WO2016190322A1 - 細胞処理容器 - Google Patents

細胞処理容器 Download PDF

Info

Publication number
WO2016190322A1
WO2016190322A1 PCT/JP2016/065359 JP2016065359W WO2016190322A1 WO 2016190322 A1 WO2016190322 A1 WO 2016190322A1 JP 2016065359 W JP2016065359 W JP 2016065359W WO 2016190322 A1 WO2016190322 A1 WO 2016190322A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
cell
partition
peripheral wall
cell processing
Prior art date
Application number
PCT/JP2016/065359
Other languages
English (en)
French (fr)
Inventor
琢磨 馬塲
智紀 赤井
将慶 籠田
良至 藤枝
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2016574477A priority Critical patent/JP6123963B1/ja
Publication of WO2016190322A1 publication Critical patent/WO2016190322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a cell processing container for use in processing cells using a processing solution, such as processing of an embryo immediately before transplantation.
  • fertilized eggs cultured by in vitro fertilization are transplanted after a certain culture process, leading to implantation and pregnancy and childbirth.
  • many improvements have been made to the culture dishes and techniques used in the culture process, and various efforts have been made to improve work efficiency and reduce the risk of loss of fertilized eggs due to mistakes.
  • a fertilized egg after culture is transplanted into a female body, it is generally a transplant that differs from the composition of the culture medium during culture, whether it is a fresh embryo transfer or a frozen thawed embryo transfer. After transferring to a special culture solution (referred to as “transplant”), the embryo is taken into the catheter and transplanted.
  • the state immersed in the transplantation solution is stably maintained in an incubator in which the temperature, humidity, gas concentration, etc. are controlled so as to be as close to the internal environment as possible.
  • the time until the embryo is sucked with the catheter and transplanted is an environment where the temperature, humidity and gas are different, and the embryo is stressed, so a short time operation is preferable.
  • each clinic currently uses a normal petri dish, a 4-well petri dish, a center well dish, and the like so that there is as little work error as possible and is capable of handling transplantation work in a short time.
  • the patient is already waiting in the operation room at the time of the transplantation process, and in addition to the short-time operation described above, the worker has to work under a sense of tension that also considers the risk of damaging the embryo due to mistakes. It was.
  • the work under the above environment is not easy when working in a wide range of wells because the catheter used is made of a soft material such as silicone.
  • the catheter used is made of a soft material such as silicone.
  • bubbles are likely to enter during the suction operation with the catheter.
  • the bottom surface is flat on the well of a normal petri dish, the embryo moves to the peripheral wall of the well and the end of the transplant solution drop during the movement of the petri dish or catheter operation, and disappears from the observation or in the worst case There was a risk of damaging or disappearing the embryo.
  • Patent Document 1 discloses an apparatus for monitoring and / or culturing at least two microscope objects and object medium, and the apparatus includes at least one recess, and each recess further includes the It has a recess having a smaller cross section than the recess.
  • the microscope object and the object medium are held in the depression.
  • the device described in Patent Document 1 is suitable for the purpose of observing cells, it is obvious that it is not easy to take out the cells held in the recesses.
  • Patent Document 2 discloses a cell culture container provided with a recess for containing cells and a culture solution.
  • the bottom surface of the recess in the container is preferably 0.75 mm 2 or more, and the area is relatively large, and in Patent Document 2, the shape of the bottom surface of the recess in a plan view is described. Is not specified.
  • a conventional cell culture container as described in Patent Document 2 it is difficult to specify the position of the cells or the like on the bottom surface.
  • Patent Document 2 does not disclose means for avoiding such a risk. Further, Patent Document 2 does not disclose a means for facilitating handling of cells housed in the concave portion of the container using a catheter having a small outer diameter formed of a soft material such as silicone.
  • the present invention relates to a cell for treating cells (including multicellular bodies such as embryos) with a treatment solution, such as treatment with a culture solution for transplantation of an embryo before transplantation, from a cell damage or microscopic observation field.
  • a treatment solution such as treatment with a culture solution for transplantation of an embryo before transplantation, from a cell damage or microscopic observation field.
  • the object is to solve the problem of disappearance or difficulty in handling with a catheter.
  • the present invention discloses the following invention as means for solving the above-described problems.
  • the volume of the accommodation space is 200 ⁇ l or more and 1000 ⁇ l or less,
  • the forming surface, which is the surface that forms the housing space, of the housing portion includes a deepest portion that is the deepest portion of the housing portion and an inclined surface that is formed so as to surround the deepest portion.
  • Have The inclined surface is continuous with the deepest portion,
  • the deepest part is formed so as to be within a circle having a diameter of 3 mm in a plan view of the cell treatment container.
  • the cell processing container is continuous with the deepest portion,
  • the deepest part is formed so as to be within a circle having a diameter of 3 mm in a plan view of the cell treatment container.
  • the surface of the bottom of the container and the outer wall surface of the housing portion can be connected by a rounded curved surface.
  • the curved surface may have a radius of curvature of 10 ⁇ m to 15 mm, preferably 10 ⁇ m to 1 mm.
  • the curved surface is preferably a concave curved surface.
  • the formation surface of the accommodation portion includes an accommodation portion bottom surface that forms a bottom of the accommodation space, and an accommodation portion side surface that stands up from a peripheral edge of the accommodation portion bottom surface and surrounds the accommodation space,
  • the accommodating portion bottom surface has the inclined surface
  • the bottom surface of the housing part and the side surface of the housing part may be connected by a rounded curved surface.
  • the curved surface may have a radius of curvature of 10 ⁇ m to 15 mm, preferably 10 ⁇ m to 1 mm.
  • the curved surface is preferably a concave curved surface.
  • the formation surface of the accommodation portion includes an accommodation portion bottom surface that forms a bottom of the accommodation space, and an accommodation portion side surface that stands up from a peripheral edge of the accommodation portion bottom surface and surrounds the accommodation space,
  • the accommodating portion bottom surface has the inclined surface
  • the side surface of the housing part may be a surface having an inclination angle defined in the present specification of less than 90 °, or a surface of 90 ° or more.
  • the outer wall surface of the housing portion may be a surface having an inclination angle defined in the present specification of less than 90 °, or a surface of 90 ° or more.
  • the formation surface of the accommodation portion includes an accommodation portion bottom surface that forms a bottom of the accommodation space, and an accommodation portion side surface that stands up from a peripheral edge of the accommodation portion bottom surface and surrounds the accommodation space,
  • the accommodating portion bottom surface has the inclined surface,
  • the width between the side surface of the housing part and the outer wall surface of the housing part may be 0.3 mm to 3 mm.
  • the thickness of the bottom of the container may be 0.3 mm to 3 mm.
  • one or more markings that can identify the direction of the cell treatment container can be provided.
  • the marking can be provided on the bottom of the container.
  • the marking may be configured to be discernible visually and / or tactilely.
  • At least one micro tag in which readable information is recorded can be coupled to the cell processing container.
  • the cell processing container of (1) further includes a lid, and at least one micro tag is coupled to the lid and the container main body that is a part other than the lid.
  • the surface of the container bottom can be formed to increase the depth in the container in the vicinity of the periphery of the container bottom.
  • the height of the entire cell treatment container in the vertical direction can be 1 mm to 15 mm.
  • the cell treatment container according to (1) further comprising an outer peripheral wall portion erected from a peripheral edge of the container bottom.
  • the surface of the container bottom portion sandwiched between the housing portion and the outer peripheral wall portion and the outer wall surface of the housing portion can be connected by a rounded curved surface.
  • the curved surface may have a radius of curvature of 10 ⁇ m to 15 mm, preferably 10 ⁇ m to 1 mm.
  • the curved surface is preferably a concave curved surface.
  • the surface of the said container bottom part pinched by the said accommodating part and the said outer peripheral wall part, and the inner peripheral surface of the said outer peripheral wall part may be connected by the rounded curved surface.
  • the curved surface may have a radius of curvature of 10 ⁇ m to 15 mm, preferably 10 ⁇ m to 1 mm.
  • the curved surface is preferably a concave curved surface.
  • the width between the inner peripheral surface of the outer peripheral wall portion and the outer peripheral surface of the outer peripheral wall portion of the wall surfaces forming the outer peripheral wall portion can be 0.3 mm to 3 mm. .
  • the outer peripheral surface of the outer peripheral wall portion is a surface on which at least one step is formed.
  • one or more markings that can identify the direction of the cell processing container can be provided.
  • the marking may be provided on at least one selected from the container bottom and the outer peripheral wall.
  • the marking may be configured to be discernible visually and / or tactilely.
  • the outer peripheral surface of the outer peripheral wall portion may have a shape recessed toward the inside.
  • the surface of the container bottom portion sandwiched between the housing portion and the outer peripheral wall portion is formed so that the depth in the container is increased in the vicinity of the outer peripheral wall portion. it can.
  • an imaginary straight line connecting one point included in the deepest portion on the forming surface and one point included in the upper end of the forming surface is The cell treatment container according to any one of (1) to (4), wherein the smallest acute angle formed with the horizontal plane is 45 ° or less.
  • a width in the minor axis direction of the opening of the housing portion is 3 mm or more and 15 mm or less in a plan view of the cell treatment container.
  • the opening of the accommodating portion has a shape in which a first portion and one or more second portions extending in at least one direction from the first portion are combined in a plan view of the cell treatment container.
  • a cell holding region for holding cells is formed by at least one of the deepest portion and a portion adjacent to the deepest portion of the inclined surface,
  • the cell treatment container according to any one of (1) to (8), wherein the inclined surface is an inclined surface inclined at a constant gradient in the cell holding region.
  • the cell treatment container according to (9), wherein the surface roughness of the inclined surface in the cell holding region is a maximum height Ry value of less than 4.0 ⁇ m.
  • a cell holding region for holding cells is formed by at least one of the deepest portion and a portion adjacent to the deepest portion of the inclined surface,
  • the formation surface includes a bottom surface of the storage portion that forms a bottom of the storage space, and a side surface of the storage portion that stands up from a peripheral edge of the bottom surface of the storage portion and surrounds the storage space.
  • the accommodating portion bottom surface has the inclined surface
  • the present specification further discloses the following inventions.
  • (14) the bottom of the container; An outer peripheral wall portion erected from the peripheral edge of the container bottom; A cell processing container provided with one or more storage parts provided at the bottom of the container and containing a cell and a cell processing solution formed therein and opened upward; Two or more partitions that stand up from the bottom of the container and bridge the housing portion and the outer peripheral wall portion; A container-shaped part accommodating space for accommodating cells and / or liquids, the container bottom part being the bottom part, the periphery of which is surrounded by the accommodating part, the outer peripheral wall part, and the adjacent pair of the two or more partition walls.
  • the cell treatment container in which one or more container-like parts formed with are formed.
  • the surface of the partition facing the container-like portion accommodation space and the surface of the container bottom facing the container-like portion accommodation space may be connected by a rounded surface.
  • the curved surface may have a radius of curvature of 10 ⁇ m to 15 mm, preferably 10 ⁇ m to 1 mm.
  • the curved surface is preferably a concave curved surface.
  • the surface of the partition wall facing the container-shaped portion housing space and the outer wall surface of the housing portion may be connected by a rounded surface.
  • the curved surface may have a curvature radius of 10 ⁇ m to 15 mm.
  • the curved surface is preferably a concave curved surface.
  • the surface of the partition wall facing the container-like portion accommodation space and the inner peripheral surface of the outer peripheral wall portion may be connected by a rounded surface.
  • the curved surface may have a curvature radius of 10 ⁇ m to 15 mm.
  • the curved surface is preferably a concave curved surface.
  • the surface of the partition wall facing the container-like portion accommodating space may be a surface having an inclination angle defined in the present specification of less than 90 ° or a surface of 90 ° or more.
  • the partition wall may have a thickness of 0.3 mm to 3 mm.
  • one or more further container shapes in which a container-like portion accommodating space for containing cells and / or liquids is formed in a portion of the container bottom facing the container-like portion accommodating space.
  • the part can be formed.
  • the height d of the part of the partition that stands up from the bottom of the container can be 1 mm or more, preferably 2 mm or more, and more preferably 15 mm or less.
  • the cell treatment container according to (14) further includes an outer lid portion, and a height d of a part of the partition that stands from the container bottom, a height e of a part of the storage part that stands from the container bottom, and The height f of the portion of the outer peripheral wall that stands up from the bottom of the container satisfies the relationship of f ⁇ d and f ⁇ e, and the surface of the outer lid that faces the container when mounted is the upper end of the outer peripheral wall The following conditions can be further satisfied in the case of abutting:
  • One surface of the partition wall is a surface having affinity for the liquid accommodated in the container-like portion accommodating space surrounded by the surface, and the surface of the outer lid portion facing the inside of the container when mounted
  • d is a value smaller than f by 1 mm or more.
  • One surface of the partition wall is a surface having affinity for the liquid accommodated in the container-like portion accommodating space surrounded by the surface, and the surface of the outer lid portion facing the container when mounted Is a surface having no affinity for the liquid, d is a value of f or less.
  • d is a value of f or less.
  • the lower limit of d is not particularly limited, but is preferably a value greater than 2 mm, more preferably 3 mm or more, and even more preferably 8 mm or more.
  • the upper end of the housing portion and the upper ends of the two or more partition walls are independently the same in the vertical position as the upper end of the outer peripheral wall portion, or from the upper end of the outer peripheral wall portion.
  • the upper end of the accommodating portion and at least a pair of adjacent upper ends of the two or more partition walls are independently the same in the vertical position with the upper end of the outer peripheral wall portion, or The cell treatment container according to (14), which is above the upper end of the outer peripheral wall.
  • the three or more partition walls include one or two or more adjacent partition walls A, and a pair of partition walls B adjacent to the partition wall A; The upper end of each of the pair of partition walls B is above the upper end of each of the partition walls A, (14)
  • the expression “numerical value 1 to numerical value 2” in the present invention means a numerical range including numerical value 1 and numerical value 2 at both ends, where numerical value 1 is a lower limit value and numerical value 2 is an upper limit value. It is synonymous with “numerical value 2 or less”.
  • a processing vessel is provided.
  • FIG. 1B is a schematic view of the cell processing container 100 shown in FIG. 1A taken along the line XX.
  • 1B is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 1A of the cell processing container 100 of Embodiment 1 further including an outer lid portion 170.
  • FIG. The cell 10 and the cell treatment liquid 20 are accommodated in the accommodation space 150 of the cell treatment container 100 of Embodiment 1, and corresponds to the XX cross section in FIG. 1A showing the operation of covering the cell 10 with the outer lid 170. It is a schematic diagram of a cross section.
  • FIG. 1B is a schematic view of the cell processing container 100 shown in FIG. 1A taken along the line XX.
  • 1B is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 1A of the cell processing container 100 of Embodiment 1 further including an outer lid portion 170.
  • FIG. The cell 10 and the cell treatment liquid 20 are accommodated in the accommodation space 150
  • FIG. 2 is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 1A, showing an operation of handling the cell 10 accommodated in the accommodating space 150 of the cell processing container 100 of Embodiment 1 by the catheter 30. It is a figure explaining the definition of inclination-angle (theta) 1 of the surface in this invention. It is a figure explaining the definition of angle (theta) 2 which the parts which an inclined surface opposes in the cell holding area
  • 5 is a schematic cross-sectional view of an example of a cell holding region 146.
  • FIG. (A) It is a schematic diagram of the cross section of the other example of the cell holding
  • FIG. 3B is a schematic view of a cross section XX of the cell processing container 100 shown in FIG. 3A.
  • FIG. 4B is a schematic diagram of the XX cross section of the cell processing container 100 shown in FIG. 4A.
  • FIG. 10 is a schematic view of a cross section corresponding to the XX cross section in FIG. 1A of the cell processing container 100 of Embodiment 5 of the present invention.
  • FIG. 6B is a schematic diagram of a YY cross section of the cell processing container 100 shown in FIG. 6A.
  • FIG. 7D is a schematic diagram of a cross section corresponding to the YY cross section in FIG.
  • FIG. 6A showing an operation of culturing cells 630 in the culture container-like portion 610 using the cell processing container 100 of Embodiment 6 of the present invention. It is a schematic diagram which shows the shape of the microwell 615 in the cell processing container 100 of Embodiment 6 of this invention.
  • FIG. 11 is a schematic view showing an example of a microwell 615 in which two or more line-shaped concave portions 6154 and two or more line-shaped convex portions 6155 are alternately formed on the microwell side surface 6152. It is a schematic diagram of the top view of the microwell 615 shown to FIG. 6E.
  • FIG. 10 is a schematic diagram showing an example of a microwell 615 in which two or more dot-shaped protrusions 6156 are formed on a microwell side surface 6152. It is a schematic diagram of the top view of the cell processing container 100 of Embodiment 7 of this invention.
  • FIG. 7B is a schematic diagram of an XX cross section of the cell processing container 100 shown in FIG. 7A.
  • FIG. 7B is a schematic view of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 8 of the present invention.
  • FIG. 7D is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 9 of the present invention.
  • FIG. 7B is a schematic diagram of an XX cross section of the cell processing container 100 shown in FIG. 7A.
  • FIG. 7B is a schematic view of a cross section corresponding to the XX cross section in FIG
  • FIG. 7B is a schematic view of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 10 of the present invention.
  • FIG. 7B is a schematic cross-sectional view of the cell processing container 100 according to the eleventh embodiment of the present invention corresponding to the XX cross-section in FIG. 7A.
  • FIG. 7B is a schematic cross-sectional view of the cell treatment container 100 according to the twelfth embodiment of the present invention, corresponding to the XX cross section in FIG. 7A.
  • FIG. 14A is a schematic cross-sectional view of the cell treatment container 100 according to the thirteenth embodiment of the present invention, corresponding to the XX cross section in FIG. 7A.
  • FIG. 7D is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 14 of the present invention.
  • FIG. 7B is a schematic view of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of the fifteenth embodiment of the present invention.
  • FIG. 7D is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 16 of the present invention.
  • FIG. 17B is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of the seventeenth embodiment of the present invention.
  • FIG. 7B is a schematic cross-sectional view of the cell processing container 100 according to the nineteenth embodiment of the present invention corresponding to the XX cross-section in FIG. 7A.
  • FIG. 7B is a schematic cross-sectional view corresponding to the XX cross section in FIG. 7A in a state where the cell treatment container 100 of Embodiment 8 of the present invention is covered with an outer lid portion 170.
  • FIG. 7B is a schematic diagram of a cross section corresponding to the XX cross section in FIG.
  • FIG. 7A in a state where the cell processing container 100 of the eleventh embodiment of the present invention is covered with an inner lid portion 210.
  • FIG. 7B is a schematic view of a cross section corresponding to the XX cross section in FIG. 7A in a state where the cell treatment container 100 of Embodiment 9 of the present invention is covered with an outer lid portion 170.
  • FIG. 7B is a schematic cross-sectional view of the cell processing container 100 according to the twentieth embodiment of the present invention, corresponding to the XX cross-section in FIG. 7A.
  • FIG. 7B is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 7A of the cell processing container 100 of Embodiment 21 of the present invention.
  • FIG. 7D is a schematic cross-sectional view of the cell processing container 100 according to the twenty-second embodiment of the present invention, corresponding to the XX cross-section in FIG. 7A. It is a schematic diagram of the top view of the cell processing container 100 of Embodiment 1 modification 1 of this invention. It is a schematic diagram of the top view of the cell processing container 100 of Embodiment 1 modification 2 of this invention.
  • FIG. 7B is a schematic diagram of an end surface corresponding to the AA end surface in FIG. 7A of the cell processing container 100 of Modification 1 of Embodiment 7 of the present invention.
  • FIG. 7B is a schematic view of an end surface corresponding to the AA end surface in FIG.
  • FIG. 7B is a schematic diagram of an end surface corresponding to the AA end surface in FIG. 7A of the cell processing container 100 of Modification 7 of Embodiment 7 of the present invention.
  • FIG. 7B is a schematic view of an end surface corresponding to the AA end surface in FIG. 7A of the cell processing container 100 of Modification 4 of Embodiment 7 of the present invention.
  • 7B is a schematic diagram of an end surface corresponding to the BB end surface in FIG. 7A of the cell processing container 100 of Modification 7 of Embodiment 7 of the present invention.
  • FIG. It is a top view of the area
  • FIG. 8B is a schematic diagram of an end surface corresponding to the BB end surface in FIG. 7A of the cell processing container 100 of Modification Example 7 of Embodiment 7 of the present invention.
  • 7B is a schematic diagram of an end face corresponding to the BB end face in FIG. 7A of the cell processing container 100 of Modification Example 8 of Embodiment 7 of the present invention.
  • FIG. FIG. 7B is a schematic diagram of an end surface corresponding to the BB end surface in FIG. 7A of the cell processing container 100 of Modification Example 9 of Embodiment 7 of the present invention.
  • the cell processing container 100 of Embodiment 7 of this invention shows the example provided with the outer cover part 170.
  • FIG. 7B is a schematic view of an end surface corresponding to the CC end surface in FIG. 7A of the cell treatment container 100 of Modification Example 11 of Embodiment 7 of the present invention.
  • FIG. 7B is a schematic view of an end surface corresponding to the CC end surface in FIG. 7A of the cell processing container 100 of Modification Example 12 of Embodiment 7 of the present invention.
  • Embodiment 7 A plan view of a cell processing container 100 according to a thirteenth modification of the present invention is shown.
  • FIG. 37B is a cross-sectional schematic diagram of the DD cross section shown in FIG. 37A of the cell processing container 100 of the present invention according to the seventh modification.
  • FIG. 37B is a cross-sectional schematic diagram of the DD cross section shown in FIG. 37A of the cell processing container 100 of the present invention according to the seventh modification.
  • FIG. 37B is a cross-sectional schematic diagram of the DD cross section shown in FIG. 37A of the cell processing container 100 of the present invention according to
  • Embodiment 6 is a perspective view of the vicinity of a recess 371 of the outer peripheral wall 120 of the cell processing container 100.
  • Embodiment 7 The top view of the cell processing container 100 of this invention which concerns on the modification 14 is shown.
  • Embodiment 7 A side view of the cell processing container 100 of the present invention according to Modification 15 is shown.
  • Embodiment 7 The top view of the cell processing container 100 of this invention which concerns on the modification 16 is shown.
  • FIG. 40B is an end view of the EE end surface in FIG. 40A.
  • Embodiment 7 A plan view of a cell processing container 100 of the present invention according to Modification 17 is shown.
  • Embodiment 7 shows an end view of the container bottom portion 110 in the vicinity of the identification circles 411 to 416 in the cell processing container 100 of the present invention according to Modification Example 17 of Embodiment 7 shown in FIG. 41A.
  • Embodiment 7 A plan view of a cell processing container 100 of the present invention according to Modification 18 is shown.
  • Embodiment 7 A plan view of a cell processing container 100 of the present invention according to Modification 19 is shown.
  • Embodiment 7 A plan view of a cell processing container 100 of the present invention according to Modification 20 is shown.
  • Embodiment 7 An example in which a micro tag 451 is coupled to the inner surface of a recess 371 of the cell treatment container 100 of the present invention according to Modification 13 (FIGS.
  • FIG. 2 is a schematic diagram of a cross section corresponding to the XX cross section in FIG. 1A of a modified example of the cell treatment container 100 of the present invention according to Embodiment 1 in which the outer peripheral wall portion 120 is partially depressed radially inward. Show.
  • FIG. 2 is a schematic diagram of a cross section corresponding to the XX cross section in FIG.
  • FIG. 1A of a modification of the cell processing container 100 of the present invention according to Embodiment 1 in which the central portion of the container bottom 110 partially protrudes into the container.
  • the outer peripheral wall portion 120 of the cell treatment container 100 of the present invention according to Embodiment 1 is partially recessed radially inward and the central portion of the container bottom portion 110 partially protrudes into the container.
  • a schematic diagram of a cross section corresponding to the XX cross section in FIG. 1A is shown.
  • the “vertical direction” refers to the depth direction of the liquid (that is, the vertical direction) when a liquid such as a culture solution is stored in the storage space in a state where the cell treatment container of the present invention is placed on a horizontal plane. Point to the matching direction.
  • the direction from the bottom of the cell processing container, the accommodating part or the container-like part to the opening along the vertical direction is “upward”, and the direction from the opening of the accommodating part to the bottom along the vertical direction is “downward”.
  • the container lower surface 112 is a continuous flat surface in the illustrated embodiment, but is not limited thereto, and may be formed of one or a plurality of dot-like or linear surfaces that can come into contact with the horizontal surface (for example, Modification 13 of Embodiment 7 shown in FIGS. 37A, B, and C).
  • a plane including a surface in contact with the horizontal plane can be regarded as the container lower surface.
  • the distance along the vertical direction from one site A to another site B may be referred to as the “height” from the site A to the site B.
  • the distance from the container lower surface along the up-down direction of one part is larger than the distance from the container lower surface along the up-down direction of one part among two parts contained in the cell treatment container.
  • one part is said to be that the other part is also “up”, “upper”, or “upper”, and the other part is “lower”, “lower”, or “lower” than one part. Say being “down” or located.
  • part is called the "upper end" of this site
  • the peripheral edge of the bottom of the container refers to a portion that becomes the outer contour of the bottom of the container when the cell processing container of the present invention is placed on a horizontal plane and viewed in plan.
  • the inclination angle of the surface is defined as follows. As shown in FIG. 1F, let N be the normal line passing through the point P on the surface S that is the surface of the member X, and let L be the virtual straight line along the vertical direction (as defined above) passing through the point P. A normal line N and an imaginary straight line when a half line part of the normal line N from the point P where the member X does not exist is N 1 and a half line part above the point P of the virtual line L is L 1. Of the angles formed by L, the angle ⁇ 1 formed between the half-line portion N 1 , the point P, and the half-line portion L 1 is defined as the inclination angle at the position of the point P on the surface S. .
  • the cell treatment container of the present invention can be widely used for treating cells using a cell treatment solution.
  • the cell treatment includes various cell treatments performed in a liquid, such as cell culture, washing, and thawing.
  • a fertilized egg for example, a fertilized egg, an egg cell, ES cell (embryonic stem cell), and iPS cell (artificial pluripotent stem cell) ).
  • An egg cell refers to an unfertilized egg cell, and includes an immature oocyte and a mature oocyte. After fertilization, the fertilized egg increases in number of cells at the 2 cell stage, 4 cell stage, and 8 cell stage by cleavage, and develops into a blastocyst through a morula.
  • Fertilized eggs include early embryos such as 2-cell embryos, 4-cell embryos and 8-cell embryos, morulas, blastocysts (including early blastocysts, expanded blastocysts and escaped blastocysts).
  • a blastocyst means an embryo composed of external cells with the potential to form the placenta and internal cell masses with the potential to form embryos.
  • ES cells refer to undifferentiated pluripotent or totipotent cells obtained from the inner cell mass of a blastocyst.
  • An iPS cell refers to a cell having pluripotency similar to that of an ES cell by introducing several types of genes (transcription factors) into somatic cells (mainly fibroblasts). That is, the cells to be treated in the present invention include a collection of a plurality of cells such as fertilized eggs and blastocysts.
  • the cell treatment container 100 of the present invention is suitable for treatment of mammalian and avian cells, particularly mammalian cells. Mammals refer to warm-blooded vertebrates such as primates such as humans and monkeys, rodents such as mice, rats and rabbits, pets such as dogs and cats, and domestic animals such as cows, horses and pigs. Can be mentioned.
  • the cell treatment container of the present invention is particularly suitable for treatment of human or bovine fertilized eggs.
  • Cell treatment solution includes a culture solution selected according to cells, a transplant solution that is a dedicated culture solution for treating a transplant embryo immediately before transplantation to a mother, a cell washing solution, a cell thawing solution, etc. Is mentioned.
  • the material of the cell treatment container of the present invention is not particularly limited. Specifically, inorganic materials such as metal, glass, and silicon, plastics (for example, polystyrene resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, (Phenol resin, melamine resin, epoxy resin, vinyl chloride resin, polyester resin).
  • plastics for example, polystyrene resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, (Phenol resin, melamine resin, epoxy resin, vinyl chloride resin, polyester resin).
  • the cell treatment container of the present invention preferably contains one or more types of plastic materials, and more preferably consists of one or more types of plastic materials.
  • the plastic material is preferably a material that satisfies the standard value of the dissolution test described in the Japanese Pharmacopoeia, for example, the Japanese Pharmacopoeia, the general test method, the 7.02 plastic drug container test method, the 1.2 dissolution test, (Iv)
  • the material described in the ultraviolet absorption spectrum is used, and in the ultraviolet absorption spectrum, the absorbance at a wavelength of 220 nm to less than 241 nm is 0.08 or less, and the absorbance at a wavelength of 241 nm to 350 nm is 0.05 or less. Is preferred.
  • the cell treatment container of the present invention can be produced by a method known to those skilled in the art. For example, when a cell treatment container made of a plastic material is manufactured, it can be manufactured by a conventional molding method such as injection molding.
  • additives such as bluing agents and various pigments used in the production of transparent plastic molded products to the plastic material by the masterbatch method, dry blend method, kneading method, surface coating method, etc. Thereby providing the desired transparency and color combination. Therefore, a clear image can be obtained when observing cells contained in the cell processing container of the present invention.
  • Additives such as antistatic agents and antistatic agents used in the production of plastic molded products can be added to the plastic material by the masterbatch method, dry blend method, kneading method, surface coating method, etc. Thereby, it is possible to prevent the plastic product from being charged. Therefore, it is possible to prevent adhesion of dirt due to static electricity to the cell treatment container of the present invention and electric shock injury in the molding line.
  • the cell treatment container of the present invention is preferably formed of a light transmissive material.
  • the cell treatment container of the present invention may be surface-treated or surface-coated so as to promote the development of a fertilized egg.
  • a fertilized egg in order to promote the development of fertilized eggs, when co-culturing with cells of other organs (for example, endometrial cells or fallopian tube epithelial cells), these cells are adhered to the surface of the cell treatment container in advance. It is necessary to let In such a case, it is advantageous to coat a cell-adhesive material on the formation surface of the cell treatment container.
  • the manufactured cell treatment container of the present invention satisfies the standard value of the dissolution test described in the Japanese Pharmacopoeia.
  • the procedure described in Japanese Pharmacopoeia, General Test Method, 7.02 Plastic Drug Container Test Method, 1.2 Dissolution Test, (iv) Ultraviolet Absorption Spectrum is performed, and the ultraviolet absorption spectrum has a wavelength of 220 nm or more and less than 241 nm. Is preferably 0.08 or less, and the absorbance at a wavelength of 241 nm to 350 nm is preferably 0.05 or less.
  • the entire cell treatment container of the present invention preferably has this characteristic, and more preferably the inner surface of the container has this characteristic.
  • the manufactured cell treatment container of the present invention is preferably sterilized by high-pressure steam sterilization, ethylene oxide sterilization, radiation sterilization, or the like, and preferably sterilized by radiation sterilization.
  • the sterilization dose at the time of radiation sterilization include 10 kGy to 100 kGy, preferably 15 kGy to 40 kGy.
  • the amount of endotoxin in the produced cell treatment container of the present invention is preferably 20 EU (endotoxin unit) / container or less, more preferably 2.15 EU (endotoxin unit) / container or less.
  • the method for measuring the amount of endotoxin can be measured by the methods described in Japanese Pharmacopoeia 4.01 Endotoxin Test Method and US Pharmacopoeia USP ⁇ 85>.
  • the cell processing container 100 includes a container bottom part 110, an outer peripheral wall part 120 erected from the periphery of the container bottom part 110, and one or more accommodating parts 130 provided on the container bottom part 110.
  • a container bottom part 110 an outer peripheral wall part 120 erected from the periphery of the container bottom part 110, and one or more accommodating parts 130 provided on the container bottom part 110.
  • the number of the storage units 130 is two or more, for example, 2 to 9, preferably 2 to Four pieces may be provided on the container bottom 110.
  • the accommodating portion has a structure in which an accommodating space for accommodating cells and a cell treatment solution is formed and opened upward.
  • the housing portion may be formed in any manner, but typically, the housing portion can be formed by a housing portion peripheral wall portion 140 erected from the container bottom portion 110 as shown in the housing portion 130 shown in the drawing.
  • the accommodating portion peripheral wall portion 140 is provided with a forming surface 141 that is a surface that forms the accommodating space 150 on the inner side, and is provided with an accommodating portion outer wall surface 144 facing the outer side of the accommodating space 150 on the outer side.
  • a housing upper end 145 is provided.
  • the housing upper end 145 need not be a flat upper end surface as shown, and may be a curved surface or a ridgeline.
  • the cell processing container 100 has an opening that is formed by the outer peripheral wall part inner peripheral surface 121 of the outer peripheral wall part 120 and opens upward. As shown in the figure, the cell processing container 100 preferably has a dish shape as a whole.
  • the upper end of the outer peripheral wall 120 is referred to as the outer peripheral wall upper end 122.
  • the upper end 122 of the outer peripheral wall portion does not need to be a flat upper end surface as shown in the figure, and may be a curved surface or a ridgeline.
  • the shape of the figure when the inner peripheral side contour and / or outer peripheral side contour of the outer peripheral wall upper end 122 is viewed in plan can be an arbitrary shape such as a circular shape (including a circular shape and an elliptical shape), for example. Is round.
  • the opening width of the cell processing container (in the figure when the inner peripheral side contour of the outer peripheral wall upper end 122 is viewed in plan, between a pair of points on the periphery of the figure, facing each other with the center of gravity of the figure in between
  • the maximum value of the distance is preferably 15 mm to 100 mm, more preferably 30 mm to 70 mm, and still more preferably substantially the same as a size that exists in many existing petri dishes, such as a diameter of 35 mm or 60 mm.
  • An outer peripheral space 160 that is closed downward and opened upward is formed by the container bottom surface 111 that is the upper surface of the container bottom portion 110, the outer peripheral wall portion inner peripheral surface 121 that is the inner peripheral surface of the outer peripheral wall portion 120, and the accommodating portion outer wall surface 144. Is done.
  • the cell processing container 100 of the present embodiment may further include a removable outer lid 170 that can close the opening of the cell processing container 100.
  • the formation surface 141 of the accommodating portion 130 includes a deepest portion 148 that is the deepest portion along the vertical direction of the accommodating portion 130, and an accommodating portion bottom inclined surface 142 that is formed so as to surround the deepest portion 148.
  • the accommodating portion bottom inclined surface 142 is continuous with the deepest portion 148.
  • the inclined surface such as the accommodating portion bottom inclined surface 142 is more preferably formed from the periphery of the forming surface 141 to the deepest portion 148 as in the illustrated embodiments.
  • the “periphery” of the formation surface 141 is formed when the formation surface 141 observed through the opening of the storage unit 130 is projected on the horizontal plane in a state where the cell processing container 100 is placed on a flat horizontal plane.
  • the inclined surface such as the accommodating portion bottom inclined surface 142 is the deepest portion from the periphery of the forming surface 141. It is sufficient that it is formed over 148, and it is not necessary that the depth of the accommodating portion 130 increases as it approaches the deepest portion in plan view in all portions of the inclined surface.
  • the inclined surface such as the accommodating portion bottom inclined surface 142 is a direction perpendicular to the vertical direction defined above (ie, , A step-like portion including a portion along the horizontal direction) or a portion where the depth of the accommodating portion 130 becomes shallower as it approaches the deepest portion in plan view.
  • the formation surface 141 includes a storage portion bottom surface 400 that is a surface that forms the bottom of the storage space 150 and a storage portion side surface 143 that stands up from the periphery of the storage portion bottom surface 400.
  • the accommodating portion bottom surface 400 includes a deepest portion 148 and an accommodating portion bottom inclined surface 142 continuous with the deepest portion 148 formed so as to surround the deepest portion 148.
  • the upper edge is defined as the forming surface upper end 149.
  • at least the accommodating portion bottom inclined surface 142 of the forming surface 141 has an inclined surface.
  • the accommodating portion side surface 143 is typically a surface extending from the formation surface upper end 149 in the formation surface 141, and usually has an inclination angle larger than 45 °.
  • the accommodating portion side surface 143 may be a surface having an inclination angle exceeding 90 °, a surface having a inclination angle of 90 °, or an inclination angle of less than 90 °, for example, 70 ° or more and less than 90 °, preferably 80. Although it may be a surface having a degree of 90 ° or more and less than 90 °, it is preferably a surface having an inclination angle of 90 ° or less than 90 °.
  • the accommodating portion side surface 143 is a surface of less than 90 °
  • the accommodating portion side surface 143 and the accommodating portion bottom inclined surface 142 are integrated to form an inclined surface extending from the periphery of the forming surface 141 to the deepest portion 148.
  • the deepest portion 148 of the formation surface 141 is formed so as to fit in a circle C having a diameter D, which will be described later, in a plan view of the cell treatment container 100.
  • the deepest part 148 may be a surface, a point, a line, or two of these.
  • the shape may be a combination of two or more.
  • that the deepest portion 148 falls within the range of the circle C having the diameter D in the plan view of the cell processing container 100 is the same as the circle C having the diameter D in the shape of the deepest portion 148 in the plan view.
  • the shape is a shape enclosed in a circle C, and the diameter of the smallest circumscribed circle containing the shape of the deepest portion 148 in the plan view (the diameter is d) is D or less. It is synonymous with that.
  • the deepest part 148 has a shape of a point in a plan view, a circular shape with a diameter of 0.1 ⁇ m, a linear shape with a length of 2 ⁇ m, etc.
  • the deepest part 148 with such a shape has a diameter of 2 ⁇ m, or It can be said that it is formed so as to be within the range of a circle C having a larger diameter.
  • the cell holding region 146 for holding cells is formed by at least one of the deepest portion 148 and the portion adjacent to the deepest portion 148 of the accommodating portion bottom inclined surface 142 in the forming surface 141.
  • the cell holding region 146 accommodates the cell 10 and the cell treatment solution 20 in the accommodation space 150 in a state where the cell treatment container 100 is placed on a horizontal plane under gravity, and the cell 10 moves downward in the vertical direction due to gravity. This is the area that holds the cell 10 when it is finally stopped. Under weight, the cell 10 held in the cell holding region 146 can return to the deepest portion 148 by the accommodating portion bottom inclined surface 142 adjacent to the deepest portion 148 even when moved horizontally by vibration.
  • FIG. 1H shows an example of the cell holding region 146 where the deepest part 148 is a point (the same as the embodiment shown in Examples 1A to 1G).
  • the deepest part 148 is a point, it falls within a range of a circle C having a diameter D, which will be described later, in a plan view of the cell processing container 100.
  • the cell holding region 146 is reached, and the periphery of the cell 10 is surrounded by the portion adjacent to the deepest portion 148 of the accommodating portion bottom inclined surface 142, and the cell 10 is supported. At this time, the position of the cell 10 is fixed at one point. For this reason, it can avoid that the cell 10 lose
  • FIG. 1I shows an example of the cell holding region 146 whose deepest part 148 is a surface.
  • the deepest part 148 expands in the horizontal direction, but is formed so as to be within a range of a circle C having a diameter D described later.
  • the outer periphery of the deepest part 148 is surrounded by the accommodating part bottom inclined surface 142. Even if the size of the cell 10 is smaller than the width of the planar deepest portion 148 and can be moved in the horizontal direction within the deepest portion 148, as shown in FIG. Since the movement in the horizontal direction is limited, the range in which the cell 10 can move in the horizontal direction is limited to the range of the deepest part 148 that falls within the range of the circle C having the diameter D.
  • the cell when the area of the deepest portion 148, which is planar or linear, is relatively small with respect to the cell 10 to be processed and is covered by the cell 10, the cell is similar to the example shown in FIG. 1H. 10 is surrounded by a portion adjacent to the deepest portion 148 of the accommodating portion bottom inclined surface 142, the cell 10 is supported, and the position of the cell 10 is determined at one point.
  • the diameter D of the circle C is 3 mm.
  • the cells accommodated in the accommodation space 150 of the accommodation unit 130 exist within a narrow circle having a diameter of 3 mm at the maximum in plan view. Since cells can be confirmed by observing a predetermined position including the deepest portion 148 at an observation magnification (for example, 30 to 50 times, etc.) easy to work, the cells 10 disappear from the observation field of the microscope at the time of cell treatment. Can be avoided, and it is not necessary to confirm the position of the cells in advance by microscopic observation at a low magnification (for example, 20 times).
  • an observation magnification for example, 30 to 50 times, etc.
  • the diameter d of the smallest circumscribed circle that includes the shape of the deepest portion 148 in the plan view of the cell processing container 100 is 3 mm or less.
  • the catheter tip is moved so as to approach the cell holding region 146, the catheter tip is positioned at a position covering the entire deepest portion 148.
  • the cell (embryo) 10 can be easily handled by the catheter. That is, if a catheter having an outer diameter of d or more is used as a catheter for handling an embryo, it is possible to work stably by moving the catheter tip to the same position every time.
  • the outer diameter of a catheter used for handling an embryo is usually 3 mm or less.
  • the deepest part 148 is within the range of a circle C having a diameter of 3 mm, that is, the diameter d is 3 mm or less, it has a general dimension (outer diameter is 3 mm or less).
  • a catheter that can cover the entire deepest part 148 with the outer diameter of the catheter tip being the same as or larger than d can be appropriately selected and used.
  • the diameter D of the circle C is more preferably 2.5 mm, more preferably 2 mm, more preferably 1.8 mm, more preferably 1.6 mm, more preferably 1.5 mm, more Preferably 1.4 mm, more preferably 1.2 mm, more preferably 1 mm, more preferably 970 ⁇ m, more preferably 900 ⁇ m, more preferably 700 ⁇ m, more preferably 500 ⁇ m, more preferably 300 ⁇ m, more preferably 200 ⁇ m, more preferably Is 100 ⁇ m, more preferably 50 ⁇ m, more preferably 10 ⁇ m, particularly preferably 5 ⁇ m, and most preferably 2 ⁇ m.
  • the diameter D of the circle C is smaller, the position of the cell 10 is determined in a narrower range, so that the possibility of the cell 10 disappearing during observation with a high-power microscope can be reduced.
  • the smaller the diameter D of the circle C the more preferable the cell treatment container 100 is because it is suitable for the use of a catheter having a smaller outer diameter and a smaller burden on the patient.
  • the cell treatment container 100 having a diameter D of 1 mm, preferably 970 ⁇ m, and more preferably a smaller value uses a catheter having a small outer diameter such as 3 Fr (1 mm), 4 Fr (1.33 mm). It is suitable for handling the cell 10 and is preferable.
  • the deepest portion 148 of the formation surface 141 has an area of less than 0.75 mm 2 , preferably 0.74 mm 2 or less, more preferably 0 in plan view of the cell treatment container 100. .7Mm 2 or less, more preferably 0.5 mm 2 or less, more preferably formed to be 0.3 mm 2 or less.
  • the diameter D is not particularly limited as long as it is 3 mm or less, but is preferably the same value as the preferred value of the diameter D in the preferred embodiment.
  • the accommodating part bottom inclined surface 142 is formed ranging from the periphery of the formation surface 141 to the deepest part 148, there is a low possibility that the cells 10 are fixed on the way. As described above, since the cell 10 is held in the cell holding region 146, observation with a microscope is easy. Further, as shown in FIG. 1E, when the cells 10 are sucked by the catheter 30, the positions of the cells 10 are fixed, so that the sucking can be easily performed.
  • the portion adjacent to the deepest portion 148 of the inclined surface (container bottom inclined surface 142) included in the cell holding region 146 is a portion that plays a role of limiting the horizontal movement of the cell 10 in the inclined surface, It depends on the size of the cell 10 and the like. For example, in a plan view in a state where the cell treatment container 100 is placed on a flat horizontal plane, it is a portion of the inclined surface (accommodating portion bottom inclined surface 142) within a range from the contact point with the deepest portion 148 to 1 mm.
  • the slope of the inclined surface in the formation surface 141 such as the accommodating portion bottom inclined surface 142 may be constant from the periphery of the formation surface 141 to the deepest portion 148, continuously or in steps. However, it is preferably constant at least in the cell holding region 146.
  • the shape on the cross section of the plane along the vertical direction is a straight line.
  • the entire accommodating portion bottom inclined surface 142 has a constant gradient from the periphery of the accommodating portion bottom inclined surface 142 to the deepest portion 148.
  • the constant slope of the inclined surface 142 is not necessarily completely constant, but includes a case where the slope is substantially constant.
  • the fact that the gradient is substantially constant includes, for example, that the change in the gradient is small to such an extent that the effect at the time of observation with the microscope is exhibited.
  • the inclination angle ⁇ 1 of the inclined surface portion such as the accommodating portion bottom inclined surface 142 included in the formation surface 141 is preferably 1 ° to 45 °, more preferably 2 ° to 25 °, at least in the cell holding region 146. Particularly preferably, the angle is 5 ° to 10 °.
  • the inclination angle ⁇ 1 is within this range, reflection and scattering on the inclined surface when the cell 10 on the cell holding region 146 is observed through the microscope are less likely to occur, and a clear observation image can be obtained. More preferably, the inclination angle ⁇ 1 is in the above range for the entire inclined surface included in the accommodating portion bottom inclined surface 142. In this case, it is easy to move the cell 10 to the cell holding region 146 using gravity as a power source.
  • the maximum height Ry (extracting only the reference length from the roughness curve in the direction of the average line, and the interval between the peak line and the valley line in the extracted part) is less than 4.0 ⁇ m. Is preferable, it is more preferable that it is less than 1.0 micrometer, and it is especially preferable that it is less than 0.5 micrometer.
  • the maximum height Ry conforms to JIS B0601-1994.
  • the surface roughness of the inclined surface is within this range, light scattering can be sufficiently suppressed, and a clear contour can be obtained during transmission observation.
  • the surface roughness of the inclined surface can be reduced by increasing the processing accuracy of the mold, for example, by performing a polishing process when producing the mold of the cell processing container.
  • the surface roughness of the deepest part is preferably in the same range as described above.
  • the angle formed by the opposing portions of the inclined surfaces included in the formation surface 141 is greater than 90 °, more preferably 150 ° or more. More preferably, it is 160 ° or more.
  • the upper limit is not particularly limited as long as it is less than 180 °.
  • FIG. 1G is an enlarged view of the vicinity of the cell holding region 146.
  • the opposing portions of the accommodating portion bottom inclined surface 142 are a pair of portions A and B having the same vertical position included in the accommodating portion bottom inclined surface 142, and are normal to the accommodating portion bottom inclined surface 142 passing through the portion A.
  • a pair of portion a and the normal L B passes through one of the upper plane parallel to the vertical direction of the housing part bottom inclined surface 142 through the portion B, and B. Then, the angle which the portion forms, in the said plane, from the portion A normal L A, the part B pulls the normal L B, when the intersection and P, between A and P and B It refers to the outer angle ⁇ 2 of the corner.
  • ⁇ 2 is larger than 90 ° at least in the cell holding region 146 of the forming surface 141, it is easy to take out the accommodated cells 10 from the cell holding region 146, and the catheter 30 is used as shown in FIG. 1E. The possibility of damaging the cell 10 during handling of the cell 10 is low.
  • theta 2 is the condition is satisfied that the portion near well cell holding area 146.
  • the vicinity of the cell holding region 146 is a range from the deepest part 148 to preferably 10 mm in a plan view of the formation surface 141 in a state where the cell treatment container 100 is placed on a flat horizontal surface.
  • the portion on the forming surface 141 is more preferably in the range up to 8 mm, and still more preferably in the range up to 3 mm.
  • the outer diameter of the catheter 30 to be used for handling implantable embryo is usually 1 mm ⁇ 3 mm, on the forming surface 141, when satisfying the vicinity of the cell holding area 146 of the theta 2 is catheter 30 Handling of the used cell 10 is further facilitated.
  • the formation surface 141 includes the storage portion bottom surface 400 (the storage portion bottom surface inclined surface 142 and the deepest portion 148) and the storage portion side surface 143.
  • an angle ⁇ formed between the storage unit bottom surface 400 and the storage unit side surface 143 in the storage space 150 at the bottom surface side surface intersection 147 where the storage unit bottom surface 400 and the storage unit side surface 143 intersect. 3 is greater than 90 °, more preferably 95 ° or more, and the upper limit is not particularly limited, but is, for example, 135 ° or less.
  • ⁇ 3 is an angle formed by a normal line L D at the bottom side crossing portion 147 of the housing bottom surface 400 and a normal line L C at the bottom side crossing portion 147 of the housing side surface 143 (the bottom side surface of the normal L D the housing space 150 from intersection 147 coincides with a half line extending in opposite corners of the half-line forms extending to the side of the housing space 150 from the bottom side intersection 147 of the normal L C) (FIG. 1B) .
  • the angle ⁇ 3 is within this range, even if the cell 10 enters the bottom side crossing portion 147, the cell 10 can be taken out relatively easily and can be taken out by the catheter without damaging the cell 10.
  • the height from the deepest part 148 of the formation surface 141 to the upper end 149 is preferably 2 mm or more and 12 mm or less (2 mm to 12 mm or 2 to 12 mm), preferably 3 mm or more, preferably 4 mm or more, preferably 5 mm or more, Preferably it is 11 mm or less, preferably 9 mm or less, preferably 8 mm or less, more preferably 3 mm or more and 11 mm or less (3 mm to 11 mm or 3 to 11 mm), still more preferably 4 mm or more and 9 mm or less (4 mm to 9 mm or 4 to 9 mm). More preferably, it is 5 mm or more and 8 mm or less (5 mm to 8 mm or 5 to 8 mm).
  • the height from the deepest portion 148 to the upper end 149 of the formation surface 141 refers to the distance along the vertical direction of the housing portion 130 from the deepest portion 148 of the formation surface 141 to the upper end 149 of the formation surface 141.
  • the smallest height among the heights of the forming surface 141, more preferably all the heights are set.
  • the value may be within the numerical range.
  • the cells 10 in the cell treatment solution 20 positioned in the region 146 are easy to handle with the catheter 30 or the like.
  • a catheter having a flexible tip and a wide width such as a silicone rubber catheter used for handling embryos for transplantation.
  • the height of the formation surface 141 is 2 mm or more, the cell 10 such as the transplanted embryo is sufficiently immersed, and the amount of liquid that suppresses the change of the component due to the volatilization of the cell treatment solution 20 by leaving it for a short time is maintained. Is preferable.
  • the height is 4 mm or more, since the depth from the liquid surface to the cell holding region 146 is sufficient, the tip of the catheter is easily immersed in the cell treatment solution 20 during the catheter operation, and the work such as sucking bubbles is performed. This is preferable because the risk of mistakes can be reduced.
  • the height of 5 mm or more is preferable because the risk of liquid leakage can be reduced when the depth of the cell treatment solution 20 is about 3 mm.
  • the height is 12 mm or less, the working angle of the catheter, the glass capillary, etc.
  • a more preferable aspect of the present invention is that when the cell processing container 100 is placed on the horizontal surface H as in the present embodiment, one point included in the deepest portion 148 on the forming surface 141 and the upper end 149 of the forming surface. Is a mode in which the smallest angle among the acute angles ⁇ 4 formed by the virtual straight line L 2 connecting one point included in the horizontal plane H is 45 ° or less (see FIG. 1J).
  • the formation surface upper end 149 is the upper edge of the periphery of the formation surface 141 in plan view, and the deepest portion 148 is not limited to a dot shape, but may be a surface shape or a line shape.
  • ⁇ 4 can take various values in one cell treatment container 100, but in this embodiment, the smallest angle of ⁇ 4 may be in the above range.
  • the smallest angle of ⁇ 4 is in the above range, the following effects can be achieved.
  • a cell such as a fertilized egg held in the cell holding region 146 including the deepest part 148
  • the cell is generally sucked up to a position of about 4 mm from the tip of the catheter. If the above range of ⁇ 4 is the smallest, an operation of bringing the catheter tip close to the cell held in the cell holding region 146 and sucking it to a position of 4 mm from the catheter tip is focused on the cell held in the cell holding region 146.
  • the angle formed between the length direction of the catheter and the horizontal plane H can be 45 ° or less, and a portion 4 mm from the cell holding region 146 and the catheter tip Since the difference in the vertical direction position is small, the cells can be visually recognized within the observation field of the microscope. More preferably not more than the smallest angle of 40 ° theta 4, more preferably 45 ° in any part theta 4 or less, most preferably 40 ° or less.
  • the upper edge of the outer peripheral wall portion inner peripheral surface 121 is defined as the outer peripheral wall portion inner peripheral surface upper end 123.
  • the virtual straight line L 3 connecting the one point included in the outer peripheral wall inner surface upper end 123 The smallest angle among the acute angles ⁇ 5 formed with the horizontal plane H is preferably 45 ° or less, more preferably 40 ° or less, and further preferably ⁇ 5 is 45 ° or less, most preferably 40 ° or less in any part. is there.
  • ⁇ 4 and ⁇ 5 are preferably 81 ° or less at the maximum. At this time, as confirmed in Experiment 5, the catheter does not interfere with the objective lens, the accommodating portion peripheral wall portion 140 and the outer peripheral wall portion 120 during observation with a stereomicroscope with a magnification of 20 times.
  • the smallest angle theta 4 is 25 ° or more.
  • the tip of the catheter is placed in the cell holding region so that the angle formed by the length direction of the catheter and the horizontal plane H is less than 25 ° when the angle is less than 25 °.
  • the shape of the figure formed by the opening of the accommodating part 130 in a plan view is not particularly limited, and Embodiment 1, Embodiments 2, 4, and 5 to be described later.
  • a circle including a circle and an ellipse
  • a rectangle including a square and a rectangle
  • other polygons and the first and second modified examples 1 and 2 described later.
  • a plurality of shapes can be combined.
  • the figure may have a shape that is long in one direction (for example, an ellipse, a flat circle, or a rectangle) as in Embodiments 3 and 4 and Embodiment 1 Modification 1.
  • Embodiments 1 and 2 5.
  • N-fold symmetric shape (N is an integer of 3 or more, preferably an integer of 4 or more, more preferably an integer of 4 to 8) as in Modification 1 of Embodiment 1 (for example, circular or regular polygon) It may be.
  • the “N-fold symmetric shape” does not need to have strict symmetry, and includes a case where the shape is almost N-fold symmetric.
  • the figure formed by the opening of the housing part 130 in a plan view is a shape that is long in one direction as in the third and fourth embodiments, the orientation of the opening of the housing part 130 can be recognized. There is an advantage that mistakes can be reduced.
  • the instrument in order to provide an expanded work area in which the opening of the accommodating portion 130 extends in the major axis direction defined below, the instrument is disposed when the cells accommodated in the accommodating space 150 are handled with an instrument such as a catheter. There is an advantage that the work area is widened and workability is improved.
  • the one direction is a “major axis direction”, and a distance between a pair of points on the periphery of the figure facing the center of gravity of the figure along the major axis direction is “long”.
  • the minor axis direction width can be, for example, 3 mm or more and 15 mm or less (3 mm to 15 mm or 3 to 15 mm), and the major axis direction width is, for example, 3.6 mm or more and 30 mm or less (3.6 mm to 30 mm or 3.6 to 30 mm). Can be.
  • the ratio of the width in the minor axis direction to the width in the major axis direction is preferably 1: 1.2 to 1: 3, and more preferably 1: 1.5 to 1: 2.
  • the short-axis direction width and the long-axis direction width are within this range, it is possible to more clearly recognize the direction of the opening of the housing portion 130.
  • the minimum width is preferably 3 mm to 30 mm, and more preferably 3.6 mm to 15 mm.
  • FIG. 26 Other preferable forms of the figure formed by the opening of the accommodating portion 130 in plan view are the first portions 261 and 271 as in the first modified example 1 shown in FIG. 26 and the first modified example 2 shown in FIG. Form in which one or more second portions 262, 272 (272-1, 272-2, 272-3, 272-4) extending in at least one direction from the first portions 261, 271 are combined. It is.
  • the accommodation space 150 is expanded to the second portions 262 and 272, so that when the cells accommodated in the accommodation space 150 are handled with an instrument such as a catheter, the area in which the instrument can be arranged is widened. There is an advantage of improving.
  • the cell holding region 146 on the forming surface 141 is located on the center of gravity of the figure formed by the opening of the containing part 130, that is, the figure surrounded by the inner peripheral side contour of the containing part upper end 145.
  • the cell holding region 146 may be in a position overlapping the center of gravity as in the first embodiment and the third, fourth, and fifth embodiments described later, or the cell as in the second embodiment described later.
  • the holding region 146 may be at a position where it does not overlap with the center of gravity, that is, at a position where the cell holding region 146 is eccentric with respect to the figure formed by the opening of the accommodating portion 130.
  • the position on the container bottom part 110 of the accommodating part 130 is not specifically limited.
  • the shape of the figure formed by the inner peripheral side contour of the opening of the cell processing container 100 (the inner peripheral side contour of the upper end of the outer peripheral wall 120).
  • the accommodating part 130 is formed in the position which overlaps with a gravity center. More preferably, in a plan view of the cell treatment container 100, the center of gravity of the figure formed by the inner peripheral side contour of the opening of the accommodating portion 130 and the center of gravity of the figure formed by the inner peripheral side contour of the opening of the cell processing container 100 are In the same position.
  • “same” includes “substantially identical”.
  • the volume of the storage space 150 formed by the storage unit 130 is 200 ⁇ l or more and 1000 ⁇ l or less (200 ⁇ l to 1000 ⁇ l or 200 to 1000 ⁇ l), preferably 250 ⁇ l or more, preferably 300 ⁇ l or more, preferably 800 ⁇ l or less, preferably 500 ⁇ l or less, It is preferably 400 ⁇ l or less, more preferably 200 ⁇ l or more and 800 ⁇ l or less (200 ⁇ l to 800 ⁇ l or 200 to 800 ⁇ l), particularly preferably 250 ⁇ l or more and 500 ⁇ l or less (250 ⁇ l to 500 ⁇ l or 250 to 500 ⁇ l), most preferably 300 ⁇ l or more.
  • the “capacity of the accommodation space” is the lowest in the formation surface upper end 149 that is the upper end of the formation surface 141 that forms the accommodation space 150 in a state where the cell processing container is placed on a flat horizontal surface.
  • the volume of the space surrounded by the virtual plane parallel to the horizontal plane and the formation surface 141 is indicated.
  • the cell processing container 100 of this embodiment can be used suitably for the use which cannot coat
  • the capacity of the storage space 150 is 1000 ⁇ l or less, the problem that the cell treatment liquid is easily spilled due to excessive storage of the cell treatment liquid 20 in the storage space 150 hardly occurs.
  • the treatment cost can be suppressed by setting the capacity of the accommodation space 150 to 1000 ⁇ l or less.
  • the volume of 200 ⁇ l or more and 1000 ⁇ l or less is a volume particularly suitable for an application in which one embryo for transplantation is treated with a transplantation solution immediately before transplantation into a mother body.
  • the height from the container lower surface 112 or the deepest part 148 to the storage unit upper end 145 of the storage unit peripheral wall 140 is increased, or the plane of the storage space 150 is increased. It is necessary to increase the visual range.
  • the height of the accommodating portion peripheral wall portion 140 is increased, when the cells accommodated in the accommodating space 150 are operated with a catheter, the catheter operation is hindered by the accommodating portion peripheral wall portion 140, which makes the operation complicated. is there.
  • the width of the storage space 150 in plan view is increased, it is possible to increase the capacity of the storage portion peripheral wall portion 140 that hinders operation, but on the other hand, the surface area of the processing liquid to be stored can be increased.
  • the transplant embryo 10 and the transplant solution 20 are accommodated in a storage space 150 and necessary. Accordingly, it is covered with an outer lid portion 170 and placed in an incubator in which temperature, humidity, gas concentration and the like are controlled.
  • oil is filled so as to cover the entire bottom surface 111 of the container and the accommodating portion 130 in which the cells 10 and the cell treatment liquid 20 are accommodated. (Not shown).
  • processing embryos for transplantation they cannot be covered with oil.
  • the volume of the storage space 150 is 200 ⁇ l or more and is relatively large, even when oil is not used, the volatilization of the cell treatment solution 20 is relatively small, which is advantageous. .
  • the second embodiment is a form of the first embodiment, in which the cell holding region 146 on the formation surface 141 is a figure formed by the opening of the storage unit 130 in the plan view of the cell treatment container 100, that is, the top of the storage unit 145. It is formed in the position which does not overlap with the gravity center of the figure which the inner peripheral side outline encloses.
  • the cell holding region 146 since the cell holding region 146 is in a biased position in the accommodation space 150 in a plan view, a relatively large space is provided on the side where the cell holding region 146 is not formed in the accommodation space 150. Can do. For this reason, when the cells supported by the cell holding region 146 are handled by a catheter or pipette, the catheter or pipette can be inserted through the space, which is advantageous because the operation becomes easy.
  • the position of the cell holding region 146 is in an eccentric position, it becomes easy for the user to grasp the orientation of the cell processing container 100.
  • the third embodiment is a form of the first embodiment, and the shape of the figure formed by the opening of the accommodating part 130 in plan view, that is, the figure surrounded by the inner peripheral side contour of the accommodating part upper end 145 is rectangular.
  • the figure surrounded by the bottom side surface intersecting portion 147, which is the upper end of the accommodating portion bottom surface 400, is also a rectangle, and the accommodating portion bottom inclined surface 142 is an inverted quadrangular pyramid surface.
  • the ratio of the short axis direction width and the long axis direction width of the rectangle formed by the opening of the accommodating portion 130 in plan view is not particularly limited, but is preferably 1: 1.2 to 1: 3.
  • the figure formed by the opening of the accommodating portion 130 in a plan view is a rectangle, it is easy for the user to grasp the orientation of the cell processing container 100. Further, in the accommodation space 150, a relatively large space can be provided along the long axis direction. For this reason, when the cells supported by the cell holding region 146 are handled by the catheter, the catheter can be inserted through the space, which is advantageous because the operation becomes easy.
  • the fourth embodiment is a form of the first embodiment, and the shape of the figure formed by the opening of the accommodating part 130 in plan view, that is, the figure surrounded by the inner peripheral side contour of the accommodating part upper end 145 is a flat circle. It is characterized by.
  • the figure surrounded by the bottom surface side crossing portion 147, which is the upper end of the accommodating portion bottom surface 400, is also a flat circle having the same shape.
  • the ratio of the short axis direction width to the long axis direction width of the flat circle formed by the opening of the accommodating portion 130 in plan view is not particularly limited, but is preferably 1: 1.2 to 1: 3. .
  • the figure formed by the opening of the accommodating portion 130 in a plan view is a flat circle, it is easy for the user to grasp the orientation of the cell processing container 100. Further, in the accommodation space 150, a relatively large space can be provided along the long axis direction. For this reason, when the cells supported by the cell holding region 146 are handled by the catheter, the catheter can be inserted through the space, which is advantageous because the operation becomes easy.
  • the fifth embodiment is a form of the first embodiment, in which the formation surface 141 includes the deepest portion 148 and the accommodation portion bottom inclined surface 142 extending from the formation surface upper end 149 to the deepest portion 148, and accommodation.
  • the inclination angle of the bottom inclined surface 142 is 45 ° or less in any part.
  • the swell in the direction perpendicular to the vertical direction of the accommodation space 150 is small. For this reason, compared with the case where the accommodating portion bottom inclined surface 142 includes a portion where the inclination angle exceeds 45 °, the accommodating when the height from the deepest portion 148 to the upper end 149 of the forming surface 141 is set to a predetermined value.
  • the capacity of the space 150 can be reduced.
  • Some cell treatment liquids are very expensive, but according to the fifth embodiment, the liquid to be stored while the depth of the cell treatment liquid stored in the storage space 150 is sufficient for the operation of a catheter or the like. This is advantageous in that the amount can be reduced.
  • the cell treatment container of the present invention may further be provided with one or more container-like parts in which an accommodation space for accommodating cells and / or liquid is formed at the bottom of the container.
  • the “container-like part” is an accommodation space (container-like part accommodation space) for accommodating cells and / or liquid, which can be provided in a part of the cell treatment container of the present invention separately from the accommodation part. Is the structure formed.
  • the container-like portion accommodating space may have any shape as long as it is a space capable of accommodating cells and / or liquid for the purpose of cell culture, cell washing, and the like.
  • the container-like portion may have any shape as long as the container-like portion accommodation space is formed, but generally has a bottomed shape that opens upward.
  • One or more container-like parts can be used for purposes such as cell culture, cell washing, and catheter washing.
  • Embodiment 6 is shown in FIGS. 6A to 6G as an example of this embodiment of the present invention.
  • one culture container 610 and three washing container 620 are provided on the container bottom 110.
  • the culture container 610 and the cleaning container 620 are formed so as to protrude from the container bottom 110 into the outer peripheral space 160.
  • the following advantageous effects can be realized by including one or more container-like parts 610 and 620 in addition to the accommodating part 130 in one cell processing container 100.
  • a step 1 of culturing an embryo after fertilization in a culture solution and a step of washing the culture solution and oil used for coating the culture solution from the cultured embryo 2 and step 3 in which the washed embryo is soaked in a transplantation solution.
  • these steps are performed in different containers, there is a risk of misuse when transferring embryos between containers, and management is necessary to prevent such mistakes. It is difficult to perform transplantation quickly.
  • the process 1 can be performed in the culture container 610, the process 2 can be performed in the washing container 620, and the process 3 can be performed in the container 130. This eliminates the need to transfer embryos between them, simplifying the work and reducing the risk of embryo mix-up and damage.
  • the culture vessel-like portion 610 includes a culture vessel-like portion peripheral wall portion 611 erected from the vessel bottom 110, and forms a culture container-like portion accommodation space 612 as a space surrounded by the culture vessel-like portion peripheral wall portion 611. ing.
  • the culture container-like portion 610 has a culture container-like portion bottom surface 613 that forms the bottom of the space as a surface that forms the culture container-like portion accommodation space 612, and a lower end that is a peripheral edge of the culture container-like portion bottom surface 613.
  • a culture vessel-like portion side surface 614 that is connected and whose upper end surrounds the opening of the culture vessel-like portion accommodation space 612 is provided.
  • One or a plurality of microwells 615 for positioning the cells 630 are formed on the bottom surface 613 of the culture container.
  • the volume of the culture container-like portion accommodation space 612 is not particularly limited, and can be, for example, 10 ⁇ l to 1000 ⁇ l.
  • the definition of the capacity of the culturing container-like part accommodating space 612 is the same as the definition of the capacity of the accommodating part accommodating space 150.
  • the side surface of the culturing container-like part is defined.
  • the volume of the space surrounded by the virtual plane parallel to the horizontal plane passing through the lowermost portion of the upper end of 614, the culture vessel-like portion bottom surface 613, and the culture vessel-like portion side surface 614 is indicated. .
  • a small volume of culture solution for example, a drop (liquid mass) of 10 ⁇ l to 100 ⁇ l of the culture solution can be accommodated in the culture container-like portion accommodation space 612, and the culture vessel shape is obtained by dropping the culture solution of 10 ⁇ l to 100 ⁇ l
  • the culture container-like portion accommodation space 612 is formed so that the entire bottom surface 613 can be covered and the drop height is 0.35 mm or more, more preferably 0.5 mm or more.
  • the area of the bottom portion 613 of the culture container is preferably 0.75 mm 2 or more, more preferably 3 mm 2 or more, further preferably 5 mm 2 or more, preferably 20 mm 2 or less, more preferably 13 mm. 2 or less.
  • a plurality of microwells 615 that can accommodate cells, preferably human fertilized eggs, can be arranged on the culture container-like portion bottom surface 613.
  • the entire surface of the bottom surface 613 of the culture container portion can be covered even with a drop of a small volume of culture solution (for example, 10 ⁇ l). , It is possible to prevent the drop from largely moving on the bottom portion 613 of the culture container.
  • the culture vessel-shaped portion 610 forms a drop-shaped culture solution 640 in the culture vessel-like portion accommodation space 612, and the cells 630 are arranged in the microwells 615 covered with the culture solution 640.
  • it can be used as a culture container for culturing cells 630.
  • Oil 650 can be added to 16, and the cells 630 can be cultured in a state where the oil 650 does not enter the storage space 150 while the drying of the culture solution 640 is suppressed by the layer of the oil 650.
  • microwell 615 In order to describe a preferred embodiment of the microwell 615, the vicinity of one microwell 615 is enlarged and shown in FIGS. 6D, 6E, 6F, and 6G.
  • the microwell 615 is formed on the bottom portion 613 of the culture container and has a shape opened upward.
  • a microwell internal space 6153 for accommodating cells is formed in the microwell 615.
  • the microwell inner space 6153 is formed by a microwell bottom surface 6151 and a microwell side surface 6152 rising from the periphery of the microwell bottom surface 6151.
  • the microwell bottom surface 6151 and the microwell side surface 6152 do not need to be clearly distinguishable surfaces as illustrated, and may be surfaces that are smoothly continuous with each other.
  • the microwell bottom surface 6151 may be a surface recessed downward as illustrated, a surface protruding toward the microwell internal space 6153, or a flat surface. When the microwell bottom surface 6151 is a surface recessed downward, the microwell side surface 6152 may not be present, and in that case, the periphery of the microwell bottom surface 6151 forms the opening of the microwell 615.
  • a concavo-convex structure is formed on the microwell side surface 6152.
  • a concavo-convex structure is formed on the microwell side surface 6152, when the culture solution 640 is stored in the culture vessel-like portion 610, it is possible to suppress the bubbles from remaining in the minute microwell space 6153, and to remove the bubbles. The frequency of performing can be reduced.
  • the uneven structure that can be formed on the microwell side surface 6152 includes a structure including two or more line-shaped concave portions and / or two or more line-shaped convex portions, two or more dot-shaped protrusions, and / or two. The structure containing the above dot-shaped hollow is mentioned.
  • a concavo-convex structure including two or more line-shaped concave portions and / or two or more line-shaped convex portions, a structure in which two or more line-shaped convex portions are continuously formed across a space, or two or more And a structure in which the line-shaped recesses are continuously formed with a space in between.
  • the space portion can be regarded as a concave portion, so that substantially two or more line-shaped concave portions sandwich the space. It is also a structure in which line-shaped convex portions and line-shaped concave portions are alternately formed.
  • the embodiment of the microwell 615 shown in FIGS. 6E and 6F is an embodiment in which two or more line-shaped concave portions 6154 and two or more line-shaped convex portions 6155 are alternately formed on the microwell side surface 6152.
  • the concave portion 6155 will be described as a space between two adjacent convex portions 6154.
  • Each of the line-shaped convex portion 6154 and the line-shaped concave portion 6155 is preferably formed in a direction from the bottom of the microwell 615 toward the opening.
  • the line-like convexity It is preferable that the part 6154 and the line-shaped recessed part 6155 are each formed so that the angle with respect to the direction 1 may be along the direction of 30 degrees or less.
  • the line-shaped convex portions 6154 and concave portions 6155 may be linear or curved, but are preferably linear because they are easy to mold and have a high bubble removal effect.
  • the two or more line-shaped convex portions 6154 have substantially the same width and height.
  • the recesses 6155 corresponding to two or more spaces have substantially the same width and height (depth).
  • linear width of the convex portion 6154 (X 11) and linear width of the recess 6155 (X 12), respectively, of the opening of the microwell 615 edge length of The range of 1/3140 to 1 / 4.5, preferably the range of 1/314 to 1 / 4.5, more preferably the range of 1/165 to 1/15, particularly preferably 1 / 82.5 to 1 / 4.5. A range of 15.
  • the widths (X 11 , X 12 ) are, for example, the widths of convex portions and concave portions of a plurality of concave-convex structures in an arbitrary microwell 615 measured by a three-dimensional measurement laser microscope, and the average value of the measured values Can be determined by respectively calculating.
  • Each of the line-shaped convex portion 6154 and the line-shaped concave portion 6155 is preferably formed so that the cross-sectional shape by a plane perpendicular to the vertical direction of the cell treatment container 100 is a square shape or an arc shape. Each side and corner in the shape may be rounded.
  • the height of the line-shaped convex part 6154 with respect to the line-shaped concave part 6155 is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably It is 70 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the height of the line-shaped convex portion 6154 with respect to the line-shaped concave portion 6155 is the distance between the top surface of the convex portion 6154 and the bottom surface of the concave portion 6155 adjacent to the convex portion 6154. Refers to the maximum value.
  • the ratio of the height to the width of the line-shaped convex portion 6154 is preferably 0.05 or more, more preferably 0.1 or more, further preferably 0.2 or more, particularly preferably 0.3 or more, preferably 1.5 or less, more preferably 1.0 or less.
  • the height of the convex portion 6154 with respect to the concave portion 6155 is determined, for example, by measuring the height of the plurality of convex portions 614 in an arbitrary microwell 615 with a three-dimensional measurement laser microscope and calculating the average value of the measured values. can do. Further, the ratio of the height to the width of the convex portion 6154 can be calculated using the width and height values of the convex portion 6154 determined by the means described above.
  • the shape of each protrusion and the depression is not particularly limited. Examples include a base, a column, and a random anisotropic concavo-convex shape. Conical, frustum, and columnar protrusions and depressions are preferred from the viewpoint of workability.
  • the embodiment of the microwell 615 shown in FIG. 6G is an embodiment in which two or more cylindrical protrusions 6156 are formed on the side surface 6152 of the microwell.
  • a shape that becomes thinner toward the tip of the projection is preferable from the viewpoint of workability.
  • the opening width is wider toward the opening side of the depression. This shape is preferable from the viewpoint of workability.
  • the width of the dot-like protrusion and the opening width of the dot-like depression are preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 10 ⁇ m. It is as follows. By setting the width of the protrusion and the opening width of the recess to be equal to or greater than a certain level, it is possible to avoid a possibility that the processing and molding accuracy may deteriorate. Moreover, by making it below a certain value, it is possible to avoid the formation of a shape that is difficult due to a large recessed portion with respect to the structure of the microwell.
  • the width of the protrusion refers to the maximum value of the maximum diameter in the figure of the cut surface perpendicular to the axis of the protrusion.
  • the opening width of the depression refers to the maximum diameter in the figure of the opening of the depression.
  • the height of the dot-shaped protrusion and the depth of the dot-shaped depression are preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably. 10 ⁇ m or less.
  • the ratio of the height of the protrusion to the width of the protrusion (height / width) and the ratio of the depth of the depression to the opening width of the depression (depth / opening width) are preferably 0.1 or more, more preferably 0. It is 3 or more, preferably 1.5 or less, more preferably 1 or less.
  • the pitch of the dot-like projections and the pitch of the dot-like depressions is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 10 ⁇ m or less. It is.
  • the pitch of the dot-shaped protrusions is the distance between two adjacent protrusions, and indicates the distance between the centers of the protrusions.
  • the center of the projection is the center of gravity of the figure at the tip of the projection.
  • the pitch of the dot-like dents is the distance between two adjacent dents, and indicates the distance between the centers of the dents.
  • the center of the depression is the center of gravity of the figure of the opening of the depression.
  • the pitch usually refers to the average pitch.
  • the average pitch is calculated by calculating the average value from the pitch of all adjacent protrusions.
  • the average pitch is calculated from the pitch of all adjacent recesses. The average value is calculated.
  • the dot-like protrusion and the dot-like depression may be mixed, it is preferable that only the dot-like protrusion or only the dot-like depression is formed from the viewpoint of workability, and only the dot-like protrusion is formed. Is more preferable.
  • Each microwell 615 preferably has an opening width that can accommodate cells.
  • the opening width of each microwell 615 refers to the width dimension of the figure formed by the periphery when the periphery of the opening of each microwell 615 is projected onto a virtual plane perpendicular to the vertical direction.
  • the minimum value of the opening width is the minimum value of the distance between a pair of points on the periphery of the figure that are opposed to each other with the center of gravity of the figure in between (for example, the length of the diameter when the figure is a circle) In the case of an ellipse, the length of the minor axis).
  • each microwell 615 can accommodate cells.
  • each microwell 615 When a fertilized egg is cultured using the culture container 610, it is desirable to culture until the blastocyst stage, so the minimum value of the opening width of each microwell 615 is the maximum of the cells in the blastocyst stage. Desirably larger than the dimensions. Since the maximum size of cells at the stage of blastocyst is usually 100 ⁇ m to 280 ⁇ m, the minimum value of the opening width of each microwell 615 is usually 100 ⁇ m or more, more preferably 250 ⁇ m or more. Furthermore, each microwell 615 preferably has a size that allows it to be densely arranged in a small area. The maximum value of the opening width of each microwell 615 is usually set to be smaller than the pitch between adjacent microwells 615.
  • the maximum opening width of each microwell 615 is preferably less than 1000 ⁇ m, more preferably less than 700 ⁇ m.
  • the maximum value of the opening width of each microwell 615 is the figure formed by the periphery when the periphery of the opening of each microwell 615 is projected on a virtual plane perpendicular to the vertical direction. The maximum value of the distance between a pair of points on the periphery of the figure that are opposed to each other with the center of gravity of the figure in between.
  • microwells 615 can be closely packed, a plurality of cells can be cultured at the same time while managing the cells individually, and more cells can be observed in one field of view of the microscope. can do. Further, by setting the maximum value of the opening width of each microwell 615 to less than 1000 ⁇ m, the movement of cells in each microwell 615 is small, and observation is easy.
  • the adjacent microwells 615 are preferably arranged at a density of 1 or more, more preferably 4 or more per 1 mm 2 .
  • the minimum value of the opening width of each microwell 615 is usually 250 ⁇ m or more, preferably 260 ⁇ m or more, more preferably 270 ⁇ m or more.
  • the maximum value of the opening width is usually less than 1000 ⁇ m, more preferably less than 700 ⁇ m.
  • the minimum value of the opening width of each microwell 615 can be defined as X + m (where X represents the maximum cell diameter).
  • m is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the pitch between adjacent microwells 615 is the distance between the centers of adjacent microwells 615.
  • the center of the microwell 615 is the center of gravity of the figure formed by the periphery when the periphery of the opening of the microwell 615 is projected on a virtual plane perpendicular to the vertical direction, and the periphery of the opening is circular The center of the circle.
  • the pitch between the microwells 615 usually indicates an average pitch, and for a certain microwell 615, an average value is calculated from pitches with all adjacent microwells 615.
  • the pitch between adjacent microwells 615 is X + m + n (where X represents the maximum diameter of the cell, and m is a circle formed by the periphery of the opening of the microwell 615). It is also possible to define a length obtained by subtracting the maximum cell diameter from the diameter of n, and n represents the length of the partition between the microwells 615).
  • the partition between the microwells 615 refers to the shortest distance between the peripheries of the openings between the adjacent microwells 615.
  • m is usually 100 ⁇ m or less, preferably 70 ⁇ m or less, more preferably 50 ⁇ m or less
  • n is usually 600 ⁇ m or less, preferably 350 ⁇ m or less, more preferably 150 ⁇ m or less.
  • microwells 615 By arranging the microwells 615 densely at the pitch as described above, many cells can be cultured simultaneously while managing the cells individually, and many cells enter one field of view of the microscope. Can be observed.
  • each microwell 615 is not particularly limited, but if it is too shallow, the cells move when the culture container is transported or the cells are divided, and the cells are out of the range of each microwell 615. Since the cells may come out, it is set appropriately so that the cells can be reliably held in each microwell 615. On the other hand, if the depth is too deep, it becomes difficult to introduce the culture medium or cells into each microwell 615. Therefore, the value is appropriately set so that the value is not too deep while the cells are held in each microwell 615.
  • the upper limit of the depth can be set to three times or less with respect to the average value of the maximum value and the minimum value of the opening width of each microwell 615.
  • the depth is preferably not more than 1 times the average value of the maximum value and the minimum value of the opening width of each microwell 615, and not more than 1/2. It is particularly preferred.
  • the average value of the maximum and minimum values of the opening width of each microwell 615 is small and the depth becomes deeper, convection is less likely to occur. Therefore, the composition change of the surrounding culture solution with cell respiration and metabolism May be more likely to occur. Since the ease of growth of cells changes under the influence of the composition of the surrounding culture medium, it is preferable to set the diameter and depth in consideration of biological effects so as to promote cell growth.
  • the depth of each microwell 615 is preferably in the range of 50 ⁇ m to 500 ⁇ m, particularly 50 ⁇ m to 300 ⁇ m, especially 100 ⁇ m to 300 ⁇ m, from the viewpoint of improving workability and stably holding cultured cells.
  • the depth of each microwell 615 is preferably 80 ⁇ m or more, more preferably 125 ⁇ m or more.
  • the depth of each microwell 615 indicates the distance along the vertical direction from the deepest portion of the microwell bottom surface 6151 to the opening of the microwell 615.
  • the bottom surface 613 of the culture-like container-like portion may be a flat surface or may be entirely formed. It may be a concave surface recessed downward (not shown).
  • the cleaning container-like part 620 includes a cleaning container-like part peripheral wall part 621 that stands up from the container bottom part 110 and opens upward, and is a space surrounded by the cleaning container-like part peripheral wall part 621. 622 is formed.
  • the cleaning container-like portion 620 includes a cleaning container-like portion bottom surface 623 that forms the bottom of the space as a surface that forms the cleaning container-like portion accommodation space 622, and a lower end that is a peripheral edge of the cleaning container-like portion bottom surface 623.
  • a cleaning container-shaped portion side surface 624 is connected and the upper end surrounds the opening of the cleaning container-shaped portion receiving space 622.
  • the capacity of the cleaning container-like portion receiving space 622 is not particularly limited, and may be, for example, 10 ⁇ m to 1000 ⁇ l.
  • the definition of the capacity of the cleaning container-like portion storage space 622 is the same as the definition of the capacity of the receiving portion storage space 150.
  • the shape of the bottom surface 623 of the container for cleaning is not particularly limited, and may be a flat surface. More preferably, the cleaning container-like portion bottom surface 623 includes a deepest portion 625 where the depth of the cleaning container-like portion 620 is the deepest, and a cleaning container continuous with the deepest portion 625 surrounding the deepest portion 625. In the cell holding region 626 in the vicinity of the deepest portion 625, the cell is surrounded by the inclined surface so that the cells can be held. With this configuration, it becomes possible to collect the cells to be washed in the cell holding region 626, and the cell washing operation using a catheter or pipette becomes easy.
  • the cleaning container-like part 620 may be one, but it is preferable that a plurality are provided as shown. If a plurality of washing container-like parts 620 are provided, the washing liquid is accommodated in each washing container-like part 620, the cells are washed in one washing container-like part 620, and the cells after washing are washed. Can be transferred to another container 620 for cleaning and further washed.
  • the plurality of cleaning container-like portions 620 need not have the same shape and size, and may have different shapes and sizes.
  • the washing container 620 can be provided not only for the purpose of washing cells but also for the purpose of containing a washing solution for washing instruments such as catheters and pipettes.
  • a washing solution for washing instruments such as catheters and pipettes.
  • FIGS. 7A and 7B The cell processing container 100 of Embodiment 7 shown in FIGS. 7A and 7B is another specific example in which one or more container-like parts are provided on the container bottom part 110.
  • the cell processing container 100 of the first embodiment and the like further includes two or more partition walls 701, 702, 703 that stand from the container bottom 110 and bridge the housing portion peripheral wall portion 140 and the outer peripheral wall portion 120.
  • the container-like portions 710, 720, and 730 have the container bottom portion 110 as the bottom portion, and the periphery is a pair of adjacent ones of the accommodating portion peripheral wall portion 140, the outer peripheral wall portion 120, and the two or more partition walls 701, 702, and 703. It is enclosed and formed.
  • three partition walls are provided, which are referred to as a first partition wall 701, a second partition wall 702, and a third partition wall 704 in order to distinguish them.
  • the first container-like portion 710 has a bottom surface formed by a container bottom surface 111, and is surrounded by a container outer wall surface 144, an outer peripheral wall inner peripheral surface 121, one surface 704 of the first partition wall 701, and one of the second partition walls 702.
  • a first container-like portion accommodation space 161 surrounded by the surface 705 and closed downward and upward is formed.
  • the housing outer wall surface 144, the outer circumferential wall inner circumferential surface 121, one surface 704 of the first partition 701, and one surface 705 of the second partition 702 are referred to as “side wall surfaces surrounding the first container-shaped portion housing space 161”. That's it.
  • the bottom surface of the second container-like portion 720 is formed by the container bottom surface 111, and the periphery is one of the accommodating portion outer wall surface 144, the outer peripheral wall portion inner peripheral surface 121, the other surface 706 of the second partition wall 702, and the third partition wall 703.
  • a second container-like portion accommodation space 162 is formed which is surrounded by the surface 707 and is closed at the bottom and opened upward.
  • the housing outer wall surface 144, the outer circumferential wall inner circumferential surface 121, the other surface 706 of the second partition wall 702, and the one surface 707 of the third partition wall 703 are referred to as “side wall surfaces surrounding the second container-shaped portion housing space 162”. That's it.
  • the bottom surface of the third container-like portion 730 is formed by the container bottom surface 111, and the periphery is the housing portion outer wall surface 144, the outer peripheral wall portion inner peripheral surface 121, the other surface 708 of the third partition 703, and the other of the first partition 701.
  • a third container-like portion accommodation space 163 surrounded by the surface 709 and closed downward and opened upward is formed.
  • the housing outer wall surface 144, the outer circumferential wall inner circumferential surface 121, the other surface 708 of the third partition wall 703, and the other surface 709 of the first partition wall 701 are referred to as “side wall surfaces surrounding the third container-shaped portion housing space 163”. That's it.
  • the number of partition walls is not limited to 3 as long as it is 2 or more, and may be 2, 4, 5, 6, or the like.
  • the first container-like part 710, the second container-like part 720, and the third container-like part 730 are used for the purpose of culture, washing, etc., similar to the container-like parts 610 and 620 in the sixth embodiment. Can do.
  • one microwell 615 similar to that described in Embodiment 6 is provided on the container bottom surface 111 in the first container-like part 710, the second container-like part 720, or the third container-like part 730.
  • a plurality may be formed (not shown).
  • Another container-like portion may be formed on the container bottom surface 111.
  • the number of container-like parts formed by the accommodating part peripheral wall part 140 and the outer peripheral wall part 120 and a pair of adjacent partition walls is preferably 2 or more, and more preferably 3 or more.
  • the area of the storage space of each container-like part when the cell processing container 100 is viewed in plan may be uniform or may not be uniform.
  • Each container-like part can be used for different purposes such as cell culture and washing. If there are two or more container-like parts, each container-like part can be used for different purposes. Further, in order to be able to perform cell washing, catheter washing, etc. using different container-like parts for each object to be processed, it is preferable that three or more container-like parts are formed.
  • the capacities of the first container-like part accommodating space 161, the second container-like part accommodating space 162, and the third container-like part accommodating space 163 are not particularly limited, but are, for example, in the range of 0.25 mL to 5 mL.
  • the definition of the capacity of each storage space 161, 162, 163 is the same as the definition of the capacity of the storage space 150 of the storage unit 130.
  • the volume of the first container-like part accommodation space 161 (or the volume of the second container-like part accommodation space 162 or the third container-like part accommodation space 164) is the state in which the cell processing container 100 is placed on a flat horizontal surface.
  • the lowermost of the upper ends of the side wall surface surrounding the first container-like portion accommodation space 161 (or the side wall surface surrounding the second container-like portion accommodation space 162 or the side wall surface surrounding the third container-like portion accommodation space 163).
  • the volume of the space surrounded by the side wall surface surrounding the container-like portion accommodation space 163 is indicated.
  • the cell treatment container 100 of the seventh embodiment can be used in the same manner as the cell treatment container 100 of the sixth embodiment, and the same effect can be realized.
  • an accommodation space for accommodating the cells and the cell treatment liquid is provided in the container bottom 110. It can also be replaced by one or more other receptacles that open upward (not shown).
  • the upper and lower sides of the cell processing container 100 from the container bottom surface 111 of the first partition upper end 711, the second partition upper end 712, the third partition upper end 713, the housing upper end 145, and the outer peripheral wall upper end 122 Distance along the direction (if the upper ends are not along one plane perpendicular to the vertical direction, the distance between the upper ends of the cell processing container 100 from the container bottom surface 111 is the longest of the distances along the vertical direction. a short distance) respectively d 1, d 2, d 3 , e, and f.
  • the values of the dimensions d 1 , d 2 , d 3 , e, and f are not particularly limited.
  • d 1 , d 2 , and d 3 corresponding to the heights of the partition walls 701, 702, and 703 are 1 mm to 15 mm independently of each other.
  • the partition walls 701, 702, and 703 are configured to supply liquid to the wall surfaces of the partition walls 701, 702, and 703 when the liquid is supplied to the storage spaces 161, 162, and 163 of the first to third container-like portions 710, 720, and 730, respectively.
  • the tip of a contained catheter or pipette can be brought close to each other and used to supply the liquid while being transmitted to the wall surface.
  • d 1 , d 2 , and d 3 are 15 mm or less, the liquid hardly leaks out of the container, and the operability is excellent. If d 1 , d 2 , and d 3 are 1 mm or more, liquid can be stored in a sufficient depth in the storage spaces 161, 162, and 163 that are in contact with the partition walls, and thus the storage spaces 161, 162, and 163 are stored. It is easy to handle the cells and culture solution contained in the tube with a pipette, a catheter or the like. ⁇ Embodiments 7 to 19 (FIGS.
  • the upper end of the first partition 701 is the first partition upper end 711
  • the upper end of the second partition 702 is the second partition upper end 712
  • the upper end of the third partition 703 is the third partition upper end 713.
  • the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713 are flat surfaces, but the flat surface is not essential and may be a curved surface or a ridgeline. Also good.
  • the distance along the vertical direction of the cell treatment container 100 from the container lower surface 112 of the outer peripheral wall upper end 122, the housing upper end 145, the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713 (the respective upper ends Are not along one plane perpendicular to the vertical direction, the shortest of the distances along the vertical direction of the cell treatment container 100 from the container lower surface 112 to the respective upper ends is a, b, Let c 1 , c 2 , and c 3 .
  • the cell processing container 100 of Embodiments 8 to 19 shown in FIGS. 8 to 19 is the cell processing container 100 of Embodiment 7 except that the relative magnitude relationship of a, b, c 1 , c 2 , and c 3 is different. It is a modification which has the same structure.
  • each of the cell processing containers 100 of Embodiments 7 to 19 since the magnitude relationship of a, b, c 1 , c 2 , and c 3 is different, each has different characteristics and can be used differently.
  • the storage space 150, the first container-shaped part storage space 161, the second container-shaped part storage space 162 are mounted on a horizontal plane. If the liquid is accommodated in each of the third container-like portion accommodating spaces 163 within a range not exceeding the upper end of the surface surrounding each accommodating space, the liquids accommodated in the accommodating spaces do not mix with each other. Therefore, individual management such as cell processing, washing, and culturing can be performed individually in each of the accommodation spaces.
  • the upper end 145 of the storage unit, the upper end 711 of the first partition, the upper end 712 of the second partition and the upper end 713 of the third partition are independent of each other.
  • the vertical position of the outer peripheral wall upper end 122 is the same as or lower than the outer peripheral wall upper end 122.
  • the whole opening formed by the outer peripheral wall part 120 of the cell processing container 100 can be covered by the outer lid part 170 that contacts the upper end 122 of the outer peripheral wall part.
  • FIG. 20 shows a state in which the cell processing container 100 of Embodiment 8 is covered with an outer lid 170. Since the outer lid part 170 contacts the outer peripheral wall part upper end 122 over the entire circumference, the cell processing container 100 can be sealed in a relatively airtight state.
  • the upper end 145 of the accommodating portion 130 and the upper ends 711, 712, 713 of the two or more partition walls 701, 702, 703 are respectively independent of the outer peripheral wall portion 120. It is only necessary to satisfy the condition that the upper end 122 has the same vertical position as that of the upper end 122 of the outer peripheral wall 120 or is lower than the upper end 122 of the outer peripheral wall 120.
  • the upper end of the inner peripheral surface 121 of the outer peripheral wall portion is the upper end 145 of the accommodating portion, the upper end 711 of the first partition, the upper end 712 of the second partition and the upper end 713 of the third partition.
  • the inner space 210 has a shape in which the periphery fits in the inner periphery of the upper end of the outer peripheral wall portion inner peripheral surface 121.
  • the storage space 150, the first container-shaped portion storage space 161, and the second container-shaped portion are stored.
  • the space 162 and the third container-like part accommodation space 163 can be covered. As an example, a state in which the cell processing container 100 of the eleventh embodiment is covered with the inner lid portion 210 is shown in FIG.
  • the upper end 122 of the outer peripheral wall portion 120 is located above the upper end 145 of the housing portion 130 and the upper ends 711, 712, 713 of the two or more partition walls 701, 702, 703. It only has to satisfy the condition of being.
  • the storage unit upper end 145 has the same vertical position as the outer peripheral wall upper end 122, or It exists above the outer peripheral wall upper end 122.
  • the 1st container-shaped part accommodation space 161 and the 2nd container-shaped part accommodation Even when the liquid is stored in the space 162 and / or the third container-like portion receiving space 163 until the liquid level reaches the upper end of the outer peripheral wall portion 120, the liquid moves over the containing portion upper end 145 to the containing space 150. There is nothing. For this reason, the cell processing solution is not mixed with each other between the container 130 and the first to third container-like portions 710, 720, and 730, and it is easy to individually perform operations such as cell processing, culture, and washing.
  • the upper end 145 of the housing portion 130 has the same vertical position as the upper end 122 of the outer peripheral wall portion 120, or is higher than the upper end 122 of the outer peripheral wall portion 120. It is sufficient to satisfy the condition.
  • the outer peripheral wall upper end 122 is located above the accommodating unit upper end 145. For this reason, the first container-like part accommodation space 161, the second container-like part accommodation space 162, and the third container in a state where the cell processing container 100 of Embodiments 7, 11, 13, 16, 18 is placed on a horizontal plane.
  • the storage space 150, the first container shape portion receiving space 161, the second container shape portion receiving space 162, and A common liquid can be stored in the third container-shaped portion storage space 163. For this reason, it is easy to carry out operations such as cell treatment, culture, and washing using a common cell treatment solution in the accommodating portion 130 and the first to third container-like portions 710, 720, and 730.
  • the container upper end 145, the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713 are independent of each other.
  • the upper end 122 of the outer peripheral wall is the same as the vertical position, or is higher than the upper end 122 of the outer peripheral wall.
  • the upper end 145 of the accommodating portion 130 and at least a pair of adjacent ones of the two or more partition walls 701, 702, 703 (for example, 701 and 702, 702 and 703, 703 and 701). If the upper ends 711, 712, and 713 independently satisfy the condition that the upper end 122 of the outer peripheral wall portion 120 has the same vertical position as the upper end 122, or is located above the upper end 122 of the outer peripheral wall portion 120. Good. More preferably, the upper end 145 of the accommodating portion 130 and all the upper ends 711, 712, 713 of the two or more partition walls 701, 702, 703 are independently positioned from the upper end 122 of the outer peripheral wall portion 120.
  • the outer peripheral wall upper end 122 has the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713. Or the outer peripheral wall upper end 122 is higher than the housing upper end 145.
  • the 1st container-shaped part accommodation space 161 and the 2nd container-shaped part accommodation space 162 are used.
  • the liquid can be stored in the third container-like portion receiving space 163 until the liquid level exceeds the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713, or until the storage portion upper end 145 is exceeded. It is possible, and the first container-like part accommodation space 161, the second container-like part accommodation space 162, and the third container-like part accommodation space 163 can contain a common liquid. For this reason, it is easy to perform operations such as cell culture and washing in the first to third container-like portions 710, 720, and 730 using a common cell treatment solution.
  • the upper end 122 of the outer peripheral wall 120 is selected from the upper ends 711, 712, 713 of each of the two or more partition walls 701, 702, 703 and the upper end 145 of the accommodating portion 130. What is necessary is just to satisfy the condition that it exists above at least one.
  • Two or more container-like part accommodation spaces adjacent via at least one of the two or more partition walls 701, 702, 703, or two or more container-like part accommodation spaces adjacent via the accommodation part 130 Can store a common liquid.
  • FIG. 22 shows a state where the cell processing container 100 of Embodiment 9 is covered with an outer lid part 170.
  • the opening of the cell processing container 100 can be covered in a state where the air permeability between the inside air and the outside air in the container is relatively maintained.
  • the container upper end 145 and / or the first partition upper end 711, the second partition upper end 712, and the third partition upper end 713 Is above the upper end 122 of the outer peripheral wall. Accordingly, in these embodiments, the accommodating portion 130 and / or the first to third container-like portions 710, 720, and 730 have wall surfaces that protrude above the upper end 122 of the outer peripheral wall portion.
  • the tip of the catheter or pipette containing the liquid is brought close to the protruding wall surface. It is easy to supply the liquid while propagating it to the protruding wall surface, and it is easy to suppress liquid splash at the time of supplying the liquid.
  • At least one selected from the upper ends 711, 712, 713 of each of the two or more partition walls 701, 702, 703 and the upper end 145 of the accommodating portion 130 is an outer peripheral wall portion. It suffices to satisfy the condition of being above the upper end 122 of 120.
  • Embodiments 20, 21, and 22 (FIGS. 23, 24, and 25)>
  • the cell processing container 100 of Embodiments 20, 21, and 22 shown in FIGS. 23, 24, and 25 is the cell of Embodiment 7 except that the relative size relationships of a, b, c 1 , c 2 , and c 3 are different.
  • This is a modified example having the same structure as the processing container 100.
  • the first partition upper end 711 and the second partition upper end 712 are located above the third partition upper end 713.
  • the liquid level exceeds the third partition upper end 713 in the second container-like part accommodation space 162 and the third container-like part accommodation space 163.
  • the liquid can be stored so as not to exceed the first partition upper end 711 and the second partition upper end 712. That is, a common liquid can be accommodated in the second container-like part accommodating space 162 and the third container-like part accommodating space 163, and at the same time, another liquid is mixed in the first container-like part accommodating space 161. Can be accommodated. Therefore, operations such as cell culture and washing are performed using a common liquid in the second and third container-like parts 720 and 730, and cells are cultured and washed using a separate liquid in the first container-like part 710. Etc. can be performed.
  • the second partition upper end 712 and the third partition upper end 713 are located above the first partition upper end 711. For this reason, in a state where the cell processing container 100 of Embodiment 21 is placed on a horizontal plane, the liquid level exceeds the first partition upper end 711 in the first container-like part accommodating space 161 and the third container-like part accommodating space 163. However, the liquid can be stored so as not to exceed the second partition upper end 712 and the third partition upper end 713. That is, a common liquid can be accommodated in the first container-like part accommodating space 161 and the third container-like part accommodating space 163, and at the same time, another liquid is mixed in the second container-like part accommodating space 162. Can be accommodated. Therefore, operations such as cell culture and washing are performed using a common liquid in the first and third container-like parts 710 and 730, and cells are cultured and washed using a separate liquid in the second container-like part 720. Etc. can be performed.
  • the first partition upper end 711 and the third partition upper end 713 are above the second partition upper end 712. For this reason, in a state where the cell treatment container 100 of the twenty-second embodiment is placed on a horizontal plane, the liquid level exceeds the second partition upper end 712 in the first container-like part accommodation space 161 and the second container-like part accommodation space 162.
  • the liquid can be accommodated so as not to exceed the first partition upper end 711 and the third partition upper end 713. That is, a common liquid can be accommodated in the first container-like part accommodating space 161 and the second container-like part accommodating space 162, and at the same time, another liquid is mixed in the third container-like part accommodating space 163. Can be accommodated. Therefore, operations such as cell culture and washing are performed using a common liquid in the first and second container-like parts 710 and 720, and cells are cultured and washed using a separate liquid in the third container-like part 730. Etc. can be performed.
  • the cell treatment container 100 includes three or more partition walls 701, 702, and 703 that bridge at least one of the accommodating portions 130 and the outer peripheral wall portion 120, and the three or more partition walls.
  • 701, 702, and 703 include one or two or more adjacent partition walls A and a pair of partition walls B adjacent to the partition wall A, and the upper ends of the pair of partition walls B are the upper ends of the partition walls A.
  • the above effect can be obtained by satisfying the condition that the upper end of the accommodating portion 130 and the upper end of the outer peripheral wall portion 120 are both higher than the upper ends of the partition walls A.
  • the third partition 703 corresponds to the partition A
  • the first partition 701 and the second partition 702 correspond to a pair of partitions B
  • the first partition 701 corresponds to the partition A and the second partition 702.
  • the third partition 703 corresponds to the pair of partitions B.
  • the second partition 702 corresponds to the partition A
  • the first partition 701 and the third partition 703 correspond to the pair of partitions B.
  • Two or more container-like part accommodation spaces adjacent to each other via the partition wall A by storing the liquid in the cell treatment container 100 so that the liquid surface exceeds the upper end of each of the partition walls A but not the upper end of the partition wall B. Can contain a common liquid.
  • a cell processing container 100 shown in FIG. 26 is a first modification of the first embodiment, and the figure formed by the opening of the accommodating portion 130 in a plan view extends from the first portion 261 to the substantially circular shape in one direction. Except for having a shape in which one existing second portion 262 is combined, it has the same characteristics as the cell processing container 100 of Embodiment 1 shown in FIG. According to the first modified example of the first embodiment, the housing space 150 is only a portion of the second portion 262 compared to the case where the figure formed by the opening of the housing portion 130 in a plan view is composed of only the first portion 261 having a substantially circular shape.
  • a cell processing container 100 shown in FIG. 27 is a second modification of the first embodiment, and the figure formed by the opening of the accommodating portion 130 in plan view is a substantially square first portion 271 and four directions from the first portion 271.
  • the accommodation space 150 has four second portions 272-2, as compared with the case where the figure formed by the opening of the accommodation portion 130 in a plan view is composed of only the first portion 271 having a substantially square shape. Since only the parts 1, 272-2, 272-3, and 272-4 are expanded, the area where the instrument can be placed is further expanded when handling the cells accommodated in the accommodation space 150 with an instrument such as a catheter. There is an advantage of further improvement. ⁇ Other preferred embodiments> ⁇ Other preferred embodiments relating to wall thickness> In the cell treatment container 100 of the present invention, the thickness of the wall portion including the resin material constituting each part is not particularly limited, but is preferably 0.3 mm to 3 mm. Specifically, as shown in FIGS.
  • the cell treatment container 100 of the present invention may be sterilized by radiation before shipment. However, when the cell treatment container 100 is formed of a resin material, the resin material changes to yellow by irradiation and has a colorless and transparent property. May be lost.
  • the thickness of the wall portion containing the resin material in the cell treatment container 100 is 3 mm or less, the colorless and transparent property of the resin material is maintained when the cell treatment container 100 is viewed with the naked eye, even when radiation sterilization is performed. A suitable appearance is obtained. Moreover, if the thickness of each wall part is 0.3 mm or more, sufficient intensity
  • FIG. 28 is a schematic diagram of an end face corresponding to the AA end face in FIG. 7A of the cell processing container 100 of the seventh modification of the seventh embodiment of the present invention.
  • the accommodating portion side wall 143 of the accommodating portion peripheral wall portion 140 and the accommodating portion bottom inclined surface 142 are connected by a rounded accommodating portion side surface-bottom inclined surface connecting curved surface 281.
  • the accommodating portion side surface-bottom inclined surface connecting curved surface 281 includes an accommodating portion peripheral wall 140 formed by a virtual plane along the vertical direction (specifically, a virtual plane including the normal line of the accommodating portion side surface 143 and extending along the vertical direction).
  • the accommodating portion side surface 143 and the accommodating portion bottom inclined surface 142 so that the inclination angle defined in this specification on the cross section in the vicinity thereof continuously changes from the accommodating portion side surface 143 to the accommodating portion bottom inclined surface 142.
  • the curved surface has a radius of curvature of 10 ⁇ m to 15 mm, more preferably 10 ⁇ m to 1 mm on the cross section.
  • the cells 10 enter between the accommodating portion side surface 143 and the accommodating portion bottom inclined surface 142 more than in the first embodiment having the bottom side surface intersecting portion 147. The possibility can be reduced, and the catheter or pipette can be easily taken out when it enters. Further, when the droplet containing the cell 10 is transferred from the container side surface 143 onto the forming surface 141 and moved to the cell holding region 146, the cell 10 can be easily moved.
  • the accommodating portion outer wall surface-container bottom connecting curved surface 282 is an accommodating portion peripheral wall portion 140 formed by a virtual plane along the vertical direction (specifically, a virtual plane including the normal line of the accommodating portion outer wall surface 144 and extending in the vertical direction). And the curved surface connecting the container outer wall surface 144 and the container bottom surface 111 so that the inclination angle defined in the present specification continuously changes from the container outer wall surface 144 to the container bottom surface 111 on the cross section in the vicinity thereof.
  • the curved surface has a curvature radius on the cross section of 10 ⁇ m to 15 mm, more preferably 10 ⁇ m to 1 mm.
  • the possibility that the cell 10 enters between the outer wall surface 144 of the housing portion and the bottom surface 111 of the container can be reduced, and removal by a catheter or pipette when it enters. Is easy.
  • 29A, 29B, and 29C are schematic views of the end surface corresponding to the AA end surface in FIG. 7A of the cell treatment container 100 of the second, second, third, and fourth modifications of the seventh embodiment of the present invention.
  • the portion sandwiched between the first partition 701 and the third partition 703 in the housing peripheral wall 140 in the cell processing container 100 of Embodiment 7 will be described.
  • the portion 140 a portion sandwiched between the first partition 701 and the second partition 702, a portion sandwiched between the second partition 702 and the third partition 703, and the housing peripheral wall 140 in the first embodiment are also included.
  • the inclination angle of the accommodating portion side surface 143 of the accommodating portion peripheral wall portion 140 is less than 90 °.
  • the inclination angle of the housing side surface 143 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the inclination angle of the accommodating part side surface 143 is within this range, when the cell processing container 100 is molded by filling the mold with a resin material, when the cell processing container 100 is taken out from the mold, It is possible to reduce the possibility of scratches.
  • the inclination angle of the housing outer wall surface 144 is not particularly limited, but is typically 90 ° (including substantially 90 °, for example, including 89.5 ° to 90.5 °) or 90 °. And is preferably 90 °.
  • the inclination angle of the accommodating portion outer wall surface 144 is within this range, it is possible to prevent the liquid accommodated in the third container-shaped portion accommodating space 163 from flowing over the accommodating portion peripheral wall portion 140 into the accommodating space 150. it can.
  • the inclination angle of the accommodating portion outer wall surface 144 of the accommodating portion peripheral wall portion 140 is less than 90 °.
  • the inclination angle of the housing outer wall surface 144 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the inclination angle of the container outer wall surface 144 is within this range, when the cell processing container 100 is molded by filling a resin material into a mold, the container outer wall surface is removed when the cell treatment container 100 is taken out from the mold. The possibility that scratches may occur on 144 can be reduced.
  • the inclination angle of the housing side surface 143 is not particularly limited, but is typically 90 ° (including substantially 90 °, for example, including 89.5 ° to 90.5 °) or 90 °. Large, preferably 90 °.
  • the inclination angle of the storage unit side surface 143 is within this range, the liquid stored in the storage space 150 of the storage unit 130 is prevented from flowing over the storage unit peripheral wall 140 into the third container-shaped unit storage space 163. can do.
  • the inclination angle of the accommodating portion side surface 143 of the accommodating portion peripheral wall portion 140 is less than 90 °.
  • the inclination angle of the housing side surface 143 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the possibility of scratches on the side surface 143 of the housing portion can be reduced.
  • the inclination angle of the housing outer wall surface 144 is less than 90 °.
  • the inclination angle of the housing outer wall surface 144 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °. At this time, similarly to the second modification of the seventh embodiment, the possibility of scratches on the outer wall surface 144 of the accommodating portion can be reduced.
  • the inclination angle of the accommodating portion side surface 143 of the accommodating portion peripheral wall portion 140 and the inclination angle of the accommodating portion outer wall surface 144 are each independently 90 ° (substantially 90 °). (Including, for example, 89.5 ° to 90.5 °) or larger than 90 °, preferably 90 °.
  • the liquid stored in the storage space 150 of the storage unit 130 passes over the storage unit peripheral wall 140 and flows into the third container-shaped unit storage space 163, and enters the third container-shaped unit storage space 163. The stored liquid can be prevented from flowing over the storage portion peripheral wall 140 into the storage space 150.
  • the inclination angle is within the above-described ranges over the entire height direction of the storage portion side surface 143, but it is not essential, and at least the storage portion of the storage portion side surface 143 is included.
  • the inclination angle at the height position near the upper end 145 may be in the above range.
  • the inclination angle at least at the height position in the vicinity of the upper end 145 of the accommodating portion may be in the above range.
  • FIG. 30 is a schematic view of an end face corresponding to the BB end face in FIG. 7A of the cell processing container 100 of the seventh modification of the seventh embodiment of the present invention.
  • one surface 704 of the first partition wall 701 and the container bottom surface 111 of the container bottom 110 are connected by a rounded first partition wall side-bottom connection curved surface 301.
  • the first partition wall side-bottom connection curved surface 301 is a virtual plane along the vertical direction (specifically, a virtual plane including the normal line of one surface 704 of the first partition 701 and along the vertical direction).
  • the possibility that the cell 10 enters between the one surface 704 of the first partition 701 and the container bottom surface 111 of the container bottom 110 can be reduced, and the cell processing container 100 can enter. In this case, it is easy to take out with a catheter or pipette.
  • the other surface 709 of the first partition 701 and the container bottom 111 of the container bottom 110 are connected by a rounded second partition side-bottom connection curved surface 302.
  • the second partition wall side-bottom connection curved surface 302 is a virtual plane along the vertical direction (specifically, a virtual plane including the normal line of the other surface 709 of the first partition 701 and along the vertical direction).
  • the first partition wall so that the inclination angle defined in this specification continuously changes from the other surface 709 of the first partition wall 701 to the container bottom surface 111 of the container bottom 110.
  • the possibility that the cell 10 enters between the other surface 709 of the first partition 701 and the container bottom surface 111 of the container bottom 110 can be reduced, and the cell processing container 100 can enter. In this case, it is easy to take out with a catheter or pipette.
  • FIG. 31 is a plan view of a region corresponding to the region 310 in FIG. 7A of the cell processing container 100 of the sixth modification of the seventh embodiment of the present invention.
  • one surface 707 of the third partition wall 703 and the housing outer wall surface 144 of the housing peripheral wall portion 140 are formed by the rounded first partition wall side surface-housing portion outer wall surface connecting curved surface 311.
  • One surface 707 of the third partition wall 703 and the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120 are connected by a rounded first partition wall side surface-outer peripheral wall inner peripheral surface connection curved surface 313. ing.
  • the first partition wall side surface-accommodating portion outer wall surface connection curved surface 311 is accommodated with one surface 707 of the third partition wall 703 on the third partition wall 703 and a cross section in the vicinity thereof by a virtual plane along a direction perpendicular to the vertical direction. It is a curved surface that smoothly connects the housing portion outer wall surface 144 of the peripheral wall portion 140, and is preferably a curved surface having a radius of curvature of 10 ⁇ m to 15 mm on the cross section.
  • the first partition wall side surface-outer peripheral wall inner peripheral surface connection curved surface 313 is one of the third partition walls 703 on a cross section in the vicinity of the third partition wall 703 by a virtual plane along a direction perpendicular to the vertical direction.
  • the curved surface smoothly connects the surface 707 and the inner peripheral surface 121 of the outer peripheral wall portion of the outer peripheral wall portion 120, and is preferably a curved surface having a radius of curvature of 10 ⁇ m to 15 mm on the cross section. Due to the presence of the first partition wall side surface-accommodating portion outer wall surface curved surface 311, the cell 10 may enter between the one surface 707 of the third partition wall 703 and the accommodating portion outer wall surface 144 of the accommodating portion peripheral wall portion 140. And can be easily taken out with a catheter or pipette.
  • the first partition wall side surface-outer peripheral wall portion inner peripheral surface connecting curved surface 313 has a possibility that the cell 10 may enter between one surface 707 of the third partition wall 703 and the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120. In addition to being able to reduce, removal with a catheter or pipette when entering is easy.
  • the first partition wall side surface-container outer wall surface connection curved surface 311 and the first partition wall side surface-outer peripheral wall portion inner surface connection curved surface 313 can also have the following preferable effects.
  • the first partition wall side surface-receiving portion outer wall surface connection curved surface 311 and the first partition wall side surface-outer peripheral wall portion inner peripheral surface connection curved surface 313 do not exist, the following problems exist.
  • the one surface 707 of the third partition wall 703 and the accommodating portion peripheral wall portion 140 When the outer peripheral wall surface 144 of the storage portion outer wall surface 144 and the outer peripheral wall portion 120 has affinity for the liquid to be stored (for example, the liquid is oil and each of the surfaces is a hydrophobic surface) In some cases, one surface 707 of the third partition 703 and a portion where the housing outer wall surface 144 of the housing peripheral wall 140 intersects, and one surface 707 of the third partition 703 and the outer wall 120 There is a problem that the liquid diffuses through a portion where the outer peripheral wall portion inner peripheral surface 121 intersects and moves from the second container-like portion accommodation space 162 to the adjacent third container-like portion accommodation space 163 (Experiment 6). reference).
  • a surface having “affinity” with respect to a certain liquid means that the contact angle of the liquid on the surface is preferably 45 ° or less, more preferably 30 ° or less.
  • a surface having no affinity” for a liquid means that the contact angle of the liquid on the surface is preferably 60 ° or more, more preferably 80 ° or more. The contact angle may be measured at a temperature at which the cell treatment container 100 is assumed to be used, for example, in the range of 20 ° C. to 40 ° C.
  • the other surface 708 of the third partition wall 703 and the storage portion outer wall surface 144 of the storage portion peripheral wall portion 140 are rounded.
  • the second curved surface 312 is connected to the curved surface 312, and the other surface 708 of the third partition wall 703 and the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120 are rounded. 314 is connected.
  • the second partition wall side surface-accommodating portion outer wall surface connecting curved surface 312 is accommodated with the other surface 708 of the third partition wall 703 on the third partition wall 703 and a cross section in the vicinity thereof by a virtual plane along a direction perpendicular to the vertical direction.
  • the second partition wall side surface-outer peripheral wall inner peripheral surface connecting curved surface 314 is the other partition wall of the third partition wall 703 on the cross section in the vicinity of the third partition wall 703 by a virtual plane along a direction perpendicular to the vertical direction.
  • the curved surface smoothly connects the surface 708 and the inner peripheral surface 121 of the outer peripheral wall portion 120 of the outer peripheral wall portion 120, and is preferably a curved surface having a radius of curvature of 10 ⁇ m to 15 mm on the cross section.
  • the second partition wall side surface-container outer wall surface connection curved surface 312 and the second partition wall surface surface-outer peripheral wall portion inner peripheral surface connection curve surface 314 are respectively the first partition wall side surface-accommodation portion outer wall surface connection curved surface 311 and the first partition wall surface.
  • the same effect as the side surface-outer peripheral wall inner peripheral surface connecting curved surface 313 can be obtained.
  • Still another suitable modification of the partition walls 701, 702, 703 of the cell processing container 100 according to Embodiment 7 of the present invention will be described below. For convenience of explanation, only the first partition 701 will be described, but the other second partition 702 and the third partition 703 can also have the same characteristics.
  • first partition 701 in the following description is referred to as the “first partition”.
  • second partition 702 or “3rd partition 703” as appropriate, and “one surface 704” and “the other surface 709” are also replaced with corresponding symbols in “2nd partition 702” or “3rd partition 703” as appropriate.
  • 32A, 32B, and 32C are schematic views of the end surface corresponding to the BB end surface in FIG. 7A of the cell processing container 100 of the seventh modified example 7, 8, and 9 of the seventh embodiment of the present invention.
  • the inclination angle of one surface 704 of the first partition wall 701 is less than 90 °.
  • the inclination angle of one surface 704 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the inclination angle of one surface 704 is within this range, when the cell processing container 100 is molded by filling the mold with a resin material, when the cell processing container 100 is taken out from the mold, It is possible to reduce the possibility of scratches.
  • the inclination angle of the other surface 709 of the first partition 701 is not particularly limited, but is typically 90 ° (including substantially 90 °, for example, including 89.5 ° to 90.5 °).
  • the liquid stored in the third container-like portion accommodation space 163 flows over the first partition wall 701 and flows into the first container-like portion accommodation space 161. Can be suppressed.
  • the inclination angle of the other surface 709 of the first partition wall 701 is less than 90 °.
  • the inclination angle of the other surface 709 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the inclination angle of the other surface 709 is within this range, when the cell processing container 100 is molded by filling the mold with a resin material, when the cell processing container 100 is taken out from the mold, It is possible to reduce the possibility of scratches.
  • the inclination angle of the one surface 704 of the first partition 701 is not particularly limited, but is typically 90 ° (substantially 90 °, for example, including 89.5 ° to 90.5 °).
  • the angle of inclination of one surface 704 of the first partition 701 is within this range, the liquid stored in the first container-like portion accommodation space 161 gets over the first partition 701 and flows into the third container-like portion accommodation space 163. Can be suppressed.
  • the tilt angle of one surface 704 of the first partition 701 is less than 90 °.
  • the inclination angle of one surface 704 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the possibility of scratches on one surface 704 can be reduced.
  • the inclination angle of the other surface 709 of the first partition 701 is less than 90 °.
  • the inclination angle of the other surface 709 is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the possibility of scratches on one surface 709 can be reduced as in the eighth modification of the seventh embodiment.
  • the inclination angle of one surface 704 of the first partition 701 and the inclination angle of the other surface 709 are each independently 90 ° (substantially 90 °, for example, 89.5 ° to 90.5 °) or larger than 90 °, preferably 90 °.
  • the liquid accommodated in the third container-like part accommodation space 163 gets over the first partition 701 and flows into the first container-like part accommodation space 161, and the first container-like part accommodation space 161 It is possible to suppress the stored liquid from getting over the first partition wall 701 and flowing into the third container-shaped portion storage space 163.
  • the inclination angle is in each of the above ranges over the entire height direction of one surface 704 of the first partition 701, but it is not essential.
  • the inclination angle at least at the height position in the vicinity of the first partition upper end 711 of the one surface 704 may be in the above range.
  • the inclination angle is within the above ranges over the entire height direction of the other surface 709 of the first partition 701, but it is not essential.
  • the inclination angle at least at the height position in the vicinity of the first partition upper end 711 may be in the above range.
  • FIG. 33 shows an example in which the cell processing container 100 according to the seventh embodiment of the present invention includes an outer lid portion 170.
  • a surface of the outer lid portion 170 facing the container is referred to as a lid inner surface 331.
  • the height e of the portion 140 from the container bottom surface 111 is independently smaller than the height f of the outer peripheral wall portion 120 from the container bottom surface 111 or is the same as f at the maximum.
  • the “first partition 701” in the following description is referred to as the “first partition”. It may be understood by replacing “d 1 ” with “d 2 ” or “d 3 ” as appropriate in the “second partition 702” or “third partition 703”.
  • the one surface 704 of the first partition 701 has a surface having affinity for the liquid stored in the first container-shaped portion storage space 161 (for example, the liquid Is an oil, one surface 704 of the first partition 701 is a hydrophobic surface such as a styrene surface not subjected to hydrophilic treatment, and the lid inner surface 331 has affinity for the liquid.
  • the height d 1 of the first partition 701 from the container bottom surface 111 is preferably a value smaller than f by 1 mm or more.
  • the liquid easily diffuses on the surface of the substrate having affinity, but if d 1 is 1 mm or more smaller than f, the liquid is accommodated in the first container-like part accommodating space 161 up to the upper end 711 of the first partition 701. Even when the lid is covered with the outer lid portion 170, it is preferable because the liquid is unlikely to move over the first inner wall 331 and over the first partition 701 to move to the third container-like portion accommodation space 163.
  • the entire “side wall surface surrounding the first container-like portion accommodation space 161” including one surface 704 of the first partition 701, the first partition upper end 711, the other surface 709 of the first partition 701, and the container This is particularly suitable when the region in the first container-like portion accommodating space 161 of the bottom surface 111 is a surface having affinity for the liquid.
  • the lower limit of d 1 is not particularly limited is 2mm larger value, more preferably 3mm or more, and more preferably not less than 8 mm.
  • the entire “side wall surface surrounding the first container-like portion accommodation space 161” including one surface 704 of the first partition 701 and the region in the first container-like portion accommodation space 161 of the container bottom surface 111 are compatible with the liquid.
  • a first liquid containing cells and the like that has no affinity with the region for example, water or the like when the region is hydrophobic
  • a drop of hydrophilic liquid is formed on the region, and a second liquid having an affinity for the region and the like, which has no affinity for the drop so as to cover the drop, is accommodated in the first container-like portion accommodating space.
  • the first liquid is a cell treatment liquid based on water containing cells 10
  • the second liquid is oil.
  • the amount of the first liquid forming the drop is generally 15 ⁇ L or more.
  • d 1 is larger than 2mm value, especially if 3mm or more, the second liquid, it is possible to cover the entire drop of the first liquid or volume 15 [mu] L. Furthermore d 1 are suitable for preventing liquid leakage of the second liquid equal to or greater than 8 mm.
  • one surface 704 of the first partition 701 is a surface having affinity for the liquid stored in the first container-shaped portion storage space 161.
  • the lid inner surface 331 is a surface having no affinity for the liquid (for example, the surface of the liquid is oil and the lid inner surface 331 is subjected to a hydrophilic treatment)
  • the height d 1 from the container bottom surface 111 can be the same value as f or a smaller value. In this case, since the diffusion of the liquid along the lid inner surface 331 is unlikely to occur, the possibility that the liquid travels along the lid inner surface 331 and gets over the first partition 701 and moves to the third container-like portion accommodation space 163 is low.
  • the entire “side wall surface surrounding the first container-like portion accommodation space 161” including one surface 704 of the first partition 701, the first partition upper end 711, the other surface 709 of the first partition 701, and the container This is particularly suitable when the region in the first container-like portion accommodating space 161 of the bottom surface 111 is a surface having affinity for the liquid.
  • the lower limit of d 1 is not particularly limited, but for the same reason as described above, it is preferably a value larger than 2 mm, more preferably 3 mm or more, and even more preferably 8 mm or more.
  • one surface 704 of the first partition 701 does not have affinity for the liquid stored in the first container-shaped portion storage space 161.
  • the surface is a surface (for example, the liquid is oil and one surface 704 of the first partition 701 is hydrophilically treated)
  • the height d 1 of the first partition 701 from the container bottom surface 111 is f and It can be the same value or a smaller value.
  • the liquid since the liquid hardly diffuses on the one surface 704 of the first partition 701, the liquid is unlikely to move over the first partition 701 and move to the third container-like portion accommodation space 163. .
  • FIG. 34 is a plan view of the cell processing container 100 of Modification Example 10 of Embodiment 7 of the present invention.
  • Embodiment 7 In the cell treatment container 100 of Modification Example 10, another container-like part is formed in a container-like part surrounded by the housing part peripheral wall part, the outer peripheral wall part, and a pair of adjacent partition walls.
  • a further culture vessel-like portion 610 is formed on the vessel bottom 110 constituting the bottom of the first vessel-like portion 710.
  • the specific configuration of the culture container 610 is as described above with respect to the sixth embodiment.
  • Cells and a culture solution are accommodated in a culture container-like part accommodation space 612 inside the culture container-like part 610, and the first container-like part accommodation space 161 of the first container-like part 710 is filled with oil to be used for culture.
  • the entire container-like portion 610 can be covered. At this time, other operations such as cell washing and catheter washing can be performed in adjacent container-like parts such as the second container-like part 720 and the third container-like part 730.
  • the number of the further culture vessel-like portions 610 is not particularly limited, and may be one or plural.
  • the upper end 616 of the culture vessel-shaped peripheral wall portion 611 of the further culture vessel-like portion 610 is not height particularly limited from the bottom of the vessel 611, at most, of the d 1, d 2, e and f
  • the value is preferably the same or smaller than the smallest value, preferably 1 mm or more. If it is below the upper limit value, the first container-like part accommodating space 161 can be filled with oil so as to cover the entire first container-like part 710. If it is more than the said lower limit, it will be easy to handle the cell accommodated in the further container-like part 610 for culture
  • a further cleaning container 620 is further formed on the container bottom 110 constituting the bottom of the third container 730.
  • the specific configuration of the further cleaning container 620 is as described above with respect to the sixth embodiment.
  • the number of further container portions 620 for cleaning is not particularly limited, and may be one or a plurality. ⁇ Other preferred embodiments regarding the shape of the outer peripheral wall (1)> The other suitable modification regarding the outer peripheral wall part 120 of the cell processing container 100 of Embodiment 7 of this invention is demonstrated below.
  • FIG. 35 is a schematic diagram of an end surface corresponding to the CC end surface in FIG. 7A of the cell processing container 100 of the seventh modification 11 of the present invention.
  • the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120 and the container bottom surface 111 of the container bottom portion 110 are connected by a rounded outer peripheral wall portion inner peripheral surface-bottom surface curved surface 351.
  • the outer peripheral wall portion inner peripheral surface-bottom surface curved surface 351 includes an outer peripheral wall portion 120 formed by a virtual plane along the vertical direction (specifically, a virtual plane including the normal line of the outer peripheral wall inner peripheral surface 121 and extending in the vertical direction) On the cross section in the vicinity thereof, the inclination angle defined in this specification is such that the outer peripheral wall 120 is continuously changed from the outer peripheral wall 121 inner peripheral surface 121 of the outer peripheral wall 120 to the container bottom 111 of the container bottom 110.
  • the possibility that the cell 10 enters between the outer peripheral wall part inner peripheral surface 121 of the outer peripheral wall part 120 and the container bottom face 111 of the container bottom part 110 can be reduced. When it enters, it can be easily taken out with a catheter or pipette.
  • ⁇ Other suitable embodiment (2) regarding the shape of an outer peripheral wall part> Still another suitable modification regarding the outer peripheral wall 120 of the cell processing container 100 according to the seventh embodiment of the present invention will be described below.
  • FIG. 36 is a schematic diagram of an end surface corresponding to the CC end surface in FIG. 7A of the cell processing container 100 of the seventh modification of the seventh embodiment of the present invention.
  • FIG. 36 is a schematic diagram of an end surface corresponding to the CC end surface in FIG. 7A of the cell processing container 100 of the seventh modification of the seventh embodiment of the present invention.
  • a modified example of a portion sandwiched between the first partition 701 and the third partition 703 in the outer peripheral wall 120 in the cell processing container 100 of Embodiment 7 will be described. Of these, the portion sandwiched between the first partition 701 and the second partition 702, the portion sandwiched between the second partition 702 and the third partition 703, and the outer peripheral wall 120 in the first embodiment are similarly modified.
  • the inclination angle of the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120 is less than 90 °.
  • the inclination angle of the inner peripheral surface 121 of the outer peripheral wall portion is more preferably 70 ° to 89 °, particularly preferably 83 ° to 85 °, and most preferably 85 °.
  • the inclination angle of the inner peripheral surface 121 of the outer peripheral wall is within this range, when the cell processing container 100 is molded by filling the mold with a resin material, the inner surface of the outer peripheral wall is taken out when the cell processing container 100 is taken out from the mold. The possibility of scratches on the peripheral surface 121 can be reduced.
  • the inclination angle of the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120 is 90 ° (substantially 90 °, for example, 89.5 ° to 90.5 °). Or greater than 90 °, preferably 90 °. In this modification, it is possible to prevent the liquid stored in the third container-shaped portion storage space 163 from flowing over the outer peripheral wall 120 and out of the container.
  • the inclination angle of the outer peripheral wall 124 of the outer peripheral wall 120 is less than 90 °, more preferably 70 ° to 89 °, and particularly preferably 83 ° to 85.
  • An example is given at an angle of 85 °, most preferably 85 °.
  • the inclination angle is in each of the above ranges over the entire height direction of the outer peripheral wall portion inner peripheral surface 121, but it is not essential.
  • the inclination angle at the height position in the vicinity of the upper end 122 of the outer peripheral wall may be in the above range.
  • the inclination angle at the height position in the vicinity of the outer peripheral wall upper end 122 of the surface 124 may be in the above range.
  • the height a from the container lower surface 112 of the outer peripheral wall portion upper end 122 of the outer peripheral wall portion 120 is not particularly limited, but is preferably 15 mm or less. If a is 15 mm or less, even when a plurality of cell processing containers 100, for example, 5 to 15, particularly 10 cells, are stacked and allowed to stand, they can be stably left. Although the minimum of a is not specifically limited, It is preferable that it is 1 mm or more. If a is 1 mm or more, it is easy to handle a cell or a cell processing solution accommodated in the cell processing container 100 with a pipette or a catheter.
  • FIG. 37A the top view of the cell processing container 100 of this invention which concerns on Embodiment 7 modification 13 is shown.
  • FIG. 37B is a schematic cross-sectional view taken along the line DD shown in FIG. 37A of the cell processing container 100 of the present invention according to the thirteenth modification of the seventh embodiment.
  • the outer peripheral wall 120 has the following characteristics.
  • the outer peripheral wall portion outer peripheral surface 124 located on the outer peripheral side of the outer peripheral wall portion 120 has a stepped structure in which at least one step is formed.
  • the portion near the lower end of the outer peripheral wall portion outer peripheral surface 124 includes an inclined surface 124 ′ having a shape in which the peripheral diameter increases as the inclination angle increases more than 90 ° upward, and the outer peripheral wall portion outer peripheral surface 124.
  • a portion 124 ′ ′′ near the upper end of the upper surface and the inclined surface 124 ′ are connected by a connection surface 124 ′′ to form a step.
  • a bottom protrusion 125 protruding downward from the container bottom lower surface 113 of the container bottom 110 is formed at the lower end of the outer peripheral wall 120 over the entire circumference.
  • the lower surface 112 of the container is defined by the lower end of the bottom protrusion 125.
  • FIG. 37C is a perspective view of the vicinity of the recess 371 of the outer peripheral wall 120 of the cell processing container 100.
  • the depression 371 is an example of marking for identifying the direction and position of the cell processing container 100. During microscopic observation or the like, the direction and position of the cell processing container 100 can be easily grasped based on the marking.
  • the type of marking is not particularly limited, and may be identified by contact, may be visually identifiable, or may be identifiable by other means. .
  • the number of markings included in the cell treatment container 100 may be one or plural.
  • the operator can touch the outer peripheral surface 124 of the outer peripheral wall and identify the direction and position of the cell processing container 100 based on the recess 371.
  • Embodiment 7 Modification 13 ′ which is a further modification of Embodiment 7 Modification 13 of the cell treatment container 100 of the present invention
  • the height b of the container upper end 145 from the container lower surface 112 and 1 the height c 1 from the container bottom surface 112 of the partition wall upper end 711, the height c 2 from the container bottom surface 112 of the second partition wall upper end 712, the height c 3 from the container bottom surface 112 of the third partition upper edge 713
  • b, c 1 , c 2 , c 3 are smaller than the height a of the outer peripheral wall upper end 122 from the container lower surface 112, and the outer peripheral wall upper end 122, the housing upper end 145, the first
  • the relative height relationship between the partition upper end 711, the second partition upper end 712, and the third partition upper end 713 is the same as in FIG.
  • the height e is preferably the same, and the value is not particularly limited, but 4 mm can be exemplified.
  • FIG. 38 the top view of the cell processing container 100 of this invention which concerns on Embodiment 7 modification 14 is shown.
  • the DD cross section is the same as that shown in FIG.
  • This Embodiment 7 Modification 14 is also an example in which markings are provided on the outer peripheral wall portion 120, and specifically includes a marking protrusion 381 formed by protruding a part of the outer peripheral wall portion 120 outward.
  • the operator can touch the outer peripheral wall 124 and identify the direction and position of the cell processing container 100 based on the marking protrusion 381.
  • marking (2) the side view of the cell processing container 100 of this invention which concerns on Embodiment 7 modification 15 is shown.
  • the configuration of other parts of the cell processing container 100 is as described in the seventh embodiment.
  • Embodiment 7 Modification 15 is an example in which markings 391 and 392 that can be visually identified are provided on the outer peripheral wall 120.
  • the visually identifiable markings 391 and 392 are not particularly limited, and may be a colored line drawn on the surface of the outer peripheral wall portion 120 or may be a visual line included in the outer peripheral wall portion 120 made of resin. It may be a line such as a weld line that can be recognized.
  • Two markings 391 and 392 are provided in the illustrated example, but the number is not particularly limited, and may be one, or may be two or more than two. In the case where a plurality of markings are provided, it is possible to further easily identify the upper and lower sides and the left and right sides of the cell processing container 100 by making one marking 391 and other markings 392 different in length and shape.
  • marking (3) In the cell treatment container 100 of the present invention, the marking may be provided on the container bottom 110. By providing markings on the container bottom 110, the direction and position of the cell processing container 100 can be easily grasped during microscopic observation.
  • FIG. 40A shows a plan view of the cell processing container 100 of the present invention according to Modification 16 of Embodiment 7.
  • FIG. The cell processing container 100 according to the sixteenth modification of the seventh embodiment includes an identification line 401 at a part of the container bottom 110.
  • FIG. 40B shows an end view of the EE end face in FIG. 40A.
  • the identification line 401 can be formed by slightly raising a part of the container bottom surface 111 which is the surface of the container bottom 110. Although not shown, the identification line 401 may be formed on the container lower surface 112 of the container bottom 110.
  • FIG. 41A shows a plan view of the cell processing container 100 of the present invention according to the seventeenth modification of the seventh embodiment.
  • the cell processing container 100 includes identification circles 411 to 416 in a part of the container bottom 110.
  • the identification circles 411 to 416 can be formed by a slight step on the container bottom 111 of the container bottom 110 as shown in FIG. 41B.
  • the identification line 401 may be formed on the container lower surface 112 of the container bottom 110.
  • a plurality of identification circles 411 to 416 are arranged in a non-rotationally symmetrical manner, and the observer can easily identify the direction of the cell processing container 100.
  • FIG. 41A shows a plan view of the cell processing container 100 of the present invention according to the modified example 18 of the seventh embodiment.
  • the cell processing container 100 of the seventh embodiment modification 18 includes cross-shaped identification marks 421, 422, and 423 in a part of the container bottom 110.
  • the cross-shaped identification marks 421, 422, and 423 can be formed, for example, on the container lower surface 112 of the container bottom 110 by a slight step.
  • a plurality of identification marks 421, 422, and 423 are arranged in a non-rotationally symmetrical manner, and the observer can easily identify the direction of the cell processing container 100.
  • two or more types of identification marks having different dimensions and / or shapes may be arranged on the container bottom 110 so that the vertical and horizontal directions of the cell treatment container 100 can be more easily identified.
  • FIG. 43 shows the top view of the cell processing container 100 of this invention which concerns on Embodiment 7 modification 19. As shown in FIG.
  • the cell processing container 100 of the seventh modification of the seventh embodiment includes markings 431 and 432 that are visually identifiable on a part of the container bottom 110.
  • the type of the markings 431 and 432 is not particularly limited, and may be a colored line drawn on the surface of the container bottom 110, or a visually recognizable weld line included in the container bottom 110 made of resin. It may be a line.
  • the plurality of markings 431 and 432 are arranged in a non-rotationally symmetrical manner, and the observer can easily identify the direction of the cell processing container 100.
  • markings 431 and 432 are provided in the illustrated example, the number is not particularly limited, and may be one, or may be two or more than two. In the case where a plurality of markings are provided, by making one marking 431 and the other markings 432 different in length and shape, it is possible to more easily identify the upper and lower sides and the left and right sides of the cell treatment container 100. ⁇ Other preferred embodiment regarding marking (7)> A plurality of different types of markings can be used in combination.
  • FIG. 44 shows a plan view of the cell processing container 100 of the present invention according to the modified example 20 of the seventh embodiment.
  • the cell processing container 100 of the seventh embodiment modification 20 includes a depression 371 as one type of marking.
  • the cell processing container according to the seventh embodiment modification 13 (FIGS. 37A, 37B, and 37C) or the seventh embodiment modification 13 ′.
  • an identification line 401 similar to that of the seventh modification 16 (FIGS. 40A and 40B) and identification circles 411 to 416 similar to those of the seventh modification 17 (FIGS. 41A and 41B) are further provided on the container bottom 110 of 100. This is an example of formation.
  • the relative height relationship is the same as in FIG.
  • d 1 , d 2 , d 3 and e are preferably the same, and their values are not particularly limited, but 4 mm can be exemplified.
  • the cell treatment container 100 of the present invention can be further coupled with a micro tag capable of recording information and reading the recorded information with an appropriate reader.
  • An RF (radio frequency) tag can be used as the micro tag.
  • the RF tag a passive tag that does not contain a battery and can be miniaturized is preferable.
  • a first micro tag is provided on the outer lid part 170 or the inner lid part 210 (hereinafter collectively referred to as “lid part”), and a container part other than the lid part of the cell processing container 100 (hereinafter referred to as “container body part”). ) Is preferably provided with a second micro tag.
  • an ID number (lid ID number) for specifying the lid is stored in the first micro tag of the lid, and the container main body is specified in the second micro tag of the container main body.
  • the ID number (container body ID number) is stored.
  • an ID number (patient ID number) for specifying a patient is set, and data in which a specific lid part ID number, a container body part ID number, and a patient ID number are associated with each other is created.
  • the associated data may be recorded separately on a server or the like and used as a database.
  • the lid ID number and the container body ID number may use unique IDs which are different from each micro tag originally held by the micro tag, or issue a separate ID and write it to the micro tag. It may be memorized.
  • An ID number (patient ID number) for specifying a patient is set, and the patient ID number is stored in the first micro tag of the lid and the second micro tag of the container main body, respectively.
  • the lid part and the container main body part of the cell processing container 100 used for processing of cells derived from a specific patient or cells transplanted into a specific patient are specified by reading information stored in the micro tag. Therefore, it is possible to prevent the containers from being mixed, and to improve traceability.
  • a system that issues a warning when the lid and the container main body are not intended for the same patient, and the patient ID number of the patient's medical record are read and recorded in the first and / or second micro tag.
  • Various systems such as a system for improving traceability by leaving a work history can be constructed.
  • the planar view shape of the micro tag is not particularly limited, and may be a circle (including a perfect circle, an ellipse, a flattened perfect circle, a flattened ellipse, etc.), a rectangle, or another polygonal shape. Good. *
  • the frequency band of the RF tag is not particularly limited, and may be 13.56 MHz, 860 MHz to 960 MHz, or 2.45 GHz.
  • the reading distance of the micro tag is not particularly limited.
  • the wireless output and the antenna may be combined to such an extent that the information of both micro tags can be read simultaneously. It may be possible to confirm that the cell processing container 100 is reliably installed at a specific place so that communication can be performed only at a distance.
  • the micro tag may be coupled to both the lid and the container main body, or may be coupled to only one of them. Since the cells are accommodated in the container main body, it is preferable to attach a micro tag to at least the container main body.
  • a plurality of micro tags may be coupled to at least one of the lid and the container main body.
  • the effect of expanding the communication range and the effect of performing backup when one tag is broken can be expected.
  • micro tag is not particularly limited.
  • a mu chip (trade name of Hitachi, Ltd.) which is an RF tag can be exemplified.
  • bonds a micro tag with the cell processing container 100 of this invention is not specifically limited, It is preferable to couple
  • FIG. 45 shows an example in which the micro tag 451 is coupled to the inner surface of the recessed portion 371 of the cell processing container 100 of the present invention according to the seventh modification 13 (FIGS. 37A, 37B, and 37C). Since the micro tag 451 is small, it can be accommodated in the depression 371 and does not interfere with the work.
  • the method of bonding the micro tag 451 to the cell treatment container 100 is not particularly limited, and the surface of the cell treatment container 100 (in the illustrated example, a hollow portion) may be bonded with an adhesive or an adhesive tape, or embedded in a resin. 371 inner surface).
  • the recess 371 containing the micro tag 451 is completely filled with resin, and the surface of the resin layer is the outer peripheral wall of the outer peripheral wall 120. It may be made to coincide with the lower portion 124 ′ of the outer peripheral surface 124, or the recess 371 may be partially filled with resin so that the recess remains.
  • FIG. 46 shows an example in which a micro tag 461 is coupled to the bottom surface 113 of the bottom of the container bottom 110 of the cell processing container 100 of the present invention according to the thirteenth modification 13 (FIGS. 37A, 37B, and 37C). .
  • the bottom surface 113 of the bottom of the container is recessed from the bottom surface 112 of the cell processing container 100, even if the micro tag 461 is disposed on the bottom surface 113 of the container bottom, it does not interfere with the operation.
  • the micro tag 461 is disposed on the container bottom 110 of the cell processing container 100, it is preferable not to obstruct observation when an operator observes with a microscope or visually from above or from below.
  • the container bottom 110 is preferably circular in plan view.
  • the ratio of the area of the portion where the micro tag (including the chip and the antenna) overlaps with the container bottom surface 111 to the area of the container bottom surface 111 is preferably 5% or less, more preferably 1% or less, It is especially preferable that it is 0.1% or less. If the ratio is 5% or less, it is unlikely that the observation of cells on the container bottom surface 111 is hindered by the micro tag, and the possibility is further lowered as the ratio is lower. If the entire shape in a plan view of the container bottom 111 has a circular diameter D 1, if the micro tag falls within the scope of the circle of 0.1 D 1 less diameter size, the ratio of 1% or less and become.
  • Each surface constituting the surface of the cell treatment container 100 of the present invention does not have to be a surface having a linear cross section, and may be a surface having a curved cross section.
  • Each part of the cell treatment container 100 of the present invention may have a distorted shape.
  • FIG. 47 a cross-section corresponding to the XX cross-section in FIG. 1A of a modification in which the outer peripheral wall 120 is partially recessed radially inward of the cell treatment container 100 of the present invention according to Embodiment 1.
  • the schematic diagram of is shown. This modification is preferable because the outer peripheral side surface 124 of the outer peripheral wall 120 has a recess and is easy to hold by hand.
  • FIG. 48 a cross-section corresponding to the XX cross section in FIG. 1A of a modification in which the central portion of the container bottom 110 of the cell treatment container 100 of the present invention according to Embodiment 1 partially protrudes into the container.
  • the schematic diagram of is shown.
  • the depth of the outer peripheral space 160 is increased in the vicinity of the outer peripheral wall portion 120 (that is, closer to the lower surface 112 of the container) in the container bottom surface 111 sandwiched between the accommodating portion 130 and the outer peripheral wall portion 120. ),
  • the cells on the container bottom surface 111 outside the container 130 of the cell processing container 100 are likely to gather in the peripheral region of the container bottom surface 111 and are easy to search for cells.
  • FIG. 49 the outer peripheral wall 120 of the cell treatment container 100 of the present invention according to the first embodiment is partially depressed radially inward and the central part of the container bottom 110 partially protrudes into the container.
  • the schematic diagram of the cross section corresponded to the XX cross section in FIG. 1A of a modification is shown.
  • the modification shown in FIG. 49 has the effects of both the modification shown in FIG. 47 and the modification shown in FIG.
  • An outer peripheral wall 120 having a circular inner diameter of 35 mm in diameter and having a height from the container lower surface 112 to the outer peripheral wall upper end 122 of about 10 mm is provided at the periphery of the container bottom 110.
  • a cell processing container 100 having 130 was produced.
  • the accommodating portion forming surface 141 is a circle having a diameter of 13 mm in plan view.
  • the storage portion forming surface 141 includes a storage portion bottom surface 400 and a storage portion side surface 143 that stands up from the periphery of the storage portion bottom surface 142.
  • the height from the deepest portion 148 of the forming surface 141 of the receiving portion 130 to the upper end 149 of the receiving portion forming surface 141 is 5.8 mm, and the height from the bottom side crossing portion 147 of the receiving portion side surface 143 to the upper end 149 is 5 mm. It was.
  • the storage unit bottom inclined surface 142 of the storage unit bottom surface 400 has an inclined angle of 7 °, and has an inverted conical shape that is recessed so that the center of gravity of the storage unit bottom surface 400 in a plan view becomes a point-like deepest part 148.
  • the inclination angle of the storage portion side surface 143 was set to 85 °.
  • the capacity of the storage space 150 was about 660 ⁇ L.
  • the deepest part 148 is a point-like shape having substantially no width, and is a shape that fits within a range of 3 mm in diameter when the cell processing container 100 is viewed in plan.
  • FIGS. 2A and 2B show the same design as in Production Example 1 except that the deepest portion 148 corresponding to the apex of the inverted conical shape of the housing bottom surface 400 is in a position deviated from the center of gravity of the housing bottom surface 400 in plan view.
  • the cell processing container 100 of Embodiment 2 was produced.
  • An outer peripheral wall 120 having a circular inner diameter of 35 mm in diameter and having a height from the container lower surface 112 to the outer peripheral wall upper end 122 of about 10 mm is provided at the periphery of the container bottom 110.
  • the cell processing container 100 having the accommodating portion 130 having a rectangular shape as viewed was produced.
  • the accommodating portion forming surface 141 is a rectangle having a short side of 5 mm and a long side of 13 mm in plan view.
  • the height from the deepest portion 148 to the upper end 149 of the accommodating portion forming surface 141 is 5.8 mm.
  • the height from the bottom side crossing portion 147 to the upper end 149 was 5 mm.
  • the accommodating portion bottom inclined surface 142 has an inclination angle of 7 ° at the portion connecting to the long side, an inclination angle of approximately 18 ° at the portion connecting to the short side, and the center of gravity of the accommodating portion bottom surface 400 in plan view is the deepest portion 148.
  • Inverted quadrangular pyramid shape was formed.
  • the inclination angle of the storage portion side surface 143 was set to 85 °.
  • the capacity of the storage space 150 was about 325 ⁇ L.
  • the deepest part 148 is a point-like shape having substantially no width, and is a shape that fits within a range of 3 mm in diameter when the cell processing container 100 is viewed in plan.
  • ⁇ Production Example 4> A container similar to the cell treatment container of Production Example 1 was produced except that the height from the bottom surface side surface intersection 147 to the upper end 149 of the housing side surface 143 was 3 mm.
  • ⁇ Production Example 5> A container similar to the cell treatment container of Production Example 1 was produced except that the height from the bottom side surface intersecting portion 147 to the upper end 149 of the container side surface 143 was 7 mm. ⁇ 2. Verification of workability> ⁇ Experiment 1> Cell treatment containers of Examples 1 to 7 and Comparative Examples 1 and 2 shown in the following table were produced.
  • the container of Example 4 is the container obtained in Production Example 1 above.
  • the container of Example 3 is the container obtained in Production Example 4 above.
  • the container of Example 5 is the container obtained in Production Example 5 described above.
  • the containers of the other Examples and Comparative Examples 1 and 2 have the same overall shape, the inclination angle of the accommodating portion bottom inclined surface 142, and the inclination angle of the accommodating portion side surface 143 as those of the container of Example 4, and the accommodating portion forming surface.
  • the height ”), the diameter of the accommodating portion forming surface 141 in plan view (“ diameter ”in the table), and the capacity of the accommodating space 150 are the dimensions shown in the following table.
  • the accommodation space 150 of the accommodation unit 130 is filled with an HTF medium (IRVINE, manufactured by SCIENTIFIC), glass beads having a size corresponding to an embryo (diameter: about 150 ⁇ m) are placed, and a catheter (made by KITAZATO, an ET catheter (catheter size: 4Fr)) is stored. It is immersed in the space 150 to determine whether or not the suction operation by the catheter is easy (Evaluation Item 1), and when the catheter operation is performed while observing with a microscope, the distal end of the catheter hits the peripheral wall 140, or a microscope It was evaluated whether there was a problem that it was difficult to work by hitting the lens (Evaluation Item 2).
  • Results are shown in the “Catheter work” column of the table.
  • good workability is indicated by ⁇ (may be “A”)
  • medium is good by ⁇ (“B” may be good)
  • bad is x (“C”).
  • the evaluation of the “catheter operation” is X (may be “C”)
  • neither of the evaluation items 1 and 2 has x and either or If both are ⁇
  • the evaluation of “catheter work” is ⁇ (may be “B”)
  • both of evaluation items 1 and 2 are ⁇
  • the evaluation of “catheter work” is ⁇ (also “A”) Good).
  • Example 7 None of the containers of Examples 1 to 7 had “Category work” as x. However, with respect to the container of Example 1, the evaluation item 1 is ⁇ , and a tendency that air bubbles easily enter the catheter during the suction operation using the catheter was recognized. The container of Example 7 is ⁇ with respect to the evaluation item 2, and the range in which the inclination of the catheter can be changed is limited, and it is difficult to work, and it tends to take time for the aspiration of the embryo and the like.
  • the container of Comparative Example 1 is x for the evaluation item 1, and the problem of air bubbles entering the catheter during the suction operation with the catheter was significant.
  • the container of Comparative Example 2 is x for the evaluation item 2, and the range in which the inclination of the catheter can be changed is limited, which makes it difficult to work and takes time for sucking the embryo and the like.
  • the containers of Examples 8 to 13 and Comparative Examples 3 and 4 have the same overall shape, the inclination angle of the accommodating portion bottom inclined surface 142, and the inclination angle of the accommodating portion side surface 143 as the container of Production Example 3, and the accommodating portion formation.
  • the height from the deepest part 148 of the surface 141 to the upper end 149 (“formation surface height” in the table) and the height from the bottom side surface intersecting portion 147 of the storage unit side surface 143 to the upper end 149 (“ The height of the side surface ”), the major axis length and minor axis length in plan view of the accommodating portion forming surface 141, and the capacity of the accommodating space 150 are the dimensions shown in the following table.
  • the accommodation space 150 of the accommodation unit 130 is filled with an HTF medium (IRVINE manufactured by SCIENTIFIC), and a catheter (Kitazato ET catalyst (catheter size 4Fr)) is inserted from the short axis side along the long axis direction of the opening of the accommodation unit 130. Workability (evaluation item 3) and direction recognizability (evaluation item 4) when inserted into the accommodation space 150 and accessing the center were confirmed.
  • HTF medium IMVINE manufactured by SCIENTIFIC
  • a good one is ⁇ (may be “A”), a middle one is ⁇ (may be “B”), and a bad one is ⁇ (may be “C”).
  • the evaluation of the “catheter operation” is x (may be “C”), and neither of the evaluation items 3 and 4 has x and one or both are If it is ⁇ , the evaluation of “catheter operation” is ⁇ (may be “B”), and if it is ⁇ for both evaluation items 3 and 4, the evaluation of “catheter operation” is ⁇ (may be “A”) It was.
  • the results are shown in the “Catheter operation” column of the above table.
  • the container bottom surface 400 is formed by a flat plane having a circular peripheral edge in plan view and an inclined surface of 0 °.
  • the container has the same structure as the container of Example 4 except that the height of the side surface 143 is 5 mm.
  • the container bottom surface 400 is formed by a circle having a diameter of 13 mm, and does not have a shape that fits within a range of 3 mm in diameter when the container is viewed in plan.
  • One spherical glass bead having a diameter of 150 ⁇ m, HTF medium (IRVINE manufactured by SCIENTIFIC), and 400 ⁇ L were accommodated in the accommodating portion accommodating space of each container. After observing the accommodated glass beads with a microscope, the whole container was held, vibrated slightly and allowed to stand. After standing, it was confirmed with a microscope whether the glass beads were in the initial position.
  • the glass beads were located in the cell holding region 146 including the deepest part 148 before and after vibration (evaluation ⁇ ).
  • evaluation ⁇ the evaluation o may be expressed as evaluation A.
  • evaluation x may be expressed as evaluation C.
  • Example 4 The overall shape, the inclination angle of the accommodating portion bottom inclined surface 142 and the inclination angle of the accommodating portion side surface 143 are the same as those of the container of Example 4, and the height from the deepest portion 148 to the upper end 149 of the accommodating portion forming surface 141 is 4 mm.
  • the obtained container was designated as a cell processing container 100 of Example 14. In this container, ⁇ 4 is all 32 °, and ⁇ 5 is all 27 °.
  • Example 14 The container of Example 14 is placed on a horizontal stage, the accommodation space 150 of the accommodation unit 130 is filled with HTF medium (IRVINE SCIENTIFIC), and the cell holding region 146 is a spherical glass having a diameter of about 150 ⁇ m corresponding to an embryo. Added beads. While focusing on the glass beads and observing with a stereomicroscope with a magnification of 20 times, an operation of sucking the glass beads from the tip of the catheter by about 4 mm was performed with a catheter (ET catalyst manufactured by KITAZATO (catheter size 4Fr)). At this time, the acute angle of the angle formed by the length direction of the catheter and the plane along the mounting surface of the stage was set in the range of 60 ° to 40 °.
  • Example 14 The cell processing container 100 of Example 14 was placed on a horizontal stage, and a stereo microscope having a cylindrical objective lens with a radius of 40 mm and an optical axis of the objective lens perpendicular to the placement surface of the stage was 20 times. When the focal point was adjusted to the deepest part 148, the distance between the objective lens and the deepest part was 114 mm.
  • ⁇ 4 and ⁇ 5 are both 81 ° or less in the largest portion, the operation of bringing the catheter (ET catalyst (Kitazato ET catheter (catheter size 4Fr)) closer to the deepest portion 148 while observing the deepest portion 148 with the microscope. At this time, it has become clear that the catheter does not interfere with the objective lens, the housing peripheral wall 140 and the outer peripheral wall 120.
  • the lower limits of ⁇ 4 and ⁇ 5 are not particularly limited, and even 1 ° is not a problem.
  • Heights d 1 , d 2 , d 3 (see FIG. 7A) of the first partition wall 701, the second partition wall 702, and the third partition wall 703 from the container bottom surface 111 (see FIG. 7A), and the height of the container peripheral wall 140 from the container bottom surface 111 e (see FIG. 7A) was all 4 mm.
  • Three types of containers having a diameter of the formation surface upper end 149 of the storage space 150 of 13 mm, 7 mm, and 3.8 mm were created.
  • the surfaces in the container such as the formation surface 141 of the cell treatment container 100, the side wall surface surrounding the second container-like portion accommodation space 162, and the container bottom surface 111 were all hydrophobic surfaces.
  • one surface 707 of the third partition 703 and the outer wall surface 144 of the housing portion peripheral wall portion 140, the one surface 707 of the third partition wall 703 and the outer peripheral wall portion inner peripheral surface 121 of the outer peripheral wall portion 120. are crossed directly and are not curved.
  • the amount of the culture solution forming the drop is usually 15 ⁇ L or more.
  • a cell culture solution which is an aqueous solution in which each component is dissolved in water
  • a hydrophobic polystyrene substrate that has not been subjected to a hydrophilic treatment to form a drop.
  • the height was confirmed.
  • the drop height was 2 mm.
  • a layer of oil deeper than 2 mm is required.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、胚等の細胞の処理液による処理を行うための容器における、細胞の損傷又は顕微鏡観察視野からの消失、或いは、カテーテルによる取扱いの困難さという課題を解決する。 本発明の細胞処理容器100は、容器底部110と外周壁部120と細胞及び収容空間150が形成された収容部130とを備え、収容空間150の容量が200μl以上1000μl以下であり、収容部130の、収容空間150を形成する形成面141は、最深部148と最深部の周りを囲うように形成された傾斜面142とを有し、傾斜面142は前記最深部と連続しており、最深部148は平面視において直径3mmの円Cの範囲内に収まるように形成されている。

Description

細胞処理容器
 本発明は、移植直前の胚の処理等の、処理液を用いた細胞の処理に用いるための細胞処理容器に関する。
 生殖補助医療の分野において体外受精によって培養した受精卵はある一定の培養工程を経た後に移植されることで、着床し妊娠、出産に繋がっていく。その際には培養工程で利用する培養用のディッシュや手法等は多くの改良がおこなわれることで、作業効率の改善やミスによる受精卵の損失リスクの低減などの工夫が行われてきた。一方で、培養後の受精卵を女性の体内に移植する際には、一般的には新鮮胚移植であっても凍結融解胚移植であっても、培養時の培養液の組成とは異なる移植専用の培養液(「移植液」と呼ばれる)に移し替えた後にカテーテル内に胚を取り込んで移植する。この際、移植液に浸漬した状態はなるべく体内環境に近い状態とするべく、温度・湿度・ガス濃度等が管理されたインキュベーター内で安定に保持されているが、移植の工程時に移植液内の胚をカテーテルで吸引し移植するまでの時間は温度や湿度、ガスが異なる環境となり、胚にとってストレスの高い状態となるため短時間作業が好ましい。
 ところが上述の移植作業を行うための専用の容器は従来提供されていない。そこで各クリニックは、通常のシャーレや4ウェルシャーレ、センターウェルディッシュ等を用いてなるべく作業ミスがなく、移植作業の短時間処理ができるような対応を行っている現状がある。
 さらに、移植工程時には既にオペ室に患者が待機しており、作業者は上記の短時間作業に加えて、ミスによって胚を損傷させるリスク等も考慮した緊張感の下で作業をする必要があった。
 上記のような環境下での作業は、用いるカテーテルがシリコーン等の軟らかい素材で形成されているために、広範囲のウェル内で作業する際に作業は容易ではない。また、細胞処理容器内での移植液の深さが不十分である場合カテーテルでの吸引作業時に気泡が入りやすい。更に、通常のシャーレのウェル上では底面が平面であるが故にシャーレの移動やカテーテル作業時に胚がウェル周壁や移植液ドロップの端に移動してしまい、観察下から消失したり、最悪の場合は胚を傷つけたり消失してしまうリスクがあった。
 他には近年、移植時にさまざまな成分を添加することが着床、妊娠率に影響するといった報告があり、高価な添加剤を混合した移植用の培養液もあるために、使用する培養液量が多いとコストが増加するため、治療費の増大に繋がるといった問題もある。
 特許文献1には、少なくとも2つの顕微鏡対象物及び対象物培地の監視および/または培養のための機器が開示されており、該機器は、少なくとも一つの凹部を備え、各凹部には更に、該凹部よりも小さい断面を有する窪みを有している。前記顕微鏡対象物及び対象物培地は該窪みに保持される。特許文献1に記載の機器は、細胞を観察する目的に適したものではあるが、凹部に保持された細胞を取り出すことが容易でないことは明らかである。
 特許文献2には、細胞及び培養液を収容するための凹部を備える細胞培養容器が開示されている。特許文献2では、該容器での凹部の底面は、0.75mm以上であることが好ましいと記載されており比較的面積が大きく、しかも、特許文献2では凹部の底面の平面視での形状は特に規定されていない。特許文献2に記載されているような、従来の細胞培養容器に細胞等を収容した場合、細胞等が底面のどの位置にあるかを特定することが困難であるため、作業工程上顕微鏡観察時には、はじめに一定の低倍率(例えば20培以下など)で広範囲の視野を確認して細胞等の位置を特定する必要があり作業性が低下するリスクがある。また、場合によっては前記低倍率での観察時ですら視野範囲より外に取り扱う細胞が存在し、消失するリスクや作業性が低下するリスクがある。特許文献2ではこのようなリスクを回避するための手段は開示されていない。また、特許文献2では、容器の凹部に収容された細胞を、シリコーン等の軟らかい素材で形成された外径の小さなカテーテルを用いて取り扱うことを容易にするための手段も開示されていない。
特許第5143227号公報 特開2014-207897号公報
 本発明は、移植前の胚の移植用培養液による処理等の、細胞(胚等の多細胞体も含む)の処理液による処理を行うための容器における、細胞の損傷又は顕微鏡観察視野からの消失、或いは、カテーテルによる取扱いの困難さという課題を解決することを目的とする。
 そこで本明細書では上記課題を解決する手段として以下の発明を開示する。
(1)容器底部と、
 前記容器底部に設けられた、細胞及び細胞処理液を収容するための収容空間が形成され上向きに開口した1つ以上の収容部と
を備える細胞処理容器であって、
 前記収容空間の容量が200μl以上1000μl以下であり、
 前記収容部の、前記収容空間を形成する面である形成面は、前記収容部の深さが最も深い部分である最深部と、前記最深部の周りを囲うように形成された傾斜面とを有し、
 前記傾斜面は前記最深部と連続しており、
 前記最深部は、前記細胞処理容器の平面視において直径3mmの円の範囲内に収まるように形成されている、
前記細胞処理容器。
 前記(1)では、前記容器底部の表面と、前記収容部の外壁面とが、丸みを帯びた曲面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができ、好ましくは10μm~1mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(1)では、前記収容部の前記形成面は、前記収容空間の底を形成する収容部底面と、前記収容部底面の周縁から起立し前記収容空間を囲う収容部側面とを備え、
 前記収容部底面は前記傾斜面を有し、
 前記収容部底面と前記収容部側面とが丸みを帯びた曲面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができ、好ましくは10μm~1mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(1)では、前記収容部の前記形成面は、前記収容空間の底を形成する収容部底面と、前記収容部底面の周縁から起立し前記収容空間を囲う収容部側面とを備え、
 前記収容部底面は前記傾斜面を有し、
 前記収容部側面は、本明細書で定義する傾斜角が90°未満の面、或いは、90°以上の面、であることができる。
 前記(1)では、前記収容部の外壁面は、本明細書で定義する傾斜角が90°未満の面、又は、90°以上の面、であることができる。
 前記(1)では、前記収容部の前記形成面は、前記収容空間の底を形成する収容部底面と、前記収容部底面の周縁から起立し前記収容空間を囲う収容部側面とを備え、
 前記収容部底面は前記傾斜面を有し、
 前記収容部を形成する壁面のうち、前記収容部側面と、前記収容部の外壁面との間の幅は0.3mm~3mmであることができる。
 前記(1)では、前記容器底部の厚さは0.3mm~3mmであることができる。
 前記(1)では、細胞処理容器の方向を識別することができるマーキングが1つ以上設けられていることができる。マーキングは、容器底部に設けられていることができる。マーキングは、視覚及び/又は触覚により判別可能である構成とすることができる。
 前記(1)では、読み取り可能な情報が記録された少なくとも1つのマイクロタグが細胞処理容器に結合されていることができる。
 前記(1)の細胞処理容器は更に蓋部を備え、該蓋部と、該蓋部以外の部分である容器本体部とに、それぞれ、少なくとも1つのマイクロタグが結合されている。
 前記(1)では、前記容器底部の表面は、前記容器底部の周縁の近傍において容器内での深さが増すように形成されていることができる。
 前記(1)では、細胞処理容器の全体の上下方向の高さは1mm~15mmであることができる。
(2)前記容器底部の周縁から起立した外周壁部を備える、(1)に記載の細胞処理容器。
 前記(2)では、前記容器底部の、前記収容部と前記外周壁部とに挟まれた表面と、前記収容部の外壁面とが、丸みを帯びた曲面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができ、好ましくは10μm~1mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(2)では、前記容器底部の、前記収容部と前記外周壁部とに挟まれた表面と、前記外周壁部の内周面とが、丸みを帯びた曲面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができ、好ましくは10μm~1mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(2)では、前記外周壁部を形成する壁面のうち、前記外周壁部の内周面と、前記外周壁部の外周面との間の幅は0.3mm~3mmであることができる。
 前記(2)では、前記外周壁部の外周面は少なくとも1つの段が形成された面である。
 前記(2)では、細胞処理容器の方向を識別することができるマーキングが1つ以上設けられていることができる。マーキングは、容器底部及び外周壁部から選択される少なくとも1つに設けられていることができる。マーキングは、視覚及び/又は触覚により判別可能である構成とすることができる。
 前記(2)では、外周壁部の外周面が内側に向けて窪んだ形状を有することができる。
 前記(2)では、前記容器底部の、前記収容部と前記外周壁部とに挟まれた表面は、前記外周壁部の近傍において容器内での深さが増すように形成されていることができる。
(3)前記傾斜面は、前記形成面の周縁から前記最深部に亘って形成されている、(1)又は(2)に記載の細胞処理容器。
(4)前記形成面の、前記最深部から上端までの高さが2mm以上12mm以下である、(1)~(3)のいずれかに記載の細胞処理容器。
(5)前記細胞処理容器を水平面上に載置したときに、前記形成面上の、前記最深部に含まれる1点と、前記形成面の上端に含まれる1点とを結んだ仮想直線が前記水平面となす鋭角のうち最も小さい角度が45°以下である、(1)~(4)のいずれかに記載の細胞処理容器。
(6)前記収容部の開口は、前記細胞処理容器の平面視において一方向に長い形状を有する、(1)~(5)のいずれかに記載の細胞処理容器。
(7)前記細胞処理容器の平面視において前記収容部の開口の短軸方向幅は3mm以上15mm以下である、(6)に記載の細胞処理容器。
(8)前記収容部の開口は、前記細胞処理容器の平面視において、第一部分と、該第一部分から少なくとも一方向に延在した1つ以上の第二部分とが組み合わされた形状を有する、(1)~(7)に記載の細胞処理容器。
(9)前記形成面のうち、前記最深部と、前記傾斜面の前記最深部に隣接する部分との少なくとも一方により、細胞を保持する細胞保持領域が形成されており、
 前記傾斜面は、前記細胞保持領域において、一定の勾配で傾斜した傾斜面である、(1)~(8)のいずれかに記載の細胞処理容器。
(10)前記傾斜面の前記細胞保持領域での表面粗さは最大高さRy値で4.0μm未満である、(9)に記載の細胞処理容器。
(11)前記形成面のうち、前記最深部と、前記傾斜面の前記最深部に隣接する部分との少なくとも一方により、細胞を保持する細胞保持領域が形成されており、
 前記細胞保持領域において、前記傾斜面の対向する部分同士が成す角は90°よりも大きい、(1)~(10)のいずれかに記載の細胞処理容器。
(12)前記形成面は、前記収容空間の底を形成する収容部底面と、前記収容部底面の周縁から起立し前記収容空間を囲う収容部側面とを備え、
 前記収容部底面は前記傾斜面を有し、
 前記収容部底面と前記収容部側面とが交差する部分において、前記収容部底面と前記収容部側面とが成す角は90°よりも大きい(1)~(11)のいずれかに記載の細胞処理容器。
(13)前記容器底部に、細胞及び/又は液体を収容するための容器状部収容空間が形成された1つ以上の容器状部が更に設けられている、(1)~(12)のいずれかに記載の細胞処理容器。
 本明細書は更に以下の発明を開示する。
(14)容器底部と、
 前記容器底部の周縁から起立した外周壁部と、
 前記容器底部に設けられた、細胞及び細胞処理液を収容するための収容空間が形成され上向きに開口した1つ以上の収容部と
を備える細胞処理容器であって、
 前記容器底部から起立し、前記収容部と前記外周壁部とを架橋する2つ以上の隔壁を更に備え、
 前記容器底部を底部とし、周囲が前記収容部と前記外周壁部と前記2つ以上の隔壁のうち隣接する一対とに囲われた、細胞及び/又は液体を収容するための容器状部収容空間が形成された1つ以上の容器状部が形成されている
前記細胞処理容器。
 前記(14)において、前記隔壁の容器状部収容空間に臨む面と、前記容器底部の前記容器状部収容空間に臨む面とが、丸みを帯びた面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができ、好ましくは10μm~1mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(14)において、前記隔壁の容器状部収容空間に臨む面と、前記収容部の外壁面とが、丸みを帯びた面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(14)において、前記隔壁の容器状部収容空間に臨む面と、前記外周壁部の内周面とが、丸みを帯びた面により接続されていることができる。該曲面は曲率半径が10μm~15mmであることができる。前記曲面は、好ましくは凹曲面である。
 前記(14)において、前記隔壁の前記容器状部収容空間に臨む面は、本明細書で定義する傾斜角が90°未満の面、又は、90°以上の面、であることができる。
 前記(14)において、前記隔壁の厚さは0.3mm~3mmであることができる。
 前記(14)において、前記容器底部の、前記容器状部収容空間に臨む部分には、細胞及び/又は液体を収容するための容器状部収容空間が形成された1つ以上の更なる容器状部が形成されていることができる。
 前記(14)では、前記隔壁の前記容器底部から起立した部分の高さdは1mm以上、好ましくは2mm以上であることができ、更に好ましくは15mm以下である。
 前記(14)の細胞処理容器が外蓋部を更に備え、且つ、前記隔壁の前記容器底部から起立した部分の高さd、前記収容部の前記容器底部から起立した部分の高さe、及び、前記外周壁部の前記容器底部から起立した部分の高さfが、f≧d且つf≧eの関係を満たし、装着時に容器内に向く前記外蓋部の面が前記外周壁部の上端と当接する場合に、更に以下の条件を満たすことができる。
  (I)前記隔壁の一方の面が、該面が囲う容器状部収容空間に収容される液体に対して親和性を有する表面であり、且つ、装着時に容器内に向く前記外蓋部の面が、前記液体に対して親和性を有する表面である場合には、dはfより1mm以上小さい値である。
  (II)前記隔壁の一方の面が、該面が囲う容器状部収容空間に収容される液体に対して親和性を有する表面であり、且つ、装着時に容器内に向く前記外蓋部の面が、前記液体に対して親和性を有さない表面である場合には、dはf以下の値である。
  (III)前記隔壁の一方の面が、該面が囲う容器状部収容空間に収容される液体に対して親和性を有さない表面である場合には、dはf以下の値である。
 前記(I)、(II)及び(III)においてdの下限は特に限定されないが、2mmより大きい値であることが好ましく、3mm以上であることがより好ましく、8mm以上であることがより好ましい。
(15)前記収容部の上端及び前記2つ以上の隔壁の各々の上端が、それぞれ独立して、前記外周壁部の上端と上下方向位置が同じである、或いは、前記外周壁部の上端よりも下方にある、前記(14)の細胞処理容器。
(16)前記外周壁部の上端が、前記収容部の上端及び前記2つ以上の隔壁の各々の上端よりも上方にある、前記(14)の細胞処理容器。
(17)前記収容部の上端が、前記外周壁部の上端と上下方向位置が同じである、或いは、前記外周壁部の上端よりも上方にある、前記(14)の細胞処理容器。
(18)前記外周壁部の上端が、前記収容部の上端よりも上方にある、前記(14)の細胞処理容器。
(19)前記収容部の上端と、前記2つ以上の隔壁のうち少なくとも隣接する一対の上端とが、それぞれ独立して、前記外周壁部の上端と上下方向位置が同じである、或いは、前記外周壁部の上端よりも上方にある、前記(14)の細胞処理容器。
(20)前記外周壁部の上端が、前記2つ以上の隔壁の各々の上端及び前記収容部の上端から選択される少なくとも1つよりも上方にある、前記(14)の細胞処理容器。
(21)前記2つ以上の隔壁の各々の上端及び前記収容部の上端から選択される少なくとも1つが、前記外周壁部の上端よりも上方にある、前記(14)の細胞処理容器。
(22)前記収容部の少なくとも1つと前記外周壁部とを架橋する前記隔壁を3つ以上備え、
 前記3つ以上の隔壁が、1つの又は隣接した2つ以上の隔壁Aと、前記隔壁Aに隣接する一対の隔壁Bと、を含み、
 前記一対の隔壁Bの各々の上端は、前記隔壁Aの各々の上端よりも上方にあり、
 前記収容部の上端及び前記外周壁部の上端がともに、前記隔壁Aの各々の上端よりも上方にある、前記(14)の細胞処理容器。
(23)前記収容部が、前記(1)~(13)のいずれか1つで説明した特徴を更に備える、前記(14)~(22)のいずれかの細胞処理容器。
 本発明において数値範囲に関して「数値1~数値2」という表記は、数値1を下限値とし数値2を上限値とする、両端の数値1及び数値2を含む数値範囲を意味し、「数値1以上数値2以下」と同義である。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-105796号及び日本国特許出願番号2015-156472号の開示内容を包含する。
 本発明によれば、細胞の損傷又は顕微鏡観察視野からの消失を抑制することができ、或いは、カテーテルやピペットを用いて細胞を取り扱う作業が容易である、処理液により細胞を処理するための細胞処理容器が提供される。
本発明の実施形態1の細胞処理容器100の平面図の模式図である。 図1Aに示す細胞処理容器100のX-X断面の模式図である。 外蓋部170を更に備える実施形態1の細胞処理容器100の、図1AでのX-X断面に相当する断面の模式図である。 実施形態1の細胞処理容器100の収容空間150に細胞10及び細胞処理液20を収容し、外蓋部170で覆い細胞10を処理する操作を示す、図1AでのX-X断面に相当する断面の模式図である。 実施形態1の細胞処理容器100の収容空間150に収容された細胞10をカテーテル30により取り扱う操作を示す、図1AでのX-X断面に相当する断面の模式図である。 本発明における面の傾斜角θの定義を説明する図である。 本発明における細胞処理容器100の細胞保持領域146において、傾斜面の対向する部分同士が成す角θの定義を説明する図である。 細胞保持領域146の一例の断面の模式図である。 (a)細胞保持領域146の他の一例の断面の模式図である。(b)細胞保持領域146の(a)に示す例の平面図の模式図である。 本発明における角θ4、θを説明するための模式図である。 本発明の実施形態2の細胞処理容器100の平面図の模式図である。 図2Aに示す細胞処理容器100のX-X断面の模式図である。 本発明の実施形態3の細胞処理容器100の平面図の模式図である。 図3Aに示す細胞処理容器100のX-X断面の模式図である。 本発明の実施形態4の細胞処理容器100の平面図の模式図である。 図4Aに示す細胞処理容器100のX-X断面の模式図である。 本発明の実施形態5の細胞処理容器100の、図1AでのX-X断面に相当する断面の模式図である。 本発明の実施形態6の細胞処理容器100の平面図の模式図である。 図6Aに示す細胞処理容器100のY-Y断面の模式図である。 本発明の実施形態6の細胞処理容器100を用いて、培養用容器状部610において細胞630を培養する操作を示す、図6AでのY-Y断面に相当する断面の模式図である。 本発明の実施形態6の細胞処理容器100における、マイクロウェル615の形状を示す模式図である。 マイクロウェル側面6152に、2以上のライン状の凹部6154及び2以上のライン状の凸部6155が交互に形成されたマイクロウェル615の一例を示す模式図である。 図6Eに示すマイクロウェル615の平面図の模式図である。 マイクロウェル側面6152に、2以上のドット状突起6156が形成されたマイクロウェル615の一例を示す模式図である。 本発明の実施形態7の細胞処理容器100の平面図の模式図である。 図7Aに示す細胞処理容器100のX-X断面の模式図である。 本発明の実施形態8の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態9の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態10の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態11の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態12の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態13の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態14の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態15の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態16の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態17の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態18の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態19の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態8の細胞処理容器100を外蓋部170により覆った状態の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形11の細胞処理容器100を中蓋部210により覆った状態の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態9の細胞処理容器100を外蓋部170により覆った状態の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態20の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態21の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態22の細胞処理容器100の、図7AでのX-X断面に相当する断面の模式図である。 本発明の実施形態1変形例1の細胞処理容器100の平面図の模式図である。 本発明の実施形態1変形例2の細胞処理容器100の平面図の模式図である。 本発明の実施形態7変形例1の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。 本発明の実施形態7変形例2の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。 本発明の実施形態7変形例3の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。 本発明の実施形態7変形例4の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。 本発明の実施形態7変形例5の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。 本発明の実施形態7変形例6の細胞処理容器100の、図7Aでの領域310に相当する領域の平面図である。 本発明の実施形態7変形例7の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。 本発明の実施形態7変形例8の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。 本発明の実施形態7変形例9の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。 本発明の実施形態7の細胞処理容器100が外蓋部170を備えた例を示す。 本発明の実施形態7変形例10の細胞処理容器100の平面図である。 本発明の実施形態7変形例11の細胞処理容器100の、図7AでのC-C端面に相当する端面の模式図である。 本発明の実施形態7変形例12の細胞処理容器100の、図7AでのC-C端面に相当する端面の模式図である。 実施形態7変形例13に係る本発明の細胞処理容器100の平面図を示す。 実施形態7変形例13に係る本発明の細胞処理容器100の、図37Aに示すD-D断面の断面模式図を示す。 細胞処理容器100の外周壁部120の、窪み部371の近傍部分の斜視図である。 実施形態7変形例14に係る本発明の細胞処理容器100の平面図を示す。 実施形態7変形例15に係る本発明の細胞処理容器100の側面図を示す。 実施形態7変形例16に係る本発明の細胞処理容器100の平面図を示す。 図40AにおけるE-E端面の端面図を示す。 実施形態7変形例17に係る本発明の細胞処理容器100の平面図を示す。 図41Aに示す実施形態7変形例17に係る本発明の細胞処理容器100における、識別円411~416近傍の容器底部110の端面図を示す。 実施形態7変形例18に係る本発明の細胞処理容器100の平面図を示す。 実施形態7変形例19に係る本発明の細胞処理容器100の平面図を示す。 実施形態7変形例20に係る本発明の細胞処理容器100の平面図を示す。 実施形態7変形例13(図37A、37B、37C)に係る本発明の細胞処理容器100の、窪み部371の内面にマイクロタグ451を結合させた例を示す。 実施形態7変形例13(図37A、37B、37C)に係る本発明の細胞処理容器100の、容器底部110の容器底部下面113上にマイクロタグ461を結合させた例を示す。 実施形態1に係る本発明の細胞処理容器100の、外周壁部120が径方向内側に向けて部分的に窪んだ変形例の、図1AでのX-X断面に相当する断面の模式図を示す。 実施形態1に係る本発明の細胞処理容器100の、容器底部110の中央部分が容器内に向け部分的に突出した変形例の、図1AでのX-X断面に相当する断面の模式図を示す。 実施形態1に係る本発明の細胞処理容器100の、外周壁部120が径方向内側に向けて部分的に窪み且つ容器底部110の中央部分が容器内に向け部分的に突出した変形例の、図1AでのX-X断面に相当する断面の模式図を示す。
 本発明において「上下方向」とは、本発明の細胞処理容器を水平面上に載置した状態で収容空間に培養液等の液体を収容したときに該液体の深さ方向(すなわち鉛直方向)と一致する方向を指す。そして本発明において、上下方向に沿って細胞処理容器、収容部又は容器状部の底から開口に向かう向きを「上向き」、上下方向に沿って収容部の開口から底に向かう向きを「下向き」とする。
 本発明の細胞処理容器を水平面上に載置したときに該水平面上と当接する表面を「容器下面」とし、図示する実施形態では容器下面112とする。容器下面112は図示する実施形態では連続した平坦面であるが、これには限定されず、前記水平面と当接できる1つ又は複数の点状又は線状の表面からなっていてもよい(例えば図37A、B、Cに示す実施形態7の変形例13)。この場合前記水平面と当接する表面を含む平面を容器下面とみなすことができる。そして、本発明の細胞処理容器において、ある部位Aから別の部位Bまでの上下方向に沿った距離を、部位Aから部位Bまでの「高さ」と呼ぶことがある。そして、細胞処理容器に含まれる2つの部分のうち、一方の部分の、上下方向に沿った容器下面からの距離が、他方の部分の、上下方向に沿った容器下面からの距離よりも大きい場合に、一方の部分は、他方の部分も「上」、「上側」、又は「上方」にある又は位置すると言い、他方の部分は一方の部分よりも「下」、「下側」、又は「下方」にある又は位置すると言う。また、本発明の細胞処理容器に含まれる部位において、該部位の上下方向に沿った断面上での容器下面から離れた側の端部を該部位の「上端」と呼ぶ。
 本発明において容器底部の周縁とは、本発明の細胞処理容器を水平面上に載置し平面視したとき、容器底部の外側輪郭となる部分を指す。
 本発明では面の傾斜角を以下のように定義する。図1Fに示すように、部材Xの表面である面S上の点Pを通る法線をNとし、前記点Pを通る上下方向(上記で定義した通り)に沿った仮想直線をLとし、法線Nのうち点Pから部材Xの存在しない側の半直線部分をNとし、仮想直線Lのうち点Pから上方側の半直線部分をLとしたとき、法線Nと仮想直線Lとの成す角のうち、半直線部分Nと、点Pと、半直線部分Lとの間に形成される角θを、面Sの点Pの位置での傾斜角と定義する。
 本発明の細胞処理容器は、細胞処理液を用いて細胞を処理する用途に広く用いることができる。細胞の処理には、細胞の培養、洗浄、融解等の液体中で行われる細胞の各種の処理が包含される。
 本発明の細胞処理容器を用いて処理し、必要に応じて観察する細胞としては、特に限定されないが、例えば、受精卵、卵細胞、ES細胞(胚性幹細胞)及びiPS細胞(人工多能性幹細胞)が挙げられる。卵細胞は、未受精の卵細胞をさし、未成熟卵母細胞及び成熟卵母細胞が含まれる。受精卵は、受精後、卵割により2細胞期、4細胞期、8細胞期と細胞数が増えてゆき、桑実胚を経て、胚盤胞へと発生する。受精卵には、2細胞胚、4細胞胚及び8細胞胚などの初期胚、桑実胚、胚盤胞(初期胚盤胞、拡張胚盤胞及び脱出胚盤胞を含む)が含まれる。胚盤胞は、胎盤を形成する潜在能力がある外部細胞と胚を形成する潜在能力がある内部細胞塊からなる胚を意味する。ここに挙げた受精卵のうち、母体への移植直前のものを本明細書では移植用胚と呼ぶ。ES細胞は胚盤胞の内部細胞塊から得られる未分化な多能性又は全能性細胞を指す。iPS細胞は、体細胞(主に線維芽細胞)へ数種類の遺伝子(転写因子)を導入することにより、ES細胞に似た分化万能性を持たせた細胞を指す。すなわち、本発明において処理の対象となる細胞には、受精卵や胚盤胞のように複数の細胞の集合体も包含される。本発明の細胞処理容器100は、哺乳動物及び鳥類の細胞、特に哺乳動物の細胞の処理に好適である。哺乳動物は、温血脊椎動物を指し、例えば、ヒト及びサルなどの霊長類、マウス、ラット及びウサギなどの齧歯類、イヌ及びネコなどの愛玩動物、ならびにウシ、ウマ及びブタなどの家畜が挙げられる。本発明の細胞処理容器は、ヒト又はウシの受精卵の処理に特に好適である。
 細胞処理液としては、細胞に応じて選択される培養液や、移植用胚を母体への移植直前に処理するための専用の培養液である移植液、細胞洗浄用液、細胞融解用液等が挙げられる。
 本発明の細胞処理容器の材質は特に制限されない。具体的には、金属、ガラス、およびシリコン等の無機材料、プラスチック(例えば、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂、ポリエステル樹脂)で代表される有機材料を挙げることができる。本発明の細胞処理容器は、1種類以上のプラスチック材料を含むことが好ましく、1種類以上のプラスチック材料からなることがより好ましい。前記プラスチック材料は日本薬局方に記載された溶出試験の規格値を満たす材料であることが好ましく、例えば日本薬局方、一般試験法、7.02 プラスチック製医薬品容器試験法、1.2 溶出試験、(iv) 紫外吸収スペクトルに記載の手順を実施し、紫外線吸収スペクトルにおいて、波長220nm以上241nm未満における吸光度が0.08以下、波長241nm以上350nm以下における吸光度は0.05以下である材料であることが好ましい。本発明の細胞処理容器は、当業者に公知の方法で製造することができる。例えば、プラスチック材料からなる細胞処理容器を製造する場合には、慣用の成形法、例えば射出成形により製造することができる。
 前記プラスチック材料には、マスターバッチ法、ドライブレンド法、練り込み法、表面コート法等により、透明プラスチック成型品の製造に用いられるブルーイング剤や、各種顔料等のような添加剤を添加することができ、それによって、所望の透明度及び色の組み合わせを付与することができる。それ故、本発明の細胞処理容器に収容された細胞を観察する場合に、鮮明な像を得ることができる。
 前記プラスチック材料には、マスターバッチ法、ドライブレンド法、練り込み法、表面コート法等により、プラスチック成型品の製造に用いられる帯電防止剤や静電気防止剤等の添加剤を添加することができ、それによって、プラスチック製品の帯電を防止することができる。それ故、本発明の細胞処理容器への静電気による汚れの付着や成型ラインでの電撃傷害を防ぐことが出来る。
 光学顕微鏡での観察のためには、本発明の細胞処理容器は光透過性の材料により形成されていることが好ましい。
 本発明の細胞処理容器は、受精卵の発育を促進するような表面処理又は表面コートがなされていてもよい。特に、受精卵の発育を促進するために、他の器官の細胞(例えば、子宮内膜細胞や卵管上皮細胞)と共培養をする場合、これらの細胞をあらかじめ細胞処理容器の形成面に接着させる必要がある。このような場合に、細胞処理容器の形成面に細胞接着性の材料をコートすると有利である。
 製造された本発明の細胞処理容器は、日本薬局方に記載された溶出試験の規格値を満たすことが好ましい。例えば、日本薬局方、一般試験法、7.02 プラスチック製医薬品容器試験法、1.2 溶出試験、(iv) 紫外吸収スペクトルに記載の手順を実施し、紫外線吸収スペクトルにおいて、波長220nm以上241nm未満における吸光度が0.08以下、波長241nm以上350nm以下における吸光度は0.05以下であることが好ましい。本発明の細胞処理容器の全体がこの特性を有することが好ましく、容器内面がこの特性を有することがより好ましい。
 製造された本発明の細胞処理容器は、高圧蒸気滅菌、エチレンオキシド滅菌、放射線滅菌等で滅菌処理されていることが好ましく、放射線滅菌により滅菌処理されていることが好ましい。放射線滅菌の際の滅菌線量としては10kGy~100kGyが例示でき、15kGy~40kGyが好ましい。
 製造された本発明の細胞処理容器のエンドトキシン量は20EU(エンドトキシンユニット)/容器以下であることが好ましく、2.15EU(エンドトキシンユニット)/容器以下であることが更に好ましい。エンドトキシン量の測定方法は、日本薬局方4.01エンドトキシン試験法、米国薬局方USP<85>に記載された方法により測定することができる。
 以下、本発明の細胞処理容器の構造を、図面に示す実施形態を参照して説明するが、本発明の範囲はこれらの実施形態には限定されない。なお、本明細書の図面では各構成の寸法及び形状に関わらず同じ機能を有する構成は同じ符号を付しており、特段の相違点を除き説明を省略する。
<実施形態1(図1A~1J)>
 図1A~1Jに、本発明の細胞処理容器100の実施形態1を示す。
 細胞処理容器100は容器底部110と、容器底部110の周縁から起立した外周壁部120と、容器底部110に設けられた1つ以上の収容部130とを備える。本明細書で説明する実施形態はいずれも、収容部130が細胞処理容器100に1つ設けられた実施形態のみであるが、収容部130は2以上、例えば2~9個、好ましくは2~4個容器底部110上に設けられてもよい。
 収容部は、細胞及び細胞処理液を収容するための収容空間が形成され上向きに開口した構造を有する。収容部はどのように形成されていてもよいが、典型的には図示する収容部130のように、容器底部110から起立した収容部周壁部140により形成することができる。収容部周壁部140は、内側に、収容空間150を形成する面である形成面141を備え、外側に、収容空間150の外側に向いた収容部外壁面144を備え、収容部開口側端に収容部上端145を備える。なお収容部上端145は図示するような平坦な上端面である必要はなく、曲面であってもよいし、稜線であってもよい。
 細胞処理容器100は、外周壁部120の外周壁部内周面121により形成された、上向きに開口した開口を有する。図示するように細胞処理容器100は全体としてディッシュの形状をしていることが好ましい。外周壁部120の上端を外周壁部上端122とする。外周壁部上端122は図示するような平坦な上端面である必要はなく、曲面であってもよいし、稜線であってもよい。
 外周壁部上端122の内周側輪郭及び/又は外周側輪郭を平面視したときの図形の形状は、例えば円状(円形および楕円形を含む)等の任意の形状であることができ、好ましくは円形である。細胞処理容器の開口幅(外周壁部上端122の内周側輪郭を平面視したときの図形において、該図形の重心を間に介して対向する、該図形の周縁上の一対の点の間の距離の最大値)は好ましくは15mm~100mm、より好ましくは30mm~70mmであり、35mmや60mmの直径等、既存のシャーレで多く存在する寸法とほぼ同等であることが更に好ましい。
 容器底部110の上面である容器底面111と、外周壁部120の内周面である外周壁部内周面121と、収容部外壁面144とにより、下方に閉じ上方に開放した外周空間160が形成される。
 図1Cに示すように、本実施形態の細胞処理容器100は更に、細胞処理容器100の開口を閉じることができる着脱可能な外蓋部170を備えていてもよい。
 次に収容部130の特徴について詳述する。
 収容部130の形成面141は、収容部130の上下方向に沿った深さが最も深い部分である最深部148と、最深部148の周りを囲うように形成された収容部底傾斜面142とを有し、収容部底傾斜面142は最深部148と連続している。最深部148は平面視において形成面141のなかで1つだけ存在する。本発明において、収容部底傾斜面142等の傾斜面は、より好ましくは、図示する各実施形態のように、形成面141の周縁から最深部148に亘って形成されている。ここで形成面141の「周縁」とは、細胞処理容器100を平坦な水平面上に載置した状態で収容部130の開口を通じて観察される形成面141を前記水平面上に投影したときに形成される図形において外周となる、形成面141の部分を指す。本発明において「前記傾斜面は、前記形成面の周縁から前記最深部に亘って形成されている」という表現において、収容部底傾斜面142等の傾斜面は、形成面141の周縁から最深部148に亘って形成されていればよく、傾斜面の全ての部分において平面視で最深部に近づくほど収容部130の深さが増すように形成されている必要はない。例えば、後述する細胞保持領域146に細胞を保持するという本発明の目的を損なわない範囲であれば、収容部底傾斜面142等の傾斜面は、上記で定義した上下方向に垂直な方向(すなわち、水平方向)に沿った部分を一部に含む階段状の部分や、平面視において最深部に近づくほど収容部130の深さが浅くなる部分を含んでいてもよい。
 図示する実施形態1では形成面141は、収容空間150の底を形成する面である収容部底面400と収容部底面400の周縁から起立する収容部側面143とを含む。このうち収容部底面400は、最深部148と、最深部148の周りを囲うように形成された最深部148と連続する収容部底傾斜面142とを含む。形成面141の、上記で定義した平面視での周縁に相当する部分のうち、上方の縁を形成面上端149とする。実施形態1では形成面141のうち、少なくとも収容部底傾斜面142が傾斜面を有している。
 収容部側面143は典型的には、形成面141のうち、形成面上端149から延びる面であり、通常は傾斜角が45°よりも大きい。収容部側面143は、傾斜角が90°を越える面であってもよいし、90°の面であってもよいし、傾斜角が90°未満、例えば70°以上90°未満、好ましくは80°以上90°未満、の面であってもよいが、好ましくは傾斜角が90°又は90°未満の面である。収容部側面143が90°未満の面である場合は、収容部側面143と収容部底傾斜面142とが一体となって、形成面141の周縁から最深部148に亘る傾斜面を形成する。
 本実施形態1では、形成面141のうち最深部148は、細胞処理容器100の平面視において後述する直径Dの円Cに収まるように形成される。最深部148は、直径Dの円Cの範囲内に収まるよう形成されている限り、面であってもよいし、点であってもよいし、線であってもよいし、これらのうち2つ以上を組み合わせた形状あってもよい。なお本発明において、最深部148が、細胞処理容器100の平面視における直径Dの円Cの範囲内に収まるとは、最深部148の前記平面視における形状が直径Dの円Cと同じであるか、又は、前記形状が円Cに内包される形状であることを指し、最深部148の前記平面視における形状を内包する最小外接円の直径(該直径をdとする)がD以下であることと同義である。例えば最深部148が平面視で点の形状、直径0.1μmの円の形状、長さ2μmの直線形状等の形状であるとき、このような形状の最深部148はいずれも、直径2μm、或いはそれより大きな直径の円Cの範囲内に収まるように形成されていると言える。
 形成面141のうち、最深部148と、収容部底傾斜面142の最深部148に隣接する部分との少なくとも一方により、細胞を保持する細胞保持領域146が形成される。
 細胞保持領域146は、重力下において細胞処理容器100が水平面上に載置された状態で収容空間150に細胞10及び細胞処理液20を収容し重力により細胞10が鉛直方向下方に移動し移動が最終的に停止したときに細胞10を保持する領域である。重量下では、細胞保持領域146に保持された細胞10は、振動により水平方向に移動した場合でも、最深部148に隣接する収容部底傾斜面142により最深部148上に戻ることができる。
 図1Hには、最深部148が点である細胞保持領域146の例(実施例1A~1Gに示す実施形態と同じ)を示す。この例では、最深部148は点であるため、細胞処理容器100の平面視において後述する直径Dの円Cの範囲内に収まる。細胞10が細胞処理液20(図1Hでは省略する)とともに収容空間150(同)内に加えられると、重力により細胞10は形成面141の傾斜面部分である収容部底傾斜面142上を伝わって細胞保持領域146に至り、細胞10の周囲が収容部底傾斜面142のうち最深部148に隣接する部分により囲われ、細胞10が支持される。このとき細胞10の位置は一点に定まる。このため細胞処理時に細胞10が意図せぬ水平方向の移動により顕微鏡での観察視野から消失することを回避することができる。
 図1Iには、最深部148が面である細胞保持領域146の例を示す。この例では最深部148は水平方向に拡がりを有するが、後述する直径Dの円Cの範囲内に収まるように形成されている。最深部148の外周は収容部底傾斜面142により囲われている。仮に、図1Iで図示するように細胞10の寸法が面状の最深部148の幅よりも小さく最深部148内で水平方向に移動できるとしても、最深部148を囲う収容部底傾斜面142により水平方向の移動が制限されるため、細胞10が水平方向に移動できる範囲は、直径Dの円Cの範囲に収まる最深部148の範囲に限定される。なお図示しないが、面状又は線状の最深部148の面積が、処理対象の細胞10に対して相対的に小さく細胞10により覆い隠される場合には、図1Hに示す例と同様に、細胞10の周囲は収容部底傾斜面142のうち最深部148に隣接する部分により囲われ、細胞10が支持されて、細胞10の位置は一点に定まる。
 本実施形態1では、円Cの直径Dは3mmである。円Cの直径Dが3mmである場合、収容部130の収容空間150内に収容された細胞は、平面視において最大でも直径3mmの狭い円の範囲内に存在することから、最初から作業者が作業しやすい観察倍率(例えば30倍~50倍等)で最深部148を含む所定位置を観察して細胞を確認することができるため、細胞処理時に細胞10が顕微鏡での観察視野から消失することを回避することができるとともに、低倍率(例えば20倍)での顕微鏡観察により細胞の位置を予め確認する必要がないため作業が簡単となる。円Cの直径Dが3mmであるとき、最深部148の細胞処理容器100の平面視での形状を内包する最小外接円の直径dは3mm以下である。当該直径dと同じか或いはより大きい外径を有するカテーテルを用いるとき、カテーテル先端を細胞保持領域146に近づけるように移動させれば、カテーテル先端が最深部148の全体を覆う位置に位置決めされるため、カテーテルによる細胞(胚)10の取り扱いが容易である。すなわち、胚を取り扱うカテーテルとして外径がd以上のものを用いれば、カテーテル先端を毎回同じ位置に移動することで安定して作業することが可能になる。胚を取り扱うために用いられるカテーテルの外径は、3mm以下であることが通常である。細胞処理容器100では、直径3mmの円Cの範囲内に最深部148が収まる、すなわち直径dが3mm以下となるように構成されているため、一般的な寸法(外径が3mm以下)を有する、胚を取り扱うためのカテーテルのなかから、カテーテル先端の外径がdと同じ或いはdよりも大きく最深部148の全体を覆うことができるカテーテルを適宜選択して使用することができる。
 本実施形態1の好ましい実施形態では、円Cの直径Dはより好ましくは2.5mm、より好ましくは2mm、より好ましくは1.8mm、より好ましくは1.6mm、より好ましくは1.5mm、より好ましくは1.4mm、より好ましくは1.2mm、より好ましくは1mm、より好ましくは970μm、より好ましくは900μm、より好ましくは700μm、より好ましくは500μm、より好ましくは300μm、より好ましくは200μm、より好ましくは100μm、より好ましくは50μm、より好ましくは10μm、特に好ましくは5μm、最も好ましくは2μmである。円Cの直径Dが小さいほど、細胞10の位置が狭い範囲内に定まるため、高倍率の顕微鏡での観察時に細胞10を消失する可能性を低減することができる。しかも、細胞処理容器100は、円Cの直径Dが小さいほど、より患者への負担が小さい、外径の小さなカテーテルの使用に適するため好ましい。特に、直径Dが1mm、好ましくは970μm、より好ましくは更に小さい値である細胞処理容器100は、外径が3Fr(1mm)、4Fr(1.33mm)等の、外径の小さなカテーテルを用いた細胞10の取り扱いに適しており好適である。
 本実施形態1の別の好ましい実施形態では、形成面141のうち最深部148は、細胞処理容器100の平面視において面積が0.75mm未満、好ましくは0.74mm以下、より好ましくは0.7mm以下、より好ましくは0.5mm以下、より好ましくは0.3mm以下となるように形成される。この場合、収容部130の収容空間150内に収容された細胞は、平面視において前記の面積の小さい領域内に存在することから、最初から作業者が作業しやすい観察倍率で面積の小さい領域内を観察して細胞を確認することができるため、細胞処理時に細胞10が顕微鏡での観察視野から消失することを回避することができる。当該別の好ましい実施形態において、直径Dは3mm以下であれば特に限定されないが、前記好ましい実施形態における直径Dの好ましい値と同様の値であることが好ましい。
 また、本実施形態では、収容部底傾斜面142は、形成面141の周縁から最深部148に亘って形成されているため、途中で細胞10が定着する可能性が低い。そして、上記の通り、細胞10は細胞保持領域146に保持されるため、顕微鏡による観察が容易である。また図1Eに示すようにカテーテル30により細胞10を吸い取る場合に、細胞10の位置が定まっているため容易に吸い取りが可能である。
 細胞保持領域146に含まれる、傾斜面(収容部底傾斜面142)の最深部148に隣接する部分は、傾斜面のうち、細胞10の水平方向の移動を制限する役割を果たす部分であり、細胞10の大きさ等に応じて定まる。例えば細胞処理容器100を平坦な水平面上に載置した状態での平面視において、傾斜面(収容部底傾斜面142)のうち、最深部148との接点から1mmまでの範囲の部分である。
 本実施形態では、収容部底傾斜面142等の、形成面141中の傾斜面の勾配は、形成面141の周縁から最深部148に至るまで、一定であってもよいし、連続的又は段階的に変化してもよいが、好ましくは、少なくとも細胞保持領域146においては、一定である。勾配が一定の傾斜面では、上下方向に沿った平面による断面上での形状が直線状となる。細胞保持領域146の傾斜面での勾配変化が小さい場合、細胞10の顕微鏡での観察時に光散乱が少なく良好に観察することができる。より好ましくは、図示するように、収容部底傾斜面142の全体が、収容部底傾斜面142の周縁から最深部148に至るまで、一定の勾配を有する。なお傾斜面142の勾配が一定であるとは、完全に一定であるとは限らず、実質的に一定である場合も包含する。勾配が実質的に一定であるとは、例えば、上記の顕微鏡での観察時の効果が奏される程度に勾配の変化が小さいことが挙げられる。
 形成面141に含まれる、収容部底傾斜面142等の傾斜面の部分の傾斜角θは、少なくとも細胞保持領域146においては、好ましくは1°~45°、より好ましくは2°~25°、特に好ましくは5°~10°である。傾斜角θがこの範囲内であれば細胞保持領域146上の細胞10を顕微鏡で透過観察する際の傾斜面での反射、散乱が起こりにくくなり、鮮明な観察像を得ることができる。より好ましくは、収容部底傾斜面142に含まれる傾斜面の全体について傾斜角θが前記範囲である。この場合は、重力を動力源として細胞10を細胞保持領域146に移動させやすい。
 傾斜面の表面粗さは、大きい値であると、顕微鏡で透過観察を行った画像を輪郭抽出処理に付す際に、傾斜面上の凹凸に起因して明瞭な輪郭が得られない恐れがあるため、可能な限り小さい値であることが好ましい。具体的には、最大高さRy(粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分における山頂線と谷底線との間隔をいう)が4.0μm未満であることが好ましく、1.0μm未満であることがより好ましく、0.5μm未満であることが特に好ましい。最大高さRyは、JIS B0601-1994に準拠する。傾斜面の表面粗さがこの範囲であるとき、光散乱を十分に抑制することができ、透過観察時に明確な輪郭を得ることができる。なお、傾斜面の表面粗さは、細胞処理容器の鋳型を作製する際に磨き処理を施す等して、鋳型の加工精度を高めることにより小さくすることができる。
 最深部が面である場合、最深部の表面粗さも上記と同様の範囲であることが好ましい。
 より好ましくは、少なくとも細胞保持領域146において、形成面141に含まれる傾斜面の対向する部分同士が成す角(下記のθに相当する角)は90°よりも大きく、より好ましくは150°以上であり、更に好ましくは160°以上である。上限は180°未満であれば特に限定されない。ここで当該角を説明するために図1Gを参照する。図1Gは、細胞保持領域146近傍の拡大図である。収容部底傾斜面142の対向する部分とは、収容部底傾斜面142に含まれる上下方向位置が同じ一対の部分A、Bであって、部分Aを通る収容部底傾斜面142の法線Lと、部分Bを通る収容部底傾斜面142の法線LBとが上下方向に平行な1つの平面上を通る一対の部分A、Bを指す。そして、前記部分が成す角とは、前記平面上において、部分Aから法線L、部分Bから法線Lを引き、その交点をPとしたとき、AとPとBとの間の角の外角θを指す。形成面141の少なくとも細胞保持領域146においてθが90°よりも大きい場合、収容された細胞10の、細胞保持領域146からの取り出しが容易であり、図1Eに示すようにカテーテル30を用いた細胞10の取り扱いの際に細胞10を損傷する可能性が低い。
 更に好ましくは、図示するように、形成面141のうち、細胞保持領域146だけでなくその近傍部分も上記θが前記条件を満たす。形成面141のうち、細胞保持領域146の近傍とは、細胞処理容器100を平坦な水平面上に載置した状態での形成面141の平面視において、最深部148から好ましくは10mmまでの範囲、より好ましくは8mmまでの範囲、更に好ましくは3mmまでの範囲となる形成面141上の部分である。移植用胚を取り扱うために用いるカテーテル30の外径は通常1mm~3mmであるから、形成面141上の、細胞保持領域146の近傍部分が前記θの条件を満たす場合には、カテーテル30を用いた細胞10の取り扱いが更に容易となる。
 細胞処理容器100は好ましくは、図1に示す実施形態1のように、形成面141が収容部底面400(収容部底面傾斜面142及び最深部148)と収容部側面143とを備える。実施形態1では更に好ましくは、収容部底面400と収容部側面143とが交差する部分である底面側面交差部分147において、収容部底面400と収容部側面143とが収容空間150内で成す角θは90°よりも大きく、より好ましくは95°以上であり、上限は特に限定されないが例えば135°以下である。θは、収容部底面400の底面側面交差部分147での法線Lと収容部側面143の底面側面交差部分147での法線Lとが成す角(法線Lのうち底面側面交差部分147から収容空間150とは反対側に延びる半直線と、法線Lのうち底面側面交差部分147から収容空間150の側に延びる半直線とが成す角)と一致する(図1B)。角θがこの範囲であるとき、細胞10が底面側面交差部分147に入り込んだとしても細胞10の取り出しが比較的容易であり、細胞10を傷つけることなくカテーテルにより取り出すことが可能である。
 形成面141の最深部148から上端149までの高さは好ましくは2mm以上12mm以下(2mm~12mm又は2~12mm)であり、好ましくは3mm以上、好ましくは4mm以上、好ましくは5mm以上であり、好ましくは11mm以下、好ましくは9mm以下、好ましくは8mm以下であり、より好ましくは3mm以上11mm以下(3mm~11mm又は3~11mm)、更に好ましくは4mm以上9mm以下(4mm~9mm又は4~9mm)、更に好ましくは5mm以上8mm以下(5mm~8mm又は5~8mm)である。ここで形成面141の最深部148から上端149までの高さとは、形成面141の最深部148から、形成面141の上端149までの、収容部130の上下方向に沿った距離を指す。形成面141の上端149上の任意の点が、上下方向に垂直な一平面上に載らない場合は、形成面141の前記高さのうち最も小さい高さを、より好ましくは全ての高さを、前記数値範囲内とすればよい。形成面141の前記高さが前記数値範囲内にあるとき、収容空間150に細胞処理液20を収容した時に、液面から細胞保持領域146までの深さが十分な深さとなるため、細胞保持領域146に位置決めされた細胞処理液20中の細胞10をカテーテル30等で取り扱い易いため有利である。特に、移植用胚の取り扱いに用いるシリコーンゴム製カテーテルのような、先端が柔軟で幅広のカテーテルを用いる場合に有利である。また、形成面141の前記高さが2mm以上の場合、移植胚等の細胞10を十分に浸漬し、短時間の放置等で細胞処理液20の揮発による成分の変更を抑制する液量の保持が可能であるため好ましい。前記高さが4mm以上の場合、液面から細胞保持領域146までの深さが十分な深さとなるためカテーテル作業時に容易にカテーテル先端が細胞処理液20中に浸漬し、気泡の吸い取り等の作業ミスのリスクを低減できるため好ましい。前記高さが5mm以上であると、細胞処理液20の液深を3mm程度とする際に液漏れのリスク低減ができるため好ましい。前記高さが12mm以下の場合、顕微鏡観察時にカテーテルやガラスキャピラリー等の作業時の角度が比較的鈍角となるため、鋭角の場合に生じ得る顕微鏡のレンズに接触するというリスクや、作業時にカテーテルやガラスキャピラリー等の先端を、形成面141を含む収容部周壁部140等に接触させて傷や破損を起こすというリスクを低減できるため好ましい。前記高さが9mm以下の場合、前記リスクを更に低減できるため好ましい。
 本発明のより好ましい態様は、本実施形態のように、細胞処理容器100を水平面H上に載置したときに、形成面141上の、最深部148に含まれる1点と、形成面上端149に含まれる1点とを結んだ仮想直線Lが水平面Hとなす鋭角θのうち最も小さい角度が45°以下である態様である(図1J参照)。上記の通り、形成面上端149は形成面141の平面視での周縁のうち上方の縁であり、最深部148は点状であるとは限らず面状又は線状であってもよい。このため、θは1つの細胞処理容器100において様々な値を取り得るが、本実施形態ではθのうち最も小さい角度が上記範囲であればよい。θの最も小さい角度が上記範囲であるとき、次の効果が達成できる。最深部148を含む細胞保持領域146に保持された受精卵等の細胞をカテーテルで吸い上げる場合、カテーテルの先端から4mm程度の位置まで細胞を吸い上げることが一般的である。θの最も小さい上記範囲であれば、細胞保持領域146に保持された細胞にカテーテル先端を近づけカテーテル先端から4mmの位置まで吸引する操作を、細胞保持領域146に保持された細胞に焦点を合わせた状態で倍率20倍の実体顕微鏡で観察しながら行う場合に、カテーテルの長さ方向と水平面Hとがなす角度を45°以下とすることができ、細胞保持領域146とカテーテル先端から4mmの部分との上下方向位置の差は小さいため、前記顕微鏡の観察視野内で細胞を視認することができる。より好ましくはθの最も小さい角度が40°以下であり、更に好ましくはθがどの部分でも45°以下、最も好ましくは40°以下である。
 本実施形態では更に、外周壁部内周面121の上方の縁を、外周壁部内周面上端123とする。細胞処理容器100を水平面H上に載置したときに、形成面141の最深部148に含まれる1点と、外周壁部内周面上端123に含まれる1点とを結んだ仮想直線Lが水平面Hとなす鋭角θのうち最も小さい角度が好ましくは45°以下であり、より好ましくは40°以下であり、更に好ましくはθがどの部分でも45°以下、最も好ましくは40°以下である。
 また、θ及びθは最大でも81°以下であることが好ましい。このとき、実験5において確認している通り倍率20倍の実体顕微鏡での観察の際にカテーテルが対物レンズ、収容部周壁部140及び外周壁部120に干渉しない。
 また、形成面141の最深部148から上端149までの高さが4mm以下である場合には、θの最も小さい角度が25°以上であることが好ましい。カテーテルとして先端の幅が4mm以上のものを用いるとき、当該角度が25°未満であるとカテーテルの長さ方向と水平面Hとがなす角度が25°未満となるようにカテーテルの先端を細胞保持領域148に近づけることができるが、その際にカテーテルに気泡が入り易く作業ミスによって細胞を死滅させるリスクがある。この課題は、先端の幅が1mm~2mm程度のカテーテルを用いた時に特に顕著である。θの最も小さい角度が25°以上であれば、前記リスクを回避することができるため好ましい。
 また収容部130の開口が平面視において形成する図形、すなわち収容部上端145の内周側輪郭が囲む図形、の形状は、特に限定されず、実施形態1、後述する実施形態2、4、5のような円状(円形および楕円形を含む)や、後述する実施形態3のような矩形(正方形及び長方形を含む)、その他の多角形や、後述する実施形態1変形例1及び2のような複数の形状が組み合わされた形状であることができる。
 前記図形は、平面視において、実施形態3、4、実施形態1変形例1のように一方向に長い形状(例えば楕円、扁平円、長方形)であってもよいし、実施形態1、2、5、実施形態1変形例2のようにN回対称(Nは3以上の整数、好ましくは4以上の整数、より好ましくは4~8の整数である)の形状(例えば円形、正多角形)であってもよい。ここで「N回対称の形状」は厳密な対称性を有する必要はなく、ほぼN回対称の形状である場合も含む。
 収容部130の開口が平面視において形成する図形が、実施形態3、4のように一方向に長い形状の場合、収容部130の開口の向きを認識することができるため、作業者にとっては作業のミスを低減できる利点がある。また、収容部130の開口が、以下で定義する長軸方向に広がった拡張された作業領域を提供するため、収容空間150内に収容された細胞をカテーテル等の器具で取り扱う場合に器具を配置できる領域が広がり作業性が向上する、といった利点がある。この実施形態において、前記一方向を「長軸方向」とし、該長軸方向に沿って前記図形の重心を間に介して対向する前記図形の周縁上の一対の点の間の距離を「長軸方向幅」とし、該長軸方向と平面視において直交する方向を「短軸方向」とし、該短軸方向に沿って対向する前記図形の周縁上の一対の点の間の距離のうち最も大きい距離を「短軸方向幅」とする。短軸方向幅は例えば3mm以上15mm以下(3mm~15mm又は3~15mm)であることができ、長軸方向幅は例えば3.6mm以上30mm以下(3.6mm~30mm又は3.6~30mm)であることができる。収容部130の開口の短軸方向幅と長軸方向幅とが上記範囲である場合、先端が幅広のカテーテルを用いた細胞の取り扱いが特に容易である。前記短軸方向幅と前記長軸方向幅との比は1:1.2~1:3であることが好ましく、1:1.5~1:2であることがより好ましい。短軸方向幅と長軸方向幅とがこの範囲である場合、収容部130の開口の向きを更に明確に認識することが可能である。
 収容部130の開口が平面視において形成する図形が、N回対称の形状である場合、前記図形の重心を間に介して直線上で対向する該図形の周縁上の一対の点の間の距離の最小値を「最小幅」としたとき、該最小幅は3mm~30mmであることが好ましく、3.6mm~15mmであることがより好ましい。
 収容部130の開口が平面視において形成する図形の他の好ましい形態は、図26に示す実施形態1変形例1及び図27に示す実施形態1変形例2のように、第一部分261、271と、第一部分261、271から少なくとも一方向に延在した1つ以上の第二部分262、272(272-1、272-2、272-3、272-4)とが組み合わされた形状となる形態である。これらの形態では、収容空間150が第二部分262、272の部分まで拡張されるため、収容空間150内に収容された細胞をカテーテル等の器具で取り扱う場合に器具を配置できる領域が広がり作業性が向上する、といった利点がある。
 また細胞処理容器100の平面視において、形成面141の細胞保持領域146は、収容部130の開口が形成する図形、すなわち収容部上端145の内周側輪郭が囲む図形、の重心に対してどの位置にあってもよく、実施形態1及び後述する実施形態3、4、5のように細胞保持領域146が前記重心と重複する位置にあってもよいし、後述する実施形態2のように細胞保持領域146が前記重心と重複しない位置、すなわち収容部130の開口が形成する図形に対して細胞保持領域146が偏心した位置にあってもよい。
 また収容部130の容器底部110上での位置は特に限定されない。収容部130が1つのみ存在する場合は、細胞処理容器100の平面視において、細胞処理容器100の開口の内周側輪郭(外周壁部120の上端の内周側輪郭)が形成する図形の重心と重複する位置に収容部130が形成されていることが好ましい。より好ましくは、細胞処理容器100の平面視において、収容部130の開口の内周側輪郭が形成する図形の重心と、細胞処理容器100の開口の内周側輪郭が形成する図形の重心とが同一の位置にある。ここで「同一」とは「ほぼ同一」も含む。
 収容部130が形成する収容空間150の容量は200μl以上1000μl以下(200μl~1000μl又は200~1000μl)であり、好ましくは250μl以上、好ましくは300μl以上であり、好ましくは800μl以下、好ましくは500μl以下、好ましくは400μl以下であり、より好ましくは200μl以上800μl以下(200μl~800μl又は200~800μl)であり、特に好ましくは250μl以上500μl以下(250μl~500μl又は250~500μl)であり、最も好ましくは300μl以上400μl以下(300μl~400μl又は300~400μl)である。本実施形態において「収容空間の容量」とは、細胞処理容器を平坦な水平面上に載置した状態において、収容空間150を形成する形成面141の上端である形成面上端149のなかで最も下方に位置する部分を通り且つ前記水平面に平行な仮想平面と、前記形成面141とにより囲まれた空間の容積を指す。
 収容空間150の容量が200μl以上であれば、収容空間150内に十分な量の細胞処理液20を収容することができるため、細胞処理液20の揮発による消失や組成変化を十分に抑制することができる。このため、本実施形態の細胞処理容器100は、移植用胚の移植液による移植直前での処理等の、細胞処理液表面をオイルで被覆することができない用途に好適に用いることができる。一方、収容空間150の容量が1000μl以下であるため、収容空間150に細胞処理液20を多量に収容する余り細胞処理液がこぼれやすくなるという問題が起こりにくい。また細胞処理液20のなかには高価なものも存在するが、収容空間150の容量を1000μl以下とすることで処理コストを抑制することができる。また、200μl以上1000μl以下という容量は、1つの移植用胚を、母体への移植直前に移植液で処理する用途には特に適した容量である。
 更に、収容空間150の容量が1000μlよりも大きくするには、収容部周壁部140の、容器下面112又は最深部148から収容部上端145までの高さを大きくする、或いは、収容空間150の平面視における幅を大きくする必要がある。しかし、収容部周壁部140の高さが増すと、収容空間150内に収容された細胞をカテーテルで操作する場合に、収容部周壁部140によりカテーテル操作が妨げられるため操作が複雑になる問題がある。また、収容空間150の平面視における幅を大きくすると操作の妨げとなる収容部周壁部140の高さを増すこととなる大容量化が可能であるが、一方で、収容される処理液の表面積が増すため液の揮発が促進されるという問題があり、処理液の使用量を少なくすると揮発が促進されるため、処理液を少量化する調整が困難である。また、収容空間150の容量が大きくなると、収容される処理液量も大きくなり、カテーテル等の器具が処理液に浸漬される範囲が広くなるため、微生物による汚染の発生確率が高まるという問題もある。収容空間150の容量を1000μl以下とすることにより、上記の問題を解決することができる。
 細胞として移植用胚を用い、細胞処理液として移植液を用いて、移植用胚を処理する場合、図1Dに示すように、移植用胚10及び移植液20を収容空間150に収容し、必要に応じて外蓋部170により覆い、温度、湿度、ガス濃度等が管理されたインキュベーター内に置く。一般的な細胞培養では、細胞処理液20の揮発を防ぐために、容器底面111と、細胞10及び細胞処理液20が収容された状態の収容部130との全体を覆うようにオイルを充填することができる(図示せず)。しかし移植用胚を処理する場合はオイルによる被覆はできない。本実施形態の細胞処理容器100では、収容空間150の容量が200μl以上であり比較的大容量であるため、オイルを用いない場合においても、細胞処理液20の揮発が比較的少ないため有利である。
 以下、図面に示す他の実施形態を説明する。本明細書の図面では各構成の寸法及び形状に関わらず同じ機能を有する構成は同じ符号を付しており、上記実施形態1との特段の相違点を除き説明を省略する。
<実施形態2(図2A、2B)>
 実施形態2は、実施形態1の一形態であって、形成面141の細胞保持領域146が、細胞処理容器100の平面視において、収容部130の開口が形成する図形、すなわち収容部上端145の内周側輪郭が囲む図形、の重心と重複しない位置に形成されていることを特徴とする。
 実施形態2によれば、平面視において、細胞保持領域146が収容空間150内の偏った位置にあるため、収容空間150内の細胞保持領域146が形成されていない側に比較的大きなスペースの余裕ができる。このため、該細胞保持領域146に支持された細胞をカテーテル、ピペットにより取り扱う場合に、カテーテル、ピペットを前記スペースを通じて挿入することができ、操作が容易となるため有利である。
 また細胞保持領域146の位置が偏心した位置にあることにより、使用者にとっては細胞処理容器100の向きを把握することが容易となる。
 実施形態2における他の部分の構造、形状、寸法、角度等の特徴は、実施形態1に関して上述したのと同様である。
<実施形態3(図3A、3B)>
 実施形態3は、実施形態1の一形態であって、収容部130の開口が平面視において形成する図形、すなわち収容部上端145の内周側輪郭が囲む図形、の形状が長方形であることを特徴とする。実施形態3では収容部底面400の上端である、底面側面交差部分147が囲う図形も矩形であり、収容部底傾斜面142は逆四角錐面である。
 実施形態3では、収容部130の開口が平面視において形成する長方形の短軸方向幅と長軸方向幅との比は特に限定されないが、好ましくは1:1.2~1:3である。
 収容部130の開口が平面視において形成する図形が長方形である場合、使用者にとっては細胞処理容器100の向きを把握することが容易である。また、収容空間150内では長軸方向に沿って比較的大きなスペースの余裕ができる。このため、該細胞保持領域146に支持された細胞をカテーテルにより取り扱う場合に、カテーテルを前記スペースを通じて挿入することができ、操作が容易となるため有利である。
 実施形態3における他の部分の構造、形状、寸法、角度等の特徴は、実施形態1に関して上述したのと同様である。
<実施形態4(図4A、4B)>
 実施形態4は、実施形態1の一形態であって、収容部130の開口が平面視において形成する図形、すなわち収容部上端145の内周側輪郭が囲む図形、の形状が扁平円であることを特徴とする。実施形態4では収容部底面400の上端である、底面側面交差部分147により囲われる図形も同形の扁平円である。
 実施形態4では、収容部130の開口が平面視において形成する扁平円の短軸方向幅と長軸方向幅との比は特に限定されないが、好ましくは1:1.2~1:3である。
 収容部130の開口が平面視において形成する図形が扁平円である場合、使用者にとっては細胞処理容器100の向きを把握することが容易である。また、収容空間150内では長軸方向に沿って比較的大きなスペースの余裕ができる。このため、該細胞保持領域146に支持された細胞をカテーテルにより取り扱う場合に、カテーテルを前記スペースを通じて挿入することができ、操作が容易となるため有利である。
 実施形態4における他の部分の構造、形状、寸法、角度等の特徴は、実施形態1に関して上述したのと同様である。
<実施形態5(図5)>
 実施形態5は、実施形態1の一形態であって、形成面141が、最深部148と、形成面上端149から最深部148に至る収容部底傾斜面142とを有しており、且つ収容部底傾斜面142の傾斜角がどの部分でも45°以下であることを特徴とする。
 実施形態5では収容空間150の、上下方向と垂直な方向への膨らみが小さい。このため、収容部底傾斜面142に傾斜角が45°を超える部分を含んでいる場合と比較して、形成面141の最深部148から上端149までの高さを所定値にする場合の収容空間150の容量を小さくすることができる。細胞処理液のなかには非常に高価なものがあるが、実施形態5によれば、収容空間150内に収容される細胞処理液の深さをカテーテル等の操作に十分な深さとしながらも収容する液量を低減することが可能である点で有利である。
 実施形態5における他の部分の構造、形状、寸法、角度等の特徴は、実施形態1に関して上述したのと同様である。
<実施形態6(図6A~6G)>
 本発明の細胞処理容器は、容器底部に、細胞及び/又は液体を収容するための収容空間が形成された1つ以上の容器状部が更に設けられていてもよい。ここで「容器状部」とは、前記収容部とは別に、本発明の細胞処理容器の一部分に設けることができる、細胞及び/又は液体を収容するための収容空間(容器状部収容空間)が形成された構造である。容器状部収容空間は、細胞の培養や、細胞の洗浄等の目的で細胞及び/又は液体を収容可能な空間である限りどのような形状を有していてもよい。容器状部は、前記容器状部収容空間が形成されている限りどのような形状を有していてもよいが、一般的には上向きに開口した有底の形状を有する。1つ以上の容器状部は、細胞の培養、細胞の洗浄、カテーテルの洗浄等の目的で利用することが可能である。本発明のこの形態の一例として図6A~6Gに実施形態6を示す。
 実施形態6の細胞処理容器100は、実施形態1の細胞処理容器100において更に、容器底部110上に、1つの培養用容器状部610と、3つの洗浄用容器状部620が設けられている。実施形態6では培養用容器状部610及び洗浄用容器状部620は容器底部110から外周空間160中に突出するように形成されている。
 1つの細胞処理容器100が、収容部130に加えて、1つ以上の容器状部610、620を備えることで次の有利な効果が実現できる。例えば胚を移植のために培養するためには、受精後の胚を培養液中で培養する工程1と、培養後の胚から前記培養液や前記培養液の被覆に用いたオイルを洗浄する工程2と、洗浄後の胚を移植液に浸して処理する工程3とを行う場合がある。これらの工程をそれぞれ異なる容器で行う場合、容器間で胚を移す際に取り違えのリスクがあり、取り違えを防ぐための管理が必要となるため、操作が非常に複雑であり時間がかかり、胚の移植を迅速に行うことが困難である。実施形態6の細胞処理容器100を用いれば、工程1は培養用容器状部610で行い、工程2は洗浄用容器状部620で行い、工程3は収容部130で行うことができるため、容器間での胚の移し替えが不要となり作業が簡略化できるとともに胚の取り違えや損傷の危険を低減できる。
 培養用容器状部610は、容器底部110から起立した培養用容器状部周壁部611を備え、培養用容器状部周壁部611に囲われた空間として培養用容器状部収容空間612を形成している。培養用容器状部610は、培養用容器状部収容空間612を形成する面として、該空間の底を形成する培養用容器状部底面613と、下端が培養用容器状部底面613の周縁と接続し上端が培養用容器状部収容空間612の開口を囲う培養用容器状部側面614とを備える。培養用容器状部底面613には、細胞630を位置決めするためのマイクロウェル615が1または複数個形成されている。
 培養用容器状部610において、培養用容器状部収容空間612の容量は特に限定されず、例えば10μl~1000μlとすることができる。培養用容器状部収容空間612の容量の定義は、収容部収容空間150の容量の定義と同様であり、細胞処理容器100を平坦な水平面上に載置した状態において、培養用容器状部側面614の上端のなかでも最も下方に位置する部分を通り且つ前記水平面と平行な仮想平面と、培養用容器状部底面613と、培養用容器状部側面614とにより囲まれた空間の容積を指す。より好ましくは、培養用容器状部収容空間612に小容量の培養液、例えば10μl~100μlの培養液のドロップ(液塊)を収容でき、かつ10μl~100μlの培養液のドロップによって培養用容器状部底面613の全面を覆うことが可能であり、ドロップの高さが0.35mm以上、より好ましくは0.5mm以上となるように培養用容器状部収容空間612が形成されている。このためには、培養用容器状部底面613の面積は、好ましくは0.75mm以上、より好ましくは3mm以上、さらに好ましくは5mm以上であり、好ましくは20mm以下、より好ましくは13mm以下である。培養用容器状部底面613の面積を0.75mm以上とすることにより、細胞、好ましくはヒト受精卵を収容可能な複数のマイクロウェル615を培養用容器状部底面613に配置することができる。また、培養用容器状部底面613の面積を、20mm以下とすることにより、小容量の培養液(例えば10μl)のドロップでも、培養用容器状部底面613の全面を覆うことが可能であり、ドロップが培養用容器状部底面613上で大きく移動することを防止できる。
 培養用容器状部610は、図6Cに示すように、培養用容器状部収容空間612にドロップ状の培養液640を形成し、該培養液640で覆われたマイクロウェル615に細胞630を配置して、細胞630の培養のための培養容器として用いることができる。このとき、図示するように、培養用容器状部周壁部611の上端616が、収容部上端145よりも容器下面112に近い場合には、ドロップ状の培養液640の上面を覆うように外周空間16にオイル650を加えることができ、培養液640の乾燥をオイル650の層により抑制しながら、収容部内部空間150にオイル650が入り込まない状態で細胞630の培養が可能である。
 マイクロウェル615の好ましい実施形態を説明するために、1つのマイクロウェル615の近傍を拡大して図6D、図6E、図6F及び図6Gに示す。
 図6Dに示すマイクロウェル615の一実施形態では、マイクロウェル615は培養用容器状部底面613に形成され、上向きに開口した形状を有する。マイクロウェル615には、細胞を収容するためのマイクロウェル内空間6153が形成されている。マイクロウェル内空間6153は、マイクロウェル底面6151と、マイクロウェル底面6151の周縁から起立したマイクロウェル側面6152とにより形成される。なおマイクロウェル底面6151とマイクロウェル側面6152は、図示するような明確に区別可能な面である必要はなく、互いに滑らかに連続した面であってもよい。マイクロウェル底面6151は図示するように下方に窪んだ面であってもよいし、マイクロウェル内空間6153に向け突出した面であってもよいし、平坦な面であってもよい。マイクロウェル底面6151が下方に窪んだ面である場合、マイクロウェル側面6152は存在しなくてもよく、その場合、マイクロウェル底面6151の周縁が、マイクロウェル615の開口を形成する。
 マイクロウェル615のより好ましい実施形態としては、マイクロウェル側面6152に凹凸構造が形成された実施形態が挙げられる。マイクロウェル側面6152に凹凸構造を形成することにより、培養用容器状部610に培養液640を収容したときに、微小なマイクロウェル内空間6153に気泡が残存することを抑制でき、気泡を抜く作業を行う頻度を低減させることができる。マイクロウェル側面6152上に形成することができる凹凸構造としては、2以上のライン状の凹部及び/又は2以上のライン状の凸部を含む構造や、2以上のドット状の突起及び/又は2以上のドット状の窪みを含む構造が挙げられる。
 2以上のライン状の凹部及び/又は2以上のライン状の凸部を含む凹凸構造としては、2以上のライン状の凸部がスペースを挟んで連続して形成されている構造や、2以上のライン状の凹部がスペースを挟んで連続して形成されている構造などが挙げられる。2以上のライン状の凸部がスペースを挟んで連続して形成されている構造は、スペース部分を凹部とみなすことができるので、実質的には、2以上のライン状の凹部がスペースを挟んで連続して形成されている構造であり、また、ライン状の凸部とライン状の凹部とが交互に形成された構造でもある。
 図6E及び図6Fに示すマイクロウェル615の実施形態は、マイクロウェル側面6152に、2以上のライン状の凹部6154及び2以上のライン状の凸部6155が交互に形成された一実施形態である。以下、凹部6155を隣接する2つの凸部6154間のスペースとして説明する。ライン状の凸部6154及びライン状の凹部6155はそれぞれ、マイクロウェル615の底から開口に向かう方向に形成されていることが好ましい。マイクロウェル底面6151の平面視での重心を通り且つ細胞処理容器100の上下方向に沿った仮想直線をマイクロウェル側面6152上に投影した線の方向を「方向1」としたとき、ライン状の凸部6154及びライン状の凹部6155はそれぞれ方向1に対する角度が30°以下の方向に沿うように形成されていることが好ましい。
 ライン状の凸部6154及び凹部6155は直線状でも曲線状でもよいが、成形が容易であること、および気泡抜け効果が高いことから直線状であることが好ましい。
 2以上のライン状の凸部6154はずれも実質的に同一の幅および高さを有することが好ましい。また、2以上のスペースに相当する凹部6155は、いずれも実質的に同一の幅および高さ(深さ)を有することが好ましい。
 2以上のライン状の凹凸構造において、ライン状の凸部6154の幅(X11)およびライン状の凹部6155の幅(X12)は、それぞれ、マイクロウェル615の開口の縁部の長さの1/3140~1/4.5の範囲、好ましくは1/314~1/4.5の範囲、さらに好ましくは1/165~1/15の範囲、特に好ましくは1/82.5~1/15の範囲である。具体的な寸法としては、ライン状の凸部6154の幅(X11)およびライン状の凹部6155の幅(X12)は、それぞれ、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは10μm以上、特に好ましくは15μm以上、とりわけ好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下である。前記の各幅(X11、X12)は、例えば、三次元測定レーザー顕微鏡によって任意のマイクロウェル615における複数の凹凸構造の凸部の幅および凹部の幅を測定し、該測定値の平均値をそれぞれ算出することにより、決定することができる。凸部6154および凹部6155の幅を一定以上とすることで、加工成形精度が悪くなるおそれを回避できる。また、一定以下とすることで、マイクロウェル615の構造に対して凹凸構造が大きくなり形状の作成が困難になることを回避できる。
 ライン状の凸部6154及びライン状の凹部6155はそれぞれ、細胞処理容器100の上下方向に垂直な平面による断面の形状が、方形状または円弧状となるように形成されることが好ましく、前記方形状における各辺及び角は丸みを帯びていてもよい。
 ライン状の凸部6154のスペース部分であるライン状の凹部6155に対する高さは、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下である。ここで、ライン状の凸部6154のスペース部分であるライン状の凹部6155に対する高さとは、凸部6154の天面と、該凸部6154に隣接する凹部6155の底面との間の、距離の最大値を指す。ライン状の凸部6154の幅に対する高さの比は、好ましくは0.05以上、より好ましくは0.1以上、さらに好ましくは0.2以上、特に好ましくは0.3以上であり、好ましくは1.5以下、より好ましくは1.0以下である。凸部6154の凹部6155に対する高さは、例えば、三次元測定レーザー顕微鏡によって任意のマイクロウェル615における複数の凸部614の高さを測定し、該測定値の平均値を算出することにより、決定することができる。また、凸部6154の幅に対する高さの比は、前記で説明した手段によって決定された凸部6154の幅および高さの値を用いて算出することができる。
 マイクロウェル側面6152に形成することができる、2以上のドット状の突起及び/又は2以上のドット状の窪みを含む凹凸構造において、各突起及び窪みの形状は特に限定されず、錐体、錐台、柱体、ランダムな異方性凹凸状等が挙げられる。錐体状、錐台状、および柱体状の突起および窪みが加工性の点から好ましい。
 図6Gに示すマイクロウェル615の実施形態は、マイクロウェル側面6152に、2以上の円柱体状の突起6156が形成された一実施形態である。
 錐体状突起および錐台状突起の場合は、突起の先端ほど細くなる形状が加工性の点から好ましく、錐体状窪みおよび錐台状窪みの場合は、窪みの開口側ほど開口幅が広くなる形状が加工性の点から好ましい。
 ドット状突起の幅及びドット状窪みの開口幅は、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上であり、好ましくは50μm以下、より好ましくは25μm以下、さらに好ましくは10μm以下である。突起の幅および窪みの開口幅を一定以上とすることで、加工成形精度が悪くなるおそれを回避できる。また、一定以下とすることで、マイクロウェルの構造に対して窪み部分が大きくなり形状の作成が困難になることを回避できる。突起の幅は、突起の軸に垂直な切断面の図形における最大径の最大値を指す。窪みの開口幅は、窪みの開口部の図形における最大径を指す。
 ドット状突起の高さ及びドット状窪みの深さは、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上であり、好ましくは50μm以下、より好ましくは25μm以下、さらに好ましくは10μm以下である。突起の幅に対する突起の高さの比(高さ/幅)、並びに窪みの開口幅に対する窪みの深さの比(深さ/開口幅)は、好ましくは0.1以上、より好ましくは0.3以上であり、好ましくは1.5以下、より好ましくは1以下である。
 ドット状突起の高さ及びドット状窪みの深さを一定以上とすることで、加工成形精度が悪くなるおそれを回避できる。また、一定以下とすることで、マイクロウェルの構造に対して突起部分および窪み部分が大きくなり形状の作成が困難になることを回避できる。また、高さの比を一定以下とすることで、側面の窪みや突起形状を射出成形等で形成する場合に、金型から垂直剥離する際の剥離が困難になったり、形状が破壊されてしまったりする可能性を回避できる。
 ドット状突起のピッチ及びドット状窪みのピッチは、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上であり、好ましくは50μm以下、より好ましくは25μm以下、さらに好ましくは10μm以下である。
 ピッチを一定以上とすることで、加工成形精度が悪くなるおそれを回避できる。また、一定以下とすることで、マイクロウェルの構造に対して突起部分および窪み部分が大きくなり形状の作成が困難になることを回避できる。
 ドット状突起のピッチは、隣り合う2つの突起の間隔であり、突起の中心間の距離をさす。ここで、突起の中心は、突起の先端部における図形の重心とする。ドット状窪みのピッチは、隣り合う2つの窪みの間隔であり、窪みの中心間の距離をさす。ここで、窪みの中心は、窪みの開口部の図形の重心とする。ピッチは通常平均ピッチを指し、平均ピッチは、ある突起に関しては、近接する全ての突起とのピッチから平均値を算出したものをさし、ある窪みに関しては、近接する全ての窪みとのピッチから平均値を算出したものをさす。
 ドット状突起とドット状窪みは混在していてもよいが、加工性の観点から、ドット状突起のみまたはドット状窪みのみが形成されていることが好ましく、ドット状突起のみが形成されていることがより好ましい。
 各マイクロウェル615は細胞を収容可能な開口幅を有することが好ましい。各マイクロウェル615の開口幅は、各マイクロウェル615の開口の周縁を、前記上下方向に垂直な仮想平面上に投影したときに、前記周縁が形成する図形の幅の寸法を指す。更に、開口幅の最小値とは、前記図形の重心を間に介して対向する、前記図形の周縁上の一対の点の間の距離の最小値(例えば前記図形が円の場合は直径の長さ、楕円の場合は短径の長さ)を指す。各マイクロウェル615の開口幅の最小値が、培養する細胞の最大寸法より大きいとき、各マイクロウェル615は細胞を収容可能である。培養用容器状部610を用いて受精卵を培養する場合、胚盤胞の段階まで培養することが望ましいため、各マイクロウェル615の開口幅の最小値は、胚盤胞の段階の細胞の最大寸法より大きいものであることが望ましい。胚盤胞の段階の細胞の最大寸法は通常100μm~280μmであることから、各マイクロウェル615の開口幅の最小値は、通常100μm以上であり、より好ましくは250μm以上である。更に、各マイクロウェル615は、小さい面積の領域内に密集して配置することができる寸法を有することが好ましい。各マイクロウェル615の開口幅の最大値は、通常、隣接するマイクロウェル615間のピッチよりも小さくなるように設定される。各マイクロウェル615の開口幅の最大値は好ましくは1000μm未満であり、より好ましくは700μm未満である。ここで、各マイクロウェル615の開口幅の最大値とは、各マイクロウェル615の開口の周縁を、前記上下方向に垂直な仮想平面上に投影したときに、前記周縁が形成する図形において、前記図形の重心を間に介して対向する、前記図形の周縁上の一対の点の間の距離の最大値を指す。各マイクロウェル615の開口幅の最大値を1000μm未満とすることにより隣接するマイクロウェル615間のピッチを小さい値にすることができ、培養用容器状部底面613内の小さな面積の領域に複数個のマイクロウェル615を密集させることが可能となるため、細胞を個別に管理しつつ複数個の細胞を同時に培養でき、更に顕微鏡の一視野に多くの細胞が入るため、一度に多くの細胞を観察することができる。また、各マイクロウェル615の開口幅の最大値を1000μm未満とすることにより、各マイクロウェル615内での細胞の移動が小さく観察が容易となる。近接するマイクロウェル615は1mmあたり好ましくは1個以上、より好ましくは4個以上の密度で配置されている。
 培養用容器状部610内でウシ受精卵を培養する場合、各マイクロウェル615の開口幅の最小値は、通常250μm以上、好ましくは260μm以上、さらに好ましくは270μm以上であり、各マイクロウェル615の開口幅の最大値は通常1000μm未満、さらに好ましくは700μm未満である。また、各マイクロウェル615の開口幅の最小値は、X+m(ここでXは細胞の最大径を表す)と規定することもできる。ここで、mは、好ましくは10μm以上、さらに好ましくは20μm以上である。
 近接するマイクロウェル615の間のピッチは、近接するマイクロウェル615の中心間の距離である。マイクロウェル615の中心は、マイクロウェル615の開口の周縁を、前記上下方向に垂直な仮想平面上に投影したときに、前記周縁が形成する図形の重心位置とし、開口の周縁が円形であればその円の中心である。マイクロウェル615間のピッチは通常平均ピッチを指し、平均ピッチは、あるマイクロウェル615に関しては、近接する全てのマイクロウェル615とのピッチから平均値を算出したものを指す。
 マイクロウェル615の開口の周縁が円形である場合、近接するマイクロウェル615間のピッチは、X+m+n(ここで、Xは細胞の最大径を表し、mはマイクロウェル615の開口の周縁が形成する円の直径から細胞の最大径を引いた長さを表し、nはマイクロウェル615間の仕切りの長さを表す)と規定することもできる。マイクロウェル615間の仕切りとは、近接するマイクロウェル615間の開口の周縁の間の最短距離を指す。ここでmは通常100μm以下、好ましくは70μm以下、さらに好ましくは50μm以下であり、nは通常600μm以下、好ましくは350μm以下、さらに好ましくは150μm以下である。
 上記のようなピッチでマイクロウェル615を密に配置することにより、細胞を個別に管理しつつ多くの細胞を同時に培養でき、さらに顕微鏡の一視野に多くの細胞が入るため、一度に多くの細胞を観察することができる。
 また、各マイクロウェル615の深さは、特に限定されるものではないが、浅過ぎると、培養容器の輸送時や細胞の分裂時などに細胞が動き、細胞が各マイクロウェル615の範囲外に出てしまう恐れがあるため、確実に細胞を各マイクロウェル615内に保持できるように適宜設定される。一方、深過ぎると、各マイクロウェル615内に培養液や細胞を導入することが難しくなるため、細胞を各マイクロウェル615内に保持しつつ、深過ぎない値になるよう適宜設定される。例えば、深さの上限を、各マイクロウェル615の開口幅の最大値と最小値との平均値に対して3倍以下とすることができる。さらに、培養液の導入を容易にするためには、深さは、各マイクロウェル615の開口幅の最大値と最小値との平均値の1倍以下であることが好ましく、1/2以下であることが特に好ましい。また、各マイクロウェル615の開口幅の最大値と最小値との平均値が小さく、深さが深いほど対流が起きにくくなるため、細胞の呼吸や代謝に伴って、周辺の培養液の組成変化が起きやすくなる可能性がある。細胞は、周辺の培養液の組成の影響を受けて成長しやすさが変化するため、細胞の成長を促すように生物学的な影響を考慮して直径と深さを設定することが好ましい。各マイクロウェル615の深さは50μm~500μm、特に50μm~300μm、とりわけ100μm~300μmの範囲であると、作業性向上および培養細胞を安定的に保持できる点から好ましい。例えば、ウシ受精卵を培養するための培養用容器状部610の場合、各マイクロウェル615の深さは80μm以上、さらに好ましくは125μm以上とすることが好ましい。なお、各マイクロウェル615の深さはマイクロウェル底面6151の最深部から、マイクロウェル615の開口までの前記上下方向に沿った距離を指す。
 なお培養用容器状部610の培養用容器状部底面613にマイクロウェル615が設けられていることは必須ではなく、培養用容器状部底面613は平坦な面であってもよいし、全体が下方に窪んだ凹面であってもよい(図示せず)。
 洗浄用容器状部620は、容器底部110から起立し上向きに開口した洗浄用容器状部周壁部621を備え、洗浄用容器状部周壁部621に囲われた空間として洗浄用容器状部収容空間622を形成している。洗浄用容器状部620は、洗浄用容器状部収容空間622を形成する面として、該空間の底を形成する洗浄用容器状部底面623と、下端が洗浄用容器状部底面623の周縁と接続し上端が洗浄用容器状部収容空間622の開口を囲う洗浄用容器状部側面624とを備える。
 洗浄用容器状部620において、洗浄用容器状部収容空間622の容量は特に限定されず、例えば10μm~1000μlとすることができる。洗浄用容器状部収容空間622の容量の定義は、収容部収容空間150の容量の定義と同様であり、細胞処理容器100を平坦な水平面上に載置した状態において、洗浄用容器状部側面624の上端のなかでも最も下方に位置する部分を通り且つ前記水平面と平行な仮想平面と、洗浄用容器状部底面623と、洗浄用容器状部側面624とにより囲まれた空間の容積を指す。
 洗浄用容器状部底面623の形状は特に限定されず、平坦面であってもよい。より好ましくは、洗浄用容器状部底面623は、洗浄用容器状部620の深さが最も深い部分である最深部625と、最深部625の周りを囲う、最深部625と連続した洗浄用容器状部底傾斜面627を含み、最深部625の近傍の細胞保持領域626において、傾斜した面により細胞の周囲を囲い細胞を保持することができるように形成されている。この構成によって、洗浄対象細胞を細胞保持領域626に集めることが可能となり、カテーテルやピペットを用いた細胞の洗浄操作が容易となる。
 洗浄用容器状部620は1つであってもよいが、図示するように複数個設けられていることが好ましい。洗浄用容器状部620が複数個設けられていれば、それぞれの洗浄用容器状部620に洗浄用液を収容し、細胞を1つの洗浄用容器状部620中で洗浄し、洗浄後の細胞を別の浄用容器状部620に移し替えて更に洗浄する、といった操作が可能である。複数個の洗浄用容器状部620は、同じ形状、寸法である必要はなく、相互に異なる形状、寸法を有するものであってもよい。
 また洗浄用容器状部620は細胞を洗浄する目的だけでなく、カテーテル、ピペット等の器具を洗浄するための洗浄液を収容する目的で設けることもできる。
<実施形態7(図7A、7B)>
 図7A、7Bに示す実施形態7の細胞処理容器100は、容器底部110に1つ以上の容器状部が設けられている他の具体例である。
 実施形態7では、実施形態1等の細胞処理容器100が、容器底部110から起立し、収容部周壁部140と外周壁部120とを架橋する2つ以上の隔壁701、702、703を更に備え、各容器状部710、720、730が、容器底部110を底部とし、周囲が収容部周壁部140と外周壁部120と前記2つ以上の隔壁701、702、703のうち隣接する一対とに囲われて形成されている。図示する実施形態7では3つの隔壁が設けられており、それぞれを区別するために第1隔壁701、第2隔壁702、及び第3隔壁704とする。第1容器状部710には、容器底面111により底面が形成され、周囲が収容部外壁面144と外周壁部内周面121と第1隔壁701の一方の面704と第2隔壁702の一方の面705とにより囲われた、下方が閉塞し上方にされた第1容器状部収容空間161が形成されている。以下、収容部外壁面144と外周壁部内周面121と第1隔壁701の一方の面704と第2隔壁702の一方の面705とを「第1容器状部収容空間161を囲う側壁面」という。第2容器状部720には、容器底面111により底面が形成され、周囲が収容部外壁面144と外周壁部内周面121と第2隔壁702の他方の面706と第3隔壁703の一方の面707とにより囲われた、下方が閉塞し上方に開放された第2容器状部収容空間162が形成されている。以下、収容部外壁面144と外周壁部内周面121と第2隔壁702の他方の面706と第3隔壁703の一方の面707とを「第2容器状部収容空間162を囲う側壁面」という。第3容器状部730には、容器底面111により底面が形成され、周囲が収容部外壁面144と外周壁部内周面121と第3隔壁703の他方の面708と第1隔壁701の他方の面709とにより囲われた、下方が閉塞し上方に開放された第3容器状部収容空間163が形成されている。以下、収容部外壁面144と外周壁部内周面121と第3隔壁703の他方の面708と第1隔壁701の他方の面709とを「第3容器状部収容空間163を囲う側壁面」という。
 隔壁の数は2以上であればよく3に限らず、2、4、5、6等であることができる。
 第1容器状部710、第2容器状部720及び第3容器状部730はそれぞれ、実施形態6での容器状部610、620と同様に、培養用、洗浄用等の目的で使用することができる。細胞培養用に用いる場合、第1容器状部710、第2容器状部720又は第3容器状部730内の容器底面111には、実施形態6で説明したのと同様のマイクロウェル615が1または複数個形成されてもよい(図示せず)。また、後述する実施形態7変形例10(図34参照)に示すように、収容部周壁部140と外周壁部120と隣接する一対の隔壁とにより形成される容器状部710、720,730内の容器底面111上に、更に別の容器状部が形成されていてもよい。
 収容部周壁部140と外周壁部120と隣接する一対の隔壁とにより形成される容器状部の個数は2以上であることが好ましく、3以上であることがより好ましい。細胞処理容器100を平面視したときの各容器状部の収容空間の面積は均一であってもよいし、均一でなくてもよい。各容器状部は、細胞の培養、洗浄等の異なる目的で利用することが可能である。容器状部が2つ以上あれば、各容器状部を異なる目的で利用することができる。また、細胞の洗浄、カテーテルの洗浄等を、処理する対象物毎に別の容器状部を用いて実施できるようにするためには、容器状部は3つ以上形成されていることが好ましい。
 第1容器状部収容空間161、第2容器状部収容空間162、第3容器状部収容空間163のそれぞれの容量は特に限定されないが、例えば0.25mL~5mLの範囲である。各収容空間161、162、163の容量の定義は収容部130の収容空間150の容量の定義と同様である。第1容器状部収容空間161(或いは第2容器状部収容空間162の容積、又は第3容器状部収容空間164)の容積は、細胞処理容器100を平坦な水平面上に載置した状態において、第1容器状部収容空間161を囲う側壁面(或いは第2容器状部収容空間162を囲う側壁面、又は第3容器状部収容空間163を囲う側壁面)の上端のなかでも最も下方に位置する部分を通り且つ前記水平面と平行な仮想平面と、容器底面111と、第1容器状部収容空間161を囲う側壁面(或いは第2容器状部収容空間162を囲う側壁面、又は第3容器状部収容空間163を囲う側壁面)とにより囲まれた空間の容積を指す。
 実施形態7の細胞処理容器100は、実施形態6の細胞処理容器100と同様に使用することができ、同様の効果を実現することができる。
 実施形態7の細胞処理容器、及び後述する実施形態8~22の細胞処理容器では、収容部130を、容器底部110に設けられた、細胞及び細胞処理液を収容するための収容空間が形成され上向きに開口した1つ以上の他の収容部に置き換えることもできる(図示せず)。
 実施形態7の細胞処理容器100において第1隔壁上端711、第2隔壁上端712、第3隔壁上端713、収容部上端145、外周壁部上端122の、容器底面111からの細胞処理容器100の上下方向に沿った距離(前記各上端が、上下方向に垂直な1つの平面に沿っていない場合は、前記各上端の、容器底面111からの細胞処理容器100の上下方向に沿った距離のうち最も短い距離)をそれぞれd、d、d、e、fとする。実施形態7の細胞処理容器100において、各寸法d、d、d、e、fの値は特に限定されない。
 ただし各隔壁701、702、703の高さに相当するd、d、dは相互に独立して1mm~15mmであることが好ましい。各隔壁701、702、703は第1~第3容器状部710、720、730の各収容空間161、162、163に液体を供給する場合に、各隔壁701、702、703の壁面に液体を含んだカテーテルやピペットの先端を近接させ、該壁面に前記液体を伝わせながら供給するために用いることができる。このときd、d、dが15mm以下であれば、液体が容器外に漏れにくく、操作性に優れる。またd、d、dが1mm以上であれば、各隔壁と接する収容空間161、162、163に十分な深さで液体を収容することができるため、各収容空間161、162、163に収容された細胞や培養液をピペットやカテーテル等で取り扱うことが容易である。
<実施形態7~19(図7A、7B、8~19)>
 実施形態7の細胞処理容器100において、第1隔壁701の上端を第1隔壁上端711とし、第2隔壁702の上端を第2隔壁上端712とし、第3隔壁703の上端を第3隔壁上端713とする。図示する例では第1隔壁上端711、第2隔壁上端712、第3隔壁上端713はそれぞれ平坦面であるが、平坦面であることは必須ではなく曲面であってもよいし、稜線であってもよい。外周壁部上端122、収容部上端145、第1隔壁上端711、第2隔壁上端712、第3隔壁上端713の、容器下面112からの細胞処理容器100の上下方向に沿った距離(前記各上端が、上下方向に垂直な1つの平面に沿っていない場合は、前記各上端の、容器下面112からの細胞処理容器100の上下方向に沿った距離のうち最も短い距離)をそれぞれa、b、c、c、cとする。
 実施形態7の細胞処理容器100ではa>b>c=c=cの関係にある。
 図8~19に示す実施形態8~19の細胞処理容器100は、a、b、c、c、cの相対的な大小関係が異なる点を除いて実施形態7の細胞処理容器100と同じ構造を有する変形例である。
 実施形態8(図8)の細胞処理容器100ではa=b=c=c=cの関係にある。
 実施形態9(図9)の細胞処理容器100ではc=c=c>a=bの関係にある。
 実施形態10(図10)の細胞処理容器100ではa=b>c=c=cの関係にある。
 実施形態11(図11)の細胞処理容器100ではa>b=c=c=cの関係にある。
 実施形態12(図12)の細胞処理容器100ではb=c=c=c>aの関係にある。
 実施形態13(図13)の細胞処理容器100ではa=c=c=c>bの関係にある。
 実施形態14(図14)の細胞処理容器100ではb>a=c=c=cの関係にある。
 実施形態15(図15)の細胞処理容器100ではb>a>c=c=cの関係にある。
 実施形態16(図16)の細胞処理容器100ではa>c=c=c>bの関係にある。
 実施形態17(図17)の細胞処理容器100ではb>c=c=c>aの関係にある。
 実施形態18(図18)の細胞処理容器100ではc=c=c>a>bの関係にある。
 実施形態19(図19)の細胞処理容器100ではc=c=c>b>aの関係にある。
 実施形態7~19の各細胞処理容器100ではa、b、c、c、cの大小関係が異なることにより、それぞれ特徴が異なり、異なる用い方が可能である。
(特徴1)実施形態7~19の細胞処理容器100のいずれも、水平面上に載置された状態で、収容空間150、第1容器状部収容空間161、第2容器状部収容空間162、第3容器状部収容空間163のぞれぞれに、前記各収容空間を囲う面の上端を越えない範囲で液体を収容すれば、前記各収容空間に収容された液体が相互に混じり合わないため、前記各収容空間内で個別に細胞の処理、洗浄、培養等の個別の管理が可能である。
(特徴2)実施形態7、8、10、11、13、16の細胞処理容器100では、収容部上端145、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713が、それぞれ独立して、外周壁部上端122と上下方向位置が同じである、或いは、外周壁部上端122よりも下方にある。このため、外周壁部上端122と当接する外蓋部170により、細胞処理容器100の、外周壁部120により形成される開口の全体を覆うことができる。一例として実施形態8の細胞処理容器100を外蓋部170により覆った状態を図20に示す。外蓋部170は外周壁部上端122と全周に亘って当接するため、比較的気密性の高い状態で細胞処理容器100を封じることができる。
 当該特徴2の効果を得るためには、収容部130の上端145と、2つ以上の隔壁701、702、703の各々の上端711、712、713とが、それぞれ独立して、外周壁部120の上端122と上下方向位置が同じである、或いは、外周壁部120の上端122よりも下方にある、という条件を満たせばよい。
(特徴3)実施形態7、11、16の細胞処理容器100では、外周壁部内周面121の上端が、収容部上端145、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713よりも上方に突出しているため、周縁が外周壁部内周面121の上端の内周に収まる形状の中蓋部210により収容空間150、第1容器状部収容空間161、第2容器状部収容空間162、第3容器状部収容空間163を覆うことができる。一例として実施形態11の細胞処理容器100を中蓋部210により覆った状態を図21に示す。
 当該特徴3の効果を得るためには、外周壁部120の上端122が、収容部130の上端145及び2つ以上の隔壁701、702、703の各々の上端711、712、713よりも上方にある、という条件を満たせばよい。
(特徴4)実施形態8、9、10、12、14、15、17,19の細胞処理容器100では、収容部上端145が、外周壁部上端122と上下方向位置が同じである、或いは、外周壁部上端122よりも上方にある。このため、実施形態8、9、10、12、14、15、17,19の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161、第2容器状部収容空間162及び/又は第3容器状部収容空間163に、液面が外周壁部120の上端に至るまで液体を収容した場合でも、該液体が収容部上端145を越えて収容空間150に移動することがない。このため収容部130と第1~第3容器状部710、720,730とで相互に細胞処理液が混じり合わず個別に細胞の処理、培養、洗浄等の操作を行うことが容易である。
 当該特徴4の効果を得るためには、収容部130の上端145が、外周壁部120の上端122と上下方向位置が同じである、或いは、外周壁部120の上端122よりも上方にある、という条件を満たせばよい。
(特徴5)実施形態7、11、13、16、18の細胞処理容器100では、外周壁部上端122が、収容部上端145よりも上方にある。このため、実施形態7、11、13、16、18の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161、第2容器状部収容空間162及び第3容器状部収容空間163に、液面が収容部上端145を越えるまで液体を収容することが可能であり、収容空間150と、第1容器状部収容空間161、第2容器状部収容空間162及び第3容器状部収容空間163とに共通の液体を収容することができる。このため収容部130と第1~第3容器状部710、720,730とで共通の細胞処理液を用いて細胞の処理、培養、洗浄等の操作を行うことが容易である。
 当該特徴5の効果を得るためには、外周壁部120の上端122が、収容部130の上端145よりも上方にある、という条件を満たせばよい。
(特徴6)実施形態8、9、12、14、17、19の細胞処理容器100では、収容部上端145、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713が、それぞれ独立して、外周壁部上端122と上下方向位置が同じである、或いは、外周壁部上端122よりも上方にある。このため、実施形態8、9、12、14、17、19の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161、第2容器状部収容空間162及び/又は第3容器状部収容空間163に、液面が外周壁部120の上端に至るまで液体を収容した場合でも、該液体が収容部上端145、第1隔壁上端711、第2隔壁上端712または第3隔壁上端713を越えて隣接する容器状部収容空間161、162、163に移動することがない。このため第1~第3容器状部710、720、730の各々で相互に細胞処理液が混じり合わず個別に細胞の処理、培養、洗浄等の操作を行うことが容易である。
 当該特徴6の効果を得るためには、収容部130の上端145と、2つ以上の隔壁701、702、703のうち少なくとも隣接する一対(例えば701と702、702と703、703と701)の上端711、712、713とが、それぞれ独立して、外周壁部120の上端122と上下方向位置が同じである、或いは、外周壁部120の上端122よりも上方にある、という条件を満たせばよい。より好ましくは、収容部130の上端145と、2つ以上の隔壁701、702、703の全ての上端711、712、713とが、それぞれ独立して、外周壁部120の上端122と上下方向位置が同じである、或いは、外周壁部120の上端122よりも上方にある。収容部130が複数含まれる場合は、少なくとも1つの収容部130の上端145と、該少なくとも1つの収容部130と外周壁部120とを架橋する2つ以上の隔壁701、702、703のうち少なくとも隣接する一対の上端711、712、713とが前記条件を満たせばよい。
(特徴7)実施形態7、10、11、13、15、16、18の細胞処理容器100では、外周壁部上端122が、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713よりも上方にある、或いは、外周壁部上端122が、収容部上端145よりも上方にある。このため、実施形態7、10、11、13、15、16、18の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161、第2容器状部収容空間162及び第3容器状部収容空間163に、液面が第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713を越えるまで、或いは、収容部上端145を越えるまで液体を収容することが可能であり、第1容器状部収容空間161と、第2容器状部収容空間162と、第3容器状部収容空間163とで共通の液体を収容することができる。このため第1~第3容器状部710、720,730において共通の細胞処理液を用いて細胞の培養、洗浄等の操作を行うことが容易である。
 当該特徴7の効果を得るためには、外周壁部120の上端122が、2つ以上の隔壁701、702、703の各々の上端711、712、713及び収容部130の上端145から選択される少なくとも1つよりも上方にある、という条件を満たせばよい。2つ以上の隔壁701、702、703のうち少なくとも1つを介して隣接する2つ以上の容器状部収容空間で、或いは、収容部130を介して隣接する2つ以上の容器状部収容空間で共通する液体を収容することができる。
(特徴8)実施形態9、12、14、15、17、18、19の細胞処理容器100では、収容部上端145並びに/又は第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713が、外周壁部上端122よりも上方にある。このため、これらの容器が外蓋体170を更に含む場合、外蓋体170は、収容部上端145並びに/又は第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713に当接し、外周壁部上端122には当接しないで細胞処理容器100を覆うことができる。一例として、実施形態9の細胞処理容器100を外蓋部170により覆った状態を図22に示す。外蓋部170は外周壁部上端122に当接しないため、容器内の内気と外気との通気性が比較的保たれた状態で細胞処理容器100の開口を覆うことができる。
(特徴9)実施形態9、12、14、15、17、18、19の細胞処理容器100では、収容部上端145並びに/又は第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713が、外周壁部上端122よりも上方にある。従ってこれらの実施形態では、収容部130並びに/又は第1~第3容器状部710、720、730は外周壁部上端122よりも上方に突出した壁面を有する。このため収容部130並びに/又は第1~第3容器状部710、720、730の各収容空間に液体を供給する場合に、前記突出した壁面に液体を含んだカテーテルやピペットの先端を近接させ、前記突出した壁面に前記液体を伝わせながら供給することが容易であり、液体供給時の液跳ねを抑制することが容易である。
 当該特徴8及び9の効果を得るためには、2つ以上の隔壁701、702、703の各々の上端711、712、713及び収容部130の上端145から選択される少なくとも1つが、外周壁部120の上端122よりも上方にある、という条件を満たせばよい。
 図示する実施形態7~19では、各隔壁701、702、703の上端711、712、713の上下方向位置に相当する、容器底面112からの高さ(c、c、c)は全て同一である。しかしながら、上記の特徴1~9の効果を得るためには、各特徴1~9について詳述した各条件を満たしている限り、各隔壁701、702、703の上端711、712、713の上下方向位置は同一であってよいし、異なっていてもよい。また収容部130が複数含まれる場合は、各収容部130の収容部上端145の上下方向位置に相当する、容器底面112からの高さ(b)は同一であっても異なっていてもよい。
<実施形態20、21、22(図23、24、25)>
 図23、24、25に示す実施形態20、21、22の細胞処理容器100はa、b、c、c、cの相対的な大小関係が異なる点を除いて実施形態7の細胞処理容器100と同じ構造を有する変形例である。
 実施形態20(図23)の細胞処理容器100ではa>b>c=c>cの関係にある。
 実施形態21(図24)の細胞処理容器100ではa>b>c=c>cの関係にある。
 実施形態22(図25)の細胞処理容器100ではa>b>c=c>cの関係にある。
 実施形態20の細胞処理容器100では、第1隔壁上端711及び第2隔壁上端712が、第3隔壁上端713よりも上方にある。このため、実施形態20の細胞処理容器100を水平面上に載置した状態で、第2容器状部収容空間162及び第3容器状部収容空間163に、液面が第3隔壁上端713を越えるが、第1隔壁上端711及び第2隔壁上端712は超えないように液体を収容することができる。すなわち、第2容器状部収容空間162及び第3容器状部収容空間163に共通の液体を収容することができ、同時に、第1容器状部収容空間161には、別の液体を混じり合うことなく収容することができる。このため第2及び第3容器状部720,730において共通の液体を用いて細胞の培養、洗浄等の操作を行い、第1容器状部710では別途独立した液体を用いて細胞の培養、洗浄等の操作を行うことができる。
 実施形態21の細胞処理容器100では、第2隔壁上端712及び第3隔壁上端713が、第1隔壁上端711よりも上方にある。このため、実施形態21の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161及び第3容器状部収容空間163に、液面が第1隔壁上端711を越えるが、第2隔壁上端712及び第3隔壁上端713は超えないように液体を収容することができる。すなわち、第1容器状部収容空間161及び第3容器状部収容空間163に共通の液体を収容することができ、同時に、第2容器状部収容空間162には、別の液体を混じり合うことなく収容することができる。このため第1及び第3容器状部710,730において共通の液体を用いて細胞の培養、洗浄等の操作を行い、第2容器状部720では別途独立した液体を用いて細胞の培養、洗浄等の操作を行うことができる。
 実施形態22の細胞処理容器100では、第1隔壁上端711及び第3隔壁上端713が、第2隔壁上端712よりも上方にある。このため、実施形態22の細胞処理容器100を水平面上に載置した状態で、第1容器状部収容空間161及び第2容器状部収容空間162に、液面が第2隔壁上端712を越えるが、第1隔壁上端711及び第3隔壁上端713は超えないように液体を収容することができる。すなわち、第1容器状部収容空間161及び第2容器状部収容空間162に共通の液体を収容することができ、同時に、第3容器状部収容空間163には、別の液体を混じり合うことなく収容することができる。このため第1及び第2容器状部710,720において共通の液体を用いて細胞の培養、洗浄等の操作を行い、第3容器状部730では別途独立した液体を用いて細胞の培養、洗浄等の操作を行うことができる。
 すなわち、実施形態20、21、22に係る細胞処理容器100では、収容部130の少なくとも1つと外周壁部120とを架橋する隔壁701、702、703を3つ以上備え、該3つ以上の隔壁701、702、703が、1つの又は隣接した2つ以上の隔壁Aと、隔壁Aに隣接する一対の隔壁Bと、を含み、一対の隔壁Bの各々の上端は、隔壁Aの各々の上端よりも上方にあり、収容部130の上端及び外周壁部120の上端がともに、隔壁Aの各々の上端よりも上方にある、という条件を満たすことで上記の効果を得ることができる。ここで実施形態20では第3隔壁703が隔壁Aに、第1隔壁701及び第2隔壁702が一対の隔壁Bに相当し、実施形態21では第1隔壁701が隔壁Aに、第2隔壁702及び第3隔壁703が一対の隔壁Bに相当し、実施形態22では第2隔壁702が隔壁Aに、第1隔壁701及び第3隔壁703が一対の隔壁Bに相当する。細胞処理容器100に液面が隔壁Aの各々の上端を越えるが、隔壁Bの上端は超えないように液体を収容することにより、隔壁Aを介して隣接する2つ以上の容器状部収容空間で共通の液体を収容することができる。
<実施形態1変形例1(図26)>
 図26に示す細胞処理容器100は実施形態1の変形例1であって、収容部130の開口が平面視において形成する図形が、ほぼ円形の第一部分261と、第一部分261から一方向に延在した1つの第二部分262とが組み合わされた形状を有する点を除いて図1に示す実施形態1の細胞処理容器100と同様の特徴を有する。この実施形態1変形例1によれば、収容部130の開口が平面視において形成する図形がほぼ円形の第一部分261のみからなる場合と比較して、収容空間150が第二部分262の部分だけ拡張されるため、収容空間150内に収容された細胞をカテーテル等の器具で取り扱う場合に器具を配置できる領域が広がり作業性が向上する、といった利点がある。
<実施形態1変形例2(図27)>
 図27に示す細胞処理容器100は実施形態1の変形例2であって、収容部130の開口が平面視において形成する図形が、ほぼ正方形の第一部分271と、第一部分271から4つの方向に延在した4つの第二部分272-1、272-2、272-3、272-4とが組み合わされた形状を有する点を除いて図1に示す実施形態1の細胞処理容器100と同様の特徴を有する。この実施形態1変形例2によれば、収容部130の開口が平面視において形成する図形がほぼ正方形の第一部分271のみからなる場合と比較して、収容空間150が4つの第二部分272-1、272-2、272-3、272-4の部分だけ拡張されるため、収容空間150内に収容された細胞をカテーテル等の器具で取り扱う場合に器具を配置できる領域が更に広がり作業性が更に向上する、といった利点がある。
<他の好適な実施形態>
<壁部の厚さに関する他の好適な実施形態>
 本発明の細胞処理容器100では、各部分を構成する樹脂材料を含む壁部の厚さは特に限定されないが、0.3mm~3mmであることが好ましい。具体的には、図7A、7Bに示すように、収容部周壁部140のうち、収容部側面143と収容部外壁面144とで挟まれる部分の厚さT、第1隔壁701の厚さT2-1、第2隔壁702の厚さT2-2、第3隔壁703の厚さT2-3、外周壁部120の厚さT、及び、容器底部110の厚さが0.3mm~3mmであることが好ましい。本発明の細胞処理容器100は出荷前に放射線滅菌されることがあるが、細胞処理容器100が樹脂材料により形成されている場合、放射線照射によって樹脂材料が黄色に変化し、無色透明の性質が失われる場合がある。細胞処理容器100において樹脂材料を含む壁部の厚さを3mm以下であれば、放射線滅菌をした場合でも、細胞処理容器100を肉眼で見たときに樹脂材料の無色透明の性質は維持され、好適な外観となる。また、各壁部の厚さが0.3mm以上であれば、細胞処理容器100を使用する際に破損しにくい十分な強度が付与される。
<収容部周壁部の形状に関する他の好適な実施形態>
 本発明の細胞処理容器100の収容部周壁部140他の好適な実施形態を、図7A、7Bに示す実施形態7の細胞処理容器100の変形例として以下に説明する。本発明の細胞処理容器100の実施形態1等の他の実施形態も、同様の特徴を備える変形例とすることができる。
 図28は、本発明の実施形態7変形例1の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。実施形態7変形例1では収容部周壁部140の収容部側面143と収容部底傾斜面142とが、丸みを帯びた収容部側面-底傾斜面接続曲面281により接続されている。収容部側面-底傾斜面接続曲面281は、上下方向に沿った仮想平面(具体的には、収容部側面143の法線を含み且つ上下方向に沿った仮想平面)による収容部周壁部140及びその近傍の断面上での、本明細書で定義する傾斜角が、収容部側面143から収容部底傾斜面142にかけて連続的に変化するように、収容部側面143と収容部底傾斜面142とを接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mm、より好ましくは10μm~1mmとなる曲面である。この特徴を有する実施形態7変形例1の細胞処理容器100では、底面側面交差部分147を有する実施形態1よりも更に、細胞10が収容部側面143と収容部底傾斜面142との間に入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。また細胞10を含む液滴を収容部側面143から形成面141上で伝わらせて細胞保持領域146に移動させる場合に細胞10の移動が容易である。
 また、図28に示す実施形態7変形例1では収容部周壁部140の収容部外壁面144と、容器底部110の容器底面111とが、丸みを帯びた収容部外壁面-容器底面接続曲面282により接続されている。収容部外壁面-容器底面接続曲面282は、上下方向に沿った仮想平面(具体的には、収容部外壁面144の法線を含み且つ上下方向に沿った仮想平面)による収容部周壁部140及びその近傍の断面上で、本明細書で定義する傾斜角が、収容部外壁面144から容器底面111にかけて連続的に変化するように、収容部外壁面144と容器底面111とを接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mm、より好ましくは10μm~1mmとなる曲面である。この特徴を有する実施形態7変形例1の細胞処理容器100では、収容部外壁面144と容器底面111との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。
 図示しないが、実施形態7変形例1の更なる変形例としては、収容部側面-底傾斜面接続曲面281と、収容部外壁面-容器底面接続曲面282の一方のみを有するものが挙げられる。
 図29A、29B、29Cは、本発明の実施形態7変形例2、3、4の細胞処理容器100の、図7AでのA-A端面に相当する端面の模式図である。説明の都合上、実施形態7の細胞処理容器100での収容部周壁部140のうち、第1隔壁701と第3隔壁703とに挟まれた部分の変形例についてのみ説明するが、収容部周壁部140のうち、第1隔壁701と第2隔壁702とに挟まれた部分や、収第2隔壁702と第3隔壁703とに挟まれた部分や、実施形態1における収容部周壁部140も同様の変形を加えることができ、その場合の効果は、下記の各変形例による効果の説明における「第3容器状部収容空間163」を、それぞれ「第1容器状部収容空間161」、「第2容器状部収容空間162」、「外周空間160」に置き換えて理解すればよい。
 図29Aに示す実施形態7変形例2では収容部周壁部140の収容部側面143の傾斜角が90°未満である。収容部側面143の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。収容部側面143の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に収容部側面143上に擦れ傷が発生する可能性を低減することができる。実施形態7変形例2において収容部外壁面144の傾斜角は特に限定されないが典型的には90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。収容部外壁面144の傾斜角がこの範囲の場合、第3容器状部収容空間163に収容された液体が、収容部周壁部140を乗り越えて収容空間150内に流入することを抑制することができる。
 図29Bに示す実施形態7変形例3では収容部周壁部140の収容部外壁面144の傾斜角が90°未満である。収容部外壁面144の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。収容部外壁面144の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に収容部外壁面144上に擦れ傷が発生する可能性を低減することができる。実施形態7変形例3において収容部側面143の傾斜角は特に限定されないが典型的には90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。収容部側面143の傾斜角がこの範囲の場合、収容部130の収容空間150に収容された液体が、収容部周壁部140を乗り越えて第3容器状部収容空間163内に流入することを抑制することができる。
 図29Cに示す実施形態7変形例4では収容部周壁部140の収容部側面143の傾斜角が90°未満である。収容部側面143の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。このとき実施形態7変形例1と同様に収容部側面143上での擦れ傷の可能性を低減することができる。実施形態7変形例4では収容部外壁面144の傾斜角が90°未満である。収容部外壁面144の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。このとき実施形態7変形例2と同様に収容部外壁面144上での擦れ傷の可能性を低減することができる。
 図示しないが、実施形態7の他の変形例としては、収容部周壁部140の収容部側面143の傾斜角と収容部外壁面144の傾斜角がそれぞれ独立して90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。この変形例では収容部130の収容空間150に収容された液体が収容部周壁部140を乗り越えて第3容器状部収容空間163内に流入すること、及び、第3容器状部収容空間163に収容された液体が、収容部周壁部140を乗り越えて収容空間150内に流入することを抑制することができる。
 本欄で詳述した各変形例では、収容部側面143の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、収容部側面143のうち少なくとも収容部上端145近傍の高さ位置の部分での傾斜角が前記範囲であればよい。同様に、本欄で詳述した各変形例では、収容部外壁面144の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、収容部外壁面144のうち少なくとも収容部上端145近傍の高さ位置の部分での傾斜角が前記範囲であればよい。
<隔壁の形状に関する他の好適な実施形態(1)>
 本発明の実施形態7の細胞処理容器100の隔壁701、702、703の他の好適な変形例を以下に説明する。説明の都合上第1隔壁701についてのみ説明するが、他の第2隔壁702、第3隔壁703も同様の特徴を備えることができる。
 図30は、本発明の実施形態7変形例5の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。実施形態7変形例5では第1隔壁701の一方の面704と容器底部110の容器底面111とが、丸みを帯びた第1の隔壁側面-底面接続曲面301により接続されている。第1の隔壁側面-底面接続曲面301は、上下方向に沿った仮想平面(具体的には、第1隔壁701の一方の面704の法線を含み且つ上下方向に沿った仮想平面)による第1隔壁701及びその近傍の断面上で、本明細書で定義する傾斜角が、第1隔壁701の一方の面704から容器底部110の容器底面111にかけて連続的に変化するように、第1隔壁701の一方の面704と容器底部110の容器底面111とを接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mm、より好ましくは10μm~1mmとなる曲面である。この特徴を有する実施形態7変形例5の細胞処理容器100では、第1隔壁701の一方の面704と容器底部110の容器底面111との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。
 実施形態7変形例5では更に、第1隔壁701の他方の面709と容器底部110の容器底面111とが、丸みを帯びた第2の隔壁側面-底面接続曲面302により接続されている。第2の隔壁側面-底面接続曲面302は、上下方向に沿った仮想平面(具体的には、第1隔壁701の他方の面709の法線を含み且つ上下方向に沿った仮想平面)による第1隔壁701及びその近傍の断面上で、本明細書で定義する傾斜角が、第1隔壁701の他方の面709から容器底部110の容器底面111にかけて連続的に変化するように、第1隔壁701の他方の面709と容器底部110の容器底面111とを接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mm、より好ましくは10μm~1mmとなる曲面である。この特徴を有する実施形態7変形例5の細胞処理容器100では、第1隔壁701の他方の面709と容器底部110の容器底面111との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。
<隔壁の形状に関する他の好適な実施形態(2)>
 本発明の実施形態7の細胞処理容器100の隔壁701、702、703の更なる他の好適な変形例を以下に説明する。説明の都合上第3隔壁703についてのみ説明するが、他の第1隔壁701、第2隔壁702も同様の特徴を備えることができる。
 図31は、本発明の実施形態7変形例6の細胞処理容器100の、図7Aでの領域310に相当する領域の平面図である。実施形態7変形例6では、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144とが、丸みを帯びた第1の隔壁側面-収容部外壁面接続曲面311により接続されており、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121とが、丸みを帯びた第1の隔壁側面-外周壁部内周面接続曲面313により接続されている。第1の隔壁側面-収容部外壁面接続曲面311は、上下方向に垂直な方向に沿った仮想平面による第3隔壁703及びその近傍の断面上で、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144とを滑らかに接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mmとなる曲面である。同様に、第1の隔壁側面-外周壁部内周面接続曲面313は、上下方向に垂直な方向に沿った仮想平面による第3隔壁703及びその近傍の断面上で、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121とを滑らかに接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mmとなる曲面である。第1の隔壁側面-収容部外壁面接続曲面311が存在することにより、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。第1の隔壁側面-外周壁部内周面接続曲面313も同様に、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。
 第1の隔壁側面-収容部外壁面接続曲面311及び第1の隔壁側面-外周壁部内周面接続曲面313はまた、次の好適な効果も奏することができる。第1の隔壁側面-収容部外壁面接続曲面311及び第1の隔壁側面-外周壁部内周面接続曲面313が存在しない場合には以下の課題が存在する。すなわち、細胞処理容器100の第2容器状部収容空間162にオイル、細胞洗浄液、培養液等の液体を収容する場合であって、第3隔壁703の一方の面707、収容部周壁部140の収容部外壁面144及び外周壁部120の外周壁部内周面121が、収容される液体に対して親和性を有する場合(例えば前記液体がオイルであり、且つ、前記各面が疎水性表面である場合)には、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144とが交差する部分、及び、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121とが交差する部分を伝って前記液体が拡散し第2容器状部収容空間162から隣接する第3容器状部収容空間163に移動してしまうという課題がある(実験6参照)。第1の隔壁側面-収容部外壁面接続曲面311及び第1の隔壁側面-外周壁部内周面接続曲面313を設けることにより、この課題を解消することができる。
 本明細書において、ある液体に対してある表面が「親和性を有する」とは、該表面上での該液体の接触角が好ましくは45°以下、より好ましくは30°以下であることを言う。ある液体に対してある表面が「親和性を有さない」とは、該表面上での該液体の接触角が好ましくは60°以上、より好ましくは80°以上であることを言う。接触角の測定温度は細胞処理容器100を使用が想定される温度、例えば20℃~40℃の範囲、において測定すればよい。
 図31に示す実施形態7変形例6では、第3隔壁703の他方の面708と収容部周壁部140の収容部外壁面144とが、丸みを帯びた第2の隔壁側面-収容部外壁面接続曲面312により接続されており、第3隔壁703の他方の面708と外周壁部120の外周壁部内周面121とが、丸みを帯びた第2の隔壁側面-外周壁部内周面接続曲面314により接続されている。第2の隔壁側面-収容部外壁面接続曲面312は、上下方向に垂直な方向に沿った仮想平面による第3隔壁703及びその近傍の断面上で、第3隔壁703の他方の面708と収容部周壁部140の収容部外壁面144とを滑らかに接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mmとなる曲面である。同様に、第2の隔壁側面-外周壁部内周面接続曲面314は、上下方向に垂直な方向に沿った仮想平面による第3隔壁703及びその近傍の断面上で、第3隔壁703の他方の面708と外周壁部120の外周壁部内周面121とを滑らかに接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mmとなる曲面である。第2の隔壁側面-収容部外壁面接続曲面312及び第2の隔壁側面-外周壁部内周面接続曲面314は、それぞれ、第1の隔壁側面-収容部外壁面接続曲面311及び第1の隔壁側面-外周壁部内周面接続曲面313と同様の効果を奏することができる。
<隔壁の形状に関する他の好適な実施形態(3)>
 本発明の実施形態7の細胞処理容器100の隔壁701、702、703の更なる他の好適な変形例を以下に説明する。説明の都合上第1隔壁701についてのみ説明するが、他の第2隔壁702、第3隔壁703も同様の特徴を備えることができ、その場合は下記説明における「第1隔壁701」を「第2隔壁702」又は「第3隔壁703」に適宜置き換え、「一方の面704」、「他方の面709」も「第2隔壁702」又は「第3隔壁703」での対応する符号に適宜置き換えて理解すればよい。
 図32A、32B、32Cは、本発明の実施形態7変形例7、8、9の細胞処理容器100の、図7AでのB-B端面に相当する端面の模式図である。
 図32Aに示す実施形態7変形例7では第1隔壁701の一方の面704の傾斜角が90°未満である。一方の面704の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。一方の面704の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に一方の面704上に擦れ傷が発生する可能性を低減することができる。実施形態7変形例7において第1隔壁701の他方の面709の傾斜角は特に限定されないが典型的には90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。第1隔壁701の他方の面709の傾斜角がこの範囲の場合、第3容器状部収容空間163に収容された液体が第1隔壁701を乗り越えて第1容器状部収容空間161内に流入することを抑制することができる。
 図32Bに示す実施形態7変形例8では第1隔壁701の他方の面709の傾斜角が90°未満である。他方の面709の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。他方の面709の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に他方の面709上に擦れ傷が発生する可能性を低減することができる。実施形態7変形例8において第1隔壁701の一方の面704の傾斜角は特に限定されないが典型的には90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。第1隔壁701の一方の面704の傾斜角がこの範囲の場合、第1容器状部収容空間161に収容された液体が第1隔壁701を乗り越えて第3容器状部収容空間163内に流入することを抑制することができる。
 図32Cに示す実施形態7変形例9では第1隔壁701の一方の面704の傾斜角が90°未満である。一方の面704の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。このとき実施形態7変形例7と同様に一方の面704上での擦れ傷の可能性を低減することができる。実施形態7変形例9では第1隔壁701の他方の面709の傾斜角が90°未満である。他方の面709の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。このとき実施形態7変形例8と同様に一方の面709上での擦れ傷の可能性を低減することができる。
 図示しないが、実施形態7の他の変形例としては、第1隔壁701の一方の面704の傾斜角と他方の面709の傾斜角がそれぞれ独立して90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。この変形例では第3容器状部収容空間163に収容された液体が第1隔壁701を乗り越えて第1容器状部収容空間161内に流入すること、及び、第1容器状部収容空間161に収容された液体が第1隔壁701を乗り越えて第3容器状部収容空間163内に流入することを抑制することができる。
 本欄で詳述した各変形例では、第1隔壁701の一方の面704の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、第1隔壁701の一方の面704のうち少なくとも第1隔壁上端711近傍の高さ位置の部分での傾斜角が前記範囲であればよい。同様に、本欄で詳述した各変形例では、第1隔壁701の他方の面709の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、第1隔壁701の他方の面709のうち少なくとも第1隔壁上端711近傍の高さ位置の部分での傾斜角が前記範囲であればよい。
<隔壁の形状に関する他の好適な実施形態(4)>
 図33には、本発明の実施形態7の細胞処理容器100が外蓋部170を備えた例を示す。外蓋部170の容器内に向いた表面を蓋内面331とする。
 図33に示す実施形態7の細胞処理容器100の例では、第1隔壁701、第2隔壁702、第3隔壁703の容器底面111からの高さd、d、d及び収容部周壁部140の容器底面111からの高さeが、それぞれ独立に、外周壁部120の容器底面111からの高さfよりも小さい又は最大でもfと同じである。説明の都合上第1隔壁701についてのみ説明するが、他の第2隔壁702、第3隔壁703も同様の特徴を備えることができ、その場合は下記説明における「第1隔壁701」を「第2隔壁702」又は「第3隔壁703」に、「d」を「d」又は「d」に適宜置き換えて理解すればよい。
 図33に示す実施形態7の細胞処理容器100において、第1隔壁701の一方の面704が、第1容器状部収容空間161に収容される液体に対して親和性を有する表面(例えば前記液体がオイルであり、第1隔壁701の一方の面704が、親水処理をしていないスチレン表面等の、疎水性表面)であり、且つ、蓋内面331が、前記液体に対して親和性を有する表面である場合には、第1隔壁701の容器底面111からの高さdは、fより1mm以上小さい値であることが好ましい。液体は親和性を有する基材表面上で拡散しやすいが、dがfより1mm以上小さい値であれば、第1容器状部収容空間161に前記液体を第1隔壁701の上端711まで収容し外蓋部170で蓋をした場合であっても、前記液体が蓋内面331を伝って第1隔壁701を乗り越えて第3容器状部収容空間163に移動する可能性が低いため好ましい。この態様は、第1隔壁701の一方の面704を含む「第1容器状部収容空間161を囲う側壁面」の全体、第1隔壁上端711、第1隔壁701の他方の面709、及び容器底面111のうち第1容器状部収容空間161内の領域が前記液体に親和性を有する表面である場合に特に好適である。dの下限は特に限定されないが2mmより大きい値であることが好ましく、3mm以上であることがより好ましく、8mm以上であることがより好ましい。第1隔壁701の一方の面704を含む「第1容器状部収容空間161を囲う側壁面」の全体、及び容器底面111のうち第1容器状部収容空間161内の領域が前記液体に親和性を有する表面である本発明の細胞処理容器100の用い方として、前記領域とは親和性を有さない、細胞等を含む第1液体(例えば領域が疎水性である場合に、水等の親水性の液体)のドロップを前記領域上に形成し、前記ドロップを覆うように前記ドロップとは親和性を有さず前記領域等と親和性を有する第2液体を第1容器状部収容空間161に収容するという用い方がある。例えば、第1液体が細胞10を含む水を基調とする細胞処理液であり、第2液体がオイルである。ドロップを形成する第1液体の量としては15μL以上が一般的である。15μLの第1液体のドロップを、第1液体とは親和性を有さない容器底面111上で形成した時の容器底面111からドロップ頂部までの高さは2mm程度である(実験7参照)。従ってdが2mmよりも大きい値、特に3mm以上であれば、第2液体により、容量15μL以上の第1液体のドロップの全体を被覆することができる。更にdが8mm以上であれば第2液体の液体漏れを防ぐのに好適である。
 また、図33に示す実施形態7の細胞処理容器100において、第1隔壁701の一方の面704が、第1容器状部収容空間161に収容される液体に対して親和性を有する表面であり、且つ、蓋内面331が、前記液体に対して親和性を有さない表面(例えば前記液体がオイルであり、蓋内面331が親水処理された表面)である場合には、第1隔壁701の容器底面111からの高さdは、fと同じ値又はより小さい値とすることができる。この場合、前記液体の蓋内面331を伝った拡散が生じ難いため、前記液体が蓋内面331を伝って第1隔壁701を乗り越えて第3容器状部収容空間163に移動する可能性が低い。この態様は、第1隔壁701の一方の面704を含む「第1容器状部収容空間161を囲う側壁面」の全体、第1隔壁上端711、第1隔壁701の他方の面709、及び容器底面111のうち第1容器状部収容空間161内の領域が前記液体に親和性を有する表面である場合に特に好適である。dの下限は特に限定されないが、上記と同様の理由により2mmより大きい値であることが好ましく、3mm以上であることがより好ましく、8mm以上であることがより好ましい。
 更にまた、図33に示す実施形態7の細胞処理容器100において、第1隔壁701の一方の面704が、第1容器状部収容空間161に収容される液体に対して親和性を有さない表面(例えば前記液体がオイルであり、第1隔壁701の一方の面704が親水処理された表面)である場合には、第1隔壁701の容器底面111からの高さdは、fと同じ値又はより小さい値とすることができる。この態様では、第1隔壁701の一方の面704上での前記液体の拡散が生じ難いため、前記液体が第1隔壁701を乗り越えて第3容器状部収容空間163に移動する可能性が低い。この態様は、第1隔壁701の一方の面704を含む「第1容器状部収容空間161を囲う側壁面」の全体、第1隔壁上端711、第1隔壁701の他方の面709、及び容器底面111のうち第1容器状部収容空間161内の領域が前記液体に親和性を有さない表面である場合に特に好適である。dの下限は特に限定されないが、上記と同様の理由により2mmより大きい値であることが好ましく、3mm以上であることがより好ましく、8mm以上であることがより好ましい。
<容器状部に関する他の好適な実施形態>
 図34は、本発明の実施形態7変形例10の細胞処理容器100の平面図である。
 実施形態7変形例10の細胞処理容器100では、収容部周壁部と、外周壁部と、隣接する一対の隔壁とにより囲われる容器状部内に、更に別の容器状部が形成されている。
 図示する例では、第1容器状部710の底部を構成する容器底部110に、更なる培養用容器状部610が形成されている。培養用容器状部610の具体的な構成は実施形態6に関して上述した通りである。培養用容器状部610の内部の、培養用容器状部収容空間612に細胞及び培養液を収容し、第1容器状部710の第1容器状部収容空間161をオイルで満たして、培養用容器状部610の全体を被覆することができる。このとき、第2容器状部720及び第3容器状部730等の隣接する容器状部では細胞の洗浄、カテーテルの洗浄等の別の操作を行うことができる。更なる培養用容器状部610の個数は特に限定されず1つであってもよいし複数であってもよい。更なる培養用容器状部610の培養用容器状部周壁部611の上端616の、容器底面611からの高さは特に限定されないが、最大でも、前記d、d、e及びfのうち最も小さい値と同じであるかより小さい値であることが好ましく、1mm以上であることが好ましい。前記上限値以下であれば、第1容器状部710の全体を覆うように、第1容器状部収容空間161内にオイルを満たすことができる。前記下限値以上であれば、更なる培養用容器状部610内に収容された細胞や細胞処理液をピペットやカテーテルで取り扱うことが容易である。
 図示する例では更に、第3容器状部730の底部を構成する容器底部110に、更なる洗浄用容器状部620が形成されている。更なる洗浄用容器状部620の具体的な構成は実施形態6に関して上述した通りである。更なる洗浄用容器状部620の個数は特に限定されず1つであってもよいし複数であってもよい。
<外周壁部の形状に関する他の好適な実施形態(1)>
 本発明の実施形態7の細胞処理容器100の外周壁部120に関する他の好適な変形例を以下に説明する。
 図35は、本発明の実施形態7変形例11の細胞処理容器100の、図7AでのC-C端面に相当する端面の模式図である。実施形態7変形例11では外周壁部120の外周壁部内周面121と容器底部110の容器底面111とが、丸みを帯びた外周壁部内周面-底面接続曲面351により接続されている。外周壁部内周面-底面接続曲面351は上下方向に沿った仮想平面(具体的には、外周壁部内周面121の法線を含み且つ上下方向に沿った仮想平面)による外周壁部120及びその近傍の断面上で、本明細書で定義する傾斜角が、外周壁部120の外周壁部内周面121から容器底部110の容器底面111にかけて連続的に変化するように、外周壁部120の外周壁部内周面121と容器底部110の容器底面111とを接続する曲面であり、好適には、該断面上での曲率半径が10μm~15mm、より好ましくは10μm~1mmとなる曲面である。この特徴を有する実施形態7変形例11の細胞処理容器100では、外周壁部120の外周壁部内周面121と容器底部110の容器底面111との間に細胞10が入り込む可能性を低減できるとともに、入り込んだ場合のカテーテルやピペットによる取り出しが容易である。
<外周壁部の形状に関する他の好適な実施形態(2)>
 本発明の実施形態7の細胞処理容器100の外周壁部120に関する更なる他の好適な変形例を以下に説明する。
 図36は、本発明の実施形態7変形例12の細胞処理容器100の、図7AでのC-C端面に相当する端面の模式図である。説明の都合上、実施形態7の細胞処理容器100での外周壁部120のうち、第1隔壁701と第3隔壁703とに挟まれた部分の変形例についてのみ説明するが、外周壁部120のうち、第1隔壁701と第2隔壁702とに挟まれた部分や、収第2隔壁702と第3隔壁703とに挟まれた部分や、実施形態1における外周壁部120も同様の変形を加えることができ、その場合の効果は、下記の各変形例による効果の説明における「第3容器状部収容空間163」を、それぞれ「第1容器状部収容空間161」、「第2容器状部収容空間162」、「外周空間160」に置き換えて理解すればよい。
 図36に示す実施形態7変形例12では外周壁部120の外周壁部内周面121の傾斜角が90°未満である。外周壁部内周面121の傾斜角は更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である。外周壁部内周面121の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に外周壁部内周面121上に擦れ傷が発生する可能性を低減することができる。
 図示しないが、実施形態7の他の変形例としては、外周壁部120の外周壁部内周面121の傾斜角が90°(実質的に90°、例えば89.5°~90.5°も含む)又は90°よりも大きく、好ましくは90°である。この変形例では第3容器状部収容空間163に収容された液体が外周壁部120を乗り越えて容器外に流出することを抑制することができる。
 図示しないが、実施形態7の他の変形例としては、外周壁部120の外周壁部外周面124の傾斜角が90°未満、更に好ましくは70°~89°、特に好ましくは83°~85°、最も好ましくは85°である例が挙げられる。外周壁部外周面124の傾斜角がこの範囲であるとき、細胞処理容器100を、樹脂材料を金型に充填して成形する場合に、金型から細胞処理容器100を取り出す際に外周壁部外周面124上に擦れ傷が発生する可能性を低減することができる。
 本欄で詳述した各変形例では、外周壁部内周面121の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、外周壁部内周面121のうち外周壁部上端122近傍の高さ位置の部分での傾斜角が前記範囲であればよい。同様に、本欄で詳述した各変形例では、外周壁部外周面124の高さ方向の全体に亘って傾斜角が上記の各範囲であることが好ましいが必須ではなく、外周壁部外周面124のうち外周壁部上端122近傍の高さ位置の部分での傾斜角が前記範囲であればよい。
<外周壁部の形状に関する他の好適な実施形態(3)>
 本発明の細胞処理容器100は、外周壁部120の外周壁部上端122の容器下面112からの高さaは特に限定されないが、15mm以下であることが好ましい。aが15mm以下であれば、細胞処理容器100を複数個、例えば5~15個、特に10個、重ねて静置した場合でも、安定して静置することができる。aの下限は特に限定されないが1mm以上であることが好ましい。aが1mm以上であれば、細胞処理容器100内に収容された細胞や細胞処理液をピペットやカテーテルで取り扱うことが容易である。
<外周壁部の形状に関する他の好適な実施形態(4)>
 図37Aには、実施形態7変形例13に係る本発明の細胞処理容器100の平面図を示す。図37Bには、実施形態7変形例13に係る本発明の細胞処理容器100の、図37Aに示すD-D断面の断面模式図を示す。
 この実施形態7変形例13では、外周壁部120が以下の特徴を備える。
 実施形態7変形例13では外周壁部120の外周側に位置する外周壁部外周面124は少なくとも1つの段が形成された段付き構造を有する。具体的には、外周壁部外周面124の下端寄りの部分に、傾斜角が90°よりも大きく上方に行くほど周囲径が拡大する形状の傾斜面124’を含み、外周壁部外周面124の上端寄りの部分124’’’と傾斜面124’とは接続面124’’により接続され段が形成されている。外周壁部外周面124が段付き構造であることにより、細胞処理容器100を手で移動させる操作が容易になり、操作者が細胞処理容器100を落とす危険性を低減できる。
 また実施形態7変形例13では外周壁部120の下端に、容器底部110の容器底部下面113よりも下方に突出した底突出部125が全周に亘って形成されている。底突出部125の下端により容器下面112が規定される。
 また実施形態7変形例13では外周壁部120の一部に、外周壁部120が内方に落ち窪んで形成される窪み部371が存在する。図37Cには、細胞処理容器100の外周壁部120の、窪み部371の近傍部分の斜視図である。窪み部371は、細胞処理容器100の方向や位置などを識別するためのマーキングの一例である。顕微鏡観察等の際に、細胞処理容器100の方向や位置を、マーキングをもとに容易に把握することができる。マーキングの種類は特に限定されず、接触して識別可能なものであってもよいし、視覚的に識別可能なものであってもよいし、他の手段により識別可能なものであってもよい。細胞処理容器100に含まれるマーキングの個数は1つであってもよいし複数であってもよい。実施形態7変形例13の細胞処理容器100では、操作者が外周壁部外周面124に触れ、窪み部371に基づいて細胞処理容器100の方向や位置を識別することができる。
 図示しないが、本発明の細胞処理容器100の実施形態7変形例13の更なる変形例である実施形態7変形例13’では、収容部上端145の容器下面112からの高さbと、第1隔壁上端711の容器下面112からの高さcと、第2隔壁上端712の容器下面112からの高さcと、第3隔壁上端713の容器下面112からの高さcとが同一であり、更に好ましくは、外周壁部上端122の容器下面112からの高さaよりもb、c、c、cは小さく、外周壁部上端122、収容部上端145、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713の相対的な高さの関係は図11と同一である。実施形態7変形例13’において、第1隔壁701、第2隔壁702、第3隔壁703の容器底面111からの高さd、d、d及び収容部周壁部140の容器底面111からの高さeは好ましくは同一であり、その値は特に限定されないが4mmが例示できる。
<マーキングに関する他の好適な実施形態(1)>
 図38には、実施形態7変形例14に係る本発明の細胞処理容器100の平面図を示す。D-D断面は実施形態7変形例13について図37Bに示したのと同一である。
 この実施形態7変形例14もまた、外周壁部120にマーキングが設けられた例であり、具体的には、外周壁部120の一部が外側に突出して形成されるマーキング突起381を備える。実施形態7変形例14の細胞処理容器100では、操作者が外周壁部外周面124に触れマーキング突起381を元に細胞処理容器100の方向や位置を識別することができる。
<マーキングに関する他の好適な実施形態(2)>
 図39には、実施形態7変形例15に係る本発明の細胞処理容器100の側面図を示す。細胞処理容器100の他の部分の構成は実施形態7に関して説明した通りである。
 実施形態7変形例15は、外周壁部120に視覚的に識別可能なマーキング391、392が設けられた例である。視覚的に識別可能なマーキング391、392は特に限定されず、外周壁部120の表面に描かれた着色した線であってもよいし、樹脂製の外周壁部120の内部に含まれる視覚的に認識できるウェルドライン等の線であってもよい。
 マーキング391、392は図示する例では2つ設けられているが、個数は特に限定されず1つであってもよいし、2又は3以上の複数であってもよい。複数のマーキングを設ける場合、1つのマーキング391と他のマーキング392とを異なる長さや形状とすることで、細胞処理容器100の上下や左右を更に容易に識別できるようにすることができる。
<マーキングに関する他の好適な実施形態(3)>
 本発明の細胞処理容器100において、マーキングは容器底部110に設けてもよい。容器底部110にマーキングを設けることにより、顕微鏡観察時に細胞処理容器100の方向や位置を容易に把握することができる。
 図40Aは、実施形態7変形例16に係る本発明の細胞処理容器100の平面図を示す。実施形態7変形例16の細胞処理容器100は、容器底部110の一部に識別ライン401を備える。図40Bには図40AにおけるE-E端面の端面図を示す。識別ライン401は、容器底部110の表面である容器底面111の一部がわずかに隆起して形成することができる。図示しないが、容器底部110の容器下面112に識別ライン401を形成してもよい。
<マーキングに関する他の好適な実施形態(4)>
 図41Aは、実施形態7変形例17に係る本発明の細胞処理容器100の平面図を示す。実施形態7変形例17の細胞処理容器100は、容器底部110の一部に識別円411~416を備える。識別円411~416は、図41Bに示すように、容器底部110の容器底面111上の僅かな段差により形成することができる。図示しないが、容器底部110の容器下面112に識別ライン401を形成してもよい。図示する例では複数の識別円411~416が非回転対称的に配置されており、観察者は、細胞処理容器100の方向を容易に識別することができる。
 図41Aに示すように、比較的大きい寸法の識別円411、412、413、414と、比較的小さい寸法の識別円415、416とを、容器底部110に、非回転対称的に配置することにより、細胞処理容器100の上下及び左右の方向を更に容易に識別できるようにすることが好ましい。また、図示しないが、寸法及び/又は形状の異なる3種類以上の識別円を容器底部110に配置してもよい。
<マーキングに関する他の好適な実施形態(5)>
 図42は、実施形態7変形例18に係る本発明の細胞処理容器100の平面図を示す。実施形態7変形例18の細胞処理容器100は、容器底部110の一部に十字状の識別印421、422、423を備える。十字状の識別印421、422、423は、例えば、容器底部110の容器下面112上に僅かな段差により形成することができる。図示する例では複数の識別印421、422、423が非回転対称的に配置されており、観察者は、細胞処理容器100の方向を容易に識別することができる。また、図示しないが、寸法及び/又は形状の異なる2種類以上の識別印を容器底部110に配置して、細胞処理容器100の上下及び左右の方向を更に容易に識別できるようにしてもよい。
<マーキングに関する他の好適な実施形態(6)>
 図43は、実施形態7変形例19に係る本発明の細胞処理容器100の平面図を示す。実施形態7変形例19の細胞処理容器100は、容器底部110の一部に、視覚的に識別可能なマーキング431、432を備える。マーキング431、432の種類は特に限定されず、容器底部110の表面に描かれた着色した線であってもよいし、樹脂製の容器底部110の内部に含まれる視覚的に認識できるウェルドライン等の線であってもよい。図示する例では複数のマーキング431、432が非回転対称的に配置されており、観察者は、細胞処理容器100の方向を容易に識別することができる。
 マーキング431、432は図示する例では2つ設けられているが、個数は特に限定されず1つであってもよいし、2又は3以上の複数であってもよい。複数のマーキングを設ける場合、1つのマーキング431と他のマーキング432とを異なる長さや形状とすることで、細胞処理容器100の上下や左右を更に容易に識別できるようにすることができる。
<マーキングに関する他の好適な実施形態(7)>
 複数種の異なるマーキングを組み合わせて用いることができる。
 図44は、実施形態7変形例20に係る本発明の細胞処理容器100の平面図を示す。実施形態7変形例20の細胞処理容器100は、マーキングの1種として窪み部371を備える実施形態7変形例13(図37A、37B、37C)又は実施形態7変形例13’に係る細胞処理容器100の容器底部110に、実施形態7変形例16(図40A、40B)と同様の識別ライン401と、実施形態7変形例17(図41A、41B)と同様の識別円411~416とを更に形成した例である。
 このように複数種のマーキングを組み合わせて用いることで、細胞処理容器100の上下、左右の方向を更に容易に識別することが可能となる。
 実施形態7変形例13’に係る細胞処理容器100の容器底部110に、識別ライン401と、識別円411~416とを形成した場合、好ましくはbとcとcとcとが同一であり、更に好ましくはaよりもb、c、c、cは小さく、外周壁部上端122、収容部上端145、第1隔壁上端711、第2隔壁上端712及び第3隔壁上端713の相対的な高さの関係は図11と同一である。更に、好ましくはd、d、d及びeは同一であり、その値は特に限定されないが4mmが例示できる。
<マイクロタグを組み合わせる好適な実施形態(1)>
 本発明の細胞処理容器100には、更に情報を記録し、適当な読み取り装置で記録された情報を読み取ることができるマイクロタグを結合させることができる。マイクロタグとしてはRF(radio frequency)タグを利用することができる。RFタグとしては電池を内蔵せず小型化が可能な受動タグが好適である。
 図1C、20、22、33に示すような外蓋部170を備えた本発明の細胞処理容器100や、図21に示すような中蓋部210を備えた本発明の細胞処理容器100では、外蓋部170又は中蓋部210(以下これらを「蓋部」と総称する)に第1のマイクロタグを設け、細胞処理容器100の蓋部以外の容器部分(以下「容器本体部」と称する)に第2のマイクロタグを設けることが好ましい。
 蓋部を備える細胞処理容器100を特定の患者に由来する細胞又は特定の患者に移植する細胞の処理に用いる場合に、マイクロタグに記録する情報の組み合わせとしては以下に挙げるような態様を例示できる。
(態様1)蓋部の第1のマイクロタグに、該蓋部を特定するID番号(蓋部ID番号)を記憶させ、容器本体部の第2のマイクロタグに、該容器本体部を特定するID番号(容器本体部ID番号)を記憶させる。別途、患者を特定するID番号(患者ID番号)を設定し、特定の蓋部ID番号と、容器本体部ID番号と、患者ID番号とを関連付けたデータを作成する。関連付けたデータはサーバなどに別途記録してデータベースとして活用してもよい。また、前記蓋部ID番号や前記容器本体部ID番号は、マイクロタグがもともと保持している、マイクロタグごとに異なるユニークIDを利用しても良いし、別途IDを発番しマイクロタグに書き込み記憶させたものであってもよい。
(態様2)患者を特定するID番号(患者ID番号)を設定し、蓋部の第1のマイクロタグと、容器本体部の第2のマイクロタグに、それぞれ前記患者ID番号を記憶させる。
 いずれの態様でも、特定の患者に由来する細胞又は特定の患者に移植する細胞の処理に用いる細胞処理容器100の蓋部と容器本体部を、マイクロタグに記憶された情報を読み取ることにより特定することができるため、容器の取り違いを防止することとができるとともに、追跡可能性(トレーサビリティ)の向上を図ることができる。また、蓋部と容器本体部が同一患者を対象としたものではない場合に警告を発するシステムや、患者のカルテの患者ID番号を読み、第1及び/又は第2のマイクロタグに記録された情報を読み取って不一致がある場合に警告を発するシステムや、各作業の開始時と終了時に第1及び/又は第2のマイクロタグに記録された情報を読みとって該情報と時刻とを記録して、作業の履歴を残してトレーサビリティを向上させるシステム等の各種システムを構築することができる。
 マイクロタグの平面視形状は特に限定されず円形(真円、楕円、扁平した真円、扁平した楕円等も含む)であっても矩形であってもよく、その他の多角形形状であってもよい。   
 RFタグの周波数帯は特に限定されず13.56MHzでも、860MHz~960MHzでも、2.45GHzでもよい。
 マイクロタグの読み取り距離は特に限定されない。例えば、蓋部と容器本体部の両方にそれぞれマイクロタグを結合させる場合に、両方のマイクロタグの情報を同時に読み取ることができる程度に無線出力やアンテナを組み合わせてもよいし、敢えて数mm程度の距離でしか通信できないようにして細胞処理容器100を特定の場所に確実に設置したことを確認できるようにしてもよい。
 マイクロタグは蓋部と容器本体部の両方に結合させてもよいし、どちらか一方のみに結合させてもよい。細胞は容器本体部に収容されることから、少なくとも容器本体部にマイクロタグを結合させることが好ましい。
 蓋部及び容器本体部のうち少なくとも一方に複数のマイクロタグを結合させてもよいし。複数のタグを設けた場合、通信範囲が広がる効果や、1つのタグが壊れた場合のバックアップができる効果が期待できる。
 マイクロタグの種類は特に限定されない。小型なマイクロタグの一例として、RFタグであるミューチップ(株式会社日立製作所の商品名)が例示できる。
<マイクロタグを組み合わせる好適な実施形態(2)>
 本発明の細胞処理容器100にマイクロタグを結合させる形態は特に限定されないが、作業の邪魔にならない箇所や、観察時に視野を遮らない位置にマイクロタグを結合させることが好ましい。
 例えば、図45では、実施形態7変形例13(図37A、37B、37C)に係る本発明の細胞処理容器100の、窪み部371の内面にマイクロタグ451を結合させた例を示す。マイクロタグ451は小さいため窪み部371に収容することができ、作業の邪魔にならない。細胞処理容器100にマイクロタグ451を結合させる方法は特に限定することができず、接着剤や粘着テープで結合したり、樹脂に包埋して細胞処理容器100の表面(図示する例では窪み部371の内面)に結合させることができる。窪み部371にマイクロタグ451を収容し樹脂で包埋して結合する場合には、マイクロタグ451を収容した窪み部371を樹脂で完全に満たして樹脂層の表面が外周壁部120の外周壁部外周面124の下寄りの部分124’と一致するようにしてもよいし、窪み部371を樹脂で部分的に埋めて窪みが残るようにしてもよい。
 また図46では、実施形態7変形例13(図37A、37B、37C)に係る本発明の細胞処理容器100の、容器底部110の容器底部下面113上にマイクロタグ461を結合させた例を示す。この例では、細胞処理容器100のより容器下面112よりも容器底部下面113は窪んだ位置に位置するため、マイクロタグ461を容器底部下面113に配置しても作業の邪魔にはならない。
 細胞処理容器100の容器底部110にマイクロタグ461を配置する場合、作業者が上から顕微鏡や目視で観察したり、下から顕微鏡で観察する場合に観察の邪魔にならないことが好ましい。例えば容器底部110の容器内面である容器底面111の平面視の面積が800mm以上、例えば800mm~2000mm、例えば900mm~1000mmである場合、好ましくは容器底部110が平面視円形である場合、マイクロタグ(チップ及びアンテナを含む)が容器底面111と重複する部分の面積の、容器底面111の面積に対する割合は5%以下であることが好ましく、1%以下であることがより好ましく、0.1%以下であることが特に好ましい。前記割合が5%以下であれば容器底面111上での細胞の観察がマイクロタグにより妨げられる可能性が低く、前記割合が低いほど前記可能性が更に低い。容器底面111の平面視での全体形状が直径Dの円形である場合、マイクロタグは0.1D以下の直径の円の範囲内に収まる大きさであれば、前記割合は1%以下となる。
<細胞処理容器の形状に関する他の好適な実施形態>
 本発明の細胞処理容器100の表面を構成する各面は断面が直線形状となる面である必要はく、断面が曲線となるような面であってもよい。また本発明の細胞処理容器100の各部位は歪んだ形状であってもよい。
 図47では、実施形態1に係る本発明の細胞処理容器100の、外周壁部120が径方向内側に向けて部分的に窪んだ変形例の、図1AでのX-X断面に相当する断面の模式図を示す。この変形例では、外周壁部120の外周側面124に窪みがあるため手で持ち易いため好ましい。
 図48では、実施形態1に係る本発明の細胞処理容器100の、容器底部110の中央部分が容器内に向け部分的に突出した変形例の、図1AでのX-X断面に相当する断面の模式図を示す。この変形例では、容器底部110の、収容部130と外周壁部120とに挟まれた容器底面111は、外周壁部120の近傍において外周空間160の深さが増す(すなわち容器下面112に近づく)ように形成されているため、細胞処理容器100の収容部130の外の容器底面111上にある細胞が容器底面111の周縁領域に集まり易く、細胞を探し易いため好ましい。
 図49では、実施形態1に係る本発明の細胞処理容器100の、外周壁部120が径方向内側に向けて部分的に窪み且つ容器底部110の中央部分が容器内に向け部分的に突出した変形例の、図1AでのX-X断面に相当する断面の模式図を示す。図49に示す変形例は、図47に示す変形例と図48に示す変形例の両方の効果を有する。
<1.容器の製造>
<製造例1>
 図1A~Cに示す形状の実施形態1の細胞処理容器100を作製した。
 容器底部110の周縁に、内周輪郭が直径35mmの円形であり、容器下面112から外周壁部上端122までの高さが約10mmの外周壁部120を備え、容器底部110の中央に収容部130を有する細胞処理容器100を作製した。収容部形成面141は平面視で直径13mmの円形である。収容部形成面141は収容部底面400と、収容部底面142の周縁から起立する収容部側面143とを含む。収容部形成面141の、収容部130の形成面141の最深部148から上端149までの高さは5.8mmとし、収容部側面143の底面側面交差部分147から上端149までの高さは5mmとした。収容部底面400のうち収容部底傾斜面142は、傾斜角7°で、平面視での収容部底面400の重心位置が点状の最深部148となるように窪んだ逆円錐形状とした。収容部側面143の傾斜角は85°とした。収容空間150の容量は約660μLであった。最深部148は実質的に幅を有さない点状であり、細胞処理容器100を平面視したとき直径3mmの範囲内に収まる形状である。
<製造例2>
 収容部底面400の逆円錐形状の頂点に相当する最深部148が、平面視での収容部底面400の重心から偏心した位置にある以外は製造例1と同じ設計とした図2Aおよび2Bに示す実施形態2の細胞処理容器100を作製した。
<製造例3>
 図3Aおよび3Bに示す形状の実施形態3の細胞処理容器100を作製した。
 容器底部110の周縁に、内周輪郭が直径35mmの円形であり、容器下面112から外周壁部上端122までの高さが約10mmの外周壁部120を備え、容器底部110の中央に、平面視での形状が長方形の収容部130を有する細胞処理容器100を作製した。収容部形成面141は平面視で短辺が5mm、長辺が13mmの長方形であり、収容部形成面141の最深部148から上端149までの高さは5.8mmとし、収容部側面143の底面側面交差部分147から上端149までの高さは5mmとした。収容部底傾斜面142は、長辺と接続する部分の傾斜角7°、短辺と接続する部分の傾斜角が約18°、平面視での収容部底面400の重心が最深部148となるように窪んだ逆四角錐形状とした。収容部側面143の傾斜角は85°とした。収容空間150の容量は約325μLであった。最深部148は実質的に幅を有さない点状であり、細胞処理容器100を平面視したとき直径3mmの範囲内に収まる形状である。
<製造例4>
 収容部側面143の底面側面交差部分147から上端149までの高さが3mmである点を除いて製造例1の細胞処理容器と同様の容器を製造した。
<製造例5>
 収容部側面143の底面側面交差部分147から上端149までの高さが7mmである点を除いて製造例1の細胞処理容器と同様の容器を製造した。
<2.作業性の検証>
<実験1>
 下記表に示す実施例1~7及び比較例1、2の細胞処理容器を製造した。
 実施例4の容器は、上記の製造例1で得られた容器である。実施例3の容器は、上記の製造例4で得られた容器である。実施例5の容器は、上記の製造例5で得られた容器である。
 他の実施例及び比較例1,2の容器は、全体形状、収容部底傾斜面142の傾斜角、及び収容部側面143の傾斜角は実施例4の容器と同一であり、収容部形成面141の最深部148から上端149までの高さ(表中での「形成面高さ」)と、収容部側面143の底面側面交差部分147から上端149までの高さ(表中での「側面高さ」)と、収容部形成面141の平面視での直径(表中での「直径」)と、収容空間150の容量が下記表に示す寸法である。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7、比較例1、2の容器の操作性を評価した。
 収容部130の収容空間150にHTFメディウム(IRVINE SCIENTIFIC社製)を満たし、胚に相当する大きさのガラスビーズ(直径約150μm)を入れ、カテーテル(KITAZATO製 ET catheter(カテーテルサイズ4Fr))を収容空間150内に浸漬して、カテーテルによる吸引作業が容易であるか否か(評価項目1)、並びに、カテーテル作業を顕微鏡観察しながら実施した際にカテーテル先端が周壁部140にぶつかる、或いは、顕微鏡レンズにぶつかることで作業がしにくいといった問題がないか否か(評価項目2)を評価した。
 結果を表の「カテーテル作業」の欄に示す。評価項目1及び評価項目2に関してそれぞれ作業性がよいものを○(「A」としてもよい)、中程度のものを△(「B」としてもよい)、悪いものを×(「C」としてもよい)とし、評価項目1及び2のどちらか一方でも×であれば「カテーテル作業」の評価は×(「C」としてもよい)とし、評価項目1及び2のどちらでも×がなく且つ一方又は両方が△であれば「カテーテル作業」の評価は△(「B」としてもよい)とし、評価項目1及び2の両方について○であれば「カテーテル作業」の評価は○(「A」としてもよい)とした。
 いずれの実施例1~7の容器はいずれも「カテーテル作業」が×となる容器はなかった。ただし、実施例1の容器については、評価項目1に関して△であり、カテーテルによる吸引作業の際にカテーテルに気泡が入り易い傾向が認められた。実施例7の容器は評価項目2に関して△であり、カテーテルの傾きを変更できる範囲が限定され、作業が困難になり胚の吸引等に時間がかかり易くミスが増える傾向が認められた。
 比較例1の容器は、評価項目1に関して×であり、カテーテルによる吸引作業の際にカテーテルに気泡が入り込む問題が顕著であった。
 比較例2の容器は、評価項目2に関して×であり、カテーテルの傾きを変更できる範囲が限定され、作業が困難になり胚の吸引等に時間がかかりミスが増える問題が顕著であった。
 上記評価試験の間に収容空間150内の培地液が揮発するかどうかを確認したところ、実施例1及び2の容器では若干量の培地液の揮発が確認された。比較例2の容器では培地液の揮発量が多いことが確認された。
<実験2>
 下記表に示す実施例8~13及び比較例3、4の細胞処理容器を製造した。
 実施例8~13及び比較例3、4の容器は、全体形状、収容部底傾斜面142の傾斜角、及び収容部側面143の傾斜角は製造例3の容器と同一であり、収容部形成面141の最深部148から上端149までの高さ(表中での「形成面高さ」)と、収容部側面143の底面側面交差部分147から上端149までの高さ(表中での「側面高さ」)と、収容部形成面141の平面視での長軸長さ及び短軸長さと、収容空間150の容量とが下記表に示す寸法である。
Figure JPOXMLDOC01-appb-T000002
 実施例8~13、比較例3、4の容器の作業性及び方向認識性を評価した。
 収容部130の収容空間150にHTFメディウム(IRVINE SCIENTIFIC社製)を満たし、カテーテル(KITAZATO製 ET catheter(カテーテルサイズ4Fr))を、収容部130の開口の長軸方向に沿って、短軸側から収容空間150に挿入し、中央にアクセスした時の、作業性(評価項目3)と方向認識性(評価項目4)を確認した。
 評価項目3及び4のそれぞれについて、良好のものを○(「A」としてもよい)、中程度のものを△(「B」としてもよい)、悪いものを×(「C」としてもよい)とし、評価項目3及び4のどちらか一方でも×であれば「カテーテル作業」の評価は×(「C」としてもよい)とし、評価項目3及び4のどちらでも×がなく且つ一方又は両方が△であれば「カテーテル作業」の評価は△(「B」としてもよい)とし、評価項目3及び4の両方について○であれば「カテーテル作業」の評価は○(「A」としてもよい)とした。結果を上記表の「カテーテル作業」の欄に示す。
 実施例8~13の容器のなかで、評価項目3及び4の一方又は両方が×である容器はなかった。ただし実施例8の容器は、短軸方向幅がカテーテル先端幅と同等かそれ以下のため作業性が若干悪く評価項目3に関して△であった。実施例13の容器は、収容部130の開口は長方形であるが外見上は長軸方向と短軸方向の区別が難しく、また、短軸長が比較的長いため顕微鏡観察時には視野内で土手構造が見えにくいことから、方向認識性が若干悪く評価項目4に関して△であった。
<実験3>
 本実験では実施例4の容器(製造例1で得られる容器)を用いた。
 本実験で比較例として用いた比較例5の容器は、収容部底面400が、周縁の輪郭が平面視において円形であり、傾斜面が0°である平坦な平面により形成されており、収容部側面143の高さが5mmである点以外は実施例4の容器と同様の構造を有する容器である。この比較例5の容器では、収容部底面400は直径13mmの円により形成されており、容器を平面視したとき直径3mmの範囲内に収まる形状ではない。
 各容器の収容部収容空間内に直径150μmの球状のガラスビーズ1個と、HTFメディウム(IRVINE SCIENTIFIC社製)、400μLとを収容した。収容したガラスビーズを顕微鏡により観察後、容器全体を持って僅かに振動させ、静置した。静置後、顕微鏡によりガラスビーズが初期の配置位置にあるかを確認した。
 実施例4の容器ではガラスビーズは、振動前も後もともに、最深部148を含む細胞保持領域146に位置していた(評価○)。ここで評価○は評価Aと表してもよい。
 比較例5の容器ではガラスビーズは、振動後は、振動前の底面上の位置から大きく移動し、底面の辺縁の側面と接触する部分に位置しており、観察が困難であった(評価×)。ここで評価×は評価Cと表してもよい。
Figure JPOXMLDOC01-appb-T000003
<実験4>
 全体形状、収容部底傾斜面142の傾斜角及び収容部側面143の傾斜角は実施例4の容器と同一であり、収容部形成面141の最深部148から上端149までの高さを4mmとした容器を実施例14の細胞処理容器100とした。この容器ではθは全て32°であり、θは全て27°である。
 実施例14の容器を水平なステージ上に載置し、収容部130の収容空間150にHTFメディウム(IRVINE SCIENTIFIC社製)を満たし、細胞保持領域146に胚に相当する直径約150μmの球形のガラスビーズを加えた。前記ガラスビーズに焦点を合わせて倍率20倍の実体顕微鏡で観察しながら、カテーテル(KITAZATO製 ET catheter(カテーテルサイズ4Fr))によりガラスビーズをカテーテル先端から4mm程度吸い上げる操作を行った。このとき、カテーテルの長さ方向と前記ステージの載置面に沿った平面とがなす角度のうち鋭角を60°から40°の範囲内となるようにした。その結果、前記鋭角が60°~50°ではカテーテル内の細胞がぼやけで見えなくなるという問題があるが、45°以下であれば視野内で細胞を視認することができ、40°以下であればこのような問題がないことが明らかとなった。
<実験5>
 実施例14の細胞処理容器100を水平なステージ上に載置し、半径40mmの円筒形の対物レンズを備え対物レンズの光軸が前記ステージの載置面に垂直な倍率20倍の実体顕微鏡で焦点を最深部148に合わせたとき、対物レンズと前記最深部との距離は114mmとなった。このためθ及びθは共に最も大きい部分において81°以下であれば、前記顕微鏡において最深部148を観察しながらカテーテル(KITAZATO製 ET catheter(カテーテルサイズ4Fr))を最深部148に近づける操作の際にカテーテルが対物レンズ、収容部周壁部140及び外周壁部120に干渉しないことが明らかとなった。θ及びθの下限は特に限定されず1°でも問題はない。
<実験6>
 図11に示す本発明の実施形態11に係る細胞処理容器100を形成した。
 第1隔壁701、第2隔壁702、第3隔壁703の容器底面111からの高さd、d、d(図7A参照)、及び収容部周壁部140の容器底面111からの高さe(図7A参照)を全て4mmとした。収容空間150の形成面上端149の直径が13mm、7mm、3.8mmの3種類の容器を作成した。
 細胞処理容器100の形成面141、第2容器状部収容空間162を囲う側壁面、容器底面111等の容器内の面は全て疎水性表面とした。
 この細胞処理容器100では、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121はそれぞれ直接交差しており曲面処理されていない。
 この細胞処理容器100の第2容器状部収容空間162に、オイルを0.5mmの深さとなるように加えたところ、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121とが交差する部分を伝ってオイルが拡散して第3容器状部収容空間163に流入した。
 一方、この細胞処理容器100の収容部130の収容空間150にオイルを、形成面141の上端である形成面上端149から下方に0.5mm離れた位置に液面が位置するように加えたところ、形成面上端149の直径が13mm、7mm又は3.8mmのいずれの容器を用いた場合でも、オイルは形成面上端149を越えることなく収容空間150内に留まった。
 このことから、図31に示すように、第3隔壁703の一方の面707と収容部周壁部140の収容部外壁面144、第3隔壁703の一方の面707と外周壁部120の外周壁部内周面121を、それぞれ丸みを帯びた第1の隔壁側面-収容部外壁面接続曲面311及び第1の隔壁側面-外周壁部内周面接続曲面313により滑らかに接続すれば、第2容器状部収容空間162から第3容器状部収容空間163へのオイルの拡散を防止できることが明らかとなった。
<実験7>
 細胞培養において培養液を基板上でドロップ状にし、培養液の蒸発防止のためにオイルなどで該ドロップを被覆し、ドロップ内で細胞を培養する場合がある。
 受精卵を培養液のドロップ中で培養する場合、ドロップを形成する培養液量は15μL又はそれ以上であることが通常である。
 そこで、水に各成分が溶解した水溶液である細胞培養液15μLを、親水性処理が施されていない疎水性のポリスチレン基材の表面に載せてドロップを形成し、該ドロップの基材表面からの高さを確認した。その結果ドロップの高さは2mmであることが確認された。該ドロップを被覆するためには2mmよりも深いオイルの層が必要である。
100・・細胞処理容器、110・・容器底部、120・・外周壁部、130・・収容部、150・・収容部の収容空間、141・・形成面、142・・収容部底傾斜面、148・・最深部、146・・細胞保持領域
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (13)

  1.  容器底部と、
     前記容器底部に設けられた、細胞及び細胞処理液を収容するための収容空間が形成され上向きに開口した1つ以上の収容部と
    を備える細胞処理容器であって、
     前記収容空間の容量が200μl以上1000μl以下であり、
     前記収容部の、前記収容空間を形成する面である形成面は、前記収容部の深さが最も深い部分である最深部と、前記最深部の周りを囲うように形成された傾斜面とを有し、
     前記傾斜面は前記最深部と連続しており、
     前記最深部は、前記細胞処理容器の平面視において直径3mmの円の範囲内に収まるように形成されている、
    前記細胞処理容器。
  2.  前記容器底部の周縁から起立した外周壁部を備える、請求項1に記載の細胞処理容器。
  3.  前記傾斜面は、前記形成面の周縁から前記最深部に亘って形成されている、請求項1又は2に記載の細胞処理容器。
  4.  前記形成面の、前記最深部から上端までの高さが2mm以上12mm以下である、請求項1又は2に記載の細胞処理容器。
  5.  前記細胞処理容器を水平面上に載置したときに、前記形成面上の、前記最深部に含まれる1点と、前記形成面の上端に含まれる1点とを結んだ仮想直線が前記水平面となす鋭角のうち最も小さい角度が45°以下である、請求項1又は2に記載の細胞処理容器。
  6.  前記収容部の開口は、前記細胞処理容器の平面視において一方向に長い形状を有する、請求項1又は2に記載の細胞処理容器。
  7.  前記細胞処理容器の平面視において前記収容部の開口の短軸方向幅は3mm以上15mm以下である、請求項6に記載の細胞処理容器。
  8.  前記収容部の開口は、前記細胞処理容器の平面視において、第一部分と、該第一部分から少なくとも一方向に延在した1つ以上の第二部分とが組み合わされた形状を有する、請求項1又は2に記載の細胞処理容器。
  9.  前記形成面のうち、前記最深部と、前記傾斜面の前記最深部に隣接する部分との少なくとも一方により、細胞を保持する細胞保持領域が形成されており、
     前記傾斜面は、前記細胞保持領域において、一定の勾配で傾斜した傾斜面である、請求項1又は2に記載の細胞処理容器。
  10.  前記傾斜面の前記細胞保持領域での表面粗さは最大高さRy値で4.0μm未満である、請求項9に記載の細胞処理容器。
  11.  前記形成面のうち、前記最深部と、前記傾斜面の前記最深部に隣接する部分との少なくとも一方により、細胞を保持する細胞保持領域が形成されており、
     前記細胞保持領域において、前記傾斜面の対向する部分同士が成す角は90°よりも大きい、請求項1又は2に記載の細胞処理容器。
  12.  前記形成面は、前記収容空間の底を形成する収容部底面と、前記収容部底面の周縁から起立し前記収容空間を囲う収容部側面とを備え、
     前記収容部底面は前記傾斜面を有し、
     前記収容部底面と前記収容部側面とが交差する部分において、前記収容部底面と前記収容部側面とが成す角は90°よりも大きい請求項1又は2に記載の細胞処理容器。
  13.  前記容器底部に、細胞及び/又は液体を収容するための容器状部収容空間が形成された1つ以上の容器状部が更に設けられている、請求項1又は2に記載の細胞処理容器。
PCT/JP2016/065359 2015-05-25 2016-05-24 細胞処理容器 WO2016190322A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574477A JP6123963B1 (ja) 2015-05-25 2016-05-24 細胞処理容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-105796 2015-05-25
JP2015105796 2015-05-25
JP2015-156472 2015-08-06
JP2015156472 2015-08-06

Publications (1)

Publication Number Publication Date
WO2016190322A1 true WO2016190322A1 (ja) 2016-12-01

Family

ID=57393972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065359 WO2016190322A1 (ja) 2015-05-25 2016-05-24 細胞処理容器

Country Status (2)

Country Link
JP (2) JP6123963B1 (ja)
WO (1) WO2016190322A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234600A1 (es) * 2017-06-21 2018-12-27 Vergara Alcaide Francisco Pipeta de sujeción de ovocitos en procedimientos de inyección espermática intracitoplasmática
JP2020080722A (ja) * 2018-11-26 2020-06-04 大日本印刷株式会社 細胞の収縮を抑制できる細胞取扱容器、及び細胞構造体の作製方法
WO2021025017A1 (ja) 2019-08-05 2021-02-11 株式会社北里コーポレーション 細胞凍結前処理作業用プレート
WO2023002974A1 (ja) 2021-07-21 2023-01-26 株式会社北里コーポレーション 生体細胞処理作業用プレートおよび生体細胞凍結前処理作業用キット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230287339A1 (en) * 2020-07-28 2023-09-14 University Of Yamanashi Frozen egg cultivation apparatus, and method for cultivating frozen eggs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200748A (ja) * 2009-02-09 2010-09-16 Dainippon Printing Co Ltd 細胞培養容器
JP2014090691A (ja) * 2012-11-02 2014-05-19 Dainippon Printing Co Ltd 細胞培養容器および細胞培養方法
JP2014207897A (ja) * 2013-03-26 2014-11-06 大日本印刷株式会社 細胞培養容器
JP2015029431A (ja) * 2013-07-31 2015-02-16 大日本印刷株式会社 細胞培養容器
JP2015047136A (ja) * 2013-09-03 2015-03-16 大日本印刷株式会社 細胞培養容器
WO2015037595A1 (ja) * 2013-09-11 2015-03-19 大日本印刷株式会社 細胞培養容器
JP2016129495A (ja) * 2015-01-13 2016-07-21 大日本印刷株式会社 細胞培養容器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200748A (ja) * 2009-02-09 2010-09-16 Dainippon Printing Co Ltd 細胞培養容器
JP2014090691A (ja) * 2012-11-02 2014-05-19 Dainippon Printing Co Ltd 細胞培養容器および細胞培養方法
JP2014207897A (ja) * 2013-03-26 2014-11-06 大日本印刷株式会社 細胞培養容器
JP2015029431A (ja) * 2013-07-31 2015-02-16 大日本印刷株式会社 細胞培養容器
JP2015047136A (ja) * 2013-09-03 2015-03-16 大日本印刷株式会社 細胞培養容器
WO2015037595A1 (ja) * 2013-09-11 2015-03-19 大日本印刷株式会社 細胞培養容器
JP2016129495A (ja) * 2015-01-13 2016-07-21 大日本印刷株式会社 細胞培養容器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234600A1 (es) * 2017-06-21 2018-12-27 Vergara Alcaide Francisco Pipeta de sujeción de ovocitos en procedimientos de inyección espermática intracitoplasmática
JP2020080722A (ja) * 2018-11-26 2020-06-04 大日本印刷株式会社 細胞の収縮を抑制できる細胞取扱容器、及び細胞構造体の作製方法
WO2021025017A1 (ja) 2019-08-05 2021-02-11 株式会社北里コーポレーション 細胞凍結前処理作業用プレート
WO2023002974A1 (ja) 2021-07-21 2023-01-26 株式会社北里コーポレーション 生体細胞処理作業用プレートおよび生体細胞凍結前処理作業用キット

Also Published As

Publication number Publication date
JPWO2016190322A1 (ja) 2017-06-22
JP6123963B1 (ja) 2017-05-10
JP6686958B2 (ja) 2020-04-22
JP2017118884A (ja) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6686958B2 (ja) 細胞処理容器
KR101756051B1 (ko) 세포 덩어리용 배양 용기
CN108026499B (zh) 用于繁殖微组织的装置
JP5921437B2 (ja) 培養基材
JP5731704B1 (ja) 培養容器
JP5768174B1 (ja) 培養容器
AU2015258081B2 (en) Culture dish
JP6657729B2 (ja) 細胞取扱容器
JP2009050201A (ja) 初期胚等用培養器具
JP6741112B2 (ja) 細胞取扱容器
JP2017216967A (ja) 細胞培養容器
JP2018000134A (ja) 細胞培養容器
JP6421473B2 (ja) 細胞培養容器
JP6338015B2 (ja) 細胞塊用培養容器
JP6405752B2 (ja) 細胞培養容器
JP6427988B2 (ja) 細胞培養容器
JP6892215B2 (ja) 細胞取扱容器
JP6326905B2 (ja) 細胞培養容器
JP2020072745A (ja) 細胞取扱容器
JP2017123801A (ja) 細胞取扱容器
JP2023138062A (ja) 細胞取扱部材及び細胞取扱部材の製造方法
JP2015159805A (ja) 細胞培養容器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016574477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800027

Country of ref document: EP

Kind code of ref document: A1