WO2016189867A1 - 送風装置 - Google Patents

送風装置 Download PDF

Info

Publication number
WO2016189867A1
WO2016189867A1 PCT/JP2016/002537 JP2016002537W WO2016189867A1 WO 2016189867 A1 WO2016189867 A1 WO 2016189867A1 JP 2016002537 W JP2016002537 W JP 2016002537W WO 2016189867 A1 WO2016189867 A1 WO 2016189867A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
airflow
wind speed
concentrated
operation pattern
Prior art date
Application number
PCT/JP2016/002537
Other languages
English (en)
French (fr)
Inventor
谷口 和宏
大林 史明
宏 下田
裕剛 石井
和音 宮城
祐太 島村
英弘 金川
真也 古田
尚忠 下中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017520242A priority Critical patent/JP6739006B2/ja
Publication of WO2016189867A1 publication Critical patent/WO2016189867A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a blower that controls environmental elements in a work space.
  • concentration the degree of concentration of the user's consciousness
  • the user's concentration varies depending on various environmental factors. Therefore, techniques for controlling environmental elements that affect the degree of user concentration have been proposed.
  • the environmental elements include lighting environment (illuminance / visual stimulation), auditory environment (sound), olfactory environment (odor), air environment (airflow, temperature / humidity, ventilation), and the like.
  • Patent Document 1 proposes a snoozing prevention device that prevents snoozing by controlling airflow in an air environment.
  • the dozing prevention device described in Patent Document 1 is capable of preventing dozing by turning on and off the air blowing unit according to the pulse signal and intermittently applying airflow to the user.
  • the blower according to the present invention includes a suction port that sucks air, a blowout port that blows air sucked from the suction port into the work space, and a fan that generates an air flow from the suction port toward the blower port.
  • movement of a motor and a wind direction change apparatus are provided. And a control part performs concentrated airflow mode.
  • the airflow blown from the air outlet is directed to the unmanned area in the work space by the airflow direction changing device, and after the first step, the rotation of the motor is increased to increase the airspeed above a predetermined threshold.
  • a second step of blowing out a concentrated airflow from the air outlet is performed after the second step.
  • a fourth step Further, after the fourth step, there is a fifth step in which the rotation of the motor is decelerated to reduce the wind speed of the airflow.
  • the present invention can maintain or improve the user's concentration by controlling the airflow.
  • FIG. 1 is a schematic view showing a blower device according to a first embodiment of the present invention arranged in a work space.
  • FIG. 2 is a schematic cross-sectional view of the blower device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram of the blower device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram of the control unit of the blower apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart combining schematic diagrams showing operation steps in the concentrated air flow mode of the blower according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a specific example in which the airflow of the blower in the first embodiment of the present invention is blown to the unmanned area and the manned area.
  • FIG. 1 is a schematic view showing a blower device according to a first embodiment of the present invention arranged in a work space.
  • FIG. 2 is a schematic cross-sectional view of the blower device according
  • FIG. 7 is a time-series graph of the wind speed of the concentrated air flow of the blower according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a measurement example for quantifying the degree of concentration when the blower device according to the first embodiment of the present invention is used.
  • FIG. 9 is a diagram showing the relationship between the lapse of work time and the degree of concentration when using the air blower in the first embodiment of the present invention.
  • FIG. 10 is a flowchart combining the schematic diagrams showing the operation steps of the first operation pattern of the blower device according to the first embodiment of the present invention.
  • FIG. 11 is a flow chart combining schematic diagrams showing operation steps of the second operation pattern of the blower device according to the first embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of a control table of the blower in the first embodiment of the present invention.
  • FIG. 13 is a block diagram of a blower device according to the second embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation steps in the concentrated mode of the air blower in the second embodiment of the present invention.
  • FIG. 1 is a schematic view showing a blower arranged in a work space.
  • the work space Es where the user Us exists is indoors, and an example in which the blower 1 is installed on the floor surface is shown.
  • the work space Es here means a space where the user performs work. Therefore, a shield such as a wall or a window that separates the inside of the space from the outside of the space is not always necessary.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the blower.
  • FIG. 3 is a block diagram showing the configuration of the blower.
  • the outer shell of the blower 1 has a substantially cubic shape and includes a front surface, a side surface, and a back surface that are substantially perpendicular to the floor surface. A bottom surface in contact with the floor surface and a top surface at a position facing the bottom surface are provided.
  • the external dimensions of the blower 1 exemplified here are 0.4 m wide, 0.3 m deep, and 0.7 m high.
  • the blower 1 has a bottom structure 2 that can be stably installed on the floor.
  • the bottom surface structure 2 may have a plurality of legs that surround the center of gravity of the blower 1, and the legs may be in contact with the floor surface in the work space Es.
  • a suction port 3 for sucking air into the blower 1 is provided.
  • an outlet 4 for blowing out air sucked from the inlet 3 into the work space Es.
  • the height from the bottom surface of the air outlet 4 varies depending on the size of the blower 1, but in the present embodiment, it is arranged at a height of 0.6 to 0.7 m above the bottom surface.
  • a plate-like louver 5 is provided in the vicinity of the air outlet 4.
  • the louver 5 functions as a wind direction changing device that changes the wind direction of the airflow blown out from the air outlet 4.
  • the louver 5 is provided with a rotating shaft 6 at one end on the back side of the air outlet 4 and parallel to the bottom surface and parallel to the bottom surface. Furthermore, the blower 1 includes a stepping motor 7 that rotates the louver 5 around the rotation shaft 6.
  • the stepping motor 7 is configured to be able to control the wind direction in the direction along the inclination angle of the louver 5 by adjusting the inclination angle of the louver 5.
  • the wind direction angle of the airflow that can be blown by the louver 5 is in the range of ⁇ 20 ° to 90 °, where 0 ° is the front direction and the horizontal direction to the bottom, and 90 ° is the vertical upward direction.
  • a fan 8 that generates an air flow from the suction port 3 toward the blowout port 4 and a motor 9 that rotationally drives the fan 8 are provided.
  • a sirocco fan can be used.
  • a DC motor can be used as an example of the motor 9.
  • suction inlet 3, the fan 8, the motor 9, the blower outlet 4, the louver 5, and the stepping motor 7 comprise the ventilation part 10 shown in FIG.
  • the blower device 1 further includes a control unit 11 that controls the rotation angle of the louver 5 through the rotation of the motor 9 and the stepping motor 7, that is, the operation.
  • control unit 11 includes a storage unit 12, a processing unit 13, a timing unit 14, an instruction unit 15, an input unit 23, and an acquisition unit 18.
  • the storage unit 12 stores a program for controlling the blower unit 10 and a control table 19 described later.
  • the processing unit 13 controls the operation content of the air blowing unit 10 using the information stored in the storage unit 12. In addition, information necessary for control is acquired from the control table 19 stored in the storage unit 12, and the operation of each unit is determined.
  • the instructing unit 15 sends a signal to the stepping motor 7 that operates the air blowing unit 10, specifically, the louver 5 that constitutes the wind direction changing device, and the motor 9 that operates the fan 8 based on the operation determined by the processing unit 13. . Thereby, each part of the ventilation part 10 performs the operation
  • Time measuring unit 14 measures the time for determining the timing for operating the air blowing unit 10.
  • the input unit 23 delivers information from the operation pattern selection switch 20, the wind speed adjustment switch 21, and the cycle adjustment switch 22 provided in the blower 1 to the processing unit 13.
  • the acquisition unit 18 receives information from the temperature sensor 17 as an air temperature detection unit provided in the blower 1 and delivers it to the processing unit 13.
  • the operation pattern selection unit 16 selects which operation pattern is to be executed from among a plurality of operation patterns provided in the blower 1, and details thereof will be described later.
  • the control unit 11 described above is realized by using a computer such as a microcomputer or a microprocessor that operates according to a program as an example. That is, the control unit 11 includes a memory 41 represented by a CPU (Central Processing Unit) 40, a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), and the like. Further, the control unit 11 includes an I / F (Interface) 42 that can be physically connected to various devices, and the memory 41 and the I / F 42 are connected via an internal bus 43.
  • a computer such as a microcomputer or a microprocessor that operates according to a program as an example. That is, the control unit 11 includes a memory 41 represented by a CPU (Central Processing Unit) 40, a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), and the like. Further, the control unit 11 includes an I / F (Interface) 42 that can be physically connected to various devices, and the memory 41 and
  • the CPU 40 uses, for example, a RAM as a work area, and executes a program stored in a memory 41 such as a ROM or an HDD, thereby executing a processing unit 13, a timing unit 14, and an operation pattern selection shown in the control unit 11 of FIG. It operates as the unit 16 or the like.
  • the memory 41 corresponds to the storage unit 12 shown in FIG. 2 and functions as a storage location of a program, a work area at the time of program execution, a storage location of a data table to be referred to at the time of program execution, and the like.
  • the I / F 42 corresponds to the instruction unit 15, the acquisition unit 18, the input unit 23, and the like illustrated in FIG. 3 and serves as a physical connection unit between the control unit 11 and each device, and between each device and the control unit 11. Mediates the exchange of signals.
  • the devices are the motor 9, the stepping motor 7, the temperature sensor 17, the operation pattern selection switch 20, the wind speed adjustment switch 21, the cycle adjustment switch 22, and the like shown in FIG. 2 or FIG.
  • the blower 1 includes the blower 10 and the controller 11.
  • the blower unit 10 has a function of forming an airflow in the work space, and the control unit 11 maintains or improves the degree of concentration that is the degree of consciousness concentration of the user Us existing in the work space Es. 10 operations are controlled.
  • the processing unit 13 constituting the control unit 11 receives the air temperature information from the temperature sensor 17 via the acquisition unit 18. Subsequently, the processing unit 13 refers to the control table 19 stored in the storage unit 12, determines the operation of each unit corresponding to the acquired air temperature, and operates the motor 9 and the stepping motor 7 via the instruction unit 15. Send as a command.
  • the motor 9 rotates the fan 8 by rotating at a predetermined rotational speed based on the operation command received from the instruction unit 15.
  • the fan 8 generates an air flow by this rotation. Air is taken in from the suction port 3 by the air flow, and blown out as an air current from the blowout port 4 via the fan 8.
  • the stepping motor 7 arranges the louver 5 at a predetermined angle based on the operation command received from the instruction unit 15. The airflow (angle) of the airflow blown out from the air outlet 4 is determined by the louver 5.
  • the processing unit 13 increases the rotational speed of the fan 8 by giving an instruction to increase the rotational speed of the motor 9.
  • the number of rotations of the fan 8 increases, the air flow increases, and the wind speed of the air flow blown out from the air outlet 4 can be increased.
  • control is performed to reduce the rotational speed.
  • the processing unit 13 changes the angle of the louver 5 by giving an instruction to the stepping motor 7 to change the angle. Since the airflow blown out from the blower outlet 4 flows along the louver 5, the direction of the wind can be changed in a direction in accordance with the angle of the louver 5 by changing the angle of the louver 5.
  • FIG. 5 is a flowchart in which schematic diagrams showing operation steps in the concentrated airflow mode of the blower 1 are combined.
  • the control unit 11 controls the louver 5 so that the wind direction of the airflow blown from the outlet 4 is directed to the unmanned area (step S01).
  • the unmanned area defined here refers to an area where the air current is not directly applied to the user Us who performs work.
  • the control unit 11 blows the airflow upward by directing the angle of the louver 5 vertically upward.
  • step S01 the control unit 11 increases the rotational speed of the fan 8 with the louver 5 facing the unmanned area, and the maximum wind speed V1 equal to or greater than a predetermined threshold value.
  • the concentrated airflow F1 having the air is blown out from the air outlet 4 (step S02).
  • the numerical value of the wind speed of the present invention is not the wind speed blown out from the outlet of the outlet 4 (outlet wind speed) but the wind speed measured at a position away from the reference distance.
  • the reference distance can be the distance from the blower 1 to the user Us, but it does not matter whether the airflow generated from the outlet 4 directly hits or does not hit the user Us. That is, it indicates a certain distance from the blower 1.
  • the above-mentioned predetermined threshold is 0.5 (m / s) or more as an example.
  • the reference distance is 2 m, and when the reaching wind speed is 0.5 (m / s), the air is blown out at 1.0 (m / s) in consideration of distance attenuation.
  • the outlet wind speed at the outlet is V0 (m / s)
  • the reached wind speed at a position x (m) away from the outlet in the air flow direction is Vx (m / s)
  • the outlet diameter is D0 ( m)
  • Vx K * D0 * V0 / X Equation 1
  • K ⁇ 5.2 is known for the free jet at the time of isothermal blowing from the literature.
  • the wind speed is increased by increasing the rotation speed of the fan, the wind speed is slowly increased in a time of 2 to 3 seconds to suppress auditory stimulation due to the sudden increase in noise.
  • the control unit 11 controls the louver 5 so that the wind direction of the concentrated air flow F1 blown from the outlet 4 is directed to the manned area (step S03).
  • the manned area defined here refers to an area where the air current directly hits the user Us who performs work.
  • the air flow is blown by tilting the angle of the louver 5 toward the front and directing it in the horizontal direction (angle 0 °). Blow out horizontally on the front side of the device 1. Thereby, the concentrated airflow F1 can be directly applied to the user Us.
  • step S04 the control unit 11 maintains a state where the concentrated air flow F1 continues to be blown to the manned area (step S04).
  • the control unit 11 sets the time for which the concentrated air flow F1 is continuously applied to the user Us to 30 seconds, and measures the time by the time measuring unit 14.
  • step S05 the control unit 11 decelerates the rotation of the motor 9 and decreases the wind speed (step S05).
  • the reference for reducing the wind speed is the immediately preceding wind speed, that is, the maximum wind speed value V1, which means that the wind speed is decelerated from the maximum wind speed value V1.
  • the above first to fifth steps are called concentrated airflow mode.
  • FIG. 6 is a diagram illustrating a specific example of blowing airflow to the unmanned area and the manned area of the blower 1.
  • the distance between the blower 1 and the user Us is 2 m, and the front of the blower 1 is directed to the user Us, and Assume that the user Us sits on a chair and works. In this case, it can be assumed that the feet of the user Us are 0 m from the floor and the head is about 1.2 m from the floor. Since the height of the air outlet 4 of the blower 1 is 0.6 to 0.7 m from the floor, the angle of the louver 5 is set to ⁇ 10 ° to ⁇ 20 when the concentrated air flow F1 is blown to the feet of the user Us. Set to °.
  • the angle of the louver 5 may be set to 10 to 20 °. Then, the angle of the louver 5 is set vertically above over 20 °, and the region of 30 ° to 90 ° where the airflow does not directly hit the user Us is an unattended region. Of course, a range of 90 ° or more can be an unmanned region.
  • the blower 1 includes the bottom surface structure 2 and the height of the outlet 4 is 0.5 to 2 m from the floor, and the louver 5 at least from the front horizontal direction to the vertical upward direction.
  • the wind direction can be controlled, and the air blower 1 is installed so that the front side faces the user Us.
  • the blower 1 can determine the manned area and the unmanned area without using the human sensor that detects the position of the user Us, and can blow the concentrated air flow F1.
  • the mechanism which controls a wind direction toward the left-right side of a human sensor or the air blower 1 becomes unnecessary, and there exists an advantage that the air blower 1 can be reduced in size.
  • a wind speed adjustment switch that can adjust the wind speed of the airflow blown from the outlet 4 may be provided.
  • a specific configuration of the wind speed adjustment switch 21 will be described later.
  • the air blower 1 may be provided with a distance measuring sensor capable of measuring the distance from the human body, and the wind speed of the airflow blown out from the air outlet 4 may be adjusted according to the distance between the user Us and the air blower 1.
  • the feature is that, in the first step, the user Us is controlled so as to blow air toward an unmanned area where the air current does not hit in advance, and then the wind speed is increased in a state where the air does not hit the user Us to create a concentrated air flow F1. Then, the concentrated airflow F1 is directly applied to the manned area, that is, the user Us by the louver 5, so that the user Us suddenly feels a strong wind blowing.
  • FIG. 7 shows a graph obtained by measuring the wind speed of the airflow applied to the user Us in time series in the present embodiment. Further, below the graph, the control timings of steps S01 to S05 in FIG. 5 are shown in synchronization with the wind speed.
  • the wind speed of the airflow applied to the user Us rises rapidly by being directed to the manned area after the concentrated airflow F1 is generated (after reaching the wind speed of the concentrated airflow F1).
  • the user Us feels a change in the air environment due to the wind.
  • the angle (direction) of the louver 5 is not changed to the unmanned area while the concentrated air flow F1 is maintained, but the rotation of the motor 9 is first decelerated to reduce the wind speed.
  • a natural impression is given by relaxing the wind hitting the user Us.
  • How to feel the wind is the air temperature in the work space Es, the size of the maximum velocity V1 of the concentrated air flow F1, the time for which the user Us is exposed to the wind, which part of the body of the user Us the wind hits, and the use It depends on the amount of clothing of the person Us. However, it is possible to continue working in a concentrated manner by receiving a feeling of wind pressure and coolness due to the concentrated airflow F1, an impression that air is circulating, and the like. That is, there is an effect that the degree of concentration can be improved.
  • the operation step of the concentrated air current mode of the present embodiment is used. For example, there is an advantage that even if the time for applying the concentrated airflow F1 is shortened, the user Us is not given discomfort such as cold.
  • concentration time ratio means a ratio of time that is in a state of concentration with respect to work time when a person performs intelligent work.
  • the concept of concentration time ratio is based on a model that includes a state in which cognitive resources are assigned to work targets and a state in which cognitive resources are not assigned to work targets during the period when a person is performing intellectual work. ing.
  • a state in which a cognitive resource is assigned to a target and work is progressing is referred to as a “working state”
  • a state in which a cognitive resource is not allocated to a target and is resting for a long time is referred to as “long-term rest”.
  • a state in which cognitive resources are allocated to a target but work processing is unconsciously stopped for a short time is called “short-term rest”. It is known that the state of “short-term rest” occurs physiologically with a certain probability during the period of “working state”.
  • “Working state” and “Short-term rest” are states where cognitive resources are allocated to the target, so they are considered as concentrated states, and “Long-term rest” is a state where cognitive resources are not allocated to the target. It is considered a decentralized state. Therefore, if the three states of "working state”, “short-term rest” and “long-term rest”, or “working state” and “short-term rest” and “long-term rest” are separated, the degree of concentration is quantified. It can be seen that
  • a frequency is generated for each answer time category and a histogram is generated.
  • this histogram is estimated to represent the result of superimposing the concentrated state and the non-concentrated state.
  • this histogram becomes a shape with two or more peaks when an appropriate problem is given. That is, two or more mountain regions are generated in the histogram.
  • the Yamagata region including the peak with the shortest response time represents a state in which “working state” and “short-term rest” are mixed, and the Yamagata region including the other peaks represents “working state”, “short-term rest” and “ It is interpreted as representing a mixture of “long-term rest”. This is because, even in a concentrated state, the answer time may become longer depending on variations in the difficulty level of the problem.
  • the parameters of the probability density function f (x) are determined, it is possible to obtain the expected response time.
  • the result obtained by multiplying the expected value obtained by the total number of questions can be interpreted as the time of concentration during the total time (total response time) from the start of the subject to the completion of the question. is there.
  • the time obtained by subtracting the time that was in the concentrated state from the total answer time can be interpreted as the time that was in the non-concentrated state. Accordingly, the time ratio of the time of concentration with respect to the total answer time is defined as the concentration time ratio, and it is determined that the greater the concentration time ratio, the higher the degree of concentration.
  • the concentration time ratio described above is an example of an index of concentration, and the concentration can be quantified using other indexes described later.
  • concentration time ratio it is necessary to give the subject a number of questions and answer them, and it is difficult to obtain an index of concentration during the operation. Therefore, in order to control the blower unit 10 according to the concentration level, it is necessary to measure an index of the concentration level equivalent to the concentration time ratio with another technique.
  • the concentration degree fluctuates so as to repeat increase and decrease every 20 to 40 minutes as shown in the characteristic C1.
  • the concentration level decreases from a high state over time, then recovers, increases, and decreases again. is doing.
  • the period during which the degree of concentration varies varies among individuals and varies depending on various factors. Focusing on the variation in the degree of concentration with the passage of time as described above, it can be said that the decrease in the degree of concentration may be suppressed in order to increase the work efficiency of the intelligent work.
  • the concentrated airflow mode can be controlled to maintain a high concentration state by repeatedly applying the concentrated airflow F1 to the user Us in accordance with the fluctuation of the concentration level.
  • step S05 the time is measured by the timer unit 14, and the first step is started again after 10 minutes.
  • the blower 1 can apply the concentrated air flow F1 to the user Us about every 10 minutes, and the concentration degree of the user Us can be improved.
  • the airflow mode combined with the concentrated airflow mode is the fine airflow mode or the environmental airflow mode.
  • the micro airflow mode is a wind speed that is less than or equal to half the maximum value V1 of the wind speed of the concentrated airflow F1 as the 6a step after the fifth step (step S05) of the concentrated airflow mode.
  • the micro air flow F2 is blown toward the manned area, that is, the user Us (step S06a).
  • the maximum wind speed value V1 of the concentrated airflow F1 is 0.5 m / s
  • the maximum wind speed value V2 of the micro airflow F2 is set to 0.25 m / s or less.
  • the micro airflow mode is an airflow control mode that blows air when the concentrated airflow F1 is not generated, and reduces the wind speed of the airflow that directly hits the user Us by the fifth step (step S05) of the concentrated airflow mode.
  • the wind speed is defined as micro air flow F2. That is, the air flow at a weak wind speed is sent to the user Us by the step 6a (step S06a).
  • the effect of the concentrated airflow F1 may be weakened by the rising airflow from the upper body to the vicinity of the head.
  • the stimulation may be weakened by the rising airflow.
  • the temperature boundary layer is thinned and the heat radiation from the human body is promoted.
  • the effect of stimulation by the concentrated air flow F1 is enhanced, the concentration enhancement effect is strengthened, and the concentration can be improved.
  • the airflow is further blown toward the user Us's head to promote heat dissipation, so that a so-called cold head heat environment can be obtained, a comfortable working environment can be provided, and the degree of concentration can be improved. it can.
  • the micro air flow F2 may be generated continuously, although the wind speed may fluctuate and includes a period in which the wind speed is 0 [m / s].
  • the maximum value V2 of the wind speed of the micro air flow F2 may be constant, the possibility that the user Us is cooled by the micro air flow F2 is reduced by giving the fluctuation. For example, 1 / f fluctuation is adopted as the fluctuation.
  • the direction of the airflow may be changed by the louver 5 in addition to controlling the number of rotations of the fan 8 provided in the blower unit 10.
  • the environmental airflow mode is an airflow control mode that blows air when the concentrated airflow F1 is not generated, as in the fine airflow mode.
  • the user Us is executed in the fifth step (step S05) of the concentrated airflow mode. Reduces the wind speed of the airflow that directly hits.
  • the control unit 11 controls the louver 5 so that the airflow direction of the airflow blown out from the air outlet 4 is directed to the unmanned area (step S06b).
  • the louver 5 angle is controlled to 45 ° so that the airflow flows over the user Us.
  • the control unit 11 controls the rotation of the motor 9 so as to blow out the environmental airflow F3 having a lower wind speed than the concentrated airflow F1 (step S07b).
  • the maximum value V3 of the wind speed of the environmental airflow F3 has a relationship of V3 ⁇ V1 with respect to the maximum value V1 of the wind speed of the concentrated airflow F1.
  • the maximum wind speed value V3 of the environmental airflow F3 is 0.3 m / s.
  • the purpose of the environmental airflow F3 is to stir the air in the work space Es to reduce the stagnation of the air around the user Us and to eliminate the air temperature unevenness in the work space Es.
  • the period during which the environmental airflow F3 is formed is the same as that of the fine airflow F2 (see step S06a in FIG. 10).
  • the wind direction is controlled so that the micro airflow F2 hits the user Us
  • the wind direction is controlled so that the environmental airflow F3 does not hit the user Us. That is, the micro airflow F2 hits the user Us, whereas the environmental airflow F3 does not hit the user Us.
  • the environmental airflow F3 is preferably blown when the air temperature in the work space Es is relatively low.
  • One reason is that when the air current is directly applied to the user Us, the temperature of the user Us's sensation is lowered and it becomes easy to feel cold or cold, and the concentration degree may be lowered. At this time, by forming the environmental airflow F3, it is possible to eliminate the stagnation of air without feeling cold or cold, and to provide a comfortable working environment in which air circulates.
  • the environmental airflow F3 desirably blows the airflow toward the upper ceiling surface, and can increase the circulation effect of room air.
  • the control unit 11 selects, based on the temperature information from the temperature sensor 17, whether to operate the blower unit 10 in the first operation pattern or the second operation pattern.
  • a selection unit 16 is provided. For example, when the input signal from the temperature sensor 17 is 24 ° C. or higher, the operation pattern selection unit 16 selects the first operation pattern and notifies the processing unit 13 of the first operation pattern. When the input signal is lower than 24 ° C., the second operation pattern is selected and notified to the processing unit 13. Thereby, the processing unit 13 can determine the operation pattern.
  • the first operation pattern and the second operation pattern are repeatedly controlled by the control unit 11 so that the operation steps loop.
  • the concentrated airflow F1 is repeatedly generated regardless of whether the first operation pattern or the second operation pattern is operated, and the concentrated airflow F1 repeatedly hits even if the user Us is working for a long time.
  • the degree of concentration of the user Us can be increased. It is also possible to set a cycle Ts at which the timer unit 14 performs the repetitive operation so as to match the variation of the user Us concentration degree.
  • the specific range of the period Ts can be selected from a range of 5 minutes to 40 minutes.
  • the reason for setting it as 5 minutes or more is that when the concentrated airflow F1 is applied to the user Us in a cycle of approximately 5 minutes or less, the user Us often receives an impression of being hit by the airflow. As a result, it has been confirmed through experiments that the airflow becomes a factor that hinders concentration and it is difficult to obtain an effect of improving the concentration.
  • the reason why it is set to 40 minutes or less is that it is adapted to the variation in concentration (20 to 40 minutes) that occurs when performing intelligent work for a long time.
  • the maximum value V1 of the wind speed of the concentrated airflow F1 in the concentrated airflow mode is selected from a range of 0.5 [m / s] to 2 [m / s]. Furthermore, it is desirable that the time (holding time Tf) during which the concentrated air flow F1 is continuously blown to the manned region in the fourth step is selected from the range of 3 seconds to 60 seconds.
  • the lower limit of the wind speed that a person can feel is about 0.2 m / s, but 0.2 m / s wind can be detected if the skin is exposed, but from above the clothes Cannot be detected. Therefore, the wind speed at which the wind can be recognized to some extent even from the top of the clothes is set to 0.5 m / s or more.
  • the reason why the upper limit is set to 2 m / s is that if an air flow with a wind speed of 2 m / s or more is blown, the user Us will be stimulated too much, which may hinder concentration. Furthermore, when the work is an operation using paper, the paper may be scattered due to the airflow direction.
  • the maximum value V1 of the wind speed of the concentrated air flow F1 is in the range of 0.5 to 2 m / s.
  • the reason why the lower limit of the holding time Tf of the concentrated air flow F1 is set to 3 seconds is that it is the minimum time necessary for the user Us to notice that it is hitting the concentrated air flow F1. If the operation step of the concentrated airflow mode of this Embodiment is used, the concentrated airflow F1 which raised the wind speed beforehand to the user Us can be applied at a stretch with the louver 5. FIG. However, it is difficult to achieve sufficient stimulation in 1 to 2 seconds, so a minimum of 3 seconds is required. Moreover, the reason why the upper limit is set to 60 seconds is that the user Us may get used to the stimulus if the airflow is applied for a long time.
  • the maximum wind speed value V2 of the micro airflow F2 and the maximum wind speed value V3 of the environmental airflow F3 are set according to the air temperature. It is desirable to be able to select a comfortable airflow that matches the user Us's thermal sensation.
  • a temperature sensor 17 (a thermistor as an example) is provided as an air temperature detection device that detects the air temperature in the vicinity of the suction port 3 of the blower 1.
  • the storage unit 12 includes a control table 19 shown in FIG.
  • the control table 19 includes an air temperature, a maximum value V1 of the concentrated air flow F1, a holding time Tf of the concentrated air flow F1, a maximum wind speed V2 of the micro air flow F2, a maximum wind speed V3 of the environmental air flow F3, and a control step.
  • An operation pattern (first pattern, second pattern) indicating a combination and a cycle Ts for repeating the operation pattern are associated with each other.
  • the first operation pattern is selected when the air temperature is 24 ° C. or higher, and the second operation pattern is selected when the air temperature is lower than 24 ° C.
  • the first operation pattern is an operation pattern using a combination of the concentrated air flow F1 and the micro air flow F2
  • the second operation pattern is an operation pattern using a combination of the concentrated air flow F1 and the environmental air flow F3.
  • the temperature range is divided every 2 ° C. to determine the wind speed.
  • the maximum wind speed value V1 of the concentrated air flow F1 and the maximum wind speed value V2 of the micro air flow F2 tend to increase.
  • the maximum wind speed value V1 of the concentrated air flow F1 and the maximum wind speed value V3 of the environmental air flow F3 tend to decrease.
  • the blower 1 detects the air temperature in the work space Es with the temperature sensor 17 and receives the detection signal (temperature information) with the processing unit 13 via the input unit 23.
  • the processing unit 13 refers to the control table 19, and in addition to the operation pattern, the period Ts of the concentrated air flow F1, the maximum wind speed value V1, and the holding time Tf, the maximum wind speed value V2 of the micro airflow F2 and the environmental airflow F3.
  • the maximum value V3 of the wind speed can be determined, and a control signal can be sent to the motor 9 and the stepping motor 7 of the blower unit 10 via the instruction unit 15 to control the airflow.
  • the first operation pattern and the second operation pattern can be determined in accordance with the air temperature in the work space Es, and the wind speed of the airflow can be adjusted, so that a comfortable airflow that matches the thermal feeling of the user Us It can provide an environment and has the effect of maintaining or improving concentration.
  • the air blower 1 not only automatically detects the air temperature and automatically controls the operation pattern, the air flow period Ts, and the maximum value of the wind speed (V1, V2, V3), but the user Us likes it. If it can be set manually, it will be even easier to use.
  • the blower 1 is provided with an operation pattern selection switch 20 that can be operated from the outside to select an operation pattern.
  • a wind speed adjustment switch 21 that can adjust the maximum wind speed value V1 of the concentrated airflow F1, the maximum wind speed value V2 of the micro airflow F2, and the maximum wind speed value V3 of the environmental airflow F3.
  • a cycle adjustment switch 22 that can adjust the cycle Ts of the operation pattern is provided.
  • the processing unit 13 determines an operation pattern via the operation pattern selection unit 16 and sends a signal to the motor 9 and the stepping motor 7 of the blower unit 10 via the instruction unit 15.
  • the processing unit 13 transmits a signal to the motor 9 and the stepping motor 7 of the blowing unit 10 at a timing according to the selected cycle.
  • the user Us can select an operation pattern according to his / her preference, change the wind speed (V1, V2, V3) of the airflow, or freely adjust the period Ts of the concentrated airflow F1, so A comfortable airflow environment can be formed. Thereby, the degree of concentration can be appropriately improved according to the user Us.
  • the air blower 1 when the air blower 1 performs two controls of the 1st operation pattern which combined concentrated airflow mode and micro airflow mode, and the 2nd operation pattern which combined concentrated airflow mode and environmental airflow mode. Although described, it is not necessarily limited to only these two operation patterns, and only the concentrated airflow mode may be repeated, and an effect of improving the concentration level can be obtained.
  • the air blower 1 provided with two or more independent air blow parts 10
  • the period Ts for generating the concentrated air flow F1 determined by the control table 19 is not necessarily a constant interval, and may be an indefinite interval as long as it is in the range of 5 minutes to 40 minutes shown in the present embodiment.
  • the degree of concentration increases and decreases with the passage of time.
  • the control may be 20 minutes, the second time being 15 minutes, and the third time and thereafter being changed every 10 minutes. That is, the period Ts may be shortened according to the number of times the concentrated air flow F1 is repeated.
  • the maximum value V1 of the concentrated airflow F1 and the holding time Tf determined by the control table 19 do not need to be constant values, and the maximum value of the wind speed shown in the present embodiment is 0. If the holding time is in the range of 5 to 2 m / s and the holding time is in the range of 3 to 60 seconds, it may be changed.
  • the maximum value V1 of the wind speed is 0.5 m / s, 0.6 m / s, 0.7 m / s and the predetermined wind speed 0.1 m / s as the number of times the concentrated air flow F1 is generated increases after the start of work.
  • the holding time Tf may be increased by 3 seconds, 3 seconds, 4 seconds, and 5 seconds, and may be increased by 1 second every predetermined time.
  • the air blower 1 may be provided with a concentration measuring device (not shown) that can measure the concentration of the user Us in real time.
  • concentration measuring device not shown
  • the degree of decrease in the degree of concentration may be determined, and feedback control that increases the maximum value V1 of the wind speed of the concentrated air flow F1 or increases the holding time Tf may be performed.
  • the concentration level measuring device needs to monitor the concentration level non-invasively to the user, and detect a change in the concentration level at a relatively short time interval (for example, 1 to 10 minutes).
  • the concentration measuring device is desirably not only non-invasive but also non-contact, but may include a configuration that contacts the user such as a headband or a wristband.
  • a camera that images a user is used as the concentration measuring device.
  • the acquisition unit 18 illustrated in FIG. 3 acquires information such as body movement, posture, pupil diameter, and blinking frequency using the user's image captured by the camera, and the processing unit 13 uses the information alone or By using in combination, an evaluation value of the degree of concentration is obtained.
  • the processing unit 13 is configured to register the relationship between the information and the above-described concentration time ratio in the reference table stored in the storage unit 12 in association with each other.
  • the processing unit 13 quantifies the concentration by comparing the information obtained from the acquisition unit 18 with a reference table and converting the information into a concentration time ratio.
  • the technique for converting information obtained from an image captured by a camera into a concentration time ratio is an example of a technique for quantifying the degree of concentration.
  • the concentration measuring device may be configured to detect a change in skin temperature at a specific part of the user with a thermograph, or to detect a bioelectric current other than an electroencephalogram or an electroencephalogram.
  • control table 19 is not determined only by the air temperature.
  • the temperature of the user Us and the amount of clothes are measured by the piles of the user, and the temperature of the user Us is measured using a thermal index (PMV or the like). You may make it change the numerical value of the control table 19 according to a feeling.
  • PMV thermal index
  • the user Us has a button that can directly operate the blower 1 to generate the concentrated airflow F1
  • the user Us generates the concentrated airflow F1 by pressing the button at any timing of the user Us. You may make it let it.
  • control table 19 itself may be rewritten.
  • the control unit 11 includes a communication device (for example, a wireless LAN communication device) that can communicate with the outside, and is supplied from an external information terminal (such as a smartphone or a personal computer).
  • the control table 19 information may be transferred.
  • the example using the louver 5 is shown as an example of the wind direction changing device, but a fan having a swing function may be used as another example of the wind direction changing device.
  • a fan having a swing function may be used as another example of the wind direction changing device.
  • the air blower 1 showed the example which is a floor-standing apparatus provided with the bottom face structure 2, if the positional relationship of the user Us and the air blower 1 is preset, it will be shown.
  • the air blower 1 may be in the form of a wall hanging type or a ceiling hanging type.
  • the blower 1 includes a human sensor or the like so that a manned area and an unmanned area can be specified and a wind direction of the airflow can be controlled. If so, the airflow control method of the present invention can be used, and similar effects can be obtained.
  • the concentrated airflow mode is applied to the upper body of the user Us, particularly the head or face.
  • the head and face are areas where the convection temperature boundary layer around the human body is thick, and there are many cases where the skin is relatively exposed. This is because there is an advantage that an impression that it is easy to feel a cool feeling or a clear head is easily obtained.
  • the degree of concentration may decrease, for example, the number of blinks may increase as the eyes dry, so the wind speed is reduced or the airflow exposure time is shortened. It is desirable to perform control so as to make changes.
  • the control part 11 when using the air blower 1 of this Embodiment, it is necessary for the control part 11 to start control of the air blower 10 at the time of the user Us starting work.
  • the user Us may directly operate the blower device 1, but using a camera for monitoring the user Us or a sensor for monitoring the user Us, It may be detected that the user Us is seated at a predetermined position.
  • the reference distance between the user Us and the air blower 1 is 2 m.
  • the work space Es is a private room such as a child room, it should be used in a large space such as a school or office. Therefore, it is desirable to assume a reference distance of about 1.5 to 5.0 m.
  • FIG. 13 is a block diagram showing the configuration of the blower 50 in the present embodiment.
  • the blower 50 changes the state of the air passing through the main path 30 in the main path 30 as the air path for conveying air from the suction port 3 to the fan 8 and the main path 30.
  • An air state changing unit 31 is provided.
  • a filter that removes dust in the air as an example, a pleated HEPA filter is used in the present embodiment.
  • a temporary suction port 32 that can take in air independently from the suction port 3 is provided on the side surface of the blower 50.
  • bypass path 33 is provided that branches from the main path 30 between the fan 8 and the air state change unit 31 and communicates with the temporary suction port 32.
  • a damper 34 that switches between opening and closing of the temporary suction port 32 is provided in the vicinity of the temporary suction port 32.
  • the damper 34 includes a damper drive motor 35 so that the opening and closing can be electrically operated, and the controller 11 can be controlled to open and close.
  • the control unit 11 controls the damper 34 to open through the instruction unit 15
  • the air path connected to the fan 8 from the temporary suction port 32 through the bypass path 33 communicates.
  • the air passage connected from the suction port 3 through the main path 30 to the fan 8 is always in communication, but the main path 30 has an air state change portion 31, and air passes through the air state change portion 31.
  • air resistance is accompanied, so most of the air sucked into the fan 8 is air from the bypass path 33. That is, the pressure loss of the bypass path 33 is lower than that of the main path 30.
  • bypass path 33 as a path for conveying air to the fan 8 and controlling the opening and closing of the bypass path 33, the air that has passed through the air state changing unit 31 is blown or the air state changing unit 31 is It is possible to blow air that does not pass through.
  • step S12 the control unit 11 performs a bypass release step of operating the damper drive motor 35 to open the damper 34.
  • the control unit 11 performs a bypass closing step (step S12) in which the damper drive motor 35 is operated to close the damper 34.
  • the rotation of the fan 8 is increased in the second step (step S02), and the bypass path 33 is communicated before the concentrated air flow F1 is generated by increasing the air volume (step S11). Even if the air volume taken into the air flow increases, air can be taken in from the bypass passage 33 with low pressure loss. As a result, when the concentrated airflow F1 is generated, the number of rotations of the fan 8 until the maximum wind speed V1 equal to or higher than the threshold value can be reduced, so that noise can be reduced. As a result, the concentration of the user Us due to noise is not hindered, and the degree of concentration can be maintained.
  • step S05 After generating the concentrated air flow F1, the rotation of the fan 8 is decelerated in the fifth step (step S05), so the air volume taken into the fan 8 is reduced.
  • step S12 By closing the bypass path 33 after the air volume is lowered (step S12), even if the air path communicating with the fan 8 is only the main path 30 and the pressure loss increases, the air volume is originally small, so the air volume change is small. .
  • changes in ventilation sound and wind noise caused by the change in air volume are reduced, and the magnitude of noise is not changed.
  • concentration is not inhibited by giving auditory stimulation by noise change to user Us, and the degree of concentration can be maintained.
  • a filter that removes dust and dust in the air is used as an example of the air state changing unit 31.
  • a humidifying filter that vaporizes and humidifies water, and dehumidifying that absorbs moisture in the air. It may be a filter, a heat exchanger that heats or cools the air temperature with a heat pump, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

集中気流モードを実行する送風装置であって、集中気流モードは、吹出口(4)から吹き出す気流の風向を、ルーバー(5)により作業空間(Es)内の無人領域に向ける第1ステップと、第1ステップの後に、モータの回転を増速させて集中気流を吹出口(4)から吹き出させる第2ステップとを有する。また、第2ステップの後に、集中気流の風向をルーバー(5)により作業空間(Es)内の有人領域に変更する第3ステップと、第3ステップの後に、集中気流の風向を有人領域に向けた状態を保持する第4ステップとを有する。さらに、第4ステップの後に、モータの回転を減速させて気流の風速を低下させる第5ステップを有する。

Description

送風装置
 本発明は、作業空間における環境要素を制御する送風装置に関するものである。
 一般的に、学習空間あるいは執務空間のような作業空間において作業を行う場合、作業効率は、利用者の意識集中の程度(以下、「集中度」という)の影響を受ける。そして、利用者の集中度は、様々な環境要素によって変化する。そのため、利用者の集中度に影響を与える環境要素を制御する技術が提案されている。ここでいう環境要素とは照明環境(照度・視覚刺激)、聴覚環境(音)、嗅覚環境(臭い)、空気環境(気流、温湿度、換気)などが該当する。
 例えば、特許文献1では空気環境の気流制御によって居眠りを防止する居眠り防止装置が提案されている。
 この特許文献1記載の居眠り防止装置は、パルス信号に応じて、送風部をオンオフし、気流を利用者に断続的に当てることで居眠りを防止することができるとしている。
特開2007-106337号公報
 しかしながら、この居眠り防止装置では、風速を急激に高めようとすると、送風部を瞬時に起動させる必要があり、突然大きなファンの騒音が発生してしまう。つまり利用者は気流が当たる前に大きな聴覚刺激を受けることで驚き、これにより集中を阻害される可能性がある。
 また、吹き出し口から急に風を吹き出すことで吹き出し口近傍に急激な圧力変動が生じ、破裂音が発生してしまうことも考えられる。これによっても同様に、利用者は大きな聴覚刺激を受けることで集中を阻害される可能性がある。
 本発明に係る送風装置は、空気を吸い込む吸込口と、吸込口から吸い込んだ空気を作業空間に吹き出す吹出口と、吸込口から吹出口に向けて空気流を発生させるファンとを備える。また、ファンを駆動するモータと、吹出口から吹き出す空気の風向を変更する風向変更装置と、モータと風向変更装置の動作を制御する制御部とを備える。そして、制御部は、集中気流モードを実行する。集中気流モードは、吹出口から吹き出す気流の風向を風向変更装置により作業空間内の無人領域に向ける第1ステップと、第1ステップの後に、モータの回転を増速させて所定の閾値以上の風速を有する集中気流を吹出口から吹き出させる第2ステップとを有する。また、第2ステップの後に、集中気流の風向を風向変更装置により作業空間内の有人領域に変更する第3ステップと、第3ステップの後に、集中気流の風向を有人領域に向けた状態を保持する第4ステップとを有する。さらに、第4ステップの後に、モータの回転を減速させて気流の風速を低下させる第5ステップを有する。
 このような構成により本発明は、気流を制御することで利用者の集中度を維持または向上させることが可能になる。
図1は、作業空間に配置した本発明の第1の実施の形態における送風装置を示す概略図である。 図2は、本発明の第1の実施の形態における送風装置の概略断面図である。 図3は、本発明の第1の実施の形態における送風装置のブロック図である。 図4は、本発明の第1の実施の形態における送風装置の制御部のブロック図である。 図5は、本発明の第1の実施の形態における送風装置の集中気流モードの動作ステップを示す、模式図を組み合わせたフローチャートである。 図6は、本発明の第1の実施の形態における送風装置の気流を無人領域および有人領域へ送風する具体例を示す図である。 図7は、本発明の第1の実施の形態における送風装置の集中気流の風速の時系列グラフである。 図8は、本発明の第1の実施の形態における送風装置を用いた際の集中度を定量化するための計測例を示す図である。 図9は、本発明の第1の実施の形態における送風装置を用いた際の作業時間の経過と集中度との関係を示す図である。 図10は、本発明の第1の実施の形態における送風装置の第1動作パターンの動作ステップを示す、模式図を組み合わせたフローチャートである。 図11は、本発明の第1の実施の形態における送風装置の第2動作パターンの動作ステップを示す、模式図を組み合わせたフローチャートである。 図12は、本発明の第1の実施の形態における送風装置の制御テーブルの一例を示す図である。 図13は、本発明の第2の実施の形態における送風装置のブロック図である。 図14は、本発明の第2の実施の形態における送風装置の集中モードの動作ステップを示すフローチャートである。
 以下、添付図面を参照して、本発明の実施の形態につき説明し、本発明の理解に供する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の構成要素については同一の符号を付して説明を省略する。さらに、各図面において、本発明に直接には関係しない各部の詳細については説明を省略している。
 (第1の実施の形態)
 本実施形態では、作業空間における利用者の集中度を維持あるいは向上させるために、送風装置を利用して作業空間における気流を制御する構成を採用している。なお図1は、作業空間に配置した送風装置を示す概略図である。
 本実施の形態では、図1に示すように、利用者Usが存在する作業空間Esが室内である場合を想定し、送風装置1を床面に設置する例を示している。ここでいう作業空間Esとは、利用者が作業を行う空間を意味する。したがって空間内部と空間外部を分離する壁や窓などの遮蔽物は必ずしも必要ではない。
 以下、図1、図2、図3、図4を用いて送風装置1の構成について説明する。なお図2は、送風装置の構成を示す概略断面図である。また図3は、送風装置の構成を示すブロック図である。
 図1に示すように、送風装置1の外郭は略立方体形状であり、床面に対して略垂直な正面、側面、背面を備えている。また床面に接する底面と、底面と対向する位置に天面とを備えている。ここで例示した送風装置1の外形寸法は、幅0.4m、奥行0.3m、高さ0.7mとなっている。
 送風装置1は、床面に安定して設置できる底面構造2を有している。底面構造2は、送風装置1の重心を取り囲む複数の脚部を有し、この脚部が作業空間Es内の床面に接する構造とすることができる。
 正面には、送風装置1内に空気を吸い込む吸込口3が設けられている。
 天面には、吸込口3から吸い込んだ空気を作業空間Esに吹き出す吹出口4が設けられている。当然ながら吹出口4の底面からの高さは、送風装置1のサイズによって異なるが、本実施の形態では底面から上方に0.6~0.7mの高さに配置している。
 また、図2に示すように、吹出口4の近傍には、板状のルーバー5が設けられている。ルーバー5は、吹出口4から吹き出す気流の風向を変更する風向変更装置として機能する。
 ルーバー5は、吹出口4の背面側の一端に、底面と水平、且つ正面と平行な回転軸6を備えている。更に、送風装置1は、ルーバー5を回転軸6周りに回動させるステッピングモータ7を備えている。
 ステッピングモータ7は、ルーバー5の傾斜角度を調整してルーバー5の傾斜角度に沿った方向に風向を制御できる構成としている。ルーバー5で送風できる気流の風向角度は、正面方向且つ底面に水平な方向を0°、鉛直上方方向を90°とすると、-20°~90°の範囲である。
 送風装置1の内部には、吸込口3から吹出口4に向けて空気流を発生させるファン8と、ファン8を回転駆動させるモータ9を備えている。ファン8の一例としてシロッコファンが利用できる。またモータ9の一例として直流モータが利用できる。
 そして、吸込口3、ファン8、モータ9、吹出口4、ルーバー5、及びステッピングモータ7が図3に示す送風部10を構成する。
 送風装置1は、さらにモータ9の回転及びステッピングモータ7を介してルーバー5の傾斜角度、つまり動作を制御する制御部11を備えている。
 図3に示すように、制御部11は、記憶部12と、処理部13と、計時部14と、指示部15と、入力部23と、取得部18とを備えている。
 記憶部12は、送風部10を制御するためのプログラムや、後述する制御テーブル19を記憶している。
 処理部13は、記憶部12が記憶している情報を用いて送風部10の動作内容を制御する。また、制御において必要な情報を、同じく記憶部12が記憶している制御テーブル19から取得して各部の動作を決定する。
 指示部15は、処理部13が決定した動作に基づいて送風部10、具体的には風向変更装置を構成するルーバー5を動作させるステッピングモータ7と、ファン8を動作させるモータ9へ信号を送る。これにより処理部13が決定した動作を送風部10の各部が実行する。
 計時部14は、送風部10を動作させるタイミングを定めるための時間を計時する。
 入力部23は、送風装置1に備えられた動作パターン選択スイッチ20、風速調節スイッチ21、及び周期調節スイッチ22からの情報を処理部13に引き渡す。
 取得部18は、送風装置1に備えられた空気温度検知部としての温度センサ17からの情報を受け取って処理部13に引き渡す。
 動作パターン選択部16は、送風装置1が備える複数の動作パターンのうち、どの動作パターンを実行するかを選択するが、詳細は後述する。
 図4に示すように、上述した制御部11は、一例としてプログラムに従って動作する、マイコン(Microcontroller)あるいはマイクロプロセッサなどのコンピュータを用いて実現される。すなわち、制御部11は、CPU(Central Processing Unit)40、RAM(Random Access Memory)やROM(Read Only Memory)あるいはHDD(Hard Disk Drive)などに代表されるメモリ41を有する。さらに、制御部11は各種デバイスなどと物理的に接続可能なI/F(Interface)42を有し、メモリ41とI/F42が内部バス43を介して接続されて構成される。
 CPU40は、例えばRAMを作業領域として利用し、ROMやHDD等のメモリ41に記憶されているプログラムを実行することで図2の制御部11に示した処理部13、計時部14、動作パターン選択部16等として動作する。
 メモリ41は、図2に示した記憶部12に対応し、プログラムの格納場所やプログラム実行時の作業領域、さらにはプログラム実行時に参照するデータテーブルの格納場所等として機能する。
 I/F42は、図3に示した指示部15、取得部18、入力部23等に対応し、制御部11と各デバイスとの物理的接続部となると共に、各デバイスと制御部11との信号の授受を仲介する。ここで各デバイスとは、図2または図3に示したモータ9、ステッピングモータ7、温度センサ17、動作パターン選択スイッチ20、風速調節スイッチ21、周期調節スイッチ22等である。
 以上に示したように、送風装置1は送風部10と制御部11とを備えている。そして送風部10は、作業空間に気流を形成する機能を有し、制御部11は、作業空間Esに存在する利用者Usの意識集中の程度である集中度を維持または向上させるように送風部10の動作を制御する。
 以下に、送風装置1の基本的な動作について図3を用いて説明する。
 制御部11を構成する処理部13は、温度センサ17からの空気温度情報を、取得部18を介して受け取る。続いて処理部13は、記憶部12に保存されている制御テーブル19を参照し、取得した空気温度に対応する各部の動作を決定し、指示部15を介してモータ9及びステッピングモータ7に動作命令として送信する。
 モータ9は、指示部15から受信した動作命令に基づいて所定の回転数で回転することで、ファン8を回転させる。ファン8は、この回転により空気流を発生させる。空気流によって吸込口3から空気が取り入れられ、ファン8を経由して吹出口4から気流となって吹き出される。また、ステッピングモータ7は、指示部15から受信した動作命令に基づいて、ルーバー5を所定の角度に配置させる。吹出口4から吹き出される気流は、ルーバー5によって風向(角度)が決定される。
 気流の風速を上げる場合、処理部13は、モータ9の回転数を増速するように指示を出すことで、ファン8の回転数を増速させる。ファン8の回転数が増加すると空気流が増加し、吹出口4から吹き出す気流の風速を速めることができる。気流の風速を下げる場合は、回転数を減速させる制御を行う。
 一方、気流の風向を変更する場合、処理部13は、ステッピングモータ7に角度を変更する指示を出すことで、ルーバー5の角度を変更する。吹出口4から吹き出される気流はルーバー5に沿って流れるため、ルーバー5の角度を変更すれば、ルーバー5の角度に合わせた方向に風向を変更できる。
 以上が送風装置1の基本的な動作である。
 続いて、図5を用いて送風装置1が利用者の集中度を維持または向上させるための動作について詳細に説明する。なお図5は、送風装置1の集中気流モードの動作ステップを示す、模式図を組み合わせたフローチャートである。
 図5に示すように、まず第1ステップとして、制御部11は、吹出口4から吹き出す気流の風向が無人領域に向かうようにルーバー5を制御する(ステップS01)。ここで定義する無人領域とは、執務を行う利用者Usに直接気流が当たらない領域を指す。本実施の形態では、一例として制御部11がルーバー5の角度を鉛直上方向に向けることで気流を上向きに吹き出させる。
 第1ステップ(ステップS01)の後に、第2ステップとして、制御部11は、ルーバー5を無人領域に向けた状態でファン8の回転数を増速させて所定の閾値以上の風速の最大値V1を有する集中気流F1を吹出口4から吹き出す(ステップS02)。
 ここで、本発明の風速の数値は、吹出口4の出口から吹き出す風速(出口風速)ではなく、基準距離まで離れた位置で計測される風速である。なお基準距離は、送風装置1から利用者Usまでの距離とすることができるが、吹出口4から発生する気流が利用者Usに直接当たるかあるいは当たらないかは問わない。即ち送風装置1からの一定の距離を指す。この定義において、前述の所定の閾値は、一例として0.5(m/s)以上としている。
 本実施の形態では、基準距離は2mとし、到達風速0.5(m/s)のときは、距離減衰を考慮して1.0(m/s)で吹き出している。
 距離減衰は、吹出口の出口風速をV0(m/s)、吹出口から気流の流れ方向へ距離x(m)離れた位置における到達風速をVx(m/s)、吹出口直径をD0(m)、定数をKとすると、以下の数式で計算することができる。
 Vx=K*D0*V0/X・・・式1
 ここで、定数Kは、文献より等温吹き出し時の自由噴流に関してはK≒5.2が知られている。
 また、吹出口直径D0=0.2(m)とする。
 式1から距離z=2.0(m)の位置における到達風速Vz=2.0(m/s)を得る出口風速V0はV0≒0.96≒1.0(m/s)となる。
 また、ファンの回転数を増速させて風速を上昇させる際、2~3秒の時間でゆっくり風速を上昇させるようにし、騒音が急上昇することによる聴覚刺激を抑制している。
 第2ステップ(ステップS02)の後に、第3ステップとして、制御部11は、吹出口4から吹き出す集中気流F1の風向が有人領域に向かうようにルーバー5を制御する(ステップS03)。ここで定義する有人領域とは、執務を行う利用者Usに直接気流が当たる領域を指す。本実施の形態では、一例として送風装置1の正面が利用者Usに向いている場合を想定し、ルーバー5の角度を正面側に倒して水平方向(角度0°)に向けることで気流を送風装置1の正面側に水平に吹き出す。これにより利用者Usに集中気流F1を直接当てることができる。
 第3ステップ(ステップS03)の後に、第4ステップとして、制御部11は、集中気流F1を有人領域に送風し続ける状態を保持する(ステップS04)。本実施の形態では、このとき、制御部11は集中気流F1を利用者Usに当て続ける時間を30秒間とし、計時部14によって時間を計時する。
 第4ステップ(ステップS04)の後に、第5ステップとして、制御部11はモータ9の回転を減速し、風速を低下させる(ステップS05)。風速を低下させる基準としては、直前の風速、つまり風速の最大値V1であり、この風速の最大値V1よりも風速を減速させることを意味する。
 以上の第1ステップ~第5ステップを集中気流モードと呼ぶ。
 次に、有人領域及び無人領域の定義について図6を用いてさらに詳細に説明する。なお図6は、送風装置1の無人領域と有人領域へ気流を送風する具体例を示す図である。
 有人領域に集中気流F1(図5参照)を当てる際の一例として、送風装置1と利用者Usとの距離は2m、送風装置1の正面が利用者Usに向くようにして設置し、そして、利用者Usは椅子に着座して執務した場合を想定する。この場合、利用者Usの足元は床面から0m、頭部は床面から約1.2mと仮定できる。送風装置1の吹出口4の高さが床面から0.6~0.7m位置にあるので利用者Usの足元に集中気流F1を送風する場合はルーバー5の角度を-10°~-20°に設定する。利用者Usの頭部に集中気流F1を送風する場合はルーバー5の角度を10~20°に設定すればよい。そして、ルーバー5の角度を20°を超えて鉛直上方に設定し、気流が利用者Usに直接当たらなくなる30°~90°の領域は無人領域となる。当然ながら、90°以上の範囲も無人領域とすることができる。
 このように、送風装置1は、底面構造2を備え、且つ、吹出口4の高さを床面から0.5~2mの高さに備え、ルーバー5によって少なくとも正面水平方向から鉛直上方方向まで風向制御可能とし、送風装置1の正面が利用者Usに向くように設置する。このような構成により、送風装置1は、利用者Usの位置を検知する人感センサを用いなくても有人領域、無人領域を判断して集中気流F1を送風することができる。これにより、人感センサや送風装置1の左右側に向かって風向制御する機構が不要となり、送風装置1を小型化できるという利点がある。
 また、送風装置1と利用者Usの距離によって気流の風速の減衰の大きさが変わるため、吹出口4から吹き出す気流の風速を調整できる風速調整スイッチを備えてもよい。風速調節スイッチ21の具体的な構成については後述する。
 なお、送風装置1に人体との距離を計測できる距離計測センサを備え、利用者Usと送風装置1との距離によって吹出口4から吹き出す気流の風速を調整しても良い。
 その特徴は、第1ステップで利用者Usにあらかじめ気流が当たらない無人領域に向かって送風するように制御した後、利用者Usに当てない状態で風速を高めて集中気流F1を作り出す。そしてその集中気流F1をルーバー5によって有人領域、すなわち利用者Usに直接当てることで、利用者Usは突然強い風が吹いてきたように感じさせることである。
 本実施の形態において、利用者Usに当てられる気流の風速を時系列で計測したグラフを図7に示す。またグラフ下方には、図5における各ステップS01~ステップS05の制御タイミングを、風速と同期させて示している。
 図7に示すように、利用者Usに当てられる気流の風速が、集中気流F1発生後(集中気流F1の風速に達した後)、有人領域に向けることで急激に立ち上がるようになっている。このように、風速が上昇する勾配を大きくすることによって、利用者Usは風による空気環境の変化を感じる。また、集中気流F1終了時は、集中気流F1の状態のまま無人領域にルーバー5の角度(方向)を変更するのではなく、先にモータ9の回転を減速して風速を低下させる。これにより利用者Usに当たる風を緩やかにすることで自然な印象を与えるようにしている。
 風の感じ方は作業空間Esの空気温度、集中気流F1の風速の最大値V1の大きさ、利用者Usに風を当てる時間、風が利用者Usの体のどの部位に当たるか、また、利用者Usの着衣量などによって異なる。しかし、集中気流F1による風圧感や涼感、空気が循環している印象などを受けることによって集中して作業を続けることができる。すなわち集中度を向上させることができるという効果がある。
 また、冬季など作業空間Es内の空気温度が低く、利用者Usに気流を当てることで寒いという印象を与える恐れがある環境であっても、本実施の形態の集中気流モードの動作ステップを用いれば、集中気流F1を当てる時間を短くしても利用者Usに対して寒さ等の不快感を与えることがないという利点もある。
 <集中度>
 ところで、本実施形態では「集中度」という用語を用いているが、「集中度」という用語は、明確に定義されていることが少ない。集中度を定量化して扱う場合は、例えば、以下に説明する集中時間比率を指標に用いることが可能である。集中時間比率は、人が知的作業を行った場合に、作業時間に対して集中の状態であった時間の比率を意味する。
 集中時間比率の概念は、人が知的作業を実施している期間において、認知資源を作業の対象に割り当てている状態と、認知資源を作業の対象に割り当てていない状態とを含むモデルに基づいている。このモデルにおいて、認知資源を対象に割り当てて作業が進行している状態を「作業状態」とし、認知資源を対象に割り当てず長期間にわたって休息をとっている状態を「長期休息」と呼ぶ。また、認知資源を対象に割り当てているが無意識に作業の処理が短時間停止している状態を「短期休息」と呼ぶ。「短期休息」の状態は、「作業状態」である期間に、一定の確率で生理的に発生することが知られている。
 「作業状態」と「短期休息」とは、認知資源を対象に割り当てている状態であるから、集中の状態とみなされ、「長期休息」は、認知資源を対象に割り当てていない状態であるから、非集中の状態とみなされる。したがって、「作業状態」と「短期休息」と「長期休息」との3つの状態、あるいは「作業状態」および「短期休息」と「長期休息」との2つの状態を分離すると、集中度を定量化できることがわかる。
 ここでは、集中度をリアルタイムで計測する技術ではなく、所定期間のうちで集中の状態であった期間を求める技術について説明する。この場合、例えば、集中度を計測する被験者に対して、難易度のばらつきが少ない多数の問題を提示し、被験者が問題の回答に要した時間(回答時間)を全問について計測する。
 次に、図8に示すように、回答時間の区分ごとに度数を求めてヒストグラムを生成する。上述したモデルを採用した場合、このヒストグラムは、集中の状態と非集中の状態とを重ね合わせた結果を表していると推定される。
 適切な問題を与えた場合、このヒストグラムは2つ以上のピークを持つ形状になるという実験結果が得られている。すなわち、ヒストグラムには2個以上の山形領域が生じることになる。回答時間が最短であるピークを含む山形領域は、「作業状態」と「短期休息」とを混合した状態を表し、他のピークを含む山形領域は、「作業状態」と「短期休息」と「長期休息」とを混合した状態を表していると解釈される。これは、集中している状態であっても、問題の難易度のばらつきによっては、回答時間が長くなる可能性があるからである。
 ここで、問題の難易度が一定である理想的な状態を想定すると、ヒストグラムに現れる山形領域は、回答時間tの関数として、対数正規分布の確率密度関数f(t)で近似できると推定される。ただし、現実的には問題の難易度のばらつきを完全に排除することはできない。そこで、2つの山形領域のうち回答時間が最短である山形領域について、ピークよりも回答時間の短い部位とピーク付近の部位のみが対数正規分布の確率密度関数f(x)に合致すると解釈する。そして、この部位を近似するように確率密度関数f(x)のパラメータ(期待値と分散)を決定する。
 確率密度関数f(x)のパラメータが決定されると、回答時間の期待値を求めることが可能になる。求めた期待値に全問題数を乗じた結果は、被験者が問題に着手してから終了するまでの総時間(総回答時間)のうち、集中の状態であった時間と解釈することが可能である。また、総回答時間から、集中の状態であった時間を減算した時間を、非集中の状態であった時間と解釈することができる。そこで、総回答時間に対する集中の状態であった時間の時間比を集中時間比率とし、この集中時間比率が大きいほど集中度が高いと判断する。
 上述した集中時間比率は、集中度の指標の一例であり、集中度は後述する他の指標を用いて定量化することが可能である。とくに、集中時間比率を求めるには、被験者に多数の問題を与えて回答させるという作業が必要であり、作業中に集中度の指標を得ることが困難である。そのため、集中度に応じて送風部10を制御するには、集中時間比率と等価な集中度の指標を他の技術で計測することが必要である。
 ところで、被験者に比較的長い時間(例えば、3時間)にわたって問題を与え続けた場合、作業環境に変化を与えなければ、比較的短い期間(例えば、1~10分)ごとの集中度は、図9に示す特性C1のように変動するという知見が得られている。
 つまり、知的作業が比較的長い時間にわたって継続する場合、特性C1に示すように集中度は、20~40分の期間ごとに増減を繰り返すように変動する。要するに、継続して知的作業を行うと、集中度は、時間の経過に伴って、高い状態から低下し、その後、回復して上昇し、再び低下するというように、増減を繰り返す特性を有している。集中度が変動する期間には、個人差があり、また様々な要因によって変化する。上述のような時間の経過に伴う集中度の変動に着目すると、知的作業の作業効率を高めるには、集中度の低下を抑制すればよいと言える。
 集中気流モードは、この集中度の変動に合わせて集中気流F1を利用者Usに繰り返し当てることによって、集中度が高い状態を維持するように制御することが可能である。
 具体的な一例は、集中気流モードの第5ステップ(ステップS05)の後、計時部14によって時間を計時し、10分後に再度、第1ステップを開始する。この一連の制御ステップをループ処理することによって、送風装置1は利用者Usに約10分毎に集中気流F1を当てることができ、利用者Usの集中度を向上させることができる。
 また、さらに集中度を向上させるために、集中気流モードとは別の気流モードを組み合わせることも可能である。
 本実施の形態では、集中気流モードと組み合わせる気流モードは、微気流モード、又は環境気流モードである。
 集中気流モードと微気流モードの組み合わせ、及び、集中気流モードと環境気流モードの組み合わせについて、それぞれ以下に詳細を説明する。
 <微気流モード>
 まず、微気流モードは、図10に示すように集中気流モードの第5ステップ(ステップS05)の後、第6aステップとして集中気流F1の風速の最大値V1の2分の1以下の風速である微気流F2を有人領域、すなわち利用者Usに向けて送風するモードである(ステップS06a)。微気流F2の風速の最大値V2は、集中気流F1の風速の最大値V1に対して、V2<=0.5×V1となる。
 集中気流F1の風速の最大値V1が0.5m/sの場合、微気流F2の風速の最大値V2は0.25m/s以下としている。
 微気流モードは、集中気流F1を発生していない時に送風する気流制御モードであり、集中気流モードの第5ステップ(ステップS05)によって利用者Usに直接当たる気流の風速を低下させるが、この際の風速を微気流F2とする。つまり、第6aステップによって微弱な風速の気流を利用者Usに送風するものである(ステップS06a)。
 一般的に、人体近傍の空気環境は、人体の発熱によって頭部の周囲に上昇気流が生じ、下半身に比べると、上半身から頭部の周辺においては、温度境界層が厚くなる傾向がある。つまり、上半身から頭部の周辺では、上昇気流によって集中気流F1の効果が弱められる可能性がある。とくに集中気流F1は利用者Usに対して間欠的に当てるだけであるから、上昇気流によって刺激が弱められる可能性がある。
 そこで、集中気流F1を利用者Usに当てていない期間において、上半身から頭部の近辺に微気流F2を当てることで、温度境界層を薄くし、人体からの放熱を促進させる作用がある。
 その結果、集中気流F1による刺激の効果が高められ、集中度向上作用が強まり、集中度を向上させることができる。また、更に微気流F2を利用者Usの頭部に向けて送風することで放熱を促進し、いわゆる頭寒足熱環境が得られ、快適な執務環境を提供することができ、集中度を向上させることができる。
 なお、微気流F2は、風速にゆらぎを与えても良く、風速が0[m/s]になる期間も含まれているが継続的に生成される。微気流F2の風速の最大値V2は一定でもよいが、ゆらぎを与えることにより、微気流F2によって利用者Usに冷えが生じる可能性が低減される。ゆらぎとしては、例えば1/fゆらぎが採用される。風速にゆらぎを与えるには、送風部10に設けたファン8の回転数を制御するほか、ルーバー5によって気流の向きを変化させるようにしてもよい。
 本実施の形態のように集中気流F1と微気流F2とを用いる技術を採用した環境と、集中気流F1および微気流F2を用いない環境とについて、現役大学生を被験者として集中度を計測する実験を行った結果、本実施の形態の技術によって集中度が15.9%有意に向上するという結果が得られた。また、図9に特性C2で示すように、集中度の低下を抑制することが確認できた。
 このことより、集中気流F1と微気流F2とを組み合わせて用いると、集中度の低下が抑制される結果、作業効率の向上が期待できる。
 <環境気流モード>
 次に環境気流モードについて説明する。
 環境気流モードは、図11に示すように、微気流モードと同じく、集中気流F1を発生していない時に送風する気流制御モードであり、集中気流モードの第5ステップ(ステップS05)によって利用者Usに直接当たる気流の風速を低下させる。その後、第6bステップとして、制御部11は、吹出口4から吹き出す気流の風向が無人領域に向かうようにルーバー5を制御する(ステップS06b)。無人領域に風向を制御する一例として、ルーバー5角度を45°に制御し、利用者Usの頭上を気流が流れるようにする。
 第6bステップ(ステップS06b)の後、第7bステップとして、制御部11は、集中気流F1よりも風速が低い環境気流F3を吹き出すようにモータ9の回転を制御する(ステップS07b)。環境気流F3の風速の最大値V3は、集中気流F1の風速の最大値V1に対して、V3<V1の関係となる。環境気流F3の風速の一例として、集中気流F1の風速の最大値V1が0.5m/sである場合、環境気流F3の風速の最大値V3は0.3m/sとしている。
 このとき、環境気流F3の風速の最大値V3は利用者Usの頭上での風速であるため、実際に利用者Usが体感する風速ではない。
 環境気流F3の目的は、作業空間Es内の空気を攪拌し、利用者Usの周囲の空気の淀みを少なくすること、及び、作業空間Es内の空気温度ムラを解消することである。
 これにより、快適な作業環境を形成でき、集中度向上効果がある。
 環境気流F3を形成する期間は微気流F2(図10のステップS06a参照)と同様である。しかし、微気流F2は利用者Usに当たるように風向が制御されているが、環境気流F3は利用者Usに当たらないように風向が制御される。すなわち、微気流F2が利用者Usに当たるのに対して、環境気流F3は利用者Usに当たらない点が相違している。
 環境気流F3は、作業空間Esの空気温度が比較的低い場合に送風することが望ましい。
 その理由は2つある。1つの理由は、利用者Usに直接気流を当てると、利用者Usの体感温度が低下して寒さや冷えを感じやすくなり、集中度が低下する可能性があるためである。このとき、環境気流F3を形成することで、寒さや冷えを感じさせずに空気の淀みを解消し、空気が循環している快適な作業環境を提供できる。
 もう1つの理由は、冷たい空気は床面付近に滞留し暖かい空気は天井付近に滞留するため温度ムラができ、空気環境の快適さが損なわれやすいためである。このとき、環境気流F3を形成することで、温度ムラを解消し、足元が冷えすぎない頭寒足熱に近い快適な作業環境を提供できる。また、環境気流F3は、温度ムラを解消するため、上方の天井面に向かって気流を送風することが望ましく、室内空気のサーキュレーション効果を高めることができる。
 以上、集中気流モードと、微気流モード又は環境気流モードとを組み合わせることで利用者Usの集中度を更に高める効果があり、集中気流モードと微気流モードの組み合わせを第1動作パターン、集中気流モードと環境気流モードの組み合わせを第2動作パターンと定義する。
 ここで図3に示したように、制御部11は送風部10を第1動作パターンで動作させるか、第2動作パターンで動作させるかを温度センサ17からの温度情報に基づいて選択する動作パターン選択部16を備えている。例えば、動作パターン選択部16は、温度センサ17からの入力信号が24℃以上の場合には、第1動作パターンを選択して処理部13に通知する。また入力信号が24℃より低い場合には、第2動作パターンを選択して処理部13に通知する。これにより、処理部13は動作パターンを決定することができる。
 この第1動作パターン及び第2動作パターンは、それぞれ制御部11によって動作ステップがループするように繰り返し制御される。これによって、第1動作パターン、第2動作パターンのどちらのパターンで動作していても集中気流F1が繰り返し発生し、利用者Usが長時間執務していても集中気流F1が繰り返し当たることで、利用者Usの集中度を高めることができる。また、利用者Usの集中度の変動に合わせるように計時部14によって繰り返し動作を行う周期Tsを設定することも可能である。
 具体的な周期Tsの範囲としては、5分以上40分以下の範囲から選択できることが望ましい。5分以上としている理由は、概ね5分以下の周期で集中気流F1を利用者Usに当てると、利用者Usが頻繁に気流に当たる印象を受けてしまうからである。その結果、気流が集中を阻害する要因となり、集中度の向上効果が得られにくくなることが実験で確認できている。また、40分以下としている理由は、知的作業を長時間行う際に生じる集中度の変動(20~40分)に合わせられるようにしているためである。
 また、集中気流モードにおける集中気流F1の風速の最大値V1は0.5[m/s]以上かつ2[m/s]以下の範囲から選択されることが望ましい。更に、第4ステップで集中気流F1を有人領域に送風し続ける時間(保持時間Tf)は、3秒以上60秒以下の範囲から選択されることが望ましい。
 集中気流F1の風速の最大値V1の下限を0.5m/sとしている理由は、利用者Usが認知でき、且つ、刺激として感じられる程度の風速が最低限求められるためである。一般的に人が感じることができる風速の下限が0.2m/s程度であるが、0.2m/sの風は皮膚が露出している部位であれば感知できるものの、衣服の上からでは感知できない。そこで、衣服の上からでもある程度風を認知できる風速として0.5m/s以上としている。
 また、上限を2m/sとした理由は、2m/s以上の風速の気流を送風すると、利用者Usへの刺激が強すぎることとなり、集中を阻害する恐れがあるためである。更に、執務が紙を用いる作業である場合、気流の風向によって紙が飛散してしまう可能性もある。
 したがって、集中気流F1の風速の最大値V1は0.5~2m/sの範囲としている。
 次に、集中気流F1の保持時間Tfについて、下限を3秒としている理由は、利用者Usが集中気流F1に当たっていることを気付かせるために必要な最低時間だからである。本実施の形態の集中気流モードの動作ステップを用いれば、利用者Usにあらかじめ風速を高めた集中気流F1をルーバー5で一気に当てることができる。しかし1~2秒間では十分な刺激とはなりにくいため、最低限3秒以上必要である。また、上限を60秒としている理由は、長時間気流を当てると利用者Usが刺激に慣れてしまう恐れがあるためである。
 したがって、集中気流F1に関する条件を上記の範囲において選択することによって、適正な刺激を利用者Usに与えることが可能となり、利用者Usの集中度を向上させる効果がある。
 更に、集中気流F1の発生する周期Ts、風速の最大値V1、保持時間Tfに加えて、微気流F2の風速の最大値V2、環境気流F3の風速の最大値V3は、空気温度によって設定値を変更することで、利用者Usの温熱感に合わせた快適な気流を選択できるようにすることが望ましい。
 そのため、本実施の形態では、図2に示したように、送風装置1の吸込口3の近傍に空気温度を検知する空気温度検知装置としての温度センサ17(一例としてサーミスタ)を備えている。
 また、記憶部12は、図12に示す制御テーブル19を備えている。制御テーブル19は、空気温度と、集中気流F1の風速の最大値V1、集中気流F1の保持時間Tf、微気流F2の風速の最大値V2、環境気流F3の風速の最大値V3、制御ステップの組み合わせを示す動作パターン(第1パターン、第2パターン)、動作パターンを繰り返す周期Tsとを、それぞれ対応させている。
 制御テーブル19の一例として、空気温度が24℃以上であるときに第1動作パターンが選択され、空気温度が24℃より低いときに第2動作パターンが選択されるように定められている。上述したように、第1動作パターンは、集中気流F1と微気流F2とを組み合わせて用いる動作パターンであり、第2動作パターンは、集中気流F1と環境気流F3とを組み合わせて用いる動作パターンである。
 すなわち、微気流F2による体感温度の低下により利用者Usが寒いと感じる場合には、微気流F2ではなく環境気流F3を生成し、逆に環境気流F3では利用者Usが暑いと感じる場合には、微気流F2を生成することにより体感温度を下げることになる。更に、図12に示すように、温度範囲を2℃毎に区切ってそれぞれ風速を定めている。空気温度が24℃を超えて上昇すると集中気流F1の風速の最大値V1及び微気流F2の風速の最大値V2を上昇させる傾向にしている。一方、空気温度が24℃を下回って2℃低下すると集中気流F1の風速の最大値V1及び環境気流F3の風速の最大値V3を低下させる傾向にしている。
 以上の構成により、送風装置1は、作業空間Esの空気温度を温度センサ17で検知し、その検知信号(温度情報)を、入力部23を介して処理部13で受信する。次に処理部13が制御テーブル19を参照して動作パターンと集中気流F1の周期Ts、風速の最大値V1、保持時間Tfに加えて、微気流F2の風速の最大値V2、環境気流F3の風速の最大値V3を決定し、指示部15を介して送風部10のモータ9及びステッピングモータ7に制御信号を送り、気流を制御することができる。
 これにより、作業空間Esの空気温度に応じて第1動作パターンと第2動作パターンとを決定し、気流の風速などを調節することができるから、利用者Usの温熱感に合わせた快適な気流環境を提供でき、集中度を維持または向上させる効果がある。
 なお、上記のように送風装置1が空気温度を検知して動作パターンや気流の周期Tsや風速の最大値(V1,V2,V3)を自動で制御するだけでなく、利用者Usが好みに合わせて手動で設定できるようにすると、更に使い勝手が良くなる。
 図3に示したように、送風装置1には外部から操作して動作パターンを選択できる動作パターン選択スイッチ20を備えている。
 また、集中気流F1の風速の最大値V1、微気流F2の風速の最大値V2、環境気流F3の風速の最大値V3の大きさを調整できる風速調節スイッチ21を備えている。
 また、動作パターンの周期Tsを調節できる周期調節スイッチ22を備えている。
 上記の構成によって、利用者Usが動作パターン選択スイッチ20を操作して動作パターンを選択した場合は、入力部23を介して処理部13に選択した動作パターンの情報が伝えられる。処理部13は、動作パターン選択部16を介して動作パターンを決定し、指示部15を介して送風部10のモータ9及びステッピングモータ7に信号を送る。
 また、同じく利用者Usが風速調節スイッチ21を操作した場合も、選択された風速の情報が入力部23を介して処理部13に伝えられる。処理部13では、選択された風速を発揮するための回転数を示す命令が決定され、指示部15を介して送風部10のモータ9へ信号が送信される。
 更に、周期調節スイッチ22を操作した場合も、利用者Usが操作により選択した周期の情報が入力部23を介して処理部に伝えられる。処理部13は、選択された周期に応じたタイミングで、送風部10のモータ9及びステッピングモータ7へ信号を送信する。
 これにより、利用者Usが好みに合わせて動作パターンを選択し、気流の風速(V1、V2、V3)を変更し、あるいは集中気流F1の周期Tsを自由に調節でき、利用者Usの好みに応じた快適な気流環境を形成できる。これにより、利用者Usに応じて適切に集中度を向上させることができる。
 これら外部からの操作によって選択、決定された動作パターン、風速(V1、V2、V3)、周期Tsは、制御テーブル19に関係なく、優先的に制御されるようにすると使い勝手が良い。
 以上、本実施の形態において、送風装置1は、集中気流モードと微気流モードを組み合わせた第1動作パターンと、集中気流モードと環境気流モードを組み合わせた第2動作パターンの2つの制御を行うと説明したが、必ずしもこの2つの動作パターンのみに限らず、集中気流モードのみを繰り返すようにしても良く、集中度向上効果が得られる。
 また、独立した送風部10を2つ以上備えた送風装置1であれば、集中気流F1と微気流F2を同時に送風したり、集中気流F1と環境気流F3を同時に送風したりするようにしてもその作用効果は変わらない。
 更に、制御テーブル19によって定めた集中気流F1を発生させる周期Tsは必ずしも一定間隔である必要はなく、本実施の形態で示した5分以上40分以下の範囲であれば、不定間隔でも良い。一般的に、集中度は時間経過に伴って増減することが知られており、例えば、執務開始時は比較的集中度が高い状態が持続しやすいため、1回目の集中気流F1の周期Tsを20分とし、2回目は15分、3回目以降は10分間隔と変化していく制御であっても良い。つまり、周期Tsを、集中気流F1の発生の繰り返し回数に応じて短くするようにしても良い。
 また、周期Tsと同じように制御テーブル19で定めた集中気流F1の風速の最大値V1や保持時間Tfも一定値である必要はなく、本実施の形態で示した風速の最大値が0.5~2m/s、保持時間が3~60秒の範囲であれば、変化させるようにしても良い。例えば、執務開始後、集中気流F1を発生させる回数が増えるに応じて風速の最大値V1を0.5m/s、0.6m/s、0.7m/sと所定の風速0.1m/sづつ高くするようにしても良いし、保持時間Tfを3秒、4秒、5秒と、所定の時間1秒づつ伸ばしていくようにしても良い。
 また、送風装置1が利用者Usの集中度をリアルタイムに計測できる集中度計測装置(図示せず)を備えてもよい。この場合は、集中度の低下度合いを判断して集中気流F1の風速の最大値V1を高めたり、保持時間Tfを長くしたりするようなフィードバック制御を働かせるようにしても良い。
 集中度計測装置は、利用者に非侵襲(non-invasive)で集中度を監視し、かつ集中度の変化を比較的短い時間間隔(例えば、1~10分)で検出する必要がある。集中度計測装置は、非侵襲であるだけではなく非接触であることが望ましいが、ヘッドバンドやリストバンドのように利用者に接触する構成を含んでいてもよい。また、集中度計測装置としては、例えば、利用者を撮像するカメラが用いられる。図3に示す取得部18は、カメラで撮像した利用者の画像を用いて、体動、姿勢、瞳孔径、まばたきの頻度などの情報を取得し、処理部13は、これらの情報を単独または組み合わせて用いることにより、集中度の評価値を求める。ここに、処理部13は、これらの情報と上述した集中時間比率との関係を対応付けて記憶部12に記憶された参照テーブルに登録するように構成される。処理部13は、集中度を評価する際には、取得部18から得た情報を参照テーブルと照合して集中時間比率に変換することにより集中度を定量化する。
 なお、上述のように、カメラで撮像した画像から得られる情報を集中時間比率に変換する技術は、集中度を定量化する技術の一例であって、集中度計測装置は、集中度の目安となる情報であれば他の情報を監視する構成であってもよい。例えば、集中度計測装置は、利用者の特定部位における皮膚温度の変化をサーモグラフで検出する構成、脳波あるいは脳波以外の生体電流を検出する構成であってもよい。
 また、制御テーブル19は空気温度によってのみ決められるものではなく、例えば、利用者Usの体感温度や着衣量をサーもパイル等で計測し、温熱指標(PMV等)を用いて利用者Usの温熱感に合わせて制御テーブル19の数値を変更するようにしても良い。
 更に、利用者Usが直接、送風装置1を操作して集中気流F1を発生させることができるボタンを備えている場合は、利用者Usの好きなタイミングでボタンを押すことで集中気流F1を発生させるようにしても良い。
 また、制御テーブル19自体を書き換えられるようにしても良く、例えば制御部11が外部と通信できる通信デバイス(一例として無線LAN通信デバイス)を備え、外部の情報端末(スマートフォンやパーソナルコンピュータなど)からの制御テーブル19情報を転送するようにしても良い。
 また、本実施の形態では風向変更装置の一例としてルーバー5を用いた例を示したが、風向変更装置の他の一例として、首振り機能を備えた扇風機であっても良い。無人領域に気流を送風する際は、首振り角度を上向き又は側方に振り向けることで利用者Usに気流を当てないようにし、有人領域に気流を送風する際は、首振り角度を正面に戻すように制御しても良い。
 また、本実施の形態において、送風装置1は底面構造2を備えた床置き形の機器である例を示したが、利用者Usと送風装置1の位置関係があらかじめ設定されているのであれば、送風装置1は壁掛け形や天吊形などの形態であっても構わない。また、利用者Usと送風装置1の位置関係が不明であっても、送風装置1が人感センサ等を備えることで有人領域、無人領域が特定でき、且つ気流の風向を制御できる機構を備えていれば、本発明の気流制御方法を用いることができ、同様の効果を得ることができる。
 また、人感センサを用いるなどしてルーバー5で制御した気流が利用者Usの体のどの部位に当たっているかが分かる場合、集中気流モードは利用者Usの上半身、特に頭部や顔部に当てることが望ましい。頭部や顔部は、人体周りの対流温度境界層が厚くなる部位であること、及び、比較的肌が露出しているケースが多いため、気流感を感じやすいこと、及び、気流が当たった際に涼感が感じられやすかったり、頭がすっきりしやすかったりする印象が得られやすいという利点があるためである。
 また更に、気流が利用者Usの目に当たっている場合は、目が乾くことで瞬き回数が増える等、集中度が低下する恐れがあるため、風速を弱めたり、気流曝露時間を短くしたりするなどの変更を加えるように制御することが望ましい。
 また、集中気流モード及び微気流モード、環境気流モードの動作ステップの説明において、第1ステップから順に番号を付したが、本発明では、動作ステップの順番がポイントであり、動作ステップの順序が逆転しなければ、別の動作ステップが間に挿入されていても良い。
 また、本実施の形態の送風装置1を用いる際には、利用者Usが執務を開始する時点で、制御部11が送風部10の制御を開始する必要がある。制御部11が送風部10の制御を開始する時点は、利用者Usが送風装置1を直接操作してもよいが、利用者Usを監視するカメラあるいは利用者Usを監視するセンサを用いて、利用者Usが所定位置で着座したことを検出してもよい。
 また、本実施の形態では、利用者Usと送風装置1との基準距離を2mとしたが、作業空間Esが子供部屋等の個室もあれば、学習塾やオフィス等の大空間で使用することも考えられるため、基準距離は1.5~5.0mくらいを想定しておくのが望ましい。
 その場合、式1から、到達風速Vz=0.5(m/s)の気流を発生させるためには吹出風速V0を約0.7~2.4(m/s)とすれば良い。
 (第2の実施の形態)
 本発明の第2の実施の形態における送風装置50の構成を図13に示して説明する。なお図13は、本実施の形態における送風装置50の構成を示すブロック図である。
 図13に示すように、送風装置50は、吸込口3からファン8へ空気を搬送する風路としての主経路30と、主経路30内に、主経路30を通過する空気の状態を変化させる空気状態変化部31を備えている。空気状態変化部31の一例として、本実施の形態では空気中の粉塵を除去するフィルター(一例としてプリーツ加工されたHEPAフィルター)を用いている。
 また、送風装置50の側面には、吸込口3と独立して空気を取り入れることができる臨時吸込口32を設けている。
 また、ファン8と空気状態変化部31の間の主経路30から分岐して臨時吸込口32まで連通するバイパス経路33を備えている。
 更に、臨時吸込口32近傍に、臨時吸込口32の開放、閉塞を切り替えるダンパー34を備えている。ダンパー34は、開放、閉塞を電気的に動作できるようにダンパー駆動モータ35を備え、制御部11によって開閉制御可能に構成している。
 このような構成により、制御部11が指示部15を通じてダンパー34を閉塞するように制御した場合、ファン8に取り込まれる空気は、吸込口3から主経路30を通り、空気状態変化部31を通過して搬送され、吹出口4から送風される。
 一方、制御部11が指示部15を通じてダンパー34を開放するように制御した場合、臨時吸込口32からバイパス経路33を通ってファン8に繋がる風路が連通する。このとき、吸込口3から主経路30を通ってファン8に繋がる風路は常時連通しているが、主経路30内には空気状態変化部31があり、空気状態変化部31を空気が通過する際に空気抵抗を伴うため、ファン8に吸い込まれる空気の大半はバイパス経路33からの空気である。すなわち、バイパス経路33は主経路30に比べて圧力損失が低くなっている。
 このように、ファン8に空気を搬送する経路としてバイパス経路33を設け、バイパス経路33の開閉を制御することによって、空気状態変化部31を通過した空気を送風したり、空気状態変化部31を通過しない空気を送風したりすることが可能になる。
 次に、本実施の形態におけるダンパー34の動作ステップについて説明する。
 図14に示すように、集中気流モードの動作ステップにおいて、第2ステップ(ステップS02)の前に、制御部11は、ダンパー駆動モータ35を動作させてダンパー34を開放するバイパス開放ステップを行う(ステップS11)。その後、第5ステップ(ステップS05)の後に、制御部11は、ダンパー駆動モータ35を動作させてダンパー34を閉塞するバイパス閉塞ステップ(ステップS12)を行う。
 上記の動作ステップにより、第2ステップ(ステップS02)でファン8の回転を増速し、風量を増加させて集中気流F1を発生させる前にバイパス経路33を連通する(ステップS11)ことで、ファン8に取り入れられる風量が増加しても圧力損失の低いバイパス経路33から空気を取り入れることができる。その結果、集中気流F1発生時、閾値以上の風速の最大値V1になるまでのファン8の回転数を下げることができるため、騒音を低減することができる。これにより、騒音によって利用者Usの集中を阻害することがなくなり、集中度を維持することができるという効果がある。
 また、ファン8を回転させるモータ9の消費電力を低減できるため、省エネに寄与するという効果もある。
 集中気流F1を発生させた後、第5ステップ(ステップS05)でファン8の回転を減速するため、ファン8に取り込まれる風量が低下している。風量低下後にバイパス経路33を閉塞する(ステップS12)ことで、ファン8に連通する風路が主経路30のみとなって圧力損失が上昇しても、もともと風量が少ないため、風量変化量は小さい。その結果、風量変化に伴って生じる通風音や風切音の変化が少なくなり、騒音の大きさに変化を与えることが無い。これにより、利用者Usに騒音変化による聴覚刺激を与えることで集中を阻害することが無く、集中度を維持することができる。
 本実施の形態では空気状態変化部31の一例として、空気中の塵や粉塵を除去するフィルターとしたが、それ以外にも水を気化させて加湿する加湿フィルター、空気中の水分を吸着する除湿フィルター、空気温度をヒートポンプで加温、又は冷却する熱交換器等であっても良い。
 なお、上述した実施の形態は本発明の一例である。このため、本発明は、上述の実施の形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることはもちろんのことである。
 1,50 送風装置
 2 底面構造
 3 吸込口
 4 吹出口
 5 ルーバー
 6 回転軸
 7 ステッピングモータ
 8 ファン
 9 モータ
 10 送風部
 11 制御部
 12 記憶部
 13 処理部
 14 計時部
 15 指示部
 16 動作パターン選択部
 17 温度センサ
 18 取得部
 19 制御テーブル
 20 動作パターン選択スイッチ
 21 風速調節スイッチ
 22 周期調節スイッチ
 23 入力部
 30 主経路
 31 空気状態変化部
 32 臨時吸込口
 33 バイパス経路
 34 ダンパー
 35 ダンパー駆動モータ
 Es 作業空間
 F1 集中気流
 F2 微気流
 F3 環境気流
 V1 風速の最大値(集中気流F1)
 V2 微気流F2の風速の最大値
 V3 環境気流F3の風速の最大値
 Ts 周期
 Tf 保持時間
 Us 利用者

Claims (19)

  1. 空気を吸い込む吸込口と、
    前記吸込口から吸い込んだ空気を作業空間に吹き出す吹出口と、
    前記吸込口から前記吹出口に向けて空気流を発生させるファンと、
    前記ファンを駆動するモータと、
    前記吹出口から吹き出す空気の風向を変更する風向変更装置と、
    前記モータと前記風向変更装置の動作を制御する制御部とを備え、
    前記制御部は、
     前記吹出口から吹き出す気流の風向を前記風向変更装置により前記作業空間内の無人領域に向ける第1ステップと、
     前記第1ステップの後に、前記モータの回転を増速させて所定の閾値以上の風速を有する集中気流を前記吹出口から吹き出させる第2ステップと、
     前記第2ステップの後に、前記集中気流の風向を前記風向変更装置により前記作業空間内の有人領域に変更する第3ステップと、
     前記第3ステップの後に、前記集中気流の風向を有人領域に向けた状態を保持する第4ステップと、
     前記第4ステップの後に、前記モータの回転を減速させて気流の風速を低下させる第5ステップと、
    を有する集中気流モードを実行する送風装置。
  2. 前記集中気流の風速に対して2分の1以下の風速である微気流を前記吹出口から有人領域に向けて送風する第6aステップを有する微気流モードを備え、
    前記制御部は、
     前記集中気流モードの後に、前記微気流モードを実行する第1動作パターンを備えた請求項1記載の送風装置。
  3. 前記第1動作パターンを繰り返し実行する請求項2記載の送風装置。
  4. 時間を計測する計時部を備え、
    前記制御部は、前記計時部に基づいて、あらかじめ設定した周期で前記第1動作パターンを繰り返し実行する請求項3記載の送風装置。
  5. 前記周期は、5分以上40分以下の範囲とし、前記集中気流の風速の最大値は、0.5[m/s]以上2[m/s]以下の範囲とし、
    前記第4ステップにおける保持時間は、3秒以上60秒以下の範囲とした請求項4に記載の送風装置。
  6. 前記風向変更装置により前記吹出口から吹き出す気流を無人領域に変更する第6bステップと、
    前記第6bステップの後に、前記集中気流よりも低い風速である環境気流を前記吹出口から吹き出させる第7bステップと、
    を有する環境気流モードを備え、
    前記制御部は、
     前記集中気流モードの後に、前記環境気流モードを実行する第2動作パターンを備えた請求項1記載の送風装置。
  7. 前記第2動作パターンを繰り返し実行する請求項6記載の送風装置。
  8. 時間を計測する計時部を備え、
    前記制御部は、前記計時部に基づいて、あらかじめ設定した周期で前記第2動作パターンを繰り返し実行する請求項7記載の送風装置。
  9. 前記周期は、5分以上40分以下の範囲とし、前記集中気流の風速の最大値は、0.5[m/s]以上2[m/s]以下の範囲とし、
    前記第4ステップにおける保持時間は、3秒以上60秒以下の範囲とした請求項8に記載の送風装置。
  10. 前記集中気流の風速に対して2分の1以下の風速である微気流を前記吹出口から有人領域に向けて送風する第6aステップを有する微気流モードと、
    前記風向変更装置により前記吹出口から吹き出す気流を無人領域に変更する第6bステップと、前記第6bステップの後に、前記集中気流よりも低い風速である環境気流を前記吹出口から吹き出させる第7bステップとを有する環境気流モードとを備え、
    前記制御部は、
     前記集中気流モードを実行した後に、前記微気流モードを実行する第1動作パターン、または前記集中気流モードを実行した後に前記環境気流モードを実行する第2動作パターンを入力信号に基づいて選択する動作パターン選択部を備えた請求項1記載の送風装置。
  11. 前記作業空間内の空気温度を検知する空気温度検知部を備え、
    前記動作パターン選択部は、
     前記空気温度検知部からの温度情報を前記入力信号とし、前記入力信号に基づいて前記第1動作パターンまたは前記第2動作パターンを選択する請求項10記載の送風装置。
  12. 前記制御部は、
     空気温度と、前記集中気流の風速、前記微気流の風速、前記環境気流の風速をそれぞれ対応づけた制御テーブルを備え、
     前記空気温度検知部が検知した温度情報と、前記制御テーブルとに基づいて前記集中気流の風速と、前記微気流の風速と、前記環境気流の風速とを決定する請求項11記載の送風装置。
  13. 動作パターンを選択するための入力を受け付ける動作パターン選択スイッチを備え、
    前記動作パターン選択部は、
     前記動作パターン選択スイッチからの前記入力信号に基づいて前記第1動作パターンまたは前記第2動作パターンを選択する請求項10記載の送風装置。
  14. 前記制御部は、
     空気温度と、前記集中気流の風速、前記微気流の風速、前記環境気流の風速をそれぞれ対応づけた制御テーブルを備え、
     前記空気温度検知部が検知した温度情報と、前記制御テーブルとに基づいて前記集中気流の風速と、前記微気流の風速と、前記環境気流の風速とを決定する請求項13記載の送風装置。
  15. 前記集中気流の風速、前記微気流の風速、前記環境気流の風速のうち少なくとも1つの風速の入力を受け付ける風速調節スイッチを備え、
    前記制御部は、
     前記風速調節スイッチにて受け付けた入力に基づいて、入力に対応する気流の風速を決定する請求項10、11および13のいずれか1項に記載の送風装置。
  16. 前記制御部は、
     空気温度と、前記集中気流モードにおける前記第4ステップの保持時間、前記周期をそれぞれ対応づけた制御テーブルを備え、
     前記空気温度検知部が検知した温度情報と、前記制御テーブルとに基づいて前記保持時間と、前記周期を決定する請求項11又は12のいずれか1項に記載の送風装置。
  17. 前記周期の入力を受け付ける周期調節スイッチを備え、
    前記制御部は、
     前記周期調節スイッチからの入力信号に基づいて前記周期を決定する請求項10、11および13のいずれか1項に記載の送風装置。
  18. 設置時に床に接する底面構造を備え、
    前記吹出口は、
     前記底面構造から上方に0.5m以上2m以下の高さに配置し、
    前記有人領域への送風は、
     前記風向変更装置による前記送風装置の正面方向、且つ、水平方向への送風であり、
    前記無人領域への送風は、
     前記風向変更装置による前記有人領域以外の方向への送風である請求項1から14のいずれか1項に記載の送風装置。
  19. 前記吸込口から前記吹出口まで空気を搬送する主経路と、
    前記主経路内の空気の状態を変化させる空気状態変化部と、
    前記空気状態変化部をバイパスさせて前記吹出口に空気を搬送するバイパス経路と、
    前記バイパス経路を開閉できる開閉部と、
    を備え、
    前記制御部は、
     さらに
     前記第2ステップの前に前記開閉部を開放させるバイパス開放ステップと、
     前記第5ステップの後に前記開閉部を閉塞させるバイパス閉塞ステップとを有する前記集中気流モードを実行する請求項1から14のいずれか1項に記載の送風装置。
PCT/JP2016/002537 2015-05-27 2016-05-26 送風装置 WO2016189867A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520242A JP6739006B2 (ja) 2015-05-27 2016-05-26 送風装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-107605 2015-05-27
JP2015107605 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016189867A1 true WO2016189867A1 (ja) 2016-12-01

Family

ID=57394151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002537 WO2016189867A1 (ja) 2015-05-27 2016-05-26 送風装置

Country Status (2)

Country Link
JP (1) JP6739006B2 (ja)
WO (1) WO2016189867A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179320A1 (ja) * 2017-03-31 2018-10-04 三菱電機株式会社 空気調和装置、空気調和システム、および、制御方法
WO2018193534A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 空調室内機
JP2020038029A (ja) * 2018-09-03 2020-03-12 ダイキン工業株式会社 送風制御装置
JP2020070801A (ja) * 2018-10-31 2020-05-07 アイリスオーヤマ株式会社 送風機
WO2020211180A1 (zh) * 2019-04-19 2020-10-22 青岛海尔空调器有限总公司 送风装置及其控制方法、控制装置
CN112303844A (zh) * 2020-09-30 2021-02-02 青岛海尔空调电子有限公司 空调器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173458A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Works Ltd 覚醒装置
JP2009202841A (ja) * 2008-02-29 2009-09-10 Denso Corp 運転者警告システム
JP2011153725A (ja) * 2010-01-26 2011-08-11 Daikin Industries Ltd 空気調和装置の天井設置型室内ユニット
JP2014020670A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 空気調和機の室内機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173458A (ja) * 1995-12-25 1997-07-08 Matsushita Electric Works Ltd 覚醒装置
JP2009202841A (ja) * 2008-02-29 2009-09-10 Denso Corp 運転者警告システム
JP2011153725A (ja) * 2010-01-26 2011-08-11 Daikin Industries Ltd 空気調和装置の天井設置型室内ユニット
JP2014020670A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 空気調和機の室内機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179320A1 (ja) * 2017-03-31 2018-10-04 三菱電機株式会社 空気調和装置、空気調和システム、および、制御方法
JPWO2018179320A1 (ja) * 2017-03-31 2019-11-07 三菱電機株式会社 空気調和装置、空気調和システム、および、制御方法
WO2018193534A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 空調室内機
JPWO2018193534A1 (ja) * 2017-04-19 2019-11-21 三菱電機株式会社 空調室内機
JP2020038029A (ja) * 2018-09-03 2020-03-12 ダイキン工業株式会社 送風制御装置
JP2020070801A (ja) * 2018-10-31 2020-05-07 アイリスオーヤマ株式会社 送風機
JP2020193623A (ja) * 2018-10-31 2020-12-03 アイリスオーヤマ株式会社 送風機
JP7412769B2 (ja) 2018-10-31 2024-01-15 アイリスオーヤマ株式会社 送風機
WO2020211180A1 (zh) * 2019-04-19 2020-10-22 青岛海尔空调器有限总公司 送风装置及其控制方法、控制装置
CN112303844A (zh) * 2020-09-30 2021-02-02 青岛海尔空调电子有限公司 空调器及其控制方法

Also Published As

Publication number Publication date
JP6739006B2 (ja) 2020-08-12
JPWO2016189867A1 (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
WO2016189867A1 (ja) 送風装置
JP6820530B2 (ja) 環境制御システム
WO2016147544A1 (ja) 環境制御システム、制御装置、プログラム
JP6168210B2 (ja) 送風機及びこれを用いた空気調和機
JP6067065B2 (ja) 快眠環境制御システムおよび快眠環境制御方法
JP5538314B2 (ja) 室内環境制御システム
JP6729784B2 (ja) 空気調和装置
WO2019242277A1 (zh) 用于空气设备的控制方法、装置、系统及计算机存储介质
WO2019242275A1 (zh) 用于空气设备的控制方法、装置、系统及计算机存储介质
JP2017015288A (ja) 空気調和機及び空気調和機の制御方法
JP2016176629A (ja) 空気調和システムおよび空気調和制御方法
WO2016136350A1 (ja) 睡眠制御装置
CN110873433B (zh) 用于激活和控制调节装置的方法
JP7012233B2 (ja) 空気環境制御システム、空気環境制御装置及び空気環境制御方法
JP2015152177A (ja) 送風機及びこれを備えた空気調和機
JP2018158090A (ja) 空調制御方法及び空調制御システム
JP6222001B2 (ja) 送風機及びこれを用いた空気調和機
KR20220075243A (ko) 수면 캡슐
CN108019866A (zh) 一种加湿器控制方法
JP4407335B2 (ja) 空気調和システム
JP2006136651A (ja) ミストサウナ装置
JPH0842900A (ja) 空気調和機の制御装置
JP2021188854A (ja) 環境制御システム
JP6189909B2 (ja) 空気調和システム
JP7463787B2 (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799580

Country of ref document: EP

Kind code of ref document: A1