WO2016189590A1 - 走査型内視鏡の較正方法および較正装置 - Google Patents
走査型内視鏡の較正方法および較正装置 Download PDFInfo
- Publication number
- WO2016189590A1 WO2016189590A1 PCT/JP2015/064791 JP2015064791W WO2016189590A1 WO 2016189590 A1 WO2016189590 A1 WO 2016189590A1 JP 2015064791 W JP2015064791 W JP 2015064791W WO 2016189590 A1 WO2016189590 A1 WO 2016189590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scanning
- endoscope
- receiving surface
- light receiving
- interval
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
Definitions
- the present invention relates to a calibration method and a calibration apparatus for a scanning endoscope.
- a calibration method and a remapping method for reducing distortion of an acquired image are known (for example, refer to Patent Document 1).
- an image of a target area is constructed by arranging detection light at pixel positions corresponding to the positions of irradiation spots with respect to the same time point in the scanning pattern.
- the scanning endoscope detects the return light intensity when the illumination light is point-illuminated on the subject, scans the illumination point, obtains information on two-dimensional return light, and corresponds to the illumination point.
- An endoscope that constructs an image by arranging detection intensities at points on the screen. Therefore, it is important to accurately recognize in advance where the illumination point is on the subject.
- An optical position sensor (hereinafter referred to as PSD) is used as an apparatus for measuring the position of an illumination point in advance.
- PSD optical position sensor
- the data measured by the PSD generally has distortion, and when calibrated without taking distortion into account, the image quality of the image constructed by the scanning endoscope after calibration is lowered.
- the present invention has been made in view of the above-described circumstances, and even when the position of an illumination point is measured using a PSD, a scanning type that can prevent deterioration in image quality of an image constructed after calibration. It is an object of the present invention to provide an endoscope calibration method and calibration apparatus.
- a trajectory detection step of detecting a two-dimensional scanning trajectory of point illumination light emitted from the distal end of a scanning endoscope using an optical position sensor, and the trajectory detection step are detected.
- the locus detection step point illumination light is emitted from the tip of the scanning endoscope and scanned two-dimensionally on the light receiving surface of the optical position sensor, so that the scanning locus of the point illumination light is changed. Detected. If the outermost edge of the scanning locus detected in the locus detecting step is not located within a predetermined range from the center of the light receiving surface, the tip of the scanning endoscope and the light receiving surface are brought close to each other by the interval adjusting step. By doing so, the scanning trajectory can be reduced and arranged within a predetermined range from the center of the light receiving surface.
- the scanning endoscope can be accurately calibrated using the acquired scanning trajectory by detecting within a predetermined range. It is possible to prevent deterioration of the image quality of the constructed image.
- the distal end of the scanning endoscope and the light receiving surface intersect in the interval direction so that the scanning locus detected in the locus detecting step is arranged at the center of the light receiving surface.
- a centering step of moving in the direction may be included. By doing so, the scanning trajectory can be detected as accurately as possible in the center of the light receiving surface by the centering step.
- the said predetermined range is a range of 80% +/- 5% from the center of the said light-receiving surface.
- the scanning-type endoscope is arranged so that an outermost edge of the scanning locus detected in the locus detecting step is located in the light receiving surface between the locus detecting step and the centering step.
- a protrusion elimination step for adjusting the distance between the tip of the mirror and the light receiving surface may be included, and the distance adjustment step may be performed after the centering step.
- the tip of the scanning endoscope is brought close to the light receiving surface by the protrusion elimination step.
- the interval is adjusted, and in this state, the entire scanning locus is centered at the center of the light receiving surface by the centering step. From this state, the entire scanning locus can be kept within a predetermined range from the center of the light receiving surface by bringing the tip of the scanning endoscope and the light receiving surface close to each other by the interval adjustment step.
- an endoscope support portion that supports a distal end of a scanning endoscope, and a point emitted from the distal end of the scanning endoscope supported by the endoscope support portion.
- An endoscope that includes a light receiving surface that receives illumination light, detects an optical position sensor that detects a two-dimensional scanning locus of the point illumination light, and the endoscope so as to change a distance between the endoscope support portion and the light receiving surface.
- An interval adjusting unit that movably supports the support unit, and an informing unit for informing that the outermost edge of the scanning locus detected by the optical position sensor is disposed outside a predetermined range from the center of the light receiving surface.
- a scanning endoscope calibration apparatus provided.
- the point illumination light emitted from the distal end of the scanning endoscope is received by the light receiving surface of the optical position sensor.
- the notification unit When the two-dimensional scanning is performed, if the outermost edge of the scanning locus detected by the optical position sensor deviates from the light receiving surface, this is notified by the notification unit.
- the interval adjusting unit When notified by the notification unit, the interval adjusting unit is operated to bring the tip of the scanning endoscope and the light receiving surface close to each other, thereby reducing the entire scanning trajectory and placing it within a predetermined range from the center of the light receiving surface. can do.
- the entire scanning locus can be centered on the light receiving surface by the operation of the position adjusting unit.
- an endoscope support portion that supports a distal end of a scanning endoscope, and a point emitted from the distal end of the scanning endoscope supported by the endoscope support portion.
- An endoscope that includes a light receiving surface that receives illumination light, detects an optical position sensor that detects a two-dimensional scanning locus of the point illumination light, and the endoscope so as to change a distance between the endoscope support portion and the light receiving surface.
- An interval adjusting unit that moves the support unit, and a control unit that controls the interval adjusting unit so that the outermost edge of the scanning locus detected by the optical position sensor is located within a predetermined range from the center of the light receiving surface.
- the point illumination light is emitted while being scanned from the tip, and is incident on the light receiving surface.
- the two-dimensional scanning locus is detected by the optical position sensor.
- the control unit determines whether or not the outermost edge of the scanning locus detected by the optical position sensor is disposed within a predetermined range from the center of the light receiving surface.
- a position adjusting unit that moves the endoscope support unit in a direction intersecting the interval direction
- the control unit has a scanning locus detected by the optical position sensor at a center of the light receiving surface.
- the position adjusting unit may be controlled so as to be disposed in the position.
- the control unit can control the position adjusting unit to center the entire scanning locus on the light receiving surface in the center. As a result, it is possible to detect a scanning trajectory with less distortion and improve detection accuracy by using the light receiving surface as widely as possible.
- FIG. 1 is an overall configuration diagram showing a calibration device for a scanning endoscope according to a first embodiment of the present invention. It is a longitudinal cross-sectional view which shows the scanning endoscope of the calibration apparatus of FIG. It is a figure which shows the waveform of the alternating voltage applied in the calibration apparatus of FIG. It is a figure which shows an example of the scanning locus
- FIG. 1 It is a whole block diagram which shows the calibration apparatus of the scanning endoscope which concerns on the 2nd Embodiment of this invention. It is a figure which shows the flowchart of the calibration method using the calibration apparatus of FIG. It is a figure which shows the flowchart of the first half part of the locus
- a calibration device 1 for a scanning endoscope 2 includes an endoscope support section 4 that supports the distal end of an insertion section 3 of the scanning endoscope 2,
- An optical position sensor 6 that includes a light receiving surface 5 that receives illumination light emitted from the distal end of the scanning endoscope 2 supported by the endoscope support unit 4 and that detects a scanning locus of the illumination light, and an endoscope support
- a position adjusting mechanism 7 that adjusts the relative position of the light receiving surface 5 and the notification portion 8 that notifies the scanning locus detected by the optical position sensor 6 when it is out of the predetermined range of the light receiving surface 5.
- a display unit 27 that displays an image acquired by the scanning endoscope 2.
- a light source unit 10 that generates the light source unit 10 and an image processing unit 19 that performs image processing on an image acquired by the scanning endoscope 2 are provided.
- an optical fiber scanner 11 according to the present embodiment that two-dimensionally scans illumination light from the light source unit 10 and a cylinder that houses the optical fiber scanner 11 are disposed at the distal end of the insertion unit 3.
- the outer cylindrical member 12 and the illumination light emitted from the optical fiber scanner 11 are collected at the tip of the outer cylindrical member 12, and are spot-like spots (hereinafter referred to as point illumination light) on the subject.
- a plurality of detection optical fibers 14 arranged in the circumferential direction on the outer surface of the outer cylinder member 12 and provided with an incident end 14 a in the vicinity of the distal end of the outer cylinder member 12.
- the optical fiber scanner 11 guides the illumination light from the light source unit 10 and emits it from the tip, and the illumination optical fiber 15 at a position spaced a predetermined distance from the tip of the illumination optical fiber 15.
- a cylindrical vibration transmission member 16 that is supported in a state of passing through, and four piezoelectric elements (three of which are shown in FIG. 2) bonded to the outer surface of the vibration transmission member 16 at equal intervals in the circumferential direction. 17) and a drive control unit 18 for adjusting an alternating voltage applied to the piezoelectric element 17.
- the illumination optical fiber 15 is connected to the light source unit 10 that passes through the insertion unit 3 in the longitudinal direction and is disposed outside the body.
- the detection optical fiber 14 is also connected to an image processing unit 19 that passes through the insertion portion 3 in the longitudinal direction and is arranged outside the body.
- the image processing unit 19 is connected to the display unit 27 so that the image processed image is displayed on the display unit 27.
- the vibration transmitting member 16 is made of a conductive metal material, and, as shown in FIG. 2, the penetrating optical fiber 15 can be penetrated along the longitudinal axis of a regular prism having a circular flange portion 20 at one end. It has a shape in which a hole 21 is formed, and is fixed to the outer cylinder member 12 by a flange portion 20.
- the piezoelectric element 17 is formed in a flat plate shape having electrodes (not shown) on both end faces in the thickness direction, and one electrode is in electrical contact with each side surface of the regular quadrangular prism portion of the vibration transmitting member 16. It is fixed with.
- the two pairs of piezoelectric elements 17 arranged at positions facing each other with the illumination optical fiber 15 sandwiched in the radial direction are arranged such that their polarization directions are directed in the same direction.
- a lead wire 22 for supplying an alternating voltage for driving the piezoelectric element 17 is connected to the other electrode of each piezoelectric element 17.
- Lead wires 22 that supply alternating voltages of the same phase are connected to the piezoelectric elements 17 that are arranged at positions facing each other with the illumination optical fiber 15 sandwiched in the radial direction.
- Reference numeral 23 denotes a GND line connected to the drive control unit 18 and the flange unit 20.
- the drive control unit 18 applies the two phases of the piezoelectric elements 17 with a phase difference of 90 ° while changing the amplitude of the alternating voltage oscillating at a constant frequency in a ramp shape. It has become. That is, by applying an alternating voltage to each pair of piezoelectric elements 17, the illumination optical fiber 15 is bent by bending vibration of each pair of piezoelectric elements 17, thereby making the tip of the illumination optical fiber 15 spiral. The point illumination light that is displaced and emitted from the tip of the illumination optical fiber 15 is scanned in a spiral shape.
- the optical position sensor 6 is a PSD, and includes a planar light receiving surface 5 and outputs four voltage signals distributed according to the incident position of the incident point illumination light.
- the notification unit 8 calculates the coordinates of the incident position of the point illumination light from the center position O of the light receiving surface 5 based on the four voltage signals output from the light position sensor 6, and the calculated coordinates are the light receiving surface 5. If it is determined that it is not disposed in the light receiving surface 5, this is notified.
- the notification unit 8 calculates the coordinates (X, Y) of the incident position of the point illumination light from the four voltage signals output from the optical position sensor 6 every moment, and calculates the calculated coordinates (X, Y ) Falls within a range of 80% from the center of the light receiving surface 5 (L ⁇ 0.8 / 2, L ⁇ 0.8 / 2) (hereinafter referred to as a predetermined range). Whether or not it is determined.
- the size of the light receiving surface 5 of the optical position sensor 6 is a square whose side is L as shown in FIG.
- the protrusion When either of the absolute values of the X and Y coordinates is outside the predetermined range, the protrusion is notified.
- the method for notifying the protrusion may be arbitrary, but it is only necessary to notify the presence or absence of the protrusion and the direction of the protrusion in the monitor display or voice.
- the position adjustment mechanism 7 is a three-axis linear movement mechanism that moves the endoscope support portion 4 in a three-dimensional direction, and receives light from the optical position sensor 6 from the endoscope support portion 4.
- a Z-direction moving mechanism (spacing adjustment unit) 24 that moves the endoscope support unit 4 in a direction in which the distance to the surface 5 is adjusted, and the endoscope support unit 4 in two directions along the light receiving surface 5 of the optical position sensor 6.
- An X-direction moving mechanism 25 and a Y-direction moving mechanism (position adjusting unit) 26 are provided.
- the calibration method according to the present embodiment attaches the distal end of the insertion portion 3 of the scanning endoscope 2 to the endoscope support portion 4 and emits point illumination light from the distal end.
- the locus detecting step S1 for detecting the scanning locus of the point illumination light by the position sensor 6 and the outermost edge of the scanning locus detected in the locus detecting step S1 are arranged outside the predetermined range from the center of the light receiving surface 5.
- the trajectory detection step S ⁇ b> 1 includes an incident position detection step S ⁇ b> 11 on the light receiving surface 5 of the point illumination light by the optical position sensor 6, and an incident position coordinate ( X, Y) calculation step S12, X direction position determination step S13 for determining whether or not the absolute value of the calculated X coordinate value is within a predetermined range in the X direction, and when it is within the predetermined range Y-direction position determination step S14 for determining whether or not the absolute value of the calculated Y-coordinate value is within a predetermined range in the Y direction, and the incident position is out of the predetermined range in either the X or Y direction.
- a protruding notification step S15 for notifying this is included.
- the operator operates the Z-direction moving mechanism 24 by manual operation when it is notified in the protruding notifying step S15 that the incident position is out of the predetermined range in either the X or Y direction. Then, the endoscope support part 4 is moved in a direction to bring it close to the light receiving surface 5 of the optical position sensor 6. When the endoscope support part 4 is brought close to the light receiving surface 5, the entire scanning locus of the point illumination light incident on the light receiving surface 5 is reduced, so that it falls within a predetermined range.
- the scanning locus of the point illumination light detected within the predetermined range from the center of the light receiving surface 5 in this way can be detected with little distortion. Therefore, by oscillating the illumination optical fiber 15 with the vibration waveform set in the drive control unit 18, the scanning locus to be formed at the position of the light receiving surface 5 by the point illumination light emitted from the tip, and the actual light A deviation from the scanning locus detected by the position sensor 6 can be detected with high accuracy, and the scanning endoscope 2 can be calibrated with high accuracy so that both scanning loci coincide.
- the scanning locus when it is notified that the incident position protrudes in either the X or Y direction, the scanning locus is reduced without moving the center position P of the scanning locus in the XY direction. It was decided to be within a predetermined range. Instead, as shown in FIG. 7, the position may be reduced after the position adjustment in the XY direction (XY position adjustment step S5).
- step S1 in the locus detection step S1, as shown in FIG. 8, after the coordinate (X, Y) calculation step S12, it is detected whether it protrudes in either the positive or negative direction of the X direction (from step S21). S23), the protruding direction is stored (step S24). Next, it is detected whether it protrudes in either the positive or negative direction of the Y direction (steps S25 to S27), and the protruding direction is stored (step S28).
- the operator operates the X-direction moving mechanism 25 or the Y-direction moving mechanism 26 by manual operation to move the entire scanning locus to the center position of the light receiving surface 5, and then supports the endoscope by the interval adjustment step S3.
- the unit 4 is moved in a direction to approach the light receiving surface 5 of the optical position sensor 6.
- the scanning trajectory may be reduced by operating the Z direction moving mechanism 24 without adjusting the XY position.
- the position adjustment mechanism 7 is operated so that the scanning locus is arranged within a range of 80% from the center position O of the light receiving surface 5. Instead, 80% ⁇ The position adjusting mechanism 7 may be operated so as to be disposed within a range of 5%.
- the calibration device 29 includes a control unit 28 that controls the position adjustment mechanism 7 instead of the notification unit 8, and the calibration according to the first embodiment. This is different from the apparatus 1.
- the control unit 28 detects the presence or absence of the protrusion detected by the locus detection step S6 for detecting whether or not the scanning locus protrudes from the light receiving surface 5 and the locus detection step S6. Judgment step S7, a protrusion elimination step S8 performed when it is determined that the protrusion has occurred, a centering step S9 performed after the protrusion has been eliminated, and the entire scanning locus on which the centering has been performed falls within a predetermined range.
- the calibration method including the interval adjustment step S10 for adjusting the interval between the light receiving surface 5 and the endoscope support portion 4 is executed.
- step S6 After various numerical values are reset (step S61), detection of the incident position of the point illumination light that changes from moment to moment on the light receiving surface 5 (step S62). and coordinate calculation of (step S63) is performed, and the maximum value X max of the X-coordinate, a minimum value X min, the maximum value Y max of the Y-coordinate, the minimum value Y min is held (steps S64 S71). These processes are carried out over a period of one frame or more (end step S72).
- the absolute values of the maximum values X max and Y max and the minimum values X min and Y min of the X and Y coordinates are half the size L / 2 of each side of the light receiving surface 5, respectively. It is determined whether or not it is smaller (steps S73 to S76), and if the condition is not satisfied, the setting of the presence of protrusion is performed (step S77).
- step S ⁇ b> 7 when it is determined in the protrusion determination step S ⁇ b> 7 that the scanning locus protrudes from the light receiving surface 5, the Z-direction moving mechanism 24 is operated, and the light receiving surface 5 and the endoscope support unit 4 are moved. It is moved in the approaching direction, and the processes from step S6 are repeated. If it is determined that there is no protrusion, the centering step S9 is performed.
- the scanning locus is determined from the center value O of the light receiving surface 5 from the maximum values X max and Y max and the minimum values X min and Y min of the X and Y coordinates calculated last.
- ⁇ X (X max + X min ) / 2
- ⁇ Y (Y max + Y min ) / 2
- the endoscope support unit 4 is moved in the XY direction with respect to the light receiving surface 5 by the operation of the X-direction moving mechanism 25 and the Y-direction moving mechanism 26 by the calculated movement amounts ⁇ X and ⁇ Y ( Steps S93 and S94).
- the maximum dimension XA in the XY direction of the scanning trajectory is calculated from the maximum values X max and Y max and the minimum values X min and Y min of the X and Y coordinates calculated last.
- YA steps S101 and S102
- a reduction ratio for keeping the scanning locus within a predetermined range is calculated (steps S104 and S105).
- the Z-direction moving mechanism 24 is operated so that the reduction ratio is achieved (step S106), and the light receiving surface 5 and the endoscope support portion 4 are brought close to each other.
- the position adjustment mechanism 7 is controlled based on the incident position of the point illumination light detected by the optical position sensor 6.
- the position is adjusted so that the entire scanning trajectory falls within a predetermined range, there is an advantage that the position of the scanning trajectory can be easily and accurately detected.
- the centering step S9 since the scanning locus is arranged near the center of the light receiving surface 5, there is an advantage that the scanning locus does not need to be excessively reduced in order to be within a predetermined range, and calibration can be performed with higher accuracy.
- the centering step S9 is performed in the state where the scanning locus is once stored in the light receiving surface 5, and the center is arranged at the center of the light receiving surface 5, and then the final reduction is performed by the interval adjusting step S10. Thus, it is possible to prevent over-reduction more reliably.
- the endoscope adjusting unit 4 is moved three-dimensionally with respect to the light receiving surface 5 by the position adjusting mechanism 7, but instead, the light receiving surface 5 is moved.
- the movement of the light receiving surface 5 may be shared, such as moving the light receiving surface 5 in the XY direction and moving the endoscope support unit 4 in the Z direction.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
- Microscoopes, Condenser (AREA)
Abstract
PSDを用いて照明点の位置計測を行う場合にも、較正後に構築される画像の画質の低下を防止することを目的として、本発明の較正方法は、走査型内視鏡の先端から射出される点照明光の2次元の走査軌跡を、光位置センサを用いて検出する軌跡検出ステップ(S1)と、該軌跡検出ステップ(S1)において検出された走査軌跡の最外縁が光位置センサの受光面の中心から所定の範囲内に配置されるように、走査型内視鏡の先端と受光面との間隔を調節する間隔調節ステップ(S3)とを含む。
Description
本発明は、走査型内視鏡の較正方法および較正装置に関するものである。
走査型内視鏡において、獲得される画像の歪みを減らすための較正方法および再マッピング方法が知られている(例えば、特許文献1参照。)。特許文献1の較正方法では、検出光を、走査パターンにおける同一の時間ポイントに関する照射スポットの位置に対応するピクセル位置に配置することにより、目標エリアのイメージを構築する。
走査型内視鏡は、照明光を被写体に対して点照明したときの戻り光強度を検出し、その照明点を走査することにより2次元の戻り光の情報を得て、照明点に対応する画面上の点に検出強度を配置することにより、画像を構築する内視鏡である。したがって、照明点が被写体のどこに当たっているのかを事前に正確に認識しておくことが重要である。
照明点の位置を事前に計測する装置として、光位置センサ(Position Sensitive Detector;以下、PSDという。)が用いられている。PSDにより計測されたデータには一般に歪みがあり、歪みを考慮せずに較正された場合には、較正後の走査型内視鏡により構築された画像の画質が低下する。
照明点の位置を事前に計測する装置として、光位置センサ(Position Sensitive Detector;以下、PSDという。)が用いられている。PSDにより計測されたデータには一般に歪みがあり、歪みを考慮せずに較正された場合には、較正後の走査型内視鏡により構築された画像の画質が低下する。
本発明は、上述した事情に鑑みてなされたものであって、PSDを用いて照明点の位置計測を行う場合にも、較正後に構築される画像の画質の低下を防止することができる走査型内視鏡の較正方法および較正装置を提供することを目的としている。
本発明の一態様は、走査型内視鏡の先端から射出される点照明光の2次元の走査軌跡を、光位置センサを用いて検出する軌跡検出ステップと、該軌跡検出ステップにおいて検出された走査軌跡の最外縁が前記光位置センサの受光面の中心から所定の範囲内に配置されるように、前記走査型内視鏡の前記先端と前記受光面との間隔を調節する間隔調節ステップとを含む走査型内視鏡の較正方法である。
本態様によれば、軌跡検出ステップにより、走査型内視鏡の先端から点照明光が射出されて光位置センサの受光面において2次元的に走査されることにより、点照明光の走査軌跡が検出される。そして、軌跡検出ステップにおいて検出された走査軌跡の最外縁が受光面の中心から所定の範囲内に位置していない場合には、間隔調節ステップにより走査型内視鏡の先端と受光面とを近接させることにより、走査軌跡を縮小させて受光面の中心から所定の範囲内に配置することができる。
受光面の中心から離れるに従って計測値に歪みを生ずるため、所定の範囲内において検出することにより、取得された走査軌跡を用いて走査型内視鏡を精度よく較正することが可能となり、較正後に構築される画像の画質の低下を防止することができる。
上記態様においては、前記軌跡検出ステップにおいて検出された走査軌跡が、前記受光面の中央に配置されるように、前記走査型内視鏡の前記先端と前記受光面とを前記間隔方向に交差する方向に相対的に移動させるセンタリングステップを含んでいてもよい。
このようにすることで、センタリングステップにより、走査軌跡を可能な限り受光面の中央において精度よく検出することができる。
また、上記態様においては、前記所定の範囲が、前記受光面の中心から80%±5%の範囲であることが好ましい。
このようにすることで、センタリングステップにより、走査軌跡を可能な限り受光面の中央において精度よく検出することができる。
また、上記態様においては、前記所定の範囲が、前記受光面の中心から80%±5%の範囲であることが好ましい。
また、上記態様においては、前記軌跡検出ステップと、前記センタリングステップとの間に、前記軌跡検出ステップにおいて検出された走査軌跡の最外縁が、前記受光面内に位置するように前記走査型内視鏡の前記先端と前記受光面との間隔を調節するはみ出し解消ステップを含み、前記センタリングステップの後に前記間隔調節ステップを行ってもよい。
このようにすることで、軌跡検出ステップにおいて、検出された走査軌跡の最外縁が受光面内からはみ出している場合に、はみ出し解消ステップにより走査型内視鏡の先端を受光面に近接させるように間隔が調節され、この状態でセンタリングステップにより走査軌跡全体が受光面の中央にセンタリングされる。そして、この状態から間隔調節ステップによって、走査型内視鏡の先端と受光面とを近接させることにより、走査軌跡全体を受光面の中心から所定の範囲内に納めることができる。
また、本発明の他の態様は、走査型内視鏡の先端を支持する内視鏡支持部と、該内視鏡支持部により支持された前記走査型内視鏡の先端から射出される点照明光を受光する受光面を備え、前記点照明光の2次元の走査軌跡を検出する光位置センサと、前記内視鏡支持部と前記受光面との間隔を変化させるように前記内視鏡支持部を移動可能に支持する間隔調節部と、該光位置センサにより検出された走査軌跡の最外縁が前記受光面の中心から所定の範囲外に配置されていることを報知する報知部とを備える走査型内視鏡の較正装置である。
本態様によれば、内視鏡支持部に走査型内視鏡の先端を支持させ、走査型内視鏡の先端から射出される点照明光を光位置センサの受光面に受光させた状態で2次元的に走査させると、光位置センサにより検出された走査軌跡の最外縁が受光面から外れている場合にはその旨が報知部により報知される。報知部により報知されたときには間隔調節部を作動させて走査型内視鏡の先端と受光面とを近接させることにより、走査軌跡全体を縮小させて、受光面の中心から所定の範囲内に配置することができる。これにより、歪みの少ない走査軌跡の検出を行って、取得された走査軌跡を用いて走査型内視鏡を精度よく較正することが可能となり、較正後に構築される画像の画質の低下を防止することができる。
上記態様においては前記内視鏡支持部を前記間隔方向に交差する方向に移動させる位置調節部を備えていてもよい。
このようにすることで、位置調節部の作動により走査軌跡全体を受光面に中央にセンタリングすることができる。これにより、歪みの少ない走査軌跡の検出を行うことができるとともに、受光面を可能な限り広く利用して、検出精度を向上することができる。
このようにすることで、位置調節部の作動により走査軌跡全体を受光面に中央にセンタリングすることができる。これにより、歪みの少ない走査軌跡の検出を行うことができるとともに、受光面を可能な限り広く利用して、検出精度を向上することができる。
また、本発明の他の態様は、走査型内視鏡の先端を支持する内視鏡支持部と、該内視鏡支持部により支持された前記走査型内視鏡の先端から射出される点照明光を受光する受光面を備え、前記点照明光の2次元の走査軌跡を検出する光位置センサと、前記内視鏡支持部と前記受光面との間隔を変化させるように前記内視鏡支持部を移動させる間隔調節部と、該光位置センサにより検出された走査軌跡の最外縁が前記受光面の中心から所定の範囲内に配置されるように、前記間隔調節部を制御する制御部とを備える走査型内視鏡の較正装置である。
本態様によれば、内視鏡支持部によって先端を支持させた走査型内視鏡を作動させて、先端から点照明光を走査させながら射出させ、受光面に入射させることにより、点照明光の2次元の走査軌跡が光位置センサによって検出される。制御部は、光位置センサにより検出された走査軌跡の最外縁が受光面の中心から所定の範囲内に配置されているか否かを判断して範囲外に配置されている場合には間隔調節部を作動させて内視鏡支持部と受光面との間隔を近接させることにより、走査軌跡全体を縮小させて範囲内に配置させることができる。これにより、歪みの少ない走査軌跡の検出を行い、走査型内視鏡を精度よく較正することができる。
上記態様においては、前記内視鏡支持部を前記間隔方向に交差する方向に移動させる位置調節部を備え、前記制御部は、前記光位置センサにより検出された走査軌跡が、前記受光面の中央に配置されるように、前記位置調節部を制御してもよい。
このようにすることで、制御部が、位置調節部を制御して走査軌跡全体を受光面に中央にセンタリングすることができる。これにより、歪みの少ない走査軌跡の検出を行うことができるとともに、受光面を可能な限り広く利用して、検出精度を向上することができる。
このようにすることで、制御部が、位置調節部を制御して走査軌跡全体を受光面に中央にセンタリングすることができる。これにより、歪みの少ない走査軌跡の検出を行うことができるとともに、受光面を可能な限り広く利用して、検出精度を向上することができる。
本発明によれば、PSDを用いて照明点の位置計測を行う場合にも、較正後に構築される画像の画質の低下を防止することができるという効果を奏する。
以下、本発明の第1の実施形態に係る走査型内視鏡2の較正装置1および構成方法について、図面を参照して以下に説明する。
本実施形態に係る走査型内視鏡2の較正装置1は、図1に示されるように、走査型内視鏡2の挿入部3の先端を支持する内視鏡支持部4と、該内視鏡支持部4に支持された走査型内視鏡2の先端から射出される照明光を受光する受光面5を備え、照明光の走査軌跡を検出する光位置センサ6と、内視鏡支持部4と受光面5との相対位置を調節する位置調節機構7と、光位置センサ6により検出された走査軌跡が受光面5の所定範囲内から外れている場合にこれを報知する報知部8と、走査型内視鏡2が取得した画像を表示する表示部27とを備えている。
本実施形態に係る走査型内視鏡2の較正装置1は、図1に示されるように、走査型内視鏡2の挿入部3の先端を支持する内視鏡支持部4と、該内視鏡支持部4に支持された走査型内視鏡2の先端から射出される照明光を受光する受光面5を備え、照明光の走査軌跡を検出する光位置センサ6と、内視鏡支持部4と受光面5との相対位置を調節する位置調節機構7と、光位置センサ6により検出された走査軌跡が受光面5の所定範囲内から外れている場合にこれを報知する報知部8と、走査型内視鏡2が取得した画像を表示する表示部27とを備えている。
ここで、走査型内視鏡2について説明する。図1に示されるように、患者の体内に挿入される細長い挿入部3と、該挿入部3の基端に設けられ、患者の体外において操作者により操作される操作部9と、照明光を発生する光源部10と、走査型内視鏡2が取得した画像を画像処理する画像処理部19とを備えている。
挿入部3の先端には、図2に示されるように、光源部10からの照明光を2次元的に走査する本実施形態に係る光ファイバスキャナ11と、該光ファイバスキャナ11を収容する円筒状の外筒部材12と、該外筒部材12の先端に配置され、光ファイバスキャナ11から射出される照明光を集光して、被写体に点状のスポット(以下、点照明光という。)を形成する集光レンズ13と、外筒部材12の外面に周方向に複数配列され、外筒部材12の先端近傍に入射端14aを備えた検出用光ファイバ14とが備えられている。
挿入部3の先端には、図2に示されるように、光源部10からの照明光を2次元的に走査する本実施形態に係る光ファイバスキャナ11と、該光ファイバスキャナ11を収容する円筒状の外筒部材12と、該外筒部材12の先端に配置され、光ファイバスキャナ11から射出される照明光を集光して、被写体に点状のスポット(以下、点照明光という。)を形成する集光レンズ13と、外筒部材12の外面に周方向に複数配列され、外筒部材12の先端近傍に入射端14aを備えた検出用光ファイバ14とが備えられている。
光ファイバスキャナ11は、光源部10からの照明光を導光し、先端から射出させる照明用光ファイバ15と、該照明用光ファイバ15の先端から所定距離を空けた位置において照明用光ファイバ15を貫通させた状態に支持する筒状の振動伝達部材16と、該振動伝達部材16の外面に周方向に等間隔をおいて接着された4つの圧電素子(図2にはその内の3つが示されている。)17と、該圧電素子17に加える交番電圧を調節する駆動制御部18とを備えている。
照明用光ファイバ15は、挿入部3を長手方向に貫通して体外に配置されている光源部10に接続されている。検出用光ファイバ14も挿入部3を長手方向に貫通して体外に配置されている画像処理部19に接続されている。画像処理部19は表示部27に接続されており、画像処理された画像が表示部27に表示されるようになっている。
照明用光ファイバ15は、挿入部3を長手方向に貫通して体外に配置されている光源部10に接続されている。検出用光ファイバ14も挿入部3を長手方向に貫通して体外に配置されている画像処理部19に接続されている。画像処理部19は表示部27に接続されており、画像処理された画像が表示部27に表示されるようになっている。
振動伝達部材16は、導電性の金属材料からなり、図2に示されるように、一端に円形のフランジ部20を有する正四角柱の長手軸に沿って、照明用光ファイバ15を貫通可能な貫通孔21が形成された形状を有し、フランジ部20によって外筒部材12に固定されている。
圧電素子17は、厚さ方向の両端面に電極(図示略)が設けられた平板状に形成され、一方の電極を振動伝達部材16の正四角柱部分の各側面に電気的に接触させた状態で固定されている。照明用光ファイバ15を径方向に挟んで対向する位置に配置される2対の圧電素子17は、それらの分極方向が、同一の方向に向かうように配置されている。
各圧電素子17の他方の電極には、該圧電素子17を駆動する交番電圧を供給するためのリード線22が接続されている。照明用光ファイバ15を径方向に挟んで対向する位置に配置されている圧電素子17には、同一位相の交番電圧を供給するリード線22が接続されている。符号23は、駆動制御部18とフランジ部20とに接続されたGND線である。
駆動制御部18は、2対の圧電素子17に、図3に示されるように、一定の周波数で振動する交番電圧の振幅をランプ状に変化させながら、位相を90°異ならせて印加するようになっている。すなわち、各対の圧電素子17に交番電圧を印加することにより、各対の圧電素子17の屈曲振動によって照明用光ファイバ15を湾曲させ、それによって、照明用光ファイバ15の先端を渦巻き状に変位させて、照明用光ファイバ15の先端から射出させた点照明光を渦巻き状に走査させるようになっている。
光位置センサ6は、PSDであり、平面状の受光面5を備え入射された点照明光の入射位置に応じて配分された4つの電圧信号を出力するようになっている。
報知部8は、光位置センサ6から出力された4つの電圧信号に基づいて、受光面5の中心位置Oからの点照明光の入射位置の座標を算出し、算出された座標が受光面5内に配置されているか否かを判定し、受光面5内に配置されていないと判定された場合には、これを報知するようになっている。
報知部8は、光位置センサ6から出力された4つの電圧信号に基づいて、受光面5の中心位置Oからの点照明光の入射位置の座標を算出し、算出された座標が受光面5内に配置されているか否かを判定し、受光面5内に配置されていないと判定された場合には、これを報知するようになっている。
具体的には、報知部8は、光位置センサ6から時々刻々出力される4つの電圧信号から点照明光の入射位置の座標(X,Y)を算出し、算出された座標(X,Y)のいずれかの座標値の絶対値が受光面5の中心から80%の範囲(L×0.8/2,L×0.8/2)(以下、所定範囲という。)内に入っているか否かを判定するようになっている。ここで、光位置センサ6の受光面5の大きさは、図4に示されるように、一辺の長さがLの正方形である。
そして、X,Y両座標の絶対値のいずれかが上記所定範囲外となった場合には、はみ出しが報知されるようになっている。
はみ出しの報知方法は、任意でよいが、モニタ表示や音声ではみ出しの有無やどちらの方向にはみ出したのかについて報知することにすればよい。
はみ出しの報知方法は、任意でよいが、モニタ表示や音声ではみ出しの有無やどちらの方向にはみ出したのかについて報知することにすればよい。
位置調節機構7は、図1に示されるように、内視鏡支持部4を3次元方向に移動させる3軸の直動機構であって、内視鏡支持部4から光位置センサ6の受光面5までの距離を調節する方向に内視鏡支持部4を移動させるZ方向移動機構(間隔調節部)24と、内視鏡支持部4を光位置センサ6の受光面5に沿う2方向に移動させるX方向移動機構25およびY方向移動機構(位置調節部)26とを備えている。
このように較正された本実施形態に係る走査型内視鏡2の較正装置1を用いた較正方法について以下に説明する。
本実施形態に係る較正方法は、図5に示されるように、走査型内視鏡2の挿入部3の先端を内視鏡支持部4に取り付けて、先端から点照明光を射出させ、光位置センサ6により点照明光の走査軌跡を検出する軌跡検出ステップS1と、該軌跡検出ステップS1において検出された走査軌跡の最外縁が受光面5の中心からの上記所定範囲外に配置されたことが報知されたか否かを判定する報知判定ステップS2と、所定範囲外に配置されていた場合に走査型内視鏡2の先端と受光面5との間隔を調節する間隔調節ステップS3と、終了判定ステップS4とを含んでいる。
本実施形態に係る較正方法は、図5に示されるように、走査型内視鏡2の挿入部3の先端を内視鏡支持部4に取り付けて、先端から点照明光を射出させ、光位置センサ6により点照明光の走査軌跡を検出する軌跡検出ステップS1と、該軌跡検出ステップS1において検出された走査軌跡の最外縁が受光面5の中心からの上記所定範囲外に配置されたことが報知されたか否かを判定する報知判定ステップS2と、所定範囲外に配置されていた場合に走査型内視鏡2の先端と受光面5との間隔を調節する間隔調節ステップS3と、終了判定ステップS4とを含んでいる。
さらに具体的には、軌跡検出ステップS1は、図6に示されるように、光位置センサ6による点照明光の受光面5への入射位置検出ステップS11と、報知部8による入射位置の座標(X,Y)算出ステップS12と、算出されたX座標値の絶対値がX方向の所定範囲内に入っているか否かを判定するX方向位置判定ステップS13と、所定範囲に入っている場合に、算出されたY座標値の絶対値がY方向の所定範囲内に入っているか否かを判定するY方向位置判定ステップS14と、入射位置がX,Yいずれかの方向に所定範囲外となった場合にこれを報知するはみ出し報知ステップS15とを含んでいる。
間隔調節ステップS3は、はみ出し報知ステップS15において、入射位置がX,Yいずれかの方向に所定範囲外となったことが報知された場合に、操作者が手動操作によってZ方向移動機構24を作動させ、内視鏡支持部4を光位置センサ6の受光面5に近接させる方向に移動させる。
内視鏡支持部4を受光面5に近接させると、受光面5に入射されている点照明光の走査軌跡全体が縮小するので、所定範囲内に入るようになる。
内視鏡支持部4を受光面5に近接させると、受光面5に入射されている点照明光の走査軌跡全体が縮小するので、所定範囲内に入るようになる。
そして、このようにして受光面5の中心から所定範囲内において検出された点照明光の走査軌跡は少ない歪みで検出することができる。したがって、駆動制御部18において設定された振動波形によって照明用光ファイバ15を振動させることにより、先端から射出される点照明光によって受光面5の位置に形成しようとする走査軌跡と、実際に光位置センサ6によって検出された走査軌跡とのズレを精度よく検出することが可能となり、両走査軌跡を一致させるように走査型内視鏡2を精度よく較正することができる。
なお、本実施形態においては、入射位置がX,Yいずれかの方向にはみ出していることが報知された場合に、走査軌跡の中心位置PをXY方向に動かすことなく、走査軌跡を縮小させて所定範囲内に収めることとした。これに代えて、図7に示されるように、XY方向に位置調節した(XY位置調節ステップS5)後に縮小させることにしてもよい。
この場合に、軌跡検出ステップS1においては、図8に示されるように、座標(X,Y)算出ステップS12後に、X方向の正負いずれか方向にはみ出しているのかを検出して(ステップS21からS23)、はみ出し方向を記憶する(ステップS24)。次いで、Y方向の正負いずれか方向にはみ出しているのかを検出して(ステップS25からS27)、はみ出し方向を記憶する(ステップS28)。
そして、はみ出している場合には、その旨の報知を、記憶したはみ出し方向とともに報知する(はみ出し報知ステップS29)。これにより、操作者が手動操作によってX方向移動機構25またはY方向移動機構26を作動させ、走査軌跡全体を受光面5の中央位置に移動させた後に、間隔調節ステップS3により、内視鏡支持部4を光位置センサ6の受光面5に近接させる方向に移動させる。
このようにすることで、走査軌跡が受光面5の中央位置から大きくずれていた場合でも、走査軌跡を縮小しすぎることを防止して、比較的大きな走査軌跡として光位置センサ6により検出することができる。その結果、光位置センサ6の分解能を有効に利用することができ、走査型内視鏡2をより精度よく較正することができる。
なお、X方向あるいはY方向の正負いずれの方向にもはみ出している場合には、XY位置調節を行うことなくZ方向移動機構24を作動させて走査軌跡を縮小させることにすればよい。
また、本実施形態においては、受光面5の中心位置Oから80%の範囲内に走査軌跡が配置されるように位置調節機構7を作動させることとしたが、これに代えて、80%±5%の範囲内に配置されるように位置調節機構7を作動させることにしてもよい。
次に、本発明の第2の実施形態に係る走査型内視鏡2の較正装置29および較正方法について、図面を参照して以下に説明する。
なお、本実施形態の説明において、上述した第1の実施形態に係る較正装置1および構成方法と構成を共通とする箇所には同一符号を付して説明を省略する。
なお、本実施形態の説明において、上述した第1の実施形態に係る較正装置1および構成方法と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る較正装置29は、図9に示されるように、報知部8に代えて、位置調節機構7を制御する制御部28を備えている点で、第1の実施形態に係る較正装置1と相違している。
制御部28は、図10に示されるように、走査軌跡が受光面5からはみ出しているか否かを検出する軌跡検出ステップS6と、該軌跡検出ステップS6により検出されたはみ出しの有無を判定するはみ出し判定ステップS7と、はみ出していると判定された場合に実施されるはみ出し解消ステップS8と、はみ出しが解消された後に行われるセンタリングステップS9と、センタリングが行われた走査軌跡の全体が所定範囲に収まるように受光面5と内視鏡支持部4との間隔を調節する間隔調節ステップS10とを含む較正方法を実行するようになっている。
制御部28は、図10に示されるように、走査軌跡が受光面5からはみ出しているか否かを検出する軌跡検出ステップS6と、該軌跡検出ステップS6により検出されたはみ出しの有無を判定するはみ出し判定ステップS7と、はみ出していると判定された場合に実施されるはみ出し解消ステップS8と、はみ出しが解消された後に行われるセンタリングステップS9と、センタリングが行われた走査軌跡の全体が所定範囲に収まるように受光面5と内視鏡支持部4との間隔を調節する間隔調節ステップS10とを含む較正方法を実行するようになっている。
すなわち、軌跡検出ステップS6は、図11Aに示されるように、各種数値がリセットされた後(ステップS61)、時々刻々と変化する点照明光の受光面5への入射位置の検出(ステップS62)および座標の算出(ステップS63)が行われ、X座標の最大値Xmax、最小値Xmin、Y座標の最大値Ymax、最小値Yminが保持される(ステップS64からS71)。これらの工程は1フレーム以上の時間にわたって実施される(終了ステップS72)。
そして、図11Bに示されるように、X,Y座標の最大値Xmax,Ymax、最小値Xmin,Yminの絶対値が、それぞれ受光面5の各辺の半分の大きさL/2より小さいか否かが判定され(ステップS73からS76)、条件を満足しない場合に、はみ出し有りの設定が行われる(ステップS77)。
図10において、はみ出し判定ステップS7により走査軌跡が受光面5からはみ出していると判定された場合には、Z方向移動機構24が作動させられて、受光面5と内視鏡支持部4とが近接する方向に移動させられ、ステップS6からの工程が繰り返される。そして、はみ出しが存在しないと判定された場合は、センタリングステップS9が実施される。
センタリングステップS9は、図12に示されるように、最後に算出されたX,Y座標の最大値Xmax,Ymax、最小値Xmin,Yminから、走査軌跡を受光面5の中心位置Oに移動させるための移動量ΔX,ΔYを下式に基づいて算出する(ステップS91,S92)。
ΔX=(Xmax+Xmin)/2
ΔY=(Ymax+Ymin)/2
そして、算出された移動量ΔX,ΔYだけX方向移動機構25およびY方向移動機構26の作動によって、受光面5に対してXY方向に内視鏡支持部4を移動させるようになっている(ステップS93,S94)。
ΔX=(Xmax+Xmin)/2
ΔY=(Ymax+Ymin)/2
そして、算出された移動量ΔX,ΔYだけX方向移動機構25およびY方向移動機構26の作動によって、受光面5に対してXY方向に内視鏡支持部4を移動させるようになっている(ステップS93,S94)。
間隔調節ステップS10は、図13に示されるように、最後に算出されたX,Y座標の最大値Xmax,Ymax、最小値Xmin,Yminから、走査軌跡のXY方向の最大寸法XA,YAを算出し(ステップS101,S102)、最大寸法が大きい方のいずれかの方向に合わせて(ステップS103)、走査軌跡を所定範囲に収めるための縮小率を算出し(ステップS104,S105)、その縮小率が達成されるようにZ方向移動機構24を作動させて(ステップS106)、受光面5と内視鏡支持部4とを近接させるようになっている。
このように構成された本実施形態に係る走査型内視鏡2の較正装置29によれば、光位置センサ6によって検出された点照明光の入射位置に基づいて、位置調節機構7が制御されて、走査軌跡全体が所定範囲に収まるように位置調節されるので、簡単に精度よく走査軌跡の位置を検出することができるという利点がある。特に、センタリングステップS9において、走査軌跡を受光面5の中央近傍に配置するので、所定範囲に収めるために走査軌跡を縮小させ過ぎずに済み、さらに精度よく較正することができるという利点がある。
また、はみ出し解消ステップS8において、走査軌跡を受光面5内に一旦収めた状態で、センタリングステップS9を行って受光面5の中央に配置し、その後、間隔調節ステップS10によって最終的な縮小を行うことで、より確実に縮小させ過ぎを防止することができる。
なお、上記各実施形態においては、位置調節機構7によって、受光面5に対して内視鏡支持部4を3次元的に移動させることとしたが、これに代えて、受光面5を移動させることにしてもよいし、受光面5をXY方向に移動させ、内視鏡支持部4はZ方向に移動させるというように、両者の移動を分担してもよい。
1,29 較正装置
2 走査型内視鏡
4 内視鏡支持部
5 受光面
6 光位置センサ
8 報知部
24 Z方向移動機構(間隔調節部)
25 X方向移動機構(位置調節部)
26 Y方向移動機構(位置調節部)
28 制御部
S1,S6 軌跡検出ステップ
S3,S10 間隔調節ステップ
S8 はみ出し解消ステップ
S9 センタリングステップ
2 走査型内視鏡
4 内視鏡支持部
5 受光面
6 光位置センサ
8 報知部
24 Z方向移動機構(間隔調節部)
25 X方向移動機構(位置調節部)
26 Y方向移動機構(位置調節部)
28 制御部
S1,S6 軌跡検出ステップ
S3,S10 間隔調節ステップ
S8 はみ出し解消ステップ
S9 センタリングステップ
Claims (8)
- 走査型内視鏡の先端から射出される点照明光の2次元の走査軌跡を、光位置センサを用いて検出する軌跡検出ステップと、
該軌跡検出ステップにおいて検出された走査軌跡の最外縁が前記光位置センサの受光面の中心から所定の範囲内に配置されるように、前記走査型内視鏡の前記先端と前記受光面との間隔を調節する間隔調節ステップとを含む走査型内視鏡の較正方法。 - 前記軌跡検出ステップにおいて検出された走査軌跡が、前記受光面の中央に配置されるように、前記走査型内視鏡の前記先端と前記受光面とを前記間隔方向に交差する方向に相対的に移動させるセンタリングステップを含む請求項1に記載の走査型内視鏡の較正方法。
- 前記所定の範囲が、前記受光面の中心から80%±5%の範囲である請求項1または請求項2に記載の走査型内視鏡の較正方法。
- 前記軌跡検出ステップと、前記センタリングステップとの間に、前記軌跡検出ステップにおいて検出された走査軌跡の最外縁が、前記受光面内に位置するように前記走査型内視鏡の前記先端と前記受光面との間隔を調節するはみ出し解消ステップを含み、
前記センタリングステップの後に前記間隔調節ステップを行う請求項2または請求項3に記載の走査型内視鏡の較正方法。 - 走査型内視鏡の先端を支持する内視鏡支持部と、
該内視鏡支持部により支持された前記走査型内視鏡の先端から射出される点照明光を受光する受光面を備え、前記点照明光の2次元の走査軌跡を検出する光位置センサと、
前記内視鏡支持部と前記受光面との間隔を変化させるように前記内視鏡支持部を移動可能に支持する間隔調節部と、
該光位置センサにより検出された走査軌跡の最外縁が前記受光面の中心から所定の範囲外に配置されていることを報知する報知部とを備える走査型内視鏡の較正装置。 - 前記内視鏡支持部を前記間隔方向に交差する方向に移動させる位置調節部を備える請求項5に記載の走査型内視鏡の較正装置。
- 走査型内視鏡の先端を支持する内視鏡支持部と、
該内視鏡支持部により支持された前記走査型内視鏡の先端から射出される点照明光を受光する受光面を備え、前記点照明光の2次元の走査軌跡を検出する光位置センサと、
前記内視鏡支持部と前記受光面との間隔を変化させるように前記内視鏡支持部を移動させる間隔調節部と、
該光位置センサにより検出された走査軌跡の最外縁が前記受光面の中心から所定の範囲内に配置されるように、前記間隔調節部を制御する制御部とを備える走査型内視鏡の較正装置。 - 前記内視鏡支持部を前記間隔方向に交差する方向に移動させる位置調節部を備え、
前記制御部は、前記光位置センサにより検出された走査軌跡が、前記受光面の中央に配置されるように、前記位置調節部を制御する請求項7に記載の走査型内視鏡の較正装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017520068A JPWO2016189590A1 (ja) | 2015-05-22 | 2015-05-22 | 走査型内視鏡の較正方法および較正装置 |
PCT/JP2015/064791 WO2016189590A1 (ja) | 2015-05-22 | 2015-05-22 | 走査型内視鏡の較正方法および較正装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/064791 WO2016189590A1 (ja) | 2015-05-22 | 2015-05-22 | 走査型内視鏡の較正方法および較正装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016189590A1 true WO2016189590A1 (ja) | 2016-12-01 |
Family
ID=57393811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064791 WO2016189590A1 (ja) | 2015-05-22 | 2015-05-22 | 走査型内視鏡の較正方法および較正装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016189590A1 (ja) |
WO (1) | WO2016189590A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012143264A (ja) * | 2011-01-06 | 2012-08-02 | Hoya Corp | キャリブレーション装置、及びキャリブレーション方法 |
JP2014018556A (ja) * | 2012-07-23 | 2014-02-03 | Hoya Corp | キャリブレーション装置 |
-
2015
- 2015-05-22 JP JP2017520068A patent/JPWO2016189590A1/ja active Pending
- 2015-05-22 WO PCT/JP2015/064791 patent/WO2016189590A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012143264A (ja) * | 2011-01-06 | 2012-08-02 | Hoya Corp | キャリブレーション装置、及びキャリブレーション方法 |
JP2014018556A (ja) * | 2012-07-23 | 2014-02-03 | Hoya Corp | キャリブレーション装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016189590A1 (ja) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6046929B2 (ja) | 光学測定装置 | |
CN103841877B (zh) | 扫描型内窥镜用校准器具 | |
US9354041B2 (en) | Coordinate measuring apparatus | |
US9587937B2 (en) | Construction machine with setup assistance system for a sensor unit | |
US10758112B2 (en) | Scanning endoscope and method for controlling the same | |
US20170090181A1 (en) | Optical scanning endoscope apparatus | |
KR20160142273A (ko) | 광학 이미징 시스템의 정렬을 위한 방법 및 디바이스 | |
KR20080111653A (ko) | 카메라를 이용하여 측정 프로브의 원점을 보정하는 3차원측정장치 | |
US11375883B2 (en) | Light-scanning endoscope, correcting apparatus for light scanning endoscope and light-scanning-endoscope operating method | |
WO2016189590A1 (ja) | 走査型内視鏡の較正方法および較正装置 | |
US10606067B2 (en) | Drive-condition setting device and drive-condition setting method for optical scanning apparatus | |
WO1999004220A1 (en) | Method and apparatus for surface profiling of materials and calibration of ablation lasers | |
WO2011040350A1 (ja) | 電磁波測定装置 | |
KR101355883B1 (ko) | 미세선폭을 갖는 바이오센서 제조를 위한 레이저 위치보정 장치 및 방법 | |
JP2002042709A (ja) | 走査型電子顕微鏡の校正方法 | |
JP2008212941A (ja) | レーザ加工装置及びレーザ加工装置の制御方法 | |
KR20130095208A (ko) | 부품에 대한 가공 기구 위치 정렬 장치 및 방법 | |
JP4408294B2 (ja) | 塗布装置 | |
CN105209977A (zh) | 曝光装置 | |
JP2007232629A (ja) | レンズ形状測定装置 | |
KR101322782B1 (ko) | 씨엠엠 탐침의 광학적 위치측정 장치 | |
US10126121B2 (en) | Method of measuring scanning characteristics of optical scanning apparatus and chart for measuring scanning characteristics used in same | |
JP2016148596A (ja) | 表面検査装置用リニアアレイカメラ較正方法 | |
JP5197249B2 (ja) | 液晶パネル検査装置及び液晶パネル検査方法 | |
KR100998027B1 (ko) | 스크레이퍼 및 이를 포함하는 도광판 제조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15893226 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017520068 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15893226 Country of ref document: EP Kind code of ref document: A1 |