WO2016189875A1 - 発電装置、発電システム、および発電システムの制御方法 - Google Patents

発電装置、発電システム、および発電システムの制御方法 Download PDF

Info

Publication number
WO2016189875A1
WO2016189875A1 PCT/JP2016/002554 JP2016002554W WO2016189875A1 WO 2016189875 A1 WO2016189875 A1 WO 2016189875A1 JP 2016002554 W JP2016002554 W JP 2016002554W WO 2016189875 A1 WO2016189875 A1 WO 2016189875A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation device
power
heat
heat generated
Prior art date
Application number
PCT/JP2016/002554
Other languages
English (en)
French (fr)
Inventor
勇輝 鈴木
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP16799588.5A priority Critical patent/EP3306718B1/en
Priority to JP2017520247A priority patent/JP6503060B2/ja
Priority to US15/576,466 priority patent/US20180159154A1/en
Publication of WO2016189875A1 publication Critical patent/WO2016189875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • H01M8/2495Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies of fuel cells of different types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation device, a power generation system, and a method for controlling the power generation system. More specifically, the present invention relates to a power generation device such as a fuel cell used in connection with another power generation device, a power generation system including a plurality of such power generation devices, and a control method for such a power generation system. It is.
  • a system in which a plurality of distributed power sources such as fuel cells are connected as a power generation device and the power output from these power generation devices has been studied.
  • Examples of the fuel cell of the power generation device used as such a distributed power source include a polymer electrolyte fuel cell (PEFC) and a solid oxide fuel cell (SOFC). .
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • Some fuel cells generate electricity from hydrogen and oxygen in the air, and can use secondary heat as steam or hot water (cogeneration (hereinafter abbreviated as “cogeneration”)).
  • Cogeneration type fuel cells can increase the overall energy efficiency by effectively using the heat generated together with power generation.
  • the power generation system of the present disclosure includes a first power generation device, a second power generation device, and a control unit that controls at least one of the first power generation device and the second power generation device.
  • the controller is configured to generate heat generated when one of the first power generation device and the second power generation device generates power, from among the first power generation device and the second power generation device. Supply to the power generator.
  • the power generation system control method is a power generation system control method including a first power generation device and a second power generation device.
  • the power generation system control method includes: a power generation step in which one of the first power generation device and the second power generation device generates power; and heat generation in the power generation step as a result of power generation by the one power generation device. And a heat supply step for supplying the heat generated in the heat generation step to another power generation device.
  • FIG. 1 is a functional block diagram schematically illustrating a power generation system according to an embodiment of the present disclosure.
  • 6 is a flowchart for explaining an operation example when one power generation device is lowered in a power generation system according to an embodiment of the present disclosure. It is a conceptual diagram explaining the operation example at the time of fall of one power generator in the power generation system which concerns on one Embodiment of this indication.
  • 6 is a flowchart for explaining an operation example when starting up one power generation device in a power generation system according to an embodiment of the present disclosure. It is a key map explaining an example of operation at the time of starting of one power generator in a power generation system concerning one embodiment of this indication.
  • a mono-generation type fuel cell is not configured so as to be able to use heat generated during power generation. Therefore, when a system including a plurality of fuel cells is operated, the heat generated when the mono-generation type fuel cell generates power cannot be effectively used. In addition, heat generated when a cogeneration type fuel cell generates electric power cannot be effectively used unless the environment, for example, hot water supply is appropriately used.
  • the power generation apparatus, the power generation system, and the control method for the power generation system of the present disclosure it is possible to effectively use the heat generated with power generation.
  • a solid line mainly indicates a power path
  • a broken line mainly indicates a control signal or a signal path for communicating various information.
  • the power generation system 1 includes a first power generation device 5A and a second power generation device 5B.
  • the first power generation device 5A and the second power generation device 5B include a fuel cell unit including, for example, a solid oxide fuel cell (SOFC), a solid polymer fuel cell (PEFC), and the like. can do.
  • SOFC solid oxide fuel cell
  • PEFC solid polymer fuel cell
  • the first power generation device 5A and the second power generation device 5B will be described assuming a fuel cell unit such as SOFC or PEFC.
  • the first power generation device and the second power generation device according to this embodiment are described. Is not limited to such a fuel cell.
  • the first power generation device 5A will be described as a mono-generation type fuel cell, and the second power generation device 5B will be described as a co-generation type fuel cell.
  • the first power generation device 5A and the second power generation device 5B according to the present embodiment are not limited to such a configuration, and for example, both may be the same type of fuel cell.
  • the power generation system 1 shows an example in which the power generation system 1 includes two power generation devices, a first power generation device 5A and a second power generation device 5B, as a plurality of distributed power sources.
  • the power generation system 1 according to the present embodiment can be configured to include any plurality of distributed power sources. That is, the power generation system 1 according to the present embodiment is configured to include only two power generation devices such as the first power generation device 5A and the second power generation device 5B as distributed power sources as a minimum configuration. Can do.
  • the power generation system 1 can be configured to connect four power generation units each having a generated power of 700 W to achieve an output of about 3 kW as a whole system.
  • the power generation system 1 includes an arbitrary distributed type such as another fuel cell, a solar cell, and a storage battery in addition to the first power generation device 5A and the second power generation device 5B. Any number of power supplies can be configured.
  • the power generation system 1 according to the present embodiment will be described as including two power generation devices, a first power generation device 5A and a second power generation device 5B, for convenience of description.
  • the outputs of the first power generation device 5 ⁇ / b> A and the second power generation device 5 ⁇ / b> B are connected to the load 100 and the system 200, respectively.
  • the power generation system 1 supplies the power generated by the first power generation device 5A and the second power generation device 5B to the load 100 through the grid 200.
  • the first power generator 5A includes a control unit 10A, a cell stack 20A, an inverter (power conditioner) 30A, and an auxiliary machine 40A.
  • the first power generation device 5A supplies the power generated by the cell stack 20A to the load 100 via the inverter 30A.
  • the cell stack 20A is connected to the inverter 30A, and the inverter 30A is connected to the load 100.
  • the inverter 30A is also connected to the system 200 in order to be connected to the system.
  • the system 200 can be a general commercial power system (grid).
  • the first power generation device 5A controls the power output from the cell stack 20A and supplies it to the load 100.
  • the load 100 can be various devices such as home appliances used by the user to which power is supplied from the power generation system 1.
  • the load 100 is illustrated as one member, but is not limited to one member and may be any number of various devices.
  • the control unit 10A controls and manages the entire first power generation device 5A including each functional unit constituting the first power generation device 5A.
  • the control unit 10A performs various controls on the cell stack 20A, the inverter 30A, and the auxiliary machine 40A.
  • the control unit 10 can be configured by, for example, a microcomputer or a processor (CPU: Central Processing Unit) that executes a predetermined program. Further, the control unit 10A will be described below as including a memory for storing various programs and various information.
  • control unit 10A controls the power generation of the cell stack 20A to perform, for example, activation, startup, increase in output, decrease in output, shutdown, stop output, and the like of the cell stack 20A.
  • control unit 10A controls the inverter 30A to increase or decrease the voltage of the power input to the inverter 30A.
  • control unit 10A controls the auxiliary machine 40A to control the output of heat (exhaust heat) generated with the power generation of the cell stack 20A. The exhaust heat by the auxiliary machine 40A will be described later.
  • the cell stack 20A is configured by laminating a plurality of power generation cells made of a high heat resistant material such as ceramics.
  • the cell stack 20A constituting the fuel cell generates DC power from hydrogen and oxygen by an electrochemical reaction. Therefore, the cell stack 20A needs to be supplied with gas fuel in order to generate power.
  • the illustration of gas fuel supply to the cell stack 20A is omitted.
  • the cell stack 20A can be configured in the same manner as a generally known fuel cell stack, and therefore a more detailed description is omitted.
  • the cell stack 20A starts power generation when the auxiliary machine 40A starts operating and power generation conditions are met.
  • the inverter 30A includes a DC / DC converter or the like, converts the power output from the cell stack 20A into an appropriate voltage such as boosting or stepping down, and then outputs the voltage from the first power generator 5A. Since the inverter 30A can be configured in the same manner as a generally known inverter, a more detailed description is omitted.
  • the auxiliary machine 40A includes devices necessary for the cell stack 20A to generate power, for example, a blower for supplying gas such as hydrogen and oxygen, a heater for heating hydrogen and oxygen, and the like. For this reason, the auxiliary machine 40A generates heat with the power generation of the cell stack 20A.
  • the second power generation apparatus 5B includes a control unit 10B, a cell stack 20B, an inverter (power conditioner) 30B, and an auxiliary machine 40B.
  • the control unit 10B, the cell stack 20B, and the inverter 30B can be configured in the same manner as the control unit 10A, the cell stack 20A, and the inverter 30A described above, respectively. . Therefore, detailed description of each of these functional units is omitted.
  • the auxiliary machine 40B is an auxiliary machine in that the cell stack 20B includes a device necessary for power generation, for example, a blower for supplying a gas such as hydrogen or oxygen, and a heater for heating hydrogen or oxygen.
  • a device necessary for power generation for example, a blower for supplying a gas such as hydrogen or oxygen, and a heater for heating hydrogen or oxygen.
  • a heater for heating hydrogen or oxygen for heating hydrogen or oxygen.
  • the first power generation device 5A is mono-generation
  • the heat generated with the power generation of the cell stack 20A is exhausted from the auxiliary machine 40A.
  • the 2nd electric power generating apparatus 5B is a cogeneration
  • produces with the electric power generation of the cell stack 20B can heat the hot water supplied in the auxiliary machine 40B.
  • the auxiliary machine 40B is assumed to have a function necessary for realizing hot water supply by the heat generated with the power generation of the cell stack 20B.
  • the power generation system 1 according to the present embodiment can be designed as a configuration including the first power generation device 5A and the second power generation device 5B from the beginning. Further, the power generation system 1 according to the present embodiment installs the second power generation device 5B according to the present embodiment later in an environment in which the first power generation device 5A is provided in advance as a conventional fuel cell unit. It can also be realized as a simple configuration.
  • a heat exchange unit 50A is installed in the cell stack 20A of the first power generator 5A.
  • the heat exchange unit 50A is connected to the auxiliary machine 40B of the second power generation device 5B by a heat conducting unit 60.
  • the heat conducting unit 60 conducts heat from one to the other by causing an internal liquid or gas to act as a heat conducting medium.
  • the second power generation device 5B is cogeneration, and hot water is generated along with the power generation of the cell stack 20B. Heat can be conducted to one power generation device 5A.
  • the heat exchanging unit 50A moves the heat of the heat conducting medium that conducts the heat conducting unit 60 to the cell stack 20A.
  • the heat exchange unit 50A has a function of transferring heat from an object having a high temperature to an object having a low temperature.
  • the heat exchange part 50A can be configured by an arbitrary heat exchange part that exchanges heat energy between two fluids having different heat energy.
  • the heat exchanging unit 50A and the heat conducting unit 60 are not limited to the above-described configuration as long as they can conduct heat from the second power generating device 5B to the first power generating device 5A.
  • the auxiliary machine 40B can adjust the quantity which the heat
  • the heat exchange unit 50B is installed in the cell stack 20B of the second power generation device 5B.
  • the heat exchanging unit 50B is connected to the auxiliary machine 40A of the first power generating device 5A by the heat conducting unit 70.
  • the heat conducting unit 70 also conducts heat from one to the other by causing the liquid or gas inside to act as a heat conducting medium. Since the first power generation device 5A is mono-generation and the heat generated with the power generation of the cell stack 20A becomes exhaust gas, the heat conduction unit 70 allows the first power generation device 5A to change from the first power generation device 5A by passing the exhaust gas. Heat can be conducted to the second power generation device 5B.
  • the heat exchanging part 50B can also be configured by an arbitrary heat exchanging part that exchanges heat energy between two fluids having different heat energy.
  • the heat exchanging unit 50B and the heat conducting unit 70 are not limited to the above-described configuration as long as they can conduct heat from the first power generating device 5A to the second power generating device 5B.
  • the auxiliary machine 40A can adjust the amount of heat generated by the power generation of the cell stack 20A conducted to the second power generation device 5B based on the control by the control unit 10A. Of the heat generated by the power generation of the cell stack 20A, the heat that is not conducted to the second power generation device 5B can be exhausted from the auxiliary machine 40A, for example.
  • the power generation system 1 includes current sensors 80 and 90.
  • the current sensor 80 detects a current flowing between the system 200 and the load 100.
  • the current sensor 80 is connected to the control unit 10B of the second power generation device 5B and transmits information on the detected current to the control unit 10B.
  • the current sensor 90 detects a current flowing between the inverter 30A of the first power generator 5A and the load 100.
  • the current sensor 90 is connected to the control unit 10B of the second power generation device 5B and transmits information on the detected current to the control unit 10B.
  • the current sensors 80 and 90 can be, for example, CT (Current Transformer), but any element can be adopted as long as it can detect current.
  • the control unit 10A of the first power generation device 5A and the control unit 10B of the second power generation device 5B are connected to each other by wire or wirelessly. Connected to. With this connection, for example, one of the control unit 10A and the control unit 10B can be used as a master and the other as a slave. Therefore, the power generation system 1 according to the present embodiment includes the first power generation device 5A and the second power generation device 5B, for example, by instructing only one of the control unit 10A and the control unit 10B (for example, the control unit 10B). The entire power generation system 1 can be controlled.
  • the control unit 10B can supply heat to the second power generation device 5B by giving an instruction to the control unit 10A and the control unit 10A controlling the cell stack 20A and the auxiliary device 40A. Further, the control unit 10B may instruct the control unit 10A to control the cell stack 20A and the auxiliary machine 40A so that the heat required by the second power generation device 5B is supplied.
  • the exhaust heat accompanying the power generation of the second power generation device 5B is supplied to the cell stack 20A of the first power generation device 5A (monogeneration).
  • the control unit 10B can supply heat to the first power generation device 5A by controlling the cell stack 20B and the auxiliary machine 40B. Further, the control unit 10B may control the cell stack 20B and the auxiliary device 40B so that the heat required by the first power generation device 5A is supplied. At this time, the control unit 10B acquires the amount of power output from the first power generation device 5A and the second power generation device 5B from the current detected by the current sensors 80 and 90, and based on the amount of power, The amount of heat supplied can be controlled.
  • the heat of the power generating device that is in operation among the first power generating device 5A and the second power generating device 5B is supplied to the power generating device in which the cell stack is stopped. It is good to make it.
  • the power generation system 1 according to the present embodiment can maintain the cell temperature of each other by allowing heat to be exchanged between the first power generation device 5A and the second power generation device 5B. Therefore, according to this embodiment, the lifetime of the fuel cell of both power generators can be extended, and the heat accompanying power generation can be used effectively. Therefore, according to the present embodiment, the cost for generating heat and the amount of carbon dioxide used can be reduced.
  • the power generation system 1 of the present embodiment includes the first power generation device 5A (for example, monogeneration) and the second power generation device 5B (for example, cogeneration).
  • the power generation system 1 generates heat generated when one of the first power generation device 5A and the second power generation device 5B generates power from the first power generation device 5A and the second power generation device 5B. It is comprised so that supply to the other power generator is possible.
  • the second power generation device 5B may further include a heat conducting unit 60 or 40 that transfers heat between the first power generation device 5A and the second power generation device 5B.
  • control unit 10B generates heat generated when one of the first power generation device 5A and the second power generation device 5B generates power, using the first power generation device 5A and the second power generation device 5B. You may control to supply to the other electric power generating apparatus.
  • the power generation device (second power generation device) 5B generates power to be supplied to the load 100 together with another power generation device (first power generation device) 5A (for example, monogeneration).
  • the power generation device 5B according to the present embodiment generates heat generated when one of the other power generation devices 5A and 5B generates power, while the other power generation device 5A and the other power generation device 5B. It is configured to be able to supply power generation equipment.
  • the cogeneration type fuel cell generates heat at a cost by, for example, combusting gas inside, but the monogeneration type fuel cell exhausts heat during operation.
  • the present embodiment by adding a cogeneration type fuel cell to the already installed monogeneration type fuel cell, it is possible to increase the synergistic effect by linking the supply of both heats. Therefore, according to the present embodiment, for example, even in the situation where the introduction of a mono-generation type fuel cell has already progressed, it can be expected that the co-generation type fuel cell is further spread.
  • FIG. 2 is a flowchart for explaining such an operation.
  • both the first power generation device 5A and the second power generation device 5B are in operation when the operation of the power generation system 1 is started (step S10).
  • the control unit 10B detects the fall of the first power generation device 5A (step S12). In detecting the fall of the first power generation device 5A, for example, based on the current detected by the current sensor 90, the control unit 10B can determine that the amount of power generated by the cell stack 20A has decreased.
  • both the first power generation device 5A and the second power generation device 5B exhaust heat generated by power generation. It's hot.
  • a state in which the electric power output from the first power generation device 5A is detected by the current sensor 90 and notified to the second power generation device 5B is indicated as “power information”. Based on the power information, the control unit 10B can detect the first power generation device 5A from falling.
  • the control unit 10B performs control so as to start supplying heat from the second power generation device 5B to the first power generation device 5A (step S14). Further, in step S14, the control unit 10B performs control so as to increase the supply of heat from the second power generation device 5B to the first power generation device 5A as the heat generated by the cell stack 20A decreases.
  • step S14 the heat generated by the second power generation device 5B that has been exhausted is supplied to the first power generation device 5A.
  • the control unit 10B grasps that the output of the first power generation device 5A gradually decreases based on the power information, and increases the supply of heat from the second power generation device 5B to the first power generation device 5A. To control. As the output of the first power generator 5A decreases, the amount of heat generated by the cell stack 20A itself also decreases, but the cell temperature of the cell stack 20A is kept high by the heat supplied from the second power generator 5B. Can do.
  • step S14 After the output of the first power generator 5A gradually decreases in step S14, the power generation of the first power generator 5A is eventually stopped.
  • the generation of heat accompanying the power generation of the cell stack 20A of the first power generation device 5A is also stopped.
  • the control unit 10B performs control so as to continue the supply of heat from the second power generation device 5B to the first power generation device 5A even after the power generation of the first power generation device 5A is stopped (step S16). .
  • step S16 as shown in FIG. 3C, the power generation of the first power generation device 5A is stopped, but the heat generated by the second power generation device 5B continues to the first power generation device 5A. Supplied.
  • the heat generated by the cell stack 20A is not generated.
  • the heat supplied from the second power generation device 5B can keep the cell temperature of the cell stack 20A high. it can. By such control, the cell life of the cell stack 20A of the first power generation device 5A can be extended.
  • FIG. 4 is a flowchart for explaining such an operation.
  • step S20 when the operation of the power generation system 1 is started, the operation of the first power generation device 5A is stopped and the second power generation device 5B is in operation (step S20). Even when the operation of the first power generation device 5A is stopped, as described in step S16 of FIG. 2 and FIG. 3C, heat is transferred from the second power generation device 5B to the first power generation device 5A. Ensure that the supply continues.
  • the control unit 10B detects the start-up of the first power generation device 5A (step S22).
  • the control unit 10B of the second power generation device 5B purchases the amount of power generated by the second power generation device 5B and the entire power generation system 1 from the system 200. Monitor the amount of power.
  • the control unit 10B determines the amount of power generated by the second power generation device 5B and the amount of power purchased by the entire power generation system 1 from the system 200 based on the current detected by the current sensors 80 and 90. Can be monitored.
  • control unit 10B has a value obtained by subtracting the amount of power purchased by the entire power generation system 1 from the system 200 from the amount of power generated by the second power generation device 5B, and the threshold value for starting the first power generation device 5A. Can be determined that the first power generator 5A has started up.
  • the starting threshold value of the first power generation device 5A can be set to any appropriate value.
  • the supply of heat from the second power generation device 5B to the first power generation device 5A is continued.
  • a state in which the current sensor 90 detects the power output from the first power generation device 5A and is notified to the second power generation device 5B is shown as “power information”. Based on the power information, the control unit 10B can detect the start-up of the first power generation device 5A.
  • step S22 After the first power generation device 5A starts to start in step S22, the temperature of the cell stack 20A of the first power generation device 5A rises. Therefore, the control unit 10B performs control so as to reduce the amount of heat supplied from the second power generation device 5B to the first power generation device 5A (step S24). Further, in step S24, the control unit 10B performs control so that the amount of heat supplied from the second power generation device 5B to the first power generation device 5A decreases as the temperature of the cell stack 20A increases. At this time, the power generation amount of the first power generation device 5A is still zero, and power generation has not substantially started.
  • step S24 as shown in FIG. 5 (B), the amount of heat supplied from the second power generation device 5B to the first power generation device 5A is larger than that shown in FIG. 5 (A). It is falling.
  • step S24 After the amount of heat supplied from the second power generation device 5B to the first power generation device 5A is reduced in step S24, the temperature of the cell stack 20A eventually increases and the first power generation device 5A starts power generation. It becomes possible.
  • the control unit 10B performs control so as to stop the supply of heat from the second power generation device 5B to the first power generation device 5A (step S26).
  • step S26 as shown in FIG. 5C, the supply of heat from the second power generation device 5B to the first power generation device 5A is stopped, and the heat generated with the power generation of the second power generation device 5B. Is exhausted.
  • the time for example, start-up time
  • the control unit 10B when the control unit 10B shuts down the other power generation device 5A during power generation by the power generation device 5B, the power generation device 5B Control may be made to increase the supply of generated heat. Further, when the control unit 10B starts up another power generation device 5A during the power generation of the power generation device 5B, the power generation device 5B generates according to the amount of power generated by the power generation device 5B and the amount of power supplied from the system 200. It may be controlled to reduce the supply of heat. Here, the control unit 10B may perform control so as to increase or decrease the supply of heat generated by the power generation device 5B based on information on the power generated by the other power generation devices 5A.
  • the exhaust heat of one power generation device can be effectively used for heating or heating the cell stack of the other power generation device.
  • each functional unit each means, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of functional units, steps, etc. are combined or divided into one. It is possible.
  • each embodiment of the present embodiment described above is not limited to being performed faithfully to each of the embodiments described above, and may be implemented by appropriately combining the features or omitting some of the features. You can also
  • each power generation device and cell stack has been described as starting at the start of operation, starting power generation after being started, and stopping power generation at the end of operation, and then completely stopping (ending) the power generation.
  • starting of each power generation unit may be a so-called “start-up” or the like
  • stopping power generation may be a so-called “falling” or the like.
  • the “start” of power generation of the apparatus and system according to the present embodiment may be the start of an operation or operation related to power supply, or the start of control or processing related to these. Such “start of power generation” may be appropriately “started up”.
  • “end” of power generation in the apparatus and system according to the present embodiment may be the end of operation or operation, or the end of control or processing related to these. Further, such “end” may be appropriately “stopped” or “completed”.
  • this embodiment can also be implemented as a control method of the power generation system 1 as described above.
  • the method is (1) A power generation step in which one of the first power generation device 5A and the second power generation device 5B generates power; (2) a heat generation step for generating heat in accordance with the power generation of one power generation device in the power generation step; (3) a heat supply step of supplying heat generated in the heat generation step to another power generation device.
  • control unit 10B mainly controls the entire power generation system 1
  • control unit 10A may perform the control as described above, or the control unit 10A and the control unit 10B may perform the control as described above.
  • the control of the present disclosure is shown as a series of operations executed by a computer system or other hardware capable of executing program instructions.
  • the computer system and other hardware include, for example, a general-purpose computer, a PC (Personal Computer), a dedicated computer, a workstation, or other programmable data processing device.
  • the various operations are performed by dedicated circuitry implemented with program instructions (software) (eg, individual logic gates interconnected to perform specific functions) or one or more processors.
  • program is executed by a logical block, a program module, or the like.
  • microprocessors include, for example, one or more microprocessors, CPU (Central Processing Unit), ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), PLD (Programmable). Logic Device), FPGA (Field Programmable Gate Array), controller, microcontroller, electronic device, other devices designed to perform the functions described herein, and / or any combination thereof.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • PLD Programmable.
  • Logic Device Field Programmable Gate Array
  • controller microcontroller
  • microcontroller electronic device, other devices designed to perform the functions described herein, and / or any combination thereof.
  • the illustrated embodiments are implemented, for example, by hardware, software, firmware, middleware, microcode, or any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

発電システムは、第1の発電装置と、第2の発電装置と、第1の発電装置および前記第2の発電装置の少なくとも一方を制御する制御部とを備える。制御部は、第1の発電装置および前記第2の発電装置うち一の発電装置が発電するに伴って発生する熱を、第1の発電装置および前記第2の発電装置のうち他の発電装置に供給する。また、この発電システムの制御方法は、第1の発電装置および第2の発電装置のうち一の発電装置が発電する発電ステップと、発電ステップにおいて一の発電装置の発電に伴い熱を発生する熱発生ステップと、熱発生ステップにおいて発生した熱を、他の発電装置に供給する熱供給ステップとを含む。

Description

発電装置、発電システム、および発電システムの制御方法 関連出願の相互参照
 本出願は、日本国特許出願2015-106710号(2015年5月26日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、発電装置、発電システム、および発電システムの制御方法に関するものである。より詳細には、本発明は、他の発電装置と接続して使用する燃料電池のような発電装置、このような発電装置を複数含む発電システム、および、このような発電システムの制御方法に関するものである。
 近年、燃料電池のような複数の分散型電源を発電装置として接続し、これらの発電装置が出力する電力を供給するシステムが研究されている。このような分散型電源として用いられる発電装置の燃料電池には、例えば固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)および固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)などがある。
 燃料電池には、水素および空気中の酸素から電力を発電し、副次的に発生する熱を蒸気または温水として利用できるものがある(コジェネレーション(以下、「コジェネ」と略記する))。コジェネ型の燃料電池は、発電と共に発生する熱を有効利用することで、エネルギーの総合効率を高めることができる。
 一方、燃料電池には、発電する際に発生する熱が利用できるように構成されていないものもある(モノジェネレーション(以下、「モノジェネ」と略記する))。例えば米国などでは、モノジェネ型の燃料電池の導入が進みつつある。
特開2004-214169号公報
 本開示の発電システムは、第1の発電装置と、第2の発電装置と、前記第1の発電装置および前記第2の発電装置の少なくとも一方を制御する制御部と、を備える。前記制御部は、前記第1の発電装置および前記第2の発電装置うち一の発電装置が発電するに伴って発生する熱を、前記第1の発電装置および前記第2の発電装置のうち他の発電装置に供給する。
 また、本開示の発電システムの制御方法は、第1の発電装置および第2の発電装置を含む発電システムの制御方法である。前記発電システムの制御方法は、前記第1の発電装置および前記第2の発電装置のうち一の発電装置が発電する発電ステップと、前記発電ステップにおいて前記一の発電装置の発電に伴い熱を発生する熱発生ステップと、前記熱発生ステップにおいて発生した熱を、他の発電装置に供給する熱供給ステップと、を含む。
本開示の一実施形態に係る発電システムを概略的に示す機能ブロック図である。 本開示の一実施形態に係る発電システムにおける一方の発電装置の立下げ時の動作例を説明するフローチャートである。 本開示の一実施形態に係る発電システムにおける一方の発電装置の立下げ時の動作例を説明する概念図である。 本開示の一実施形態に係る発電システムにおける一方の発電装置の立上げ時の動作例を説明するフローチャートである。 本開示の一実施形態に係る発電システムにおける一方の発電装置の立上げ時の動作例を説明する概念図である。
 一般に、モノジェネ型の燃料電池は、発電する際に発生する熱を利用できるように構成されていない。したがって、複数の燃料電池を含むシステムを運転する際、モノジェネ型の燃料電池が発電する際に発生する熱は、有効利用することはできない。また、コジェネ型の燃料電池が発電する際に発生する熱も、例えば給湯などが適切に利用される環境でなければ、有効利用することはできない。これに対して、本開示の発電装置、発電システム、および発電システムの制御方法によれば、発電に伴って発生するする熱を有効利用することができる。
 以下、本開示の実施形態について、図面を参照して説明する。
 図1において、実線は主に電力の経路を示し、破線は主に制御信号または各種情報を通信する信号の経路を示す。以下の説明において、従来よく知られている要素および機能部については、適宜、説明を簡略化または省略する。
 図1に示すように、本実施形態に係る発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bを含んで構成される。本実施形態において、第1の発電装置5Aおよび第2の発電装置5Bは、例えば固体酸化物形燃料電池(SOFC)、および固体高分子形燃料電池(PEFC)などで構成される燃料電池ユニットとすることができる。以下、第1の発電装置5Aおよび第2の発電装置5Bは、SOFCまたはPEFCのような燃料電池ユニットを想定して説明するが、本実施形態に係る第1の発電装置および第2の発電装置は、このような燃料電池に限定されるものではない。
 また、本実施形態において、第1の発電装置5Aはモノジェネ型の燃料電池として、第2の発電装置5Bはコジェネ型の燃料電池として説明する。しかしながら、本実施形態に係る第1の発電装置5Aおよび第2の発電装置5Bは、このような構成に限定されず、例えば双方ともに同様のタイプの燃料電池等としてもよい。
 図1において、発電システム1は、複数の分散型電源として、第1の発電装置5Aおよび第2の発電装置5Bの2つの発電装置を含む例を示してある。しかしながら、本実施形態に係る発電システム1は、任意の複数の分散型電源を含んで構成することができる。すなわち、本実施形態に係る発電システム1は、最小限の構成としては、第1の発電装置5Aおよび第2の発電装置5Bのような2つの発電装置のみを分散型電源として含んで構成することができる。また、例えば、発電システム1は、1つの発電電力が700Wの発電ユニットを4つ接続して、システム全体として約3kWの出力を達成するように構成することもできる。他の構成として、本実施形態に係る発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bの他にも、他の燃料電池、太陽電池、および蓄電池のような任意の分散型電源を、任意の個数含んで構成することができる。以下、本実施形態に係る発電システム1は、説明の便宜上、第1の発電装置5Aおよび第2の発電装置5Bの2つの発電装置を含むものとして説明する。
 図1に示すように、発電システム1において、第1の発電装置5Aおよび第2の発電装置5Bの出力は、それぞれ接続された上で、さらに、負荷100および系統200に接続される。このような構成により、発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bが発電する電力を、系統200に連系して、負荷100に供給する。
 まず、本実施形態に係る第1の発電装置5Aについて説明する。
 本実施形態に係る第1の発電装置5Aは、図1に示すように、制御部10A、セルスタック20A、インバータ(パワーコンディショナ)30A、および補機40Aを備えている。図1に示すように、第1の発電装置5Aは、セルスタック20Aが発電する電力を、インバータ30Aを介して、負荷100に供給する。このため、セルスタック20Aはインバータ30Aに接続され、インバータ30Aは負荷100に接続される。また、インバータ30Aは、系統連系するため、系統200にも接続される。系統200は、一般的な商用電力系統(グリッド)とすることができる。このような構成により、第1の発電装置5Aは、セルスタック20Aから出力される電力を制御して、負荷100に供給する。負荷100は、発電システム1から電力が供給される、ユーザが使用する家電製品などの各種の機器とすることができる。図1においては、負荷100は1つの部材として示してあるが、1つの部材には限定されず任意の個数の各種機器とすることができる。
 制御部10Aは、第1の発電装置5Aを構成する各機能部をはじめとして第1の発電装置5Aの全体を制御および管理する。特に、本実施形態において、制御部10Aは、セルスタック20A、インバータ30A、および補機40Aに対して、各種の制御を行う。制御部10は、例えばマイコンまたは所定のプログラムを実行するプロセッサ(CPU:Central Processing Unit)などで構成することができる。また、制御部10Aは、各種プログラムおよび種々の情報を記憶するメモリも備えるものとして、以下説明する。
 特に、本実施形態において、制御部10Aは、セルスタック20Aの発電を制御して、例えば、セルスタック20Aの起動、立ち上げ、出力の増大、出力の低減、立ち下げ、出力の停止などを行う。また、制御部10Aは、インバータ30Aを制御して、インバータ30Aに入力される電力の電圧を昇圧または降圧などを行う。また、制御部10Aは、補機40Aを制御して、セルスタック20Aの発電に伴って発生する熱(排熱)の出力を制御する。補機40Aによる排熱については、後述する。
 セルスタック20Aは、例えばセラミックスなどの高耐熱性の材料で作られた複数の発電セルを積層して構成される。燃料電池を構成するセルスタック20Aは、水素と酸素から電気化学反応によって直流電力を発生させる。したがって、セルスタック20Aは、発電を行うために、ガス燃料の供給を受ける必要がある。図1においては、セルスタック20Aに対するガス燃料の供給については図示を省略してある。また、セルスタック20Aは、一般的に知られた燃料電池のセルスタックと同様に構成することができるため、より詳細な説明は省略する。セルスタック20Aは、補機40Aが動作を開始して、発電条件が整うと発電を開始する。
 インバータ30Aは、DC/DCコンバータなどを備え、セルスタック20Aから出力される電力を昇圧または降圧するなど適切な電圧に変換した上で、第1の発電装置5Aから出力する。インバータ30Aは、一般的に知られたインバータと同様に構成することができるため、より詳細な説明は省略する。
 補機40Aは、セルスタック20Aが発電を行うために必要な装置、例えば、水素や酸素などのガスを供給するためのブロワ、水素や酸素を暖めるためのヒータなどを備えている。このため、補機40Aは、セルスタック20Aの発電に伴って熱を発生する。
 次に、本実施形態に係る第2の発電装置5Bについて説明する。
 図1に示すように、本実施形態に係る第2の発電装置5Bは、制御部10B、セルスタック20B、インバータ(パワーコンディショナ)30B、および補機40Bを備えている。第2の発電装置5Bを構成する機能部のうち、制御部10B、セルスタック20B、およびインバータ30Bは、それぞれ上述した制御部10A、セルスタック20A、およびインバータ30Aと、同様に構成することができる。したがって、これらの各機能部の詳細な説明は省略する。
 補機40Bは、セルスタック20Bが発電を行うために必要な装置、例えば、水素や酸素などのガスを供給するためのブロワ、水素や酸素を暖めるためのヒータなどを備える点においては、補機40Aと同様である。
 第1の発電装置5Aはモノジェネであるため、セルスタック20Aの発電に伴い発生する熱は、補機40Aから排熱される。一方、第2の発電装置5Bはコジェネであるため、セルスタック20Bの発電に伴い発生する熱は、補機40Bにおいて給湯される温水を加熱することができる。補機40Bは、このようにセルスタック20Bの発電に伴って発生する熱により給湯を実現するのに必要な機能を備えるものとする。
 本実施形態に係る発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bを当初から含めた構成として設計することができる。また、本実施形態に係る発電システム1は、第1の発電装置5Aが従来式の燃料電池ユニットとして予め備え付けられた環境において、本実施形態に係る第2の発電装置5Bを後から設置するような構成として実現することもできる。
 図1に示すように、第1の発電装置5Aのセルスタック20Aには、熱交換部50Aが設置される。この熱交換部50Aは、第2の発電装置5Bの補機40Bに、熱伝導部60によって接続される。熱伝導部60は、内部の液体または気体などを熱伝導媒体として作用させて、一方から他方に熱を伝導する。第2の発電装置5Bはコジェネであり、セルスタック20Bの発電に伴って温水が生成されるため、熱伝導部60は、生成された温水を通過させることで、第2の発電装置5Bから第1の発電装置5Aに熱を伝導することができる。熱交換部50Aは、熱伝導部60を伝導する熱伝導媒体が有する熱を、セルスタック20Aに移動させる。この熱交換部50Aは、温度の高い物体から低い物体へ熱を移動させる機能を有する。熱交換部50Aは、保有する熱エネルギーの異なる2つの流体間で熱エネルギーを交換する任意の熱交換部で構成することができる。熱交換部50Aおよび熱伝導部60は、第2の発電装置5Bから第1の発電装置5Aに熱を伝導することができれば、上述の構成に限定されず任意の構成とすることができる。なお、補機40Bは、制御部10Bによる制御に基づいて、セルスタック20Bの発電に伴って生じる熱が第1の発電装置5Aに伝導する量を調整することができる。セルスタック20Bの発電に伴って生じる熱のうち第1の発電装置5Aに伝導されない熱は、例えば補機40Bから排熱することができる。
 また、第2の発電装置5Bのセルスタック20Bには、熱交換部50Bが設置される。この熱交換部50Bは、第1の発電装置5Aの補機40Aに、熱伝導部70によって接続される。熱伝導部70も、内部の液体または気体などを熱伝導媒体として作用させて、一方から他方に熱を伝導する。第1の発電装置5Aはモノジェネであり、セルスタック20Aの発電に伴って発生する熱は排気となるため、熱伝導部70は、その排気を通過させることで、第1の発電装置5Aから第2の発電装置5Bに熱を伝導することができる。熱交換部50Bも、保有する熱エネルギーの異なる2つの流体間で熱エネルギーを交換する任意の熱交換部で構成することができる。熱交換部50Bおよび熱伝導部70は、第1の発電装置5Aから第2の発電装置5Bに熱を伝導することができれば、上述の構成に限定されず任意の構成とすることができる。なお、補機40Aは、制御部10Aによる制御に基づいて、セルスタック20Aの発電に伴って生じる熱が第2の発電装置5Bに伝導する量を調整することができる。セルスタック20Aの発電に伴って生じる熱のうち第2の発電装置5Bに伝導されない熱は、例えば補機40Aから排熱することができる。
 図1に示すように、本実施形態に係る発電システム1は、電流センサ80および90を備えている。電流センサ80は、系統200と負荷100との間に流れる電流を検出する。電流センサ80は、第2の発電装置5Bの制御部10Bに接続され、検出した電流の情報を制御部10Bに伝える。電流センサ90は、第1の発電装置5Aのインバータ30Aと負荷100との間に流れる電流を検出する。電流センサ90は、第2の発電装置5Bの制御部10Bに接続され、検出した電流の情報を制御部10Bに伝える。電流センサ80,90は、例えば、CT(Current Transformer:変流器)とすることができるが、電流を検出することができる要素であれば、任意のものを採用することができる。
 さらに、図1に示すように、本実施形態に係る発電システム1において、第1の発電装置5Aの制御部10Aと、第2の発電装置5Bの制御部10Bとは、有線または無線により、相互に接続される。この接続により、例えば制御部10Aおよび制御部10Bの一方をマスターとし他方をスレーブとする等して協働させることができる。したがって、本実施形態に係る発電システム1は、例えば制御部10Aおよび制御部10Bの一方のみ(例えば制御部10B)に指示することによって、第1の発電装置5Aおよび第2の発電装置5Bを含む発電システム1の全体を制御することができる。
 次に、本実施形態に係る発電システム1の動作について説明する。
 本実施形態に係る発電システム1においては、第1の発電装置5A(モノジェネ)および第2の発電装置5B(コジェネ)のように、異なる種類の燃料電池を併用している。したがって、本実施形態において、例えば、第1の発電装置5A(モノジェネ)の発電に伴う排熱を、第2の発電装置5B(コジェネ)のセルスタック20Bに供給する。例えば、制御部10Bは、制御部10Aに指示を出し、制御部10Aがセルスタック20Aおよび補機40Aを制御することにより、第2の発電装置5Bに熱を供給することができる。また、制御部10Bは、第2の発電装置5Bが必要とする熱が供給されるように、セルスタック20Aおよび補機40Aを制御するように制御部10Aに指示を出してもよい。
 また、本実施形態において、例えば、第2の発電装置5B(コジェネ)の発電に伴う排熱を、第1の発電装置5A(モノジェネ)のセルスタック20Aに供給する。例えば、制御部10Bは、セルスタック20Bおよび補機40Bを制御することにより、第1の発電装置5Aに熱を供給することができる。また、制御部10Bは、第1の発電装置5Aが必要とする熱が供給されるように、セルスタック20Bおよび補機40Bを制御してもよい。この時、制御部10Bは、電流センサ80および90が検出する電流から、第1の発電装置5Aおよび第2の発電装置5Bが出力する電力量を取得することにより、この電力量に基づいて、それぞれ供給する熱の熱量を制御することができる。
 特に、本実施形態においては、第1の発電装置5Aおよび第2の発電装置5Bのうち稼働中の方の発電装置の熱が、セルスタックが停止している方の発電装置に供給されるようにするのがよい。このような制御によって、本実施形態に係る発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bの間で熱を融通し合うことにより、互いのセル温度を保つことができる。したがって、本実施形態によれば、双方の発電装置の燃料電池の寿命を延ばすことができるとともに、発電に伴う熱を有効利用することができる。よって、本実施形態によれば、熱を生成するためのコスト、および二酸化炭素の使用量を削減することができる。
 このように、本実施形態の発電システム1は、第1の発電装置5A(例えばモノジェネ)および第2の発電装置5B(例えばコジェネ)を含む。また、発電システム1は、第1の発電装置5Aおよび第2の発電装置5Bうち一方の発電装置が発電するに伴って発生する熱を、第1の発電装置5Aおよび第2の発電装置5Bのうち他方の発電装置に供給可能に構成される。ここで、第2の発電装置5Bは、第1発電装置5Aと第2の発電装置5Bとの間で熱を伝達する熱伝導部60または40をさらに備えてもよい。そして、制御部10Bが、第1の発電装置5Aおよび第2の発電装置5Bのうち一方の発電装置が発電するに伴って発生する熱を、第1の発電装置5Aおよび第2の発電装置5Bのうち他方の発電装置に供給するように制御してもよい。
 また、本実施形態の発電装置(第2の発電装置)5Bは、他の発電装置(第1の発電装置)5A(例えばモノジェネ)とともに負荷100に供給する電力を発電する。また、本実施形態の発電装置5Bは、他の発電装置5Aおよび発電装置5Bのうち一方の発電装置が発電するに伴って発生する熱を、他の発電装置5Aおよび発電装置5Bのうち他方の発電装置に供給可能に構成される。
 上述したように、コジェネ型の燃料電池は、内部でガスを燃焼させる等してコストをかけて熱を生成するが、モノジェネ型の燃料電池は、稼働中の熱を排気してしまう。しかしながら、本実施形態によれば、既に設置されたモノジェネ型の燃料電池に対してコジェネ型の燃料電池を追加することにより、双方の熱の供給を連携させて相乗効果を上げることができる。したがって、本実施形態によれば、例えば既にモノジェネ型の燃料電池の導入が進んでいる状況においても、さらにコジェネ型の燃料電池を普及させることも期待できる。
 次に、本実施形態に係る発電システム1の動作について、さらに説明する。
 まず、発電システム1において、第1の発電装置5Aおよび第2の発電装置5Bの双方が稼働中である状況から、第1の発電装置5Aのみの運転を停止させる動作について説明する。図2は、このような動作を説明するフローチャートである。
 図2に示すように、発電システム1の動作が開始した時点で、第1の発電装置5Aおよび第2の発電装置5Bの双方が運転中であるものとする(ステップS10)。
 第1の発電装置5Aの運転を停止させようとして、セルスタック20Aの出力を低下させると、制御部10Bは、第1の発電装置5Aの立ち下げを検出する(ステップS12)。第1の発電装置5Aの立ち下げの検出においては、例えば、電流センサ90が検出する電流に基づいて、制御部10Bは、セルスタック20Aの発電する電力量が低下したと判定することができる。
 ステップS12において第1の発電装置5Aが立ち下げを開始した時点では、図3(A)に示すように、第1の発電装置5Aおよび第2の発電装置5Bの双方が発電に伴う熱を排熱している。図3においては、第1の発電装置5Aが出力する電力を電流センサ90が検出して第2の発電装置5Bに通知される様子を、「電力情報」として示してある。この電力情報により、制御部10Bは、第1の発電装置5Aが立ち下げを検出することができる。
 ステップS12において第1の発電装置5Aが立ち下げを開始した後は、第1の発電装置5Aの出力は徐々に低下していく。また、第1の発電装置5Aの出力の低下に伴って、第1の発電装置5Aのセルスタック20Aの発電に伴う熱の発生も低下してくる。したがって、制御部10Bは、第2の発電装置5Bから第1の発電装置5Aに熱の供給を開始するように制御する(ステップS14)。また、ステップS14において、制御部10Bは、セルスタック20Aが発生する熱が低下するにつれて、第2の発電装置5Bから第1の発電装置5Aに熱の供給を増大させるように制御する。
 ステップS14においては、図3(B)に示すように、排熱していた第2の発電装置5Bが発生する熱は、第1の発電装置5Aに供給される。ここでも、制御部10Bは、電力情報により、第1の発電装置5Aの出力が徐々に低下することを把握して、第2の発電装置5Bから第1の発電装置5Aに熱の供給を増大させるように制御する。第1の発電装置5Aの出力が低下するにつれて、セルスタック20Aが自ら発生する熱量も低下するが、第2の発電装置5Bから供給される熱によって、セルスタック20Aのセル温度を高く保持することができる。
 ステップS14において第1の発電装置5Aの出力が徐々に低下した後は、やがて、第1の発電装置5Aの発電は停止する。第1の発電装置5Aの発電が停止すると、第1の発電装置5Aのセルスタック20Aの発電に伴う熱の発生も停止する。一方で、制御部10Bは、第1の発電装置5Aの発電が停止した後も、第2の発電装置5Bから第1の発電装置5Aに熱の供給を継続するように制御する(ステップS16)。
 ステップS16においては、図3(C)に示すように、第1の発電装置5Aの発電が停止しているが、第2の発電装置5Bが発生する熱は、第1の発電装置5Aに継続して供給される。第1の発電装置5Aの発電が停止すると、セルスタック20Aが自ら生成する熱も発生しなくなる、第2の発電装置5Bから供給される熱によって、セルスタック20Aのセル温度を高く保持することができる。このような制御により、第1の発電装置5Aのセルスタック20Aのセル寿命を延ばすことができる。
 次に、発電システム1において、第1の発電装置5Aの運転が停止していて第2の発電装置5Bが稼働中である状況から、第1の発電装置5Aの運転を開始させる動作について説明する。図4は、このような動作を説明するフローチャートである。
 図4に示すように、発電システム1の動作が開始した時点で、第1の発電装置5Aの運転は停止していて、第2の発電装置5Bは運転中であるものとする(ステップS20)。なお、第1の発電装置5Aの運転が停止していても、図2のステップS16および図3(C)で説明したように、第2の発電装置5Bから第1の発電装置5Aに熱の供給が継続されるようにする。
 第1の発電装置5Aの運転を開始させようとして、セルスタック20Aを始動させると、制御部10Bは、第1の発電装置5Aの立ち上げを検出する(ステップS22)。第1の発電装置5Aの立ち上げの検出においては、第2の発電装置5Bの制御部10Bは、第2の発電装置5Bが発電する電力量と、発電システム1全体が系統200から買電する電力量を監視する。具体的には、制御部10Bは、電流センサ80および90が検出する電流に基づいて、第2の発電装置5Bが発電する電力量と、発電システム1全体が系統200から買電する電力量を監視することができる。そして、制御部10Bは、第2の発電装置5Bが発電する電力量から、発電システム1全体が系統200から買電する電力量を引いた値が、第1の発電装置5Aの起動開始の閾値を超えたとき、第1の発電装置5Aが立ち上がったと判定することができる。ここで、第1の発電装置5Aの起動開始の閾値は、適当な任意の値とすることができる。
 ステップS22において第1の発電装置5Aが立ち上げを開始した時点では、図5(A)に示すように、第2の発電装置5Bから第1の発電装置5Aに熱の供給が継続されている。図5においても、第1の発電装置5Aが出力する電力を電流センサ90が検出して第2の発電装置5Bに通知される様子を、「電力情報」として示してある。この電力情報に基づいて、制御部10Bは、第1の発電装置5Aが立ち上げを検出することができる。
 ステップS22において第1の発電装置5Aが立ち上げを開始した後は、第1の発電装置5Aのセルスタック20Aの温度が上昇する。したがって、制御部10Bは、第2の発電装置5Bから第1の発電装置5Aに対する熱の供給量を低下させるように制御する(ステップS24)。また、ステップS24において、制御部10Bは、セルスタック20Aの温度が上昇するにつれて、第2の発電装置5Bから第1の発電装置5Aに対する熱の供給量を低下させるように制御する。この時、第1の発電装置5Aの発電量はまだゼロの状態であり、実質的に発電を開始していない。
 ステップS24においては、図5(B)に示すように、第2の発電装置5Bから第1の発電装置5Aに供給される熱の供給量は、図5(A)に示した時点に比べて低下している。
 ステップS24において第2の発電装置5Bから第1の発電装置5Aへの熱の供給量を低下させた後、やがて、セルスタック20Aの温度が高くなり、第1の発電装置5Aが発電を開始することが可能になる。第1の発電装置5Aが発電を開始すると、制御部10Bは、第2の発電装置5Bから第1の発電装置5Aに対する熱の供給を停止するように制御する(ステップS26)。
 ステップS26においては、図5(C)に示すように、第2の発電装置5Bから第1の発電装置5Aに対する熱の供給は停止し、第2の発電装置5Bの発電に伴って発生する熱は、排熱される。このような制御により、第1の発電装置5Aを再び運転させる時に発電開始までに要する時間(例えば起動時間)を短縮することができる。
 このように、本実施形態において、制御部10Bは、発電装置5Bの発電中に他の発電装置5Aを立ち下げる際、他の発電装置5Aが発電する電力の低下に応じて、発電装置5Bが発生する熱の供給を増大させるように制御してもよい。また、制御部10Bは、発電装置5Bの発電中に他の発電装置5Aを立ち上げる際、発電装置5Bが発電する電力量および系統200から供給される電力量に応じて、発電装置5Bが発生する熱の供給を低下させるように制御してもよい。ここで、制御部10Bは、他の発電装置5Aが発電する電力の情報に基づいて、発電装置5Bが発生する熱の供給を増大または低下させるように制御してもよい。
 以上説明したように、本実施形態によれば、一方の発電装置の排熱を、他方の発電装置のセルスタックの加熱または加温のために有効に利用することができる。
 本実施形態を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。したがって、これらの変形および修正は本実施形態の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本実施形態の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
 本明細書において、各発電装置およびセルスタックは、運転開始時、起動してから発電を開始して、運転終了時、発電を停止した後当該発電を完全に停止(終了)するものとして説明した。しかしながら、本実施形態は、これらのような用語が厳密に意味する内容に限定されるものではない。例えば、各発電ユニットの「起動」は、いわゆる「立ち上げ」等としてもよいし、また、「発電の停止」は、いわゆる「立ち下げ」等としてもよい。
 同様に、本明細書において、本実施形態に係る装置およびシステムの発電の「開始」とは、電力供給に関する動作または運転の開始、またはこれらに係る制御または処理の開始などとしてもよい。また、このような「発電の開始」を適宜「起動」としてもよい。また、本実施形態に係る装置およびシステムにおける発電の「終了」とは、動作または運転の終了、またはこれらに係る制御または処理などの終了などとしてもよい。また、このような「終了」を適宜「停止」または「完了」としてもよい。
 また、本実施形態は、上述したような発電システム1の制御方法として実施することもできる。この場合、当該方法は、
 (1)第1の発電装置5Aおよび第2の発電装置5Bのうち一の発電装置が発電する発電ステップと、
 (2)発電ステップにおいて一の発電装置の発電に伴い熱を発生する熱発生ステップと、
 (3)熱発生ステップにおいて発生した熱を、他の発電装置に供給する熱供給ステップと、を含む。
 上述した実施形態においては、主として制御部10Bが発電システム1全体の制御を行う例について説明した。しかしながら、他の実施形態においては、上述のような制御を制御部10Aが行ってもよいし、制御部10Aおよび制御部10Bが協働することにより上述のような制御を行ってもよい。
 本開示内容の制御は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアによって実行される、一連の動作として示される。コンピュータシステムその他のハードウェアには、例えば、汎用コンピュータ、PC(Personal Computer)、専用コンピュータ、ワークステーション、又はその他のプログラム可能なデータ処理装置が含まれる。各実施形態では、種々の動作は、プログラム命令(ソフトウェア)で実装された専用回路(例えば、特定機能を実行するために相互接続された個別の論理ゲート)や、1つ以上のプロセッサによって実行される論理ブロックやプログラムモジュール等によって実行されることに留意されたい。論理ブロックやプログラムモジュール等を実行する一以上のプロセッサには、例えば、1つ以上のマイクロプロセッサ、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、コントローラ、マイクロコントローラ、電子機器、ここに記載する機能を実行可能に設計されたその他の装置、及び/又は、これらいずれかの組合せが含まれる。ここに示す実施形態は、例えば、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード又はこれらいずれかの組合せによって実装される。
 1 発電システム
 5A 第1の発電装置
 5B 第2の発電装置
 10A,10B 制御部
 20A,20B セルスタック
 30A,30B インバータ(パワーコンディショナ)
 40A,40B 補機
 50A,50B 熱交換部
 60,70 熱伝導部
 80,90 電流センサ
 100 負荷
 200 系統
 
 

Claims (9)

  1.  第1の発電装置と、
     第2の発電装置と、
     前記第1の発電装置および前記第2の発電装置の少なくとも一方を制御する制御部と、を備え、
     前記制御部は、前記第1の発電装置および前記第2の発電装置うち一の発電装置が発電するに伴って発生する熱を、前記第1の発電装置および前記第2の発電装置のうち他の発電装置に供給する、発電システム。
  2.  前記制御部は、
     前記一の発電装置の発電中に前記他の発電装置が停止する場合、前記他の発電装置が発電する電力の低下に応じて、前記一の発電装置が発生する熱の供給を増大させる、請求項1に記載の発電システム。
  3.  前記制御部は、
     前記一の発電装置の発電中に前記他の発電装置を動作開始する場合、前記他の発電装置が発電することになる電力量に応じて、前記一の発電装置が発生する熱の供給を低下させる、請求項1または2に記載の発電システム。
  4.  前記制御部は、
     前記他の発電装置を動作開始する時に前記一の発電装置が発電している電力量および系統から供給されている電力量に基づいて、前記他の発電装置から生じることになる熱を推測し、当該推測に基づいて前記一の発電装置が発生する熱の供給を低下させる、請求項3に記載の発電システム。
  5.  前記第1の発電装置がモノジェネレーション型、前記第2の発電装置がコジェネレーション型である場合において、
     前記制御部は、前記第1の発電装置が発電するに伴って発生する熱を、前記第2の発電装置に供給する、請求項1から4のいずれか一項に記載の発電システム。
  6.  第1の発電装置および第2の発電装置を含む発電システムの制御方法であって、
     前記第1の発電装置および前記第2の発電装置のうち一の発電装置が発電する発電ステップと、
     前記発電ステップにおいて前記一の発電装置の発電に伴い熱を発生する熱発生ステップと、
     前記熱発生ステップにおいて発生した熱を、他の発電装置に供給する熱供給ステップと、
     を含む発電システムの制御方法。
  7.  前記一の発電装置の発電中に前記他の発電装置が停止する場合、前記他の発電装置が発電する電力の低下に応じて、前記一の発電装置が発生する熱の供給を増大させるステップをさらに含む、請求項6に記載の発電システムの制御方法。
  8.  前記一の発電装置の発電中に前記他の発電装置を動作開始する場合、前記他の発電装置が発電することになる電力量に応じて、前記一の発電装置が発生する熱の供給を低下させるステップをさらに含む、請求項6または7に記載の発電システムの制御方法。
  9.  前記他の発電装置を動作開始する時に前記一の発電装置が発電している電力量および系統から供給されている電力量に基づいて、前記他の発電装置から生じることになる熱を推測する推測ステップと、
     前記推測ステップにおける推測に基づいて前記一の発電装置が発生する熱の供給を低下させるステップと
     をさらに含む、請求項8に記載の発電システムの制御方法。
     
PCT/JP2016/002554 2015-05-26 2016-05-26 発電装置、発電システム、および発電システムの制御方法 WO2016189875A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16799588.5A EP3306718B1 (en) 2015-05-26 2016-05-26 Power generation device, power generation system, and method for controlling power generation system
JP2017520247A JP6503060B2 (ja) 2015-05-26 2016-05-26 発電装置、発電システム、および発電システムの制御方法
US15/576,466 US20180159154A1 (en) 2015-05-26 2016-05-26 Power generation apparatus, power generation system, and control method for power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106710 2015-05-26
JP2015-106710 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016189875A1 true WO2016189875A1 (ja) 2016-12-01

Family

ID=57394013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002554 WO2016189875A1 (ja) 2015-05-26 2016-05-26 発電装置、発電システム、および発電システムの制御方法

Country Status (4)

Country Link
US (1) US20180159154A1 (ja)
EP (1) EP3306718B1 (ja)
JP (1) JP6503060B2 (ja)
WO (1) WO2016189875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082103A (zh) * 2019-12-31 2020-04-28 上海神力科技有限公司 一种燃料电池系统低温自启动方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003069U1 (it) * 2018-07-23 2020-01-23 Nicola Piccenna Dual energy core
CN110165247B (zh) * 2019-05-20 2021-04-20 浙江大学 具有冷启动功能的燃料电池汽车热管理系统及其控制方法
CN113364114A (zh) * 2020-03-04 2021-09-07 台达电子工业股份有限公司 智慧电网系统及其功率管理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262370A (ja) * 1991-02-18 1992-09-17 Nippon Telegr & Teleph Corp <Ntt> 燃料電池
JP2004349093A (ja) * 2003-05-22 2004-12-09 Tokyo Electric Power Co Inc:The 燃料電池プラント
US20050037249A1 (en) * 2003-08-14 2005-02-17 James Zizelman Cascaded fuel cell stacks for fast start-up and anode coking control
JP2011096600A (ja) * 2009-11-02 2011-05-12 Gs Yuasa Corp 燃料電池システムおよびその運転方法
JP2012018823A (ja) * 2010-07-08 2012-01-26 Panasonic Corp 燃料電池システム及びその運転方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489048B1 (en) * 2000-02-11 2002-12-03 Plug Power Inc. Operating a fuel cell system during low power demand
JP4568486B2 (ja) * 2003-07-25 2010-10-27 関西電力株式会社 ハイブリッド型燃料電池システム
US20060228593A1 (en) * 2005-04-06 2006-10-12 Grieve Malcolm J PEM-SOFC hybrid power generation systems
JP2009259407A (ja) * 2008-04-11 2009-11-05 Gs Yuasa Corporation 燃料電池システム
CN111193048A (zh) * 2012-04-02 2020-05-22 水吉能公司 燃料电池模块及其启动、关闭和重新启动的方法
GB2513636A (en) * 2013-05-02 2014-11-05 Intelligent Energy Ltd A fuel cell system
JP5808774B2 (ja) * 2013-06-03 2015-11-10 株式会社豊田自動織機 車両に搭載される燃料電池システム
KR102132989B1 (ko) * 2013-12-27 2020-07-14 에스케이이노베이션 주식회사 연료 전지 스택 연결 제어 장치 및 그에 대한 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262370A (ja) * 1991-02-18 1992-09-17 Nippon Telegr & Teleph Corp <Ntt> 燃料電池
JP2004349093A (ja) * 2003-05-22 2004-12-09 Tokyo Electric Power Co Inc:The 燃料電池プラント
US20050037249A1 (en) * 2003-08-14 2005-02-17 James Zizelman Cascaded fuel cell stacks for fast start-up and anode coking control
JP2011096600A (ja) * 2009-11-02 2011-05-12 Gs Yuasa Corp 燃料電池システムおよびその運転方法
JP2012018823A (ja) * 2010-07-08 2012-01-26 Panasonic Corp 燃料電池システム及びその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082103A (zh) * 2019-12-31 2020-04-28 上海神力科技有限公司 一种燃料电池系统低温自启动方法
CN111082103B (zh) * 2019-12-31 2021-08-20 上海神力科技有限公司 一种燃料电池系统低温自启动方法

Also Published As

Publication number Publication date
EP3306718A1 (en) 2018-04-11
EP3306718A4 (en) 2019-02-27
US20180159154A1 (en) 2018-06-07
JPWO2016189875A1 (ja) 2018-01-18
JP6503060B2 (ja) 2019-04-17
EP3306718B1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2016189875A1 (ja) 発電装置、発電システム、および発電システムの制御方法
EP3413382A1 (en) Fuel cell assembly system and operating method therefor
JP2013225445A (ja) 燃料電池システム及びその制御方法
JP2015186408A (ja) 燃料電池システムの運転方法、及び、燃料電池システム
JP6174578B2 (ja) 固体酸化物形燃料電池システム
JP6942565B2 (ja) 発電装置、制御装置及び制御プログラム
US10523015B2 (en) Power generation apparatus, power generation system, and power generation method
JP5407577B2 (ja) 燃料電池システム
JP7461977B2 (ja) 燃料電池システム及び設備管理方法
JP6569080B2 (ja) 燃料電池システム
JP2015025586A (ja) コージェネレーション装置
JP2016201249A (ja) 燃料電池システム
JPWO2016121389A1 (ja) 電力供給装置、電力供給システム、および電力供給方法
JP2017157295A (ja) 燃料電池システム
JP6452330B2 (ja) 発電装置、発電システム、および発電方法
JP6264182B2 (ja) 燃料電池システム
JP2006294399A (ja) 燃料電池発電システムおよびそのプログラム
JP5908340B2 (ja) 燃料電池発電システム
JP7005628B2 (ja) 発電装置、制御装置及び制御プログラム
JP6892354B2 (ja) 発電装置、制御装置及び制御プログラム
JP6912928B2 (ja) 発電装置、制御装置、および制御プログラム
JP2016019428A (ja) 発電装置、発電システム、および発電方法
JP2016152744A (ja) 電力供給システムおよびその電力制御方法
JP2019009063A (ja) 発電装置、制御装置及び制御プログラム
JP6237040B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520247

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799588

Country of ref document: EP