見出した。離水防止剤としては1%粘度が100mPa・s以上の粘性を増加させるものであれば良く、特に高粘性を付与できるセルロース誘導体が好ましい。これにより、繰り返し使用によっても相変化に伴い離水が生じるのを防止でき、機能の低下を抑制できる。また、高濃度に蓄熱主剤が溶解した水溶液である蓄熱液に対して、このような効果が発現するということは知られていない。また、容易に入手できる材料で低コストに離水を防止できる。なお、蓄熱主剤に吸水性樹脂を用いることで、離水現象を防止することもできる。また、寒天類とセルロース誘導体とを組み合わせることで、潜熱量低下抑制という波及効果も得られる。
 離水が抑制できる一つの理由として、離水防止剤としてのセルロース誘導体による寒天ネットワークの増強がある。つまり、寒天ネットワーク中に存在する、蓄熱主剤が分散した水溶液と寒天ネットワークとの水素結合が強くなり、外部からの刺激(ここでは特に凍結融解)によるネットワークの伸縮に対して、水と蓄熱主剤を構成する分子が離れにくくなるために離水を抑制できる。その増強の度合いの尺度として、粘度と立体構造の相乗効果が挙げられる。
 粘度は、20℃環境下でB型粘度計を用いて測定した値のことであり、1%粘度(濃度が1%時の濃度)が高いほど離水が抑えられやすいが、高すぎると混合・撹拌が困難となり、パックに封入することが難しくなる。
 図2Aは、寒天のみのネットワークを示す模式図であり、図2Bは、離水防止剤により増強された寒天のネットワークを示す模式図である。立体構造の相乗効果は、寒天ネットワークと離水防止剤(例えば、セルロース誘導体)のネットワークの相乗効果を指す。図2Aに示すように、寒天ネットワークは、側鎖はあるものの、基本的に直鎖構造をとっている。離水防止剤も同じく直鎖構造をとっている。図2Bに示すように、離水防止剤により増強された寒天は直鎖構造が互いに会合し、密接に絡み合っていることから、ネットワークが増強される。
 このような構造は、小角X線散乱による周期構造の解析やSEM観察により実証できる。図3Aは、寒天のみのネットワークを示すSEM写真であり、図3Bは、離水防止剤により増強された寒天のネットワークを示すSEM写真である。会合状態の寒天ネットワークでは隙間の大きく、水分子と寒天ネットワークの結合も弱いため、自由に動ける状態になっている。この状態では簡単に水分子がネットワークから離れてしまう。図3A、図3Bの比較から、ネットワークに離水防止剤を添加することで、寒天ネットワークが太くなっていることがわかる。また、離水防止剤自体のネットワークも形成される。
 また、ネットワークが太くなることで、隙間が小さくなることは、小角X線散乱測定により実証できる。実際に小角X線散乱測定により周期性を確認したところ、寒天ネットワークだけでは、7.9nmの周期性であるものが、離水防止剤としてカルボキシメチルセルロース(CMC)を添加した場合に4.0nmになっていた。この結果から、周期性を示す隙間が小さくなっていることが裏付けられる。つまり、離水防止剤の添加により離水しにくい状態になっているといえる。
 また、離水防止剤自体のネットワーク形成についても、小角X線散乱測定から、新しく1.8nmの周期性が出ていることから裏付けられている。これにより水分子と各ネットワークとの結合が多くなり、水分子が束縛されていることがわかる。このため、外部からの刺激があった場合でも、水分子がネットワークから離れにくく、離水が抑えられていると考えられる。また分岐があるような側鎖構造ではこのような効果は認められない。これは立体障害の為、ネットワークが密接に絡み合うことができないことが理由である。つまり、セルロースはグルコースがβ(1-4)結合によってつながった直鎖状高分子であり、同じ直鎖状構造を有する寒天との相乗効果が生じやすい。
 一方で、セルロースの類似構造として、アミロースとアミロペクチンの混合物であるデンプンがある。デンプンでは、グルコースがβではなく、α(1-4)結合によって直鎖状構造を成している。デンプンを用いた場合は、相乗効果が生じにくい。つまり、相乗効果は、直鎖状構造であれば確保されるわけではなく、結合の仕方によっても影響される。直鎖構造ではない離水防止剤ではこのような相乗効果は起こりにくい。
 また、不溶性CMCでは、十分にネットワークが形成されないため、このような相乗効果は起こりにくい。また、六員環毎に5つのOH基をもつグルコースでは、水素結合の観点から言えば、このような効果を期待できるが、実際には効果は小さい。これは、グルコースは単糖類であり、単独ではネットワーク化しないこと、粘度が十分に出ないことが理由である。また、ネットワークを形成し、保水力が高い吸水性ポリマー(例えば、ポリアクリル酸等)を添加しても、効果はない。このような、粘度と立体構造(相乗効果と水素結合)から考えられたメカニズムはこれまで報告例がない。
 離水防止剤の濃度は蓄熱主剤としてTBABを用いた場合は、1%以上、KClを用いた場合は3%以上が必要となる。離水防止剤の添加量は、潜熱量減少率が10%以内になる範囲であることが好ましく、具体的には、蓄熱主剤がTBABである場合、または蓄熱主剤がKClである場合のいずれでも、それぞれ4.5%以下であることが好ましい。寒天が1.5%のときのCMCの必要量は、TBABでは1.0%以上、KClでは3.0%以上である。寒天が1.0%のときのCMCの必要量は、TBABでは2.0%以上、KClでは4.0%以上である。寒天が0.5%のときのCMCの必要量は、TBABでは3.0%以上、KClでは6.0%以上である。
 セルロース誘導体としては、直鎖状構造であり、グルコースがβ結合していることから例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシメチルセルロース等が挙げられる。ただし、側鎖の置き換えにより化学物質名は変わってもセルロースの構造を有していれば効果は発現するため、適用可能なセルロース誘導体がこれらに限定されるわけではない。その結果、少量の添加で形状を保持して離水も抑えることができる。図4は、カルボキシメチルセルロースの化学式を示す図である。カルボキシメチルセルロースは、図4に示す化学式で構成され、セルロースの骨格のヒドロキシ基の一部にカルボキシメチル基(_CH2_COOH)を結合させたものである。
 離水防止剤としてグラフト重合型澱粉系樹脂吸水性樹脂を用いることもできる。ただし、この場合、離水は抑えられていても、重量に対してパックとゲルの接触面が小さすぎる場合は、完全には形状保持できない。
 このように、本発明の蓄熱ゲル材では、アガロースを成分とする寒天類等からなる形状保持体およびセルロース誘導体からなる離水防止剤を複合化させることで、層状の蓄熱ゲル材を縦置きしたときに形状が崩れるのを防止でき、かつ繰り返し使用に対して蓄熱機能を維持できる。
 蓄熱ゲル材は、形状保持体だけで機能を維持しようとしても、離水が生じ、繰り返し使用できない。一方でセルロース誘導体により保水力を向上させた場合、離水し難いが、これだけでは形状を保持できない。そこで、蓄熱ゲル材は、両者により補完的に機能を分担している。このようにして、離水を抑制でき、さらに潜熱量の低下を抑制できる蓄熱ゲル材を実現できる。
 [第2の実施形態]
 (保冷装置、アイシング用サポータ)
 蓄熱ゲル材を応用し、保冷装置を構成することもできる。保冷装置は、蓄熱パックおよび保持体を備え、蓄熱パックを冷却して保持体に保持させ、対象物に当接させることで対象物を保冷する。蓄熱パックは、ナイロン製袋等の樹脂製袋体に蓄熱ゲル材が密封され、層状に形成されている。保持体は、内壁面に沿って層状の蓄熱パックを保持する。これにより、内部に設置された蓄熱パックの形状が崩れにくい保冷装置を提供できる。
 アイシング用サポータは、蓄熱パックおよびサポータ本体を備えており、冷却された蓄熱パックを対象部位に当接させて固定可能になっている。蓄熱パックは、ナイロン製袋、Siゴム、伸縮性エラストマー等の樹脂製袋体に蓄熱ゲル材が密封され、層状に形成されている。サポータ本体は、蓄熱パックを保持しつつ、人体の一部に固定できる。これにより、蓄熱パックの形状が崩れにくく使いやすいアイシング用サポートを提供できる。
 [第3の実施形態]
 (蓄熱ゲル材および蓄熱パックの製造方法)
 上記のように構成された蓄熱ゲル材および蓄熱ゲル材を用いた蓄熱パックの製造方法を説明する。図5は、蓄熱ゲル材10およびこれを用いた蓄熱パック20の製造方法を示す模式図である。まず、水に蓄熱主剤を混合して蓄熱液として水溶液を生成する。その際には、所望の相転移温度になる濃度にした溶液を作る。例えば、TBABで相転移温度8~12℃にしたい場合は、40重量%の水溶液になるように秤量、混合し、水溶液を調製する。
 次に、水溶液に、アガロース等の寒天類を混合して加熱することで寒天類を水溶液内に分散させる。これにより、寒天類が形状保持体として分散した均一な蓄熱ゲル材を生成することができる。そして、寒天類が分散した水溶液にCMC等の離水防止剤を混合する。その際には、例えば水溶液が80℃以上になってから離水防止剤を添加し、昇温しゲル化する。ゲル化剤を複合化する場合、同時に混合することがよく行なわれているが、本構成において、同時に混合すると、CMCが先に溶解してしまい、粘性が劇的に増加し、寒天が混合できにくくなる。このような条件で作製されたゲルは不均一となり、用途に適用する際に、効果も不均一に生じてしまう。
 なお、離水防止剤としては、例えばCMCを用いる。そして、そのまま上側から冷却しつつ15分以上煮沸して昇温をストップし、蓄熱ゲル材10を得る。塩を溶解させる場合のゲル化プロセスとして、まず水にゲル化剤を混合して、溶解温度まで昇温し、冷却プロセスの間で塩を混合させる方法が一般的である。しかし本発明で用いる蓄熱主剤の中で、特に包接水和物系は吸湿性を有するものもあり、塩を冷却プロセスで混合させることに不向きである。そして、得られた蓄熱ゲル材10をパック15に封入し、温度が常温になるまで、静置する。このようにして蓄熱ゲル材10、さらには蓄熱ゲル材10を用いた蓄熱パック20を製造することができる。
 [実験(各種実施例)]
 (第1~4の実施例)
 上記の製造方法に沿って、TBAB35%水溶液に対して、寒天1.5%を追加で添加した。これに対して、各増粘多糖類(LBG(ローカスビンガム)、グァーガム、タラガム、CMC)を3%追加添加し、ゲル化した蓄熱ゲル材を作製し、離水評価を行なった。
 図6は、離水評価の手順の一例を示す模式図である。離水評価は、以下の手順で行なった。まず、評価対象およびパックの重さを測定し、所定量(20g)の評価対象を一定寸法のパックに封入する。次に、封入したパックを-18℃以下の冷蔵庫に12h以上入れておく。その後、パックを室温(25℃)で6h以上かけて解凍し、封を切る。そして、紙製ウエスに水を吸わせて離水量を定量する。
 図7は、各離水防止剤に対する離水率を示すグラフである。評価の結果、CMC添加の例のみ顕著な離水抑制の効果が認められ、高濃度の塩については寒天のみ(第1の比較例)は離水しており、LBG(第2の比較例)、グァーガム(第3の比較例)、タラガム(第4の比較例)には離水抑制の効果が認められなかった。特に、CMC(4)について、高い効果が得られている。
 なお、離水防止剤の添加がない場合は、表面付着水の量のみが検出されるが、表面付着水を含めて離水量として測定している。したがって、CMC(1)~(4)の離水率は、表面付着水を下回っており、図7では、このことを表面付着水エリア内として表している。CMC(1)~(4)は、分子量によって区分され、分子量に応じて水溶液1重量%濃度での粘度が異なっており、それぞれ以下の表の通りである。
Figure JPOXMLDOC01-appb-T000002
 (第5の実施例)
 次に、TBABを35重量%添加した水溶液に対し、寒天の添加量を0.5%、1.0%、1.5%とし、離水防止剤としてのCMC(4)の添加量を0.3%、0.5%、1.0%、1.5%、2.0%、2.5%および3.0%に振って、蓄熱ゲル材を作製し、それぞれの離水評価を行なった。図8は、TBAB水溶液に対し各寒天類の添加量および各離水防止剤に対する離水率を示す表である。評価の結果、TBABを35重量%添加した水溶液では、表面付着水が2.9%であり、それ以下の離水量が生じた場合には、離水効果があると判断できる。また、寒天類の添加量に応じてCMC(4)の添加量が1%以上5%以下必要であることが分かった(図中の太枠参照)。
 また、KClを20重量%添加した水溶液に対し、寒天の添加量を0.5%、1.0%、1.5%とし、離水防止剤としてのCMC(4)の添加量を2.0%、3.0%および4.0、6.0、7.0%に振って、蓄熱ゲル材を作製し、それぞれの離水評価を行なった。図9は、KCl水溶液に対し各寒天類の添加量および各離水防止剤に対する離水率を示す表である。評価の結果、TBABを35重量%添加した水溶液では、表面付着水が3.4%であり、それ以下の離水量が生じた場合には、離水効果があると判断できる。寒天類の添加量に応じてCMC(4)の添加量が3%以上7%以下必要であることが分かった(図中の太枠参照)。
 (第6~7の実施例)
 次に、蓄熱材の潜熱量に関して、DSC測定を行なった(JISK7122)。表3は、形状保持体と離水防止剤の添加量に対する潜熱量の低下率を示している。
Figure JPOXMLDOC01-appb-T000003
 水溶液に対し、CMC単独を3%添加すると潜熱量が11.0%低下した。これに対し、寒天1.5%とCMC3%の複合添加では、水溶液に対し潜熱量が6.7%低下した。また、寒天1.5%とCMC1.5%の複合添加では水溶液に対する潜熱量の低下は5.3%であり、低下を抑制できた。
 (第5の比較例)
 10℃で保冷したい場合、TBAB35重量%水溶液に対して、寒天1.5%を追加で添加して作製した蓄熱ゲル材を、75mm×100mmのパックに封入したものを6つ作製した。これらを底面110mm×110mm、高さ80mmの断熱ボックスの6面に配置し、図6に示すように、凍結融解、離水評価を行なった。その結果、6枚の離水率は底面が9.6%、天面が9.2%、側面が12.4%、11.7%、12.2%、12.2%となり、表面付着水である2.9%より高い値となったことから、非常に離水現象が進行していることが分かった。
 図10は、実験後の比較例のパックを示す写真である。融解を100サイクル繰り返した後の蓄熱ゲル材は図10のように、下方向に離水が溜まっており、以下のような問題が生じる。
(1)繰り返し使う場合に、凍結形状が不均一になる
(2)融解中に均一にボックス内を冷却できず、ボックス内の温度分布が大きくなる(熱流入が大きくなる)
 (第8の実施例)
 10℃で保冷したい場合、TBAB35重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作成した蓄熱ゲル材を、75mm×100mmのパックに封入したものを6つ作製した。これらを底面110mm×110mm、高さ80mmの断熱ボックスの6面に配置し、図6に示すように、凍結融解、離水評価を行なった。その結果、6枚の離水率は底面が0.1%、天面が0.1%、側面が0.3%、0.3%、0.4%、0.6%となり、表面付着水である2.9%より低い値となったことから、離水が抑えられていることが分かった。
 (第9の実施例)
 4℃で保冷したい場合、THF30重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作製した蓄熱ゲル材を、75mm×100mmのパックに封入したものを6つ作製した。これらを第8の実施例と同様に配置し、図6に示すように、凍結融解、離水評価を行なった。その結果、6枚の離水率は底面が0.4%、天面が0.3%、側面が0.5%、0.8%、0.6%、1.0%となり、表面付着水である3.1%より低い値となったことから、離水が抑えられていることが分かった。
 (第10の実施例)
 -11℃で保冷したい場合、KCl20重量%水溶液に対して、寒天1.5%、CMC(4)3.0%を追加で添加して作製した蓄熱ゲル材を、75mm×100mmのパックに封入したものを6つ作製した。これらを第8の実施例と同様に配置し、図6に示すように、凍結融解、離水評価を行なった。その結果、6枚の離水率は底面が0.3%、天面が0.4%、側面が0.6%、0.5%、0.7%、0.9%となり、表面付着水である3.4%より低い値となったことから、離水が抑えられていることが分かった。
 (第11の実施例)
 冷却対象物を4℃で冷却したい場合、THF30重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作製した蓄熱ゲル材を、150mm×200mmのナイロン製パックに封入したものを作製した。これを凍結させ、冷却対象物である皮膚に接触させ、使用した(融解させた)。使用後の蓄熱ゲル材を図6と同じ要領で、凍結融解、離水評価を行なった。その結果、離水率は1.5%であり、表面付着水である4.6%より低い値となったことから、離水が抑えられていることが分かった。
 (第12の実施例)
 ナイロン製パックを伸縮エラストマーに変更した。それ以外は第11の実施例と同様である。その結果、離水率は2.9%であり、表面付着水である6.2%より低い値となったことから、離水が抑えられていることが分かった。
 (第13の実施例)
 冷却対象物を10℃で冷却したい場合、TBAB35重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作製した蓄熱ゲル材を、150mm×200mmのナイロン製パックに封入したものを作製した。これを第11の実施例と同様に使用し、図6と同じ要領で、凍結融解、離水評価を行なった。その結果、離水率は2.2%であり、表面付着水である5.2%より低い値となったことから、離水が抑えられていることが分かった。
 (第14の実施例)
 冷却対象物を14℃で冷却したい場合、TBAC38重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作製した蓄熱ゲル材を、150mm×200mmのナイロン製パックに封入したものを作製した。これを第11の実施例と同様に使用し、図6と同じ要領で、凍結融解、離水評価を行なった。その結果、離水率は2.8%であり、表面付着水である6.3%より低い値となったことから、離水が抑えられていることが分かった。
 (第15の実施例)
 冷却対象物を26℃で冷却したい場合、TBAF30重量%水溶液に対して、寒天1.5%、CMC(4)2.0%を追加で添加して作製した蓄熱ゲル材を、150mm×200mmのナイロン製パックに封入したものを作製した。これを第11の実施例と同様に使用し、図6と同じ要領で、凍結融解、離水評価を行なった。その結果、離水率は2.7%であり、表面付着水である6.4%より低い値となったことから、離水が抑えられていることが分かった。
 なお、本国際出願は、2015年5月26日に出願した日本国特許出願第2015-106468号に基づく優先権を主張するものであり、日本国特許出願第2015-106468号の全内容を本国際出願に援用する。
10 蓄熱ゲル材
15 パック
20 蓄熱パック

Claims (7)

  1.  水に蓄熱主剤が分散され、所定の相転移温度を有する蓄熱液と、
     有機分子によるネットワーク構造を有し、前記蓄熱液に対して0.2重量%以上の寒天類で形成されている形状保持体と、を備える蓄熱ゲル材。
  2.  前記形状保持体は、前記ネットワーク構造の空隙に前記蓄熱液が充填された状態で、500Pa以上の弾性率を有する請求項1記載の蓄熱ゲル材。
  3.  前記蓄熱液は、前記蓄熱液内に分散した離水防止剤としてセルロース誘電体を含む請求項1記載の蓄熱ゲル材。
  4.  樹脂製袋体に請求項1記載の蓄熱ゲル材が密封され、層状に形成された蓄熱パックと、
     内壁面に沿って前記層状の蓄熱パックを保持する保持体と、を備え、
     前記蓄熱パックを冷却して前記保持体に保持させ、対象物に当接させることで前記対象物を保冷する保冷装置。
  5.  樹脂製袋体に請求項1記載の蓄熱ゲル材が密封された蓄熱パックを用いた輸送ボックス。
  6.  樹脂製袋体に請求項1記載の蓄熱ゲル材が密封され、層状に形成された蓄熱パックと、
     前記蓄熱パックを保持しつつ、人体の一部に固定できるサポータ本体と、を備え、
     前記蓄熱パックを冷却し、対象部位に当接させて固定するアイシング用サポータ。
  7.  水に蓄熱主剤を混合して蓄熱液を生成する工程と、
     前記蓄熱液に寒天類を混合して加熱することで前記寒天類を前記蓄熱液内に分散させる工程と、
     離水防止剤を前記寒天類が分散した前記蓄熱液に混合する工程と、を含む蓄熱ゲル材の製造方法。
PCT/JP2016/065398 2015-05-26 2016-05-25 蓄熱ゲル材、その利用およびその製造方法 WO2016190333A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106468 2015-05-26
JP2015106468 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016190333A1 true WO2016190333A1 (ja) 2016-12-01

Family

ID=57393394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065398 WO2016190333A1 (ja) 2015-05-26 2016-05-25 蓄熱ゲル材、その利用およびその製造方法

Country Status (1)

Country Link
WO (1) WO2016190333A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059888A1 (ja) * 2019-09-27 2021-04-01 シャープ株式会社 保冷具
WO2023013752A1 (ja) 2021-08-05 2023-02-09 パナソニックホールディングス株式会社 蓄冷材

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110614A (ja) * 1982-12-17 1984-06-26 Lion Corp 湿布剤の製造方法
JPH0625657A (ja) * 1992-07-07 1994-02-01 Nippon Soda Co Ltd 保冷剤
JP3079675U (ja) * 2001-01-26 2001-08-31 一郎 谷中 ゲル内包吸熱放熱シート
JP2003019157A (ja) * 2001-07-06 2003-01-21 Advance Co Ltd 温感材並びに冷感材
JP2003070898A (ja) * 2001-09-04 2003-03-11 Life Kea Giken Kk 貼付剤とその製造方法
JP2003171655A (ja) * 2001-12-10 2003-06-20 Hokkaido Technology Licence Office Co Ltd 保温材
JP2008156588A (ja) * 2006-11-30 2008-07-10 Nippon Koonsutaac Kk 保冷剤
JP2010002154A (ja) * 2008-06-23 2010-01-07 Ooshin Mlp:Kk 採暖装置
JP2014019718A (ja) * 2012-07-12 2014-02-03 Hakugen:Kk 保冷剤
WO2014091938A1 (ja) * 2012-12-12 2014-06-19 シャープ株式会社 蓄熱材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110614A (ja) * 1982-12-17 1984-06-26 Lion Corp 湿布剤の製造方法
JPH0625657A (ja) * 1992-07-07 1994-02-01 Nippon Soda Co Ltd 保冷剤
JP3079675U (ja) * 2001-01-26 2001-08-31 一郎 谷中 ゲル内包吸熱放熱シート
JP2003019157A (ja) * 2001-07-06 2003-01-21 Advance Co Ltd 温感材並びに冷感材
JP2003070898A (ja) * 2001-09-04 2003-03-11 Life Kea Giken Kk 貼付剤とその製造方法
JP2003171655A (ja) * 2001-12-10 2003-06-20 Hokkaido Technology Licence Office Co Ltd 保温材
JP2008156588A (ja) * 2006-11-30 2008-07-10 Nippon Koonsutaac Kk 保冷剤
JP2010002154A (ja) * 2008-06-23 2010-01-07 Ooshin Mlp:Kk 採暖装置
JP2014019718A (ja) * 2012-07-12 2014-02-03 Hakugen:Kk 保冷剤
WO2014091938A1 (ja) * 2012-12-12 2014-06-19 シャープ株式会社 蓄熱材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059888A1 (ja) * 2019-09-27 2021-04-01 シャープ株式会社 保冷具
WO2023013752A1 (ja) 2021-08-05 2023-02-09 パナソニックホールディングス株式会社 蓄冷材
JP7403721B2 (ja) 2021-08-05 2023-12-22 パナソニックホールディングス株式会社 蓄冷材

Similar Documents

Publication Publication Date Title
Xu et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives
ES2828630T3 (es) Composiciones que comprenden materiales de cambio de fase
JP6279784B1 (ja) 潜熱蓄熱材組成物、及び潜熱蓄熱槽
CN106675527B (zh) 一种纳米纤维素复合水凝胶基相变材料及其制备方法和应用
Wan et al. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage
CN105038715A (zh) 一种相变温度为5-8℃的水合盐蓄冷剂及其制备方法
NO155785B (no) Polymert viskositetsregulerende middel samt anvendelse derav i broennbehandlingsvaesker.
CN114276786B (zh) 一种无机水合盐相变凝胶材料及其正向渗透制备方法
WO2016190333A1 (ja) 蓄熱ゲル材、その利用およびその製造方法
JP2015218212A (ja) 新規な潜熱蓄熱材組成物
US20200283601A1 (en) Biodegradable hydrogel
Abu-Jdayil et al. Modification of the rheological behaviour of sodium alginate by chitosan and multivalent electrolytes.
KR101655504B1 (ko) 축냉제
FR2957348A1 (fr) Composition et methode de gelification d'un materiau a changement de phase
JP5118869B2 (ja) 保冷剤
CN102078637A (zh) 海藻酸钠/罗望子胶共混载药膜及其制备方法和用途
JP5054306B2 (ja) フィルム状組成物
US10702455B2 (en) Gel composition, sheet, and production method therefor
JP2013136734A (ja) 冷却剤
JP7338891B2 (ja) 離水パターン調節充填液を含むハイドロゲルパッチ及びその製造方法
CN106753260B (zh) 一种蓄冷剂
JP6085705B2 (ja) ゲル組成物及びシート、並びに、それらの製造方法
Zhang et al. Preparation and characterization of montmorillonnite/tamarind gum/sodium alginate composite gel beads
JP3404232B2 (ja) 保冷・保温剤の製造方法
Ma et al. Structural properties of HPMC/PEG/CS thermosensitive porous hydrogels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP