WO2016188238A1 - 应用于激光照射的掩膜板及其激光封装方法 - Google Patents

应用于激光照射的掩膜板及其激光封装方法 Download PDF

Info

Publication number
WO2016188238A1
WO2016188238A1 PCT/CN2016/078847 CN2016078847W WO2016188238A1 WO 2016188238 A1 WO2016188238 A1 WO 2016188238A1 CN 2016078847 W CN2016078847 W CN 2016078847W WO 2016188238 A1 WO2016188238 A1 WO 2016188238A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
region
mask
panel
packaged
Prior art date
Application number
PCT/CN2016/078847
Other languages
English (en)
French (fr)
Inventor
洪瑞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/314,690 priority Critical patent/US20170183767A1/en
Publication of WO2016188238A1 publication Critical patent/WO2016188238A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • Embodiments of the present invention relate to a mask applied to laser irradiation and a laser packaging method thereof.
  • the main steps of the known packaging process include: aligning a first substrate coated with a sealant with a second substrate to form a display panel to be packaged; and causing a laser generated by the laser generator (eg, The direction of the arrow in the figure) is to illuminate the display panel to be packaged through the mask, so that the laser illuminates the sealant in the package area through the transmission area of the mask, and the sealant is melted by the energy of the laser beam. After the melted sealant is cooled, it is bonded to the first substrate and the second substrate, so that a sealed package space is formed inside the aligned display panel to complete the packaging process.
  • a laser generated by the laser generator eg, The direction of the arrow in the figure
  • the cross-sectional width of the sealant applied in the package area is as shown in FIG. 2a. (marked as d in the figure) is smaller than the diameter ⁇ of the spot of the laser beam.
  • the diameter ⁇ of the laser spot is larger than the cross-sectional width d of the sealant, the laser will not only be irradiated on the sealant, but also on both sides of the sealant; the energy of the laser beam is very high, and the instantaneous temperature can reach 800.
  • Embodiments of the present invention provide a mask and a laser packaging method applied to laser irradiation, which can be applied to a package of a display panel with a narrow bezel design, and improve a display panel after packaging. Display the effect, while improving the utilization of the substrate and reducing the cost.
  • an embodiment of the present invention provides a mask for laser irradiation, the mask comprising a laser blocking region and a laser transmission region surrounding the laser blocking region; wherein the laser blocking region is configured To block laser light having a predetermined wavelength; and
  • the laser transmission region is configured to allow the laser light having a predetermined wavelength to be transmitted, wherein a cross-sectional width of the laser transmission region is smaller than the predetermined wavelength in a direction perpendicular to a plane of the mask plate The spot diameter of the laser.
  • the laser transmission region corresponds to a package area of the panel to be packaged
  • the laser blocking region corresponds to the panel to be packaged A device region surrounded by the package region.
  • the mask includes a plurality of laser blocking regions, and when the mask is placed over the panel to be packaged, the plurality of laser blocking regions correspond to the panel to be packaged A plurality of device regions arranged in the array, and the laser transmission region corresponds to an area of the panel to be packaged other than the device region.
  • the mask includes: a first body portion located in the laser transmission region, the first body portion being formed of a light transmissive material; and a second body portion located in the laser blocking region, The surface of the second body portion is a diffuse reflection surface.
  • the laser has a wavelength of 810 nm to 1000 nm; and the diffuse reflection surface has a haze value of 40% to 90%.
  • the diffuse reflection surface of the second body portion of the laser blocking region is located at the second body portion away from the panel to be packaged One side.
  • the mask includes: a first body portion located in the laser transmission region, the first body portion being formed of a light transmissive material; and a second body portion located in the laser blocking region, The surface of the second body portion is a light absorbing layer.
  • the light absorbing layer of the second body portion of the laser blocking region is located away from the panel to be packaged One side.
  • the light transmissive material comprises any one of glass, quartz, and acryl.
  • the second body portion is integral with the first body portion.
  • the cross-sectional width of the laser transmission region is greater than or equal to the package region along a direction perpendicular to the plane of the mask. Section width.
  • the cross-sectional width of the laser transmission region is perpendicular to the cross-section of the package region in a direction perpendicular to the plane of the mask.
  • the width is 0.02mm to 0.1mm.
  • the mask has a thickness of from 3 mm to 5 mm.
  • an embodiment of the present invention further provides a laser packaging method using the above mask, comprising:
  • the mask on the panel to be packaged such that the laser blocking region corresponds to a device region of the panel to be packaged and the laser transmission region corresponds to a package region of the panel to be packaged;
  • the laser is irradiated to the sealant in the package area in the panel to be packaged by the laser through the mask to cure the sealant.
  • the sealant is made of a glass glue material; the laser has a wavelength of 810 to 1000 nm.
  • the cross-sectional width of the laser-transmissive region of the mask is greater than or equal to the package of the panel to be packaged, along the direction perpendicular to the plane of the mask.
  • the cross-sectional width of the region, the laser beam can be fully irradiated onto the sealant in the package area of the panel to be packaged through the laser transmission region, so as to ensure that the sealant fully absorbs the laser and melts and solidifies to complete the panel to be packaged.
  • the cross-sectional width of the laser-transmissive region of the mask is smaller than the spot diameter of the laser beam in a direction perpendicular to the plane of the mask, the laser-blocking region outside the laser-transmissive region may be irradiated to be packaged.
  • Laser blocking outside the package area of the panel prevents laser heat from being transferred to the electronics in the device area of the panel to be packaged near the edge of the package area. Therefore, when designing the panel to be packaged, the electronic device in the device region can be designed closer to the package region, thereby achieving the purpose of achieving a narrow bezel, and further improving the utilization ratio of the substrate in the panel to be packaged.
  • FIG. 1 is a schematic diagram of a principle of laser encapsulating a display panel through a mask according to a known technique
  • Figure 2 is a schematic enlarged view of a portion of Figure 1;
  • 3a is a schematic top view of a mask structure according to an embodiment of the present invention.
  • 3b is a schematic top view of a mask structure according to an embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional view taken along line A-A' of Figure 3b;
  • Figure 5a is a schematic cross-sectional view of the cross-sectional structure taken along line A-A' of Figure 3b;
  • Figure 5b is a schematic cross-sectional view of the cross-sectional structure taken along line A-A' of Figure 3b;
  • Fig. 6 is a graph showing a transmittance-wavelength curve of laser light irradiated on the diffuse reflection surface of Fig. 5a.
  • the embodiment of the present invention provides a mask plate 01 applied to laser irradiation. As shown in FIGS. 3a and 3b, the mask plate 01 has a laser blocking region 11 and a laser transmission region 12 surrounding the laser blocking region 11.
  • the laser transmission region 12 corresponds to the package region of the panel 02 to be packaged.
  • the laser blocking region 11 corresponds to the device region 22 surrounded by the package region 21 in the panel 02 to be packaged; along the direction perpendicular to the mask plate 01 (not shown in the drawing, see FIG. 3a, FIG. 3b),
  • the cross-sectional width of the laser transmission region 12 (both in the figure and hereinafter referred to as D) is smaller than the spot diameter of the laser (labeled as ⁇ in the figure and hereinafter), and the cross-sectional width D of the laser transmission region 12 is greater than or equal to the package area.
  • the cross-sectional width of 21 both in the figure and below is marked as d).
  • the laser light transmissive region 12 refers to a region of the mask plate 01 that can allow laser light having a predetermined wavelength to pass through;
  • the laser blocking region 11 means a region of the mask plate 01 which has a blocking effect of reflection or absorption on the laser light having a predetermined wavelength; wherein "laser having a predetermined wavelength” means that the energy of the laser light having the wavelength is sufficient to be located in the package to be packaged.
  • the sealant 20 in the package area 21 in the panel 02 is melted and solidified to encapsulate the panel 02 to be packaged.
  • the specific material and thickness of the mask plate 01 are not limited as long as the laser blocking region 11 and the laser transmission region 12 have the corresponding functions described above.
  • the thickness of the mask 01 may be from 3 mm to 5 mm, which allows the laser to be sufficiently transmitted from the laser transmissive region 12 without the laser beam being large due to the thickness of the mask. Energy causes cuts.
  • the package area 21 is an area covered with the sealant 20, and the device area 22 is an area surrounded by the above-mentioned package area 21.
  • the shape of the package area 21 is generally a square ring shape, and the cross-sectional width d of the package area 21 It is equal to the cross-sectional width of the sealant 20, that is, the loop width of the square ring of the package region 21 shown in FIG. 3a.
  • the panel to be packaged 02 is a display panel as shown in FIG. 3a.
  • the cross-sectional width D of the laser transmission region 12 is the ring width of the square ring of the package region 21.
  • the panel to be packaged 02 is usually a mother board, that is, the panel to be packaged 02 includes a plurality of device regions 22 arranged in an array, wherein, along the line In the direction or column direction, the spacing between any two adjacent device regions 22 is the same, and each of the device regions 22 is surrounded by the above-described package region 21;
  • the mother board is packaged, it is cut into a plurality of small panels of the same size; therefore, the area of the package area 21 is the shape of the motherboard after removing the plurality of device regions 22 described above.
  • the cross-sectional width d of the sealant 20 located in the package region 21 is the width between any two adjacent device regions 22 in the row direction or the column direction.
  • the mask 01 includes the mask plate 02 to be packaged in the actual mass production.
  • a plurality of laser blocking regions 11 corresponding to the plurality of device regions 22, the laser transmission region 12 is a region other than the laser blocking region 11 of the masking plate 01, and the cross-sectional width D of the laser transmission region 12 is The width between any adjacent two laser-transmissive regions 12 in the row or column direction.
  • the cross-sectional width D of the laser light-transmitting region 12 is greater than or equal to the cross-sectional width d of the package region 21 in the direction perpendicular to the plane of the mask sheet 01, the laser beam can be sufficiently irradiated through the laser light-transmitting region 12 to be located.
  • the frame sealant 20 in the package area 21 is used to ensure that the sealant 20 is sufficiently absorbed by the laser to be melted and solidified, so that the panel to be packaged 02 is completely packaged; and, due to the direction of the plate perpendicular to the face of the mask 01, the laser is transparent.
  • the cross-sectional width D of the pass region 12 is smaller than the spot diameter ⁇ of the laser light.
  • the cross-sectional width D of the laser transmission region 12 is larger than the cross-sectional width d of the package region 21 by 0.02 mm to 0.1 mm in a direction perpendicular to the plane of the mask plate 01, so that the sealant 20 can sufficiently absorb the laser light.
  • the energy of the light energy does not need to increase the spot of the laser beam too much, thereby improving the utilization of the laser beam.
  • the package panel 02 as an OLED display panel
  • a certain security area needs to be reserved between the device and the package area to avoid instantaneous high temperature burning of the laser beam to the OLED.
  • the OLED device inside the display panel therefore, the width of the frame after the package of the OLEF display panel design can usually only reach 1.7mm ⁇ 1.8mm.
  • the laser blocking area 11 blocks the laser light on both sides of the sealant 20, OLEF
  • the width of the package after the display panel design can be reduced to 1.3mm ⁇ 1.5mm, which significantly reduces the frame width of the OLED display panel, improves the display effect of the packaged OLED display panel, and improves the OLED display panel pair.
  • the utilization of the substrate further reduces the cost of the panel.
  • the present application further considers that since the laser blocking region 11 located outside the laser transmission region 12 blocks the laser light that would otherwise illuminate the sides of the package region 21, this portion of the laser beam is irradiated upward to generate laser light.
  • the surface of the laser generator will cause some damage to the fiber in the laser generator.
  • the mask 01 may include: a first body portion 121 located in the laser transmission region 12, wherein the first body The portion 121 is made of a light transmissive material, the transmissive material is allowed to have laser light transmission, and the second body portion 111 is located in the laser blocking region 11, wherein the surface of the second body portion 111 is a diffuse reflection surface 112.
  • the first and the above-mentioned light-transmitting materials may be composed of any one of glass, quartz, acryl, and the like having a high transmittance for laser light of a large majority of wavelengths;
  • the diffuse reflection surface 112 may be an optical surface which is obtained by processing the surface of the second body portion 111 by, for example, sand blasting, and which reflects the laser light irradiated thereon.
  • the haze value of the diffuse reflection surface 112 is 40% to 90% for the case where the wavelength of the laser light is 810 nm to 1000 nm.
  • the haze value is a parameter that characterizes the degree of diffuse reflection. As shown in FIG.
  • the transmittance of the diffuse reflection surface 112 is 65%, and the transmittance of the laser having a wavelength in the range of 310 nm to 973 nm after being irradiated onto the surface of the diffuse reflection surface 112 is less than 20%, that is, 80%.
  • the laser light is scattered by the diffuse reflection surface 112, which avoids damage to the laser generator by the reflected laser light.
  • the absorption of the laser energy by the device material in the panel 02 to be packaged can be effectively reduced, the ambient temperature around the device is lowered, and the device is prevented from being environmentally affected. Cracking at high temperatures.
  • the diffuse reflection surface 112 of the third and second main body portions 111 may be located on the side of the mask plate 01 close to the panel 02 to be packaged, or may be located on the side of the mask board 01 away from the panel 02 to be packaged.
  • the mask 01 itself has a certain thickness, if The diffuse reflection surface 112 is located on the side of the second body portion 111 near the side of the panel 02 to be packaged, and the diffuse reflection caused by the laser irradiation may affect the transmission of laser light in the peripheral laser transmission region 12. Therefore, in one example of the embodiment, the diffuse reflection surface 112 is located on a side of the second body portion 111 away from the panel 02 to be packaged.
  • the second body portion 121 and the first body portion 111 are of a unitary structure.
  • the second main body portion 121 and the first main body portion 111 are both made of a glass material, and the diffuse reflection surface 112 may be formed by using a fine sand having an average particle diameter of 0.1 mm to 0.2 mm.
  • the surface corresponding to the second body portion 121 is sandblasted to obtain a diffuse reflection surface 112 having a haze value of 40% to 90%. This method has many advantages such as low cost and less environmental pollution.
  • the mask plate 01 may further include: a first body portion 121 located in the laser transmission region 12, wherein the first body portion 121 is composed of a light transmissive material that allows laser light to pass through; and a second body portion 111 located in the laser blocking region 11, wherein the surface of the second body portion 111 is the light absorbing layer 113.
  • the first and the above-mentioned light-transmitting materials may be composed of any one of glass, quartz, acryl, and the like having a high transmittance for laser light of a large majority of wavelengths;
  • the above light absorbing material may be a light absorbing metal (such as Mo, Cr, Cu, etc.) and a black organic coating or the like (such as phthalocyanine, 2,3-naphthylphthalate, substituted indanthrone, and some highly substituted anthracenes, etc.) ).
  • the second light absorbing layer 113 is located on the surface of the second body portion 111, and may be located on the side of the mask plate 01 near the panel 02 to be packaged, or may be located on the side of the mask board 01 away from the panel 02 to be packaged. .
  • the temperature of the light absorbing layer 113 absorbing the laser light irradiated thereon may be increased, and it is possible to be close to be packaged.
  • the panel 02 is affected.
  • the light absorbing layer 113 is located on a side surface of the second body portion 111 away from the panel 02 to be packaged, so that most of the laser light irradiated thereon can be absorbed, which is effective.
  • the absorption of laser energy by the device material in the panel to be packaged 02 is reduced, the ambient temperature around the device is lowered, and the device is prevented from cracking due to high ambient temperature.
  • the second body portion 121 and the first body portion 111 are of a unitary structure.
  • the light absorbing material is a light absorbing material such as Mo, and the light absorbing layer 113 may be deposited on the surface of the second body portion 111 by plating or the like.
  • an embodiment of the present invention further provides a laser packaging method using the foregoing mask, the method comprising: placing the mask on a panel to be packaged, so that the laser blocking region corresponds to a package to be packaged a device region of the panel and the laser light transmissive region corresponding to a package region of the panel to be packaged; and causing laser light to illuminate the sealant in the package region in the panel to be packaged through the mask To cure the sealant.
  • the laser is irradiated to the sealant 20 in the panel 02 to be packaged by the mask 01 provided in the above embodiment to cure the sealant 20;
  • the sealant 20 is located in the package region 21 between the first substrate 31 and the second substrate 32 that are vertically joined.
  • the cross-sectional width D of the laser-transmissive region 12 is along the direction perpendicular to the plane of the masking plate 01.
  • the beam of the laser beam can be sufficiently irradiated to the sealant 20 in the package area 21 through the laser transmission region 12 to ensure that the sealant 20 absorbs the laser and solidifies to be cured.
  • the package panel 02 completes the package; and, since the cross-sectional width D of the laser transmission region 12 is smaller than the spot diameter ⁇ of the laser beam in the direction perpendicular to the plate surface of the mask plate 01, the laser is to be packaged on the panel 02 through the above-mentioned mask plate 01.
  • the laser blocking region 11 outside the laser transmission region 12 can be used to block the laser light that would otherwise be irradiated outside the package region 21, thereby avoiding the transfer of laser heat to the device region 22 near the edge of the package region 21. in. Therefore, when designing the panel 02 to be packaged, the electronic device in the device region 22 can be designed closer to the package region 21, thereby achieving the purpose of achieving a narrow bezel, and further improving the substrate in the panel 02 to be packaged. Utilization rate.
  • the wavelength of the laser used can be set to correspond to an infrared laser having a relatively high absorption efficiency of the glass paste of 810 nm to 1000 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种应用于激光照射的掩膜板(01),包括激光阻挡区(11)以及环绕激光阻挡区(11)的激光透过区(12),其中,激光阻挡区(11)配置以阻挡具有预定波长的激光,并且激光透过区(12)配置以允许具有预定波长的激光透过,其中,沿垂直于掩膜板(01)的板面方向、激光透过区(12)的截面宽度小于具有预定波长的激光的光斑直径。以及一种利用激光掩膜板(01)的激光封装方法。

Description

应用于激光照射的掩膜板及其激光封装方法 技术领域
本发明的实施例涉及一种应用于激光照射的掩膜板及其激光封装方法。
背景技术
显示面板制备完成后,由于内部的电子器件,如OLED(Organic Light-Emitting Display)显示面板内部的OLED器件,极易与空气中的水氧发生反应,造成器件性能失效,因此,需要对显示面板进行封装。如图1所示,已知的封装过程的主要步骤包括:将涂覆有封框胶的第一基板与第二基板对合,形成待封装的显示面板;使激光发生器发出的激光(如图中箭头方向所示)透过掩膜板对待封装的显示面板进行照射,使得激光通过掩膜板的透过区照射到封装区内的封框胶,利用激光光束的能量使封框胶熔融,熔化后的封框胶冷却后与第一基板、第二基板粘结在一起,从而使得在对合后的显示面板内部形成密闭的封装空间,完成封装工艺。
在进行上述封装工艺的过程中,由于激光光束的能量集中于光斑的中心处,为了使封框胶受激光照射充分,如图2a所示,涂覆在封装区中的封框胶的截面宽度(图中标记为d)要小于激光光束的光斑的直径φ。当激光光斑的直径φ大于封框胶的截面宽度d时,激光不仅会照射在封框胶上,还会照射到封框胶的两侧;激光光束的能量很高,其瞬间温度可达800℃~1000℃,因此,为了避免激光光束产生的热量灼烧到显示面板内部的电子器件,在显示面板设计时,通常需要在电子器件与封装区之间预留一定的安全区域(间距至少为0.7mm),以避免发生上述的激光灼烧。然而,由于受到预留安全区域的限制,显示面板难以进一步实现窄边框设计,同时还会造成基板利用率的降低。
发明内容
本发明的实施例提供一种应用于激光照射的掩膜板及激光封装方法,可应用于窄边框设计的显示面板的封装,提高封装后的显示面板的 显示效果,同时提高对基板的利用率,降低成本。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明实施例提供了一种应用于激光照射的掩膜板,所述掩膜板包括激光阻挡区和环绕所述激光阻挡区的激光透过区;其中,所述激光阻挡区配置以阻挡具有预定波长的激光;并且
所述激光透过区配置以允许所述具有预定波长的激光透过,其中,沿垂直于所述掩膜板的板面方向、所述激光透过区的截面宽度小于所述具有预定波长的激光的光斑直径。
在一个示例中,当将所述掩膜板放置于待封装面板之上时,所述激光透过区对应于待封装面板的封装区,而所述激光阻挡区对应于所述待封装面板中被所述封装区围绕的器件区。
在一个示例中,所述掩膜板包括多个激光阻挡区,并且当将所述掩膜板放置于待封装面板之上时,所述多个激光阻挡区对应于所述待封装面板中呈阵列排布的多个器件区,而所述激光透过区对应于所述待封装面板中除所述器件区之外的区域。
在一个示例中,所述掩膜板包括:位于所述激光透过区的第一主体部,所述第一主体部由透光材料构成;以及位于所述激光阻挡区的第二主体部,所述第二主体部的表面为漫反射面。
在一个示例中,所述激光的波长为810nm~1000nm;所述漫反射面的雾度值为40%~90%。
在一个示例中,当将所述掩膜板放置于待封装面板之上时,所述激光阻挡区的第二主体部的所述漫反射面位于所述第二主体部远离所述待封装面板的一侧。
在一个示例中,所述掩膜板包括:位于所述激光透过区的第一主体部,所述第一主体部由透光材料构成;以及位于所述激光阻挡区的第二主体部,所述第二主体部的表面为吸光层。
在一个示例中,当将所述掩膜板放置于待封装面板之上时,所述激光阻挡区的第二主体部的所述吸光层位于所述第二主体部远离所述待封装面板的一侧。
在一个示例中,所述透光材料包括玻璃、石英、亚克力中的任一种。
在一个示例中,所述第二主体部与所述第一主体部为一体结构。
在一个示例中,当将所述掩膜板放置于待封装面板之上时,沿垂直于所述掩膜板的板面方向、所述激光透过区的截面宽度大于等于所述封装区的截面宽度。
在一个示例中,当将所述掩膜板放置于待封装面板之上时,沿垂直于所述掩膜板的板面方向、所述激光透过区的截面宽度比所述封装区的截面宽度大0.02mm~0.1mm。
在一个示例中,所述掩膜板的厚度为3mm~5mm。
另一方面,本发明实施例还提供了一种使用上述掩膜板的激光封装方法,包括:
将所述掩膜板放置于待封装面板之上,使所述激光阻挡区对应于待封装面板的器件区并且使所述激光透过区对应于待封装面板的封装区;以及
使激光通过所述掩膜板对位于待封装面板中的所述封装区中的封框胶进行激光照射,以使所述封框胶固化。
在一个示例中,所述封框胶采用玻璃胶材料构成;所述激光的波长为810~1000nm。
基于此,当本发明实施例提供的上述掩膜板用于封装面板时,由于沿垂直于掩膜板的板面方向、掩膜板的激光透过区的截面宽度大于等于待封装面板的封装区的截面宽度,激光的光束可以通过激光透过区充分照射到位于待封装面板的封装区内的封框胶上,以保证封框胶充分吸收激光而熔融进而固化,以完成待封装面板的封装。而且,由于沿垂直于掩膜板的板面方向、掩膜板的激光透过区的截面宽度小于激光的光斑直径,位于激光透过区之外的激光阻挡区可将原本会照射到待封装面板的封装区之外的激光阻挡住,避免了激光热量传递至待封装面板的器件区中靠近封装区边缘的电子器件中。因此,相应地,在设计待封装面板时,可以将器件区内的电子器件设计得更为靠近封装区,从而达到实现窄边框的目的,并可进一步提高待封装面板中基板的利用率。
附图说明
以下将结合附图对本发明的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本发明,其中:
图1为已知技术提供的一种通过掩膜板对显示面板进行激光封装的原理示意图;
图2为图1中a部分的放大结构示意图;
图3a为本发明实施例提供的一种掩膜板的俯视结构示意图一;
图3b为本发明实施例提供的一种掩膜板的俯视结构示意图二;
图4为图3b中沿A-A'方向的剖面结构示意图一;
图5a为图3b中沿A-A'方向的剖面结构示意图二;
图5b为图3b中沿A-A'方向的剖面结构示意图三;
图6为激光照射在图5a中的漫反射面上的透过率-波长曲线图。
附图标记:
01-掩膜板;11-激光阻挡区;111-第二主体部分;112-漫反射面;113-吸光层;12-激光透过区;121-第一主体部分;02-待封装面板;20-封框胶;21-封装区;22-器件区;31-第一基板;32-第二基板。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本发明实施例提供了一种应用于激光照射的掩膜板01,如图3a和图3b所示,该掩膜板01具有激光阻挡区11和环绕激光阻挡区11的激光透过区12。
根据本发明的实施例,当将所述掩膜板01放置于待封装面板02之上时,如图4所示,激光透过区12对应于待封装面板02的封装区 21,激光阻挡区11对应于待封装面板02中被封装区21围绕的器件区22;沿垂直于掩膜板01(图中未标示出,可参见图3a、图3b)的板面方向,激光透过区12的截面宽度(图中及下文中均标记为D)小于激光的光斑直径(图中及下文中均标记为φ),且激光透过区12的截面宽度D大于等于封装区21的截面宽度(图中及下文中均标记为d)。
在此需要说明的是,对于本发明实施例提供的掩膜板而言,上述的激光透过区12是指该掩膜板01中可以允许具有预定波长的激光透过的区域;激光阻挡区11是指该掩膜板01中对上述的具有预定波长的激光具有反射或吸收的阻挡作用的区域;其中,“具有预定波长的激光”是指具有该波长的激光的能量足以将位于待封装面板02中的封装区21内的封框胶20熔融并固化,从而对待封装面板02进行封装。
本发明实施例对上述掩膜板01的具体材料及厚度不做限定,只要使得上述的激光阻挡区11以及激光透过区12具有上述相应的功能即可。
在一个示例中,掩膜板01的厚度可以为3mm~5mm,这一厚度范围可以使得激光充分地从上述激光透过区12透过而不会由于掩膜板厚度太大而对激光光束的能量造成削减。
在此还需要说明的是,对于待封装面板02而言,封装区21即是覆盖有封框胶20的区域,器件区22即是被上述的封装区21环绕包围的区域。
由于待封装面板02的封装区21要将待封装面板02内部的电子器件封装起来,因此,对于一个面板而言,封装区21的形状通常为一个方形环状,并且封装区21的截面宽度d与封框胶20的截面宽度相等,即为参考图3a所示的封装区21的方形环的环宽度。相对应地,由于本发明实施例提供的掩膜板01中的激光透过区12对应于待封装面板02的封装区21,因此,参考图3a所示,当待封装面板02为一个显示面板时,激光透过区12的截面宽度D即为封装区21的方形环的环宽度。
而在显示技术的实际生产制备过程中,为了提高量产化,待封装面板02通常是母板,即,该待封装面板02包括等呈阵列排布的多个器件区22,其中,沿行方向或列方向,任意相邻的两个器件区22之间的间距是相同的,每个器件区22的周围都环绕有上述的封装区21;对上述 的母板封装完后,再将其切割为多个尺寸相同的小面板;故封装区21的区域形状为母板中除去上述等多个器件区22后的形状。此时,参考图4所示,位于封装区21内的封框胶20的截面宽度d即为沿行方向或列方向的任意相邻的两个器件区22之间的宽度。
考虑到实际量产中的待封装面板02均为上述的具有等间距排列的多个器件区22的母板,因此,本发明实施例提供的掩膜板的一个示例中,掩膜板01包括与多个器件区22一一对应的多个激光阻挡区11,激光透过区12为上述掩膜板01中除激光阻挡区11之外的区域,而激光透过区12的截面宽度D即为沿行或列方向的任意相邻的两个激光透过区12之间的宽度。这样一来,由于沿垂直于掩膜板01的板面方向、激光透过区12的截面宽度D大于等于封装区21的截面宽度d,激光的光束可以通过激光透过区12充分照射到位于封装区21内的封框胶20上,以保证封框胶20充分吸收激光熔融进而固化,以使待封装面板02完成封装;而且,由于沿垂直于掩膜板01的板面方向、激光透过区12的截面宽度D小于激光的光斑直径φ,在通过上述掩膜板01对待封装面板02进行激光照射时,可以利用位于激光透过区12之外的激光阻挡区11将原本会照射到封装区21之外的激光阻挡住,避免了激光热量传递至器件区22靠近封装区21边缘的电子器件中。由此,在设计待封装面板02时,可以将器件区22内的电子器件设计得更为靠近封装区21,从而达到实现窄边框的目的,并可进一步提高待封装面板02中基板的利用率。
在一个示例中,沿垂直于掩膜板01的板面方向,激光透过区12的截面宽度D比封装区21的截面宽度d大0.02mm~0.1mm,可以使得封框胶20充分吸收激光光能能量而无需过多增大激光光束的光斑,从而提高对激光光束的利用率。
以待封装面板02为OLED显示面板为例,采用传统的掩膜板对其进行激光封装时,需要在器件与封装区之间预留一定的安全区域以避免激光光束的瞬间高温灼烧到OLED显示面板内部的OLED器件,因此,OLEF显示面板设计的封装后的边框宽度通常只能达到1.7mm~1.8mm。而采用本发明实施例提供的上述掩膜板01对OLED显示面板进行激光封装时,由于激光阻挡区11将封框胶20两侧的激光遮挡住了,OLEF 显示面板设计的封装后的边框宽度可以减小至1.3mm~1.5mm,这显著减小了OLED显示面板的边框宽度,提高了封装后的OLED显示面板的显示效果,并提高了OLED显示面板对基板的利用率,从而进一步降低了面板成本。
在上述基础上,本申请进一步考虑到:由于位于激光透过区12之外的激光阻挡区11将原本会照射到封装区21两侧的激光阻挡住,这一部分激光如果向上反射照射到产生激光的激光发生器表面,会对激光发生器中的光纤造成一定损伤。
因此,作为本发明实施例提供的掩膜板的一种实施方式,如图5a所示,上述掩膜板01可包括:位于激光透过区12的第一主体部121,其中,第一主体部121由透光材料构成,透过材料允许具有激光透过;以及位于激光阻挡区11的第二主体部111,其中,第二主体部111的表面为漫反射面112。
在此实施方式中,需要说明的是,第一、上述的透光材料可以由对大部分波长的激光均具有较高的透过率的玻璃、石英、亚克力等中的任一种材料构成;漫反射面112可以是通过诸如喷砂等方式对第二主体部111表面进行处理后获得的对照射到其上的激光具有反射的光学面。
第二、对于待封装面板02的上下基板为玻璃材质的情况,采用玻璃胶(Frit)对其进行封装的密闭效果较好;而玻璃胶对波长为810nm~1000nm的红外激光的吸收效率相对加高,因此,根据本发明实施例的掩膜板,针对激光的波长为810nm~1000nm的情况,该漫反射面112的雾度值为40%~90%。其中,雾度值为表征漫反射程度的参数。如图6所示,以漫反射面112的雾度值为65%为例,波长在310nm~973nm范围内的激光照射到漫反射面112表面后的透过率均小于20%,即80%的激光均被漫反射面112散射掉,避免了反射的激光对激光发生器的损伤。并且,由于漫反射面112散射掉的照射到其上的绝大部分激光,可有效减小待封装面板02内的器件材料对激光能量的吸收,降低了器件周围的环境温度,防止器件因环境高温而发生裂化。
第三、第二主体部111的漫反射面112例如可以是位于上述掩膜板01靠近待封装面板02的一侧,也可以是位于上述掩膜板01远离待封装面板02的一侧。这里,考虑到掩膜板01本身是具有一定厚度的,若 漫反射面112位于第二主体部111的表面靠近待封装面板02的一侧,激光照射到其上发生的漫反射可能会影响到周边激光透过区12内的激光透过。因此,在本实施例的一种示例中,漫反射面112位于第二主体部111远离待封装面板02的一侧。
第四、为了进一步简化上述掩膜板01的制备工艺,在一个示例中,第二主体部121与第一主体部111为一体结构。
根据本发明的实施例,以第二主体部121与第一主体部111均由玻璃材料构成为例,形成上述的漫反射面112可以是采用平均粒径直径在0.1mm~0.2mm的细沙对第二主体部121对应的表面进行喷砂处理,从而获得雾度值为40%~90%的漫反射面112,该方法具有成本低廉、对环境污染较小等诸多优点。
可替换地,作为本发明实施例的另一实施方式,如图5b所示,上述的掩膜板01也可包括:位于激光透过区12的第一主体部121,其中,第一主体部121由透光材料构成,透过材料允许激光透过;以及位于激光阻挡区11的第二主体部111,其中,第二主体部111的表面为吸光层113。
在此实施方式中,需要说明的是,第一、上述的透光材料可以由对大部分波长的激光均具有较高的透过率的玻璃、石英、亚克力等中的任一种材料构成;上述的吸光材料可以为吸光金属(如Mo、Cr、Cu等)以及黑色的有机涂层等(如酞菁、2,3-萘菁、取代的阴丹酮和某些高取代的蒽醌等)。
第二、吸光层113位于第二主体部111的表面,例如可以是位于上述掩膜板01靠近待封装面板02的一侧,也可以是位于上述掩膜板01远离待封装面板02的一侧。这里,考虑到若吸光层113位于第二主体部111的表面靠近待封装面板02的一侧,吸光层113吸收照射到其上的激光后温度会有所升高,有可能对靠近的待封装面板02造成影响,因此,在本实施例的一种示例中,吸光层113位于第二主体部111远离待封装面板02的一侧表面,从而可以吸收照射到其上的绝大部分激光,有效减小待封装面板02内的器件材料对激光能量的吸收,降低器件周围的环境温度,防止器件因环境高温而发生裂化。
第三、为了进一步简化上述掩膜板01的制备工艺,在一个示例中, 第二主体部121与第一主体部111为一体结构。
根据本发明的实施例,以吸光材料为Mo等吸光金属为例,可以采用镀膜等方式在第二主体部111的表面沉积形成上述的吸光层113。
此外,本发明的实施例还提供了一种使用前述掩膜板的激光封装方法,该方法包括:将所述掩膜板放置于待封装面板之上,使所述激光阻挡区对应于待封装面板的器件区并且使所述激光透过区对应于待封装面板的封装区;以及,使激光通过所述掩膜板对位于待封装面板中的所述封装区中的封框胶进行激光照射,以使所述封框胶固化。
参考图4所示,使激光通过上述实施例提供的掩膜板01对位于待封装面板02中的封框胶20进行激光照射,以使封框胶20固化;其中,封框胶20位于待封装面板02的封装区21中。
这里,封框胶20即位于上下对合的第一基板31与第二基板32之间的封装区21内。
参考前述针对掩膜板01进行的描述,当将所述掩膜板01放置于待封装面板02之上,由于沿垂直于掩膜板01的板面方向、激光透过区12的截面宽度D大于等于封装区21的截面宽度d,激光的光束可以通过激光透过区12充分照射到位于封装区21内的封框胶20上,以保证封框胶20充分吸收激光熔融进而固化以使待封装面板02完成封装;而且,由于沿垂直于掩膜板01的板面方向、激光透过区12的截面宽度D小于激光的光斑直径φ,在通过上述掩膜板01对待封装面板02进行激光照射时,可以利用位于激光透过区12之外的激光阻挡区11将原本会照射到封装区21之外的激光阻挡住,避免了激光热量传递至器件区22靠近封装区21边缘的电子器件中。因此,相应地,在设计待封装面板02时,可以将器件区22内的电子器件设计得更为靠近封装区21,从而达到实现窄边框的目的,并可进一步提高待封装面板02中基板的利用率。
由于封框胶通常采用玻璃胶(Frit)材料构成,因此,在上述方法的一个示例中,采用的激光的波长可设置为对应于玻璃胶吸收效率相对较高的810nm~1000nm的红外激光。
需要说明的是,本发明所有附图均是上述掩膜板及采用该掩膜板的激光封装方法的简略示意图,只为清楚描述技术方案中与发明点相关的 结构,其他与发明点无关的结构属于本领域已知结构,在附图中并未体现或只体现部分。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2015年5月28日提交的名称为“一种应用于激光照射的掩膜板及激光封装方法”的中国专利申请No.201510284585.9的优先权,该申请全文以引用方式合并于本文。

Claims (15)

  1. 一种应用于激光照射的掩膜板,包括激光阻挡区和环绕所述激光阻挡区的激光透过区,其中,
    所述激光阻挡区配置以阻挡具有预定波长的激光;并且
    所述激光透过区配置以允许所述具有预定波长的激光透过,
    其中,沿垂直于所述掩膜板的板面方向、所述激光透过区的截面宽度小于所述具有预定波长的激光的光斑直径。
  2. 根据权利要求1所述的掩膜板,其中,当将所述掩膜板放置于待封装面板之上时,所述激光透过区对应于待封装面板的封装区,而所述激光阻挡区对应于所述待封装面板中被所述封装区围绕的器件区。
  3. 根据权利要求1所述的掩膜板,其中,
    所述掩膜板包括多个激光阻挡区,并且
    当将所述掩膜板放置于待封装面板之上时,所述多个激光阻挡区对应于所述待封装面板中呈阵列排布的多个器件区,而所述激光透过区对应于所述待封装面板中除所述器件区之外的区域。
  4. 根据权利要求1-3中任一项所述的掩膜板,包括:
    位于所述激光透过区的第一主体部,所述第一主体部由透光材料构成;以及
    位于所述激光阻挡区的第二主体部,所述第二主体部的表面为漫反射面。
  5. 根据权利要求4所述的掩膜板,其中,
    所述激光的波长为810nm~1000nm;
    所述漫反射面的雾度值为40%~90%。
  6. 根据权利要求4所述的掩膜板,其中,当将所述掩膜板放置于待封装面板之上时,所述激光阻挡区的第二主体部的所述漫反射面位于所述第二主体部远离所述待封装面板的一侧。
  7. 根据权利要求1-3中任一项所述的掩膜板,包括:
    位于所述激光透过区的第一主体部,所述第一主体部由透光材料构成;以及
    位于所述激光阻挡区的第二主体部,所述第二主体部表面为吸光 层。
  8. 根据权利要求7所述的掩膜板,其中,当将所述掩膜板放置于待封装面板之上时,所述激光阻挡区的第二主体部的所述吸光层位于所述第二主体部远离所述待封装面板的一侧。
  9. 根据权利要求4至8中任一项所述的掩膜板,其中,
    所述透光材料包括玻璃、石英、亚克力中的任一种。
  10. 根据权利要求4至8中任一项所述的掩膜板,其中,所述第二主体部与所述第一主体部为一体结构。
  11. 根据权利要求1至10中任一项所述的掩膜板,其中,当将所述掩膜板放置于待封装面板之上时,沿垂直于所述掩膜板的板面方向、所述激光透过区的截面宽度大于等于所述封装区的截面宽度。
  12. 根据权利要求11所述的掩膜板,其中,所述激光透过区的截面宽度比所述封装区的截面宽度大0.02mm~0.1mm。
  13. 根据权利要求1至10中任一项所述的掩膜板,其中,所述掩膜板的厚度为3mm~5mm。
  14. 一种使用如权利要求1-13中任一项所述的掩膜板的激光封装方法,包括:
    将所述掩膜板放置于待封装面板之上,使所述激光阻挡区对应于待封装面板的器件区并且使所述激光透过区对应于待封装面板的封装区;以及
    使激光通过所述掩膜板对位于待封装面板中的所述封装区中的封框胶进行激光照射,以使所述封框胶固化。
  15. 根据权利要求14所述的方法,其中,
    所述封框胶采用玻璃胶材料构成;并且
    所述激光的波长为810~1000nm。
PCT/CN2016/078847 2015-05-28 2016-04-08 应用于激光照射的掩膜板及其激光封装方法 WO2016188238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/314,690 US20170183767A1 (en) 2015-05-28 2016-04-08 Mask Plate for Laser Irradiation and Method of Laser Encapsulation Using the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510284585.9 2015-05-28
CN201510284585.9A CN104846331B (zh) 2015-05-28 2015-05-28 一种应用于激光照射的掩膜板及激光封装方法

Publications (1)

Publication Number Publication Date
WO2016188238A1 true WO2016188238A1 (zh) 2016-12-01

Family

ID=53846307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078847 WO2016188238A1 (zh) 2015-05-28 2016-04-08 应用于激光照射的掩膜板及其激光封装方法

Country Status (3)

Country Link
US (1) US20170183767A1 (zh)
CN (1) CN104846331B (zh)
WO (1) WO2016188238A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846331B (zh) * 2015-05-28 2018-03-23 京东方科技集团股份有限公司 一种应用于激光照射的掩膜板及激光封装方法
WO2017045134A1 (en) * 2015-09-15 2017-03-23 Boe Technology Group Co., Ltd. Screen-printing mask, method for fabricating the same, and related packaging method
CN105870265A (zh) 2016-04-19 2016-08-17 京东方科技集团股份有限公司 发光二极管基板及其制备方法、显示装置
CN106584868A (zh) * 2016-12-13 2017-04-26 大族激光科技产业集团股份有限公司 激光同步掩膜焊接封装柔性oled屏的方法与装置
CN106932944B (zh) * 2017-04-28 2020-06-30 上海天马有机发光显示技术有限公司 一种显示面板及其制作方法
US10340481B2 (en) 2017-08-17 2019-07-02 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Manufacturing method of OLED display panel
CN107369783A (zh) * 2017-08-17 2017-11-21 武汉华星光电半导体显示技术有限公司 一种oled显示面板的制作方法
CN108389981A (zh) * 2018-04-11 2018-08-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
US11289677B2 (en) 2018-04-25 2022-03-29 Yungu (Gu'an) Technology Co., Ltd. Display panel and display device having a protective pattern
CN115202514B (zh) * 2022-09-13 2022-12-23 惠科股份有限公司 有机发光显示面板、显示装置以及显示面板的封装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536133A (zh) * 2005-12-06 2009-09-16 康宁股份有限公司 制造玻璃包封的方法
CN102063011A (zh) * 2009-11-16 2011-05-18 三星移动显示器株式会社 激光掩膜及使用该激光掩膜的连续横向固化结晶方法
CN103426903A (zh) * 2013-08-02 2013-12-04 京东方科技集团股份有限公司 一种电致发光显示屏及其制备方法、显示装置
CN103715371A (zh) * 2013-12-16 2014-04-09 京东方科技集团股份有限公司 一种封装方法及显示装置
CN104466031A (zh) * 2014-12-08 2015-03-25 京东方科技集团股份有限公司 Oled器件及其封装方法和显示装置
CN104846331A (zh) * 2015-05-28 2015-08-19 京东方科技集团股份有限公司 一种应用于激光照射的掩膜板及激光封装方法
CN105098092A (zh) * 2015-06-17 2015-11-25 京东方科技集团股份有限公司 封装方法、显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823686B2 (ja) * 1990-07-24 1996-03-06 凸版印刷株式会社 レーザーマスク

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536133A (zh) * 2005-12-06 2009-09-16 康宁股份有限公司 制造玻璃包封的方法
CN102063011A (zh) * 2009-11-16 2011-05-18 三星移动显示器株式会社 激光掩膜及使用该激光掩膜的连续横向固化结晶方法
CN103426903A (zh) * 2013-08-02 2013-12-04 京东方科技集团股份有限公司 一种电致发光显示屏及其制备方法、显示装置
CN103715371A (zh) * 2013-12-16 2014-04-09 京东方科技集团股份有限公司 一种封装方法及显示装置
CN104466031A (zh) * 2014-12-08 2015-03-25 京东方科技集团股份有限公司 Oled器件及其封装方法和显示装置
CN104846331A (zh) * 2015-05-28 2015-08-19 京东方科技集团股份有限公司 一种应用于激光照射的掩膜板及激光封装方法
CN105098092A (zh) * 2015-06-17 2015-11-25 京东方科技集团股份有限公司 封装方法、显示面板及显示装置

Also Published As

Publication number Publication date
US20170183767A1 (en) 2017-06-29
CN104846331B (zh) 2018-03-23
CN104846331A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016188238A1 (zh) 应用于激光照射的掩膜板及其激光封装方法
TWI619268B (zh) 紫外光發光二極體的封裝結構
CN107342371B (zh) 有机发光显示面板及其制作方法、有机发光显示装置
US9466809B2 (en) OLED packaging method and structure
US9685488B2 (en) Organic light emitting display device and method of manufacturing the same
KR102022697B1 (ko) 표시 장치
US20150060782A1 (en) Oled display device and corresponding flexible printed circuit
KR102491874B1 (ko) 디스플레이 장치의 제조 방법 및 그 장치
US20160368101A1 (en) Laser cutting method, display substrate and display device
JP2008053698A5 (zh)
TW201519025A (zh) 觸控面板及用於觸控面板之覆蓋板
CN103943648A (zh) 显示装置及其封装方法
TW201327510A (zh) 陣列基板的製造方法、顯示面板及其製造方法
WO2019205747A1 (zh) 显示面板及显示装置
TWI528610B (zh) Oled封裝加熱裝置及工藝方法
JP2016143881A (ja) 発光ダイオードのパッケージ構造及びパッケージ方法
WO2017140030A1 (zh) 一种固化方法、显示面板的制造方法、显示面板及掩模
WO2018205772A1 (zh) 一种有机电致发光显示面板、其制作方法及显示装置
US9099687B2 (en) Donor substrate and method of forming transfer pattern using the same
CN104396026B (zh) 光源一体型光传感器
JP6220461B2 (ja) オプトエレクトロニクス部品、オプトエレクトロニクス装置、光学要素の製造方法、およびオプトエレクトロニクス部品の製造方法
KR20220118578A (ko) 표시 장치 및 표시 장치의 제조 방법
CN108649058B (zh) 一种显示母板及其显示屏、显示终端
TWI505525B (zh) 顯示裝置及其封裝方法
JP2019061226A5 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15314690

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799127

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/04/2018)