WO2016187919A1 - 补偿amoled电压降的方法及系统 - Google Patents

补偿amoled电压降的方法及系统 Download PDF

Info

Publication number
WO2016187919A1
WO2016187919A1 PCT/CN2015/082166 CN2015082166W WO2016187919A1 WO 2016187919 A1 WO2016187919 A1 WO 2016187919A1 CN 2015082166 W CN2015082166 W CN 2015082166W WO 2016187919 A1 WO2016187919 A1 WO 2016187919A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel driving
ovdd
driving circuit
thin film
film transistor
Prior art date
Application number
PCT/CN2015/082166
Other languages
English (en)
French (fr)
Inventor
郭平昇
朱立伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/771,802 priority Critical patent/US9653024B1/en
Publication of WO2016187919A1 publication Critical patent/WO2016187919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method and system for compensating for a voltage drop of an AMOLED.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • OLED can be divided into two categories: passive driving and active driving, namely direct addressing and Thin Film Transistor (TFT) matrix addressing.
  • TFT Thin Film Transistor
  • the active drive is also called an Active Matrix (AM) type, and each of the light-emitting units in the AMOLED is independently controlled by TFT addressing.
  • the pixel structure composed of the light emitting unit and the TFT addressing circuit needs to be driven by a wire to which a DC power supply voltage (OVdd) is applied.
  • OVdd DC power supply voltage
  • the power supply voltage (OVdd) produces a voltage drop (IR Drop) on the wire.
  • the resistance of the wire causes the power supply voltage obtained by each pixel circuit to be different, so that different pixels are input under the same data signal voltage input.
  • FIG. 1 is a schematic structural view of a large-size AMOLED display device, which is an OVdd single-drive type, including a display panel 1, an OVdd trace 2, an X-plane (Xboard) 3, and a flip-chip end (Chip). On Film, COF) end 4.
  • the supply voltage near the COF terminal 4 i.e., near the OVdd power supply location, is higher than the supply voltage from a region farther from the supply location.
  • 2 is a driving circuit diagram of a pixel in the AMOLED display device shown in FIG. 1, which is composed of two N-type thin film transistors T10, T20 and a capacitor C10, that is, the most common 2T1C structure, wherein the first thin film transistor T10 is a switch.
  • the thin film transistor is controlled by the scan signal Gate for transmitting the data signal Data
  • the second thin film transistor T20 is a driving thin film transistor controlled by the data signal Data for driving the organic light emitting diode OLED to emit light
  • the capacitor C10 is a storage capacitor.
  • the pixel driving circuit of the 2T1C structure can only convert the voltage into a current The function of driving the organic light emitting diode to emit light does not have any compensation function.
  • FIG. 3 is a diagram showing the brightness distribution of a conventional 55-inch AMOLED display panel.
  • the gray level of the screen is 255.
  • the maximum brightness of the display panel is 111.6
  • the minimum brightness is 88.1.
  • the maximum brightness value 111.6 is set to 100% brightness, and the brightness values of the remaining positions are converted to the maximum brightness based on the maximum brightness value.
  • the lowest brightness value is only 78.9%, and the brightness uniformity of the AMOLED display panel is poor.
  • FIG. 5 is a driving circuit diagram of a pixel in the AMOLED display panel shown in FIG.
  • the pixel driving circuit of the 3T1C structure can compensate the threshold voltage of the organic light emitting diode OLED and the driving thin film transistor T20, but cannot compensate for the IR Drop, so the brightness uniformity of the AMOLED display panel is still poor.
  • the pixel driving circuit of the 3T1C structure shown in FIG. 5 adopts the electrical compensation in the AMOLED external compensation method, and can only compensate the threshold voltage of the driving TFT and the OLED, and cannot compensate for the IR Drop; in addition, the AMOLED external compensation method includes Optical compensation, optical compensation can compensate for IR Drop, but can not be compensated in real time. In contrast, the AMOLED compensation method also includes internal compensation.
  • the AMOLED internal compensation only compensates for the threshold voltage (Vth) or channel mobility ( ⁇ ) of the driving TFT, and rarely compensates for the IR drop.
  • the internal compensation circuit has to compensate for the IR Drop. Since multiple TFTs and capacitors are provided, the aperture ratio is sacrificed and the required control signals are also large.
  • Another object of the present invention is to provide a system for compensating the voltage drop of an AMOLED, which can improve the brightness uniformity of the AMOLED display panel and solve the problem of uneven brightness caused by IR Drop.
  • the present invention first provides a method for compensating for an AMOLED voltage drop, comprising the following steps:
  • the source voltage is set to the standard supply voltage, ie the setting:
  • OVdd 1 , OVdd 2 , OVdd n-1 , and OVdd n respectively represent power supply voltages of the first, second, n-1th, and nth pixel driving circuits, and OVdd represents a standard power supply voltage;
  • Step 2 The computing unit reads the power voltage of each pixel driving circuit from the storage unit, and
  • VGS i Vdata i -(VS i + ⁇ VS i ) (2)
  • VDS i OVdd i -(VS i + ⁇ VS i ) (3)
  • Ids i K ⁇ (VGS i -
  • Ids i represents the driving current of the i-th pixel driving circuit
  • K represents the structural parameters of the driving thin film transistor in each pixel driving circuit
  • VGS i represents the gate-source voltage of the driving thin film transistor in the i-th pixel driving circuit
  • Vth represents each a threshold voltage of the driving thin film transistor in the pixel driving circuit
  • represents a coefficient
  • VDS i represents a source/drain voltage of the driving thin film transistor in the ith pixel driving circuit
  • Vdata i represents an initial value of a data signal voltage pre-inputted to the i-th pixel driving circuit
  • VS i represents a source voltage of a driving thin film transistor in the i-th pixel driving circuit
  • ⁇ VS i represents a variation value of VS i ;
  • Step 3 calculates the driving current Ids of the driving circuit unit according to the respective pixels calculated in step 21 to the n-Ids, reverse supply voltage OVDD each pixel driving circuit 1 to OVdd n, is calculated as:
  • R is the equivalent resistance of the power trace between each adjacent two pixel drive circuits
  • the calculating unit further stores the power voltages OVdd 1 to OVdd n of the respective pixel driving circuits obtained back to the storage unit;
  • Step 4 the calculation unit calculates each adjacent two pixels obtained in Comparative Step 3 trans driving circuit power supply voltage OVdd i-1 and i of the difference between OVDD ⁇ OVdd supply voltage OVDD ratio i i i th pixel drive circuit If the requirement is less than a specific design value, the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits are sent to the compensation unit, and the subsequent step 5 is performed. Otherwise, the steps 2 and 3 are repeated and the OVdd 1 to OVdd n are continued. Do iterative calculations;
  • Step 5 The compensation unit adjusts and compensates the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits according to the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the last iteration of the calculating unit, and outputs The compensated data signal voltages Vdata 1 to Vdata n corresponding to the respective pixel driving circuits.
  • the source voltage VS i of the driving thin film transistor in the ith pixel driving circuit in step 2 is a function of Vdata i , which is obtained by simulation; the calculation formula of the variation value ⁇ VS i of VS i is:
  • r OLED denotes an equivalent resistance of an organic light emitting diode (OLED) in each pixel driving circuit
  • r o denotes an equivalent resistance between a source and a drain of a driving thin film transistor in each pixel driving circuit, which is a constant
  • the method for compensating the voltage drop of the AMOLED is applied to an OVDD single-drive AMOLED display device or an OVDD dual-drive AMOLED display device.
  • the compensation values of the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits are respectively the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the calculation unit last iteration. The difference from the standard supply voltage OVdd.
  • the pixel driving circuit includes a switching thin film transistor, a driving thin film transistor, and a capacitor.
  • the gate of the switching thin film transistor is electrically connected to the scan signal, the source is electrically connected to the compensated data signal, and the drain and the gate of the driving thin film transistor are connected.
  • One end of the capacitor and the capacitor are electrically connected; the drain of the driving thin film transistor is electrically connected to the power supply trace, the source is electrically connected to the anode of the organic light emitting diode; and the cathode of the organic light emitting diode is electrically connected
  • the power supply is low; one end of the capacitor is electrically connected to the drain of the switching thin film transistor, and the other end is electrically connected to the drain of the driving thin film transistor.
  • the present invention also provides a system for compensating for an AMOLED voltage drop, comprising a computing unit, a storage unit, a compensation unit, and a plurality of pixel driving circuits;
  • the pixel driving circuit includes at least two N-type thin film transistors, a capacitor, and an organic a light emitting diode, wherein the N-type thin film transistor connected to the organic light emitting diode is a driving thin film transistor;
  • the storage unit is configured to set a power supply voltage of each pixel driving circuit connected in series on the same power supply line to a standard power supply voltage, and store a power supply voltage of each pixel driving circuit calculated by the calculating unit iteratively;
  • the calculating unit is configured to read a power supply voltage of each pixel driving circuit from the storage unit, calculate a driving current corresponding to a power supply voltage of each pixel driving circuit, and reversely calculate according to the calculated driving current of each pixel driving circuit.
  • the power supply voltages of the respective pixel driving circuits are stored in the memory cells of the respective pixel driving circuits, and the power supply voltage of each adjacent two pixel driving circuits is OVdd after the calculation of the iteration.
  • the compensation unit adjusts and compensates the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits according to the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the last iteration of the computing unit, and outputs compensation The subsequent data signal voltages Vdata 1 to Vdata n corresponding to the respective pixel driving circuits;
  • the pixel driving circuit receives the compensated data signal voltages Vdata 1 to Vdata n from the compensation unit to drive the organic light emitting diode to emit light.
  • the formula for calculating the drive current corresponding to the power supply voltage of each pixel drive circuit by the calculation unit is:
  • VGS i Vdata i -(VS i + ⁇ VS i ) (2)
  • VDS i OVdd i -(VS i + ⁇ VS i ) (3)
  • Ids i K ⁇ (VGS i -
  • OVdd i represents the power supply voltage of the ith pixel driving circuit
  • Ids i represents the driving current of the ith pixel driving circuit
  • K represents the structural parameters of the driving thin film transistor in each pixel driving circuit
  • VGS i represents the ith pixel driving circuit Driving the gate-to-source voltage of the thin film transistor
  • Vth represents the threshold voltage of the driving thin film transistor in each pixel driving circuit
  • represents a coefficient
  • VDS i represents the source-drain voltage of the driving thin film transistor in the ith pixel driving circuit
  • Vdata i represents an initial value of a data signal voltage pre-inputted to the i-th pixel driving circuit
  • VS i represents a source voltage of a driving thin film transistor in the i-th pixel driving circuit
  • ⁇ VS i represents a variation value of VS i ;
  • the calculating unit calculates the power supply voltage of each pixel driving circuit according to the calculated driving current of each pixel driving circuit as follows:
  • R is the equivalent resistance of the power trace between each adjacent two pixel drive circuits
  • the source voltage VS i of the driving thin film transistor in the ith pixel driving circuit is a function of Vdata i , which is obtained by simulation; the calculation formula of the variation value ⁇ VS i of VS i is:
  • r OLED represents the equivalent resistance of the organic light emitting diode in each pixel driving circuit
  • r o represents the equivalent resistance between the source and the drain of the driving thin film transistor in each pixel driving circuit, which is a constant
  • the compensation values of the compensation unit for the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits are respectively the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the calculation unit last iteration and the standard The difference between the supply voltages.
  • the pixel driving circuit includes a switching thin film transistor, a driving thin film transistor, and a capacitor.
  • the gate of the switching thin film transistor is electrically connected to the scan signal, the source is electrically connected to the compensated data signal, and the drain and the gate of the driving thin film transistor are connected.
  • One end of the capacitor and the capacitor are electrically connected; the drain of the driving thin film transistor is electrically connected to the power supply trace, the source is electrically connected to the anode of the organic light emitting diode; and the cathode of the organic light emitting diode is electrically connected
  • the power supply is low; one end of the capacitor is electrically connected to the drain of the switching thin film transistor, and the other end is electrically connected to the drain of the driving thin film transistor.
  • the present invention also provides a system for compensating for an AMOLED voltage drop, comprising a computing unit, a storage unit, a compensation unit, and a plurality of pixel driving circuits;
  • the pixel driving circuit includes at least two N-type thin film transistors, a capacitor, and an organic a light emitting diode, wherein the N-type thin film transistor connected to the organic light emitting diode is a driving thin film transistor;
  • the storage unit is configured to set a power supply voltage of each pixel driving circuit connected in series on the same power supply line to a standard power supply voltage, and store a power supply voltage of each pixel driving circuit calculated by the calculating unit iteratively;
  • the calculating unit is configured to read a power supply voltage of each pixel driving circuit from the storage unit, calculate a driving current corresponding to a power supply voltage of each pixel driving circuit, and reversely calculate according to the calculated driving current of each pixel driving circuit.
  • the power supply voltages of the respective pixel driving circuits are stored in the memory cells of the respective pixel driving circuits, and the power supply voltage of each adjacent two pixel driving circuits is OVdd after the calculation of the iteration.
  • the compensation unit adjusts and compensates the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits according to the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the last iteration of the computing unit, and outputs compensation The subsequent data signal voltages Vdata 1 to Vdata n corresponding to the respective pixel driving circuits;
  • the pixel driving circuit receives the compensated data signal voltages Vdata 1 to Vdata n from the compensation unit to drive the organic light emitting diode to emit light;
  • the calculation unit calculates a driving current corresponding to the power supply voltage of each pixel driving circuit as:
  • VGS i Vdata i -(VS i + ⁇ VS i ) (2)
  • VDS i OVdd i -(VS i + ⁇ VS i ) (3)
  • Ids i K ⁇ (VGS i -
  • OVdd i represents the power supply voltage of the ith pixel driving circuit
  • Ids i represents the driving current of the ith pixel driving circuit
  • K represents the structural parameters of the driving thin film transistor in each pixel driving circuit
  • VGS i represents the ith pixel driving circuit Driving the gate-to-source voltage of the thin film transistor
  • Vth represents the threshold voltage of the driving thin film transistor in each pixel driving circuit
  • represents a coefficient
  • VDS i represents the source-drain voltage of the driving thin film transistor in the ith pixel driving circuit
  • Vdata i represents an initial value of a data signal voltage pre-inputted to the i-th pixel driving circuit
  • VS i represents a source voltage of a driving thin film transistor in the i-th pixel driving circuit
  • ⁇ VS i represents a variation value of VS i ;
  • the calculating unit calculates the power supply voltage of each pixel driving circuit according to the calculated driving current of each pixel driving circuit as follows:
  • R is the equivalent resistance of the power trace between each adjacent two pixel drive circuits
  • the compensation values of the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits by the compensation unit are respectively the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the calculation unit last iteration. The difference from the standard supply voltage;
  • the pixel driving circuit includes a switching thin film transistor, a driving thin film transistor, and a capacitor.
  • the gate of the switching thin film transistor is electrically connected to the scan signal, the source is electrically connected to the compensated data signal, and the drain and the driving thin film transistor are connected.
  • the gate of the driving film and the one end of the capacitor are electrically connected;
  • the drain of the driving thin film transistor is electrically connected to the power supply trace, the source is electrically connected to the anode of the organic light emitting diode; and the cathode electrical property of the organic light emitting diode Connected to the low potential of the power supply; one end of the capacitor is electrically connected to the drain of the switching thin film transistor, and the other end is electrically connected to the drain of the driving thin film transistor.
  • the invention provides a method for compensating the voltage drop of an AMOLED by performing multiple iteration calculations on the power supply voltage and the driving current of each pixel driving circuit connected in series on the same power supply line, and according to the last iteration
  • the calculated power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits adjust and compensate the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits, and output the compensated data signals corresponding to the respective pixel driving circuits.
  • the voltages Vdata 1 to Vdata n can make the driving current flowing through the respective pixels relatively uniform to improve the brightness uniformity of the AMOLED display panel and solve the problem of uneven brightness caused by the IR Drop.
  • the system for compensating the voltage drop of the AMOLED provided by the invention can improve the brightness uniformity of the AMOLED display panel by setting the calculation unit, the storage unit, the compensation unit, and the plurality of pixel driving circuits, and solve the uneven brightness caused by the IR Drop problem.
  • FIG. 1 is a schematic structural view of a large-size OVDD single-drive AMOLED display device
  • FIG. 2 is a circuit diagram of a pixel driving circuit of a 2T1C structure
  • FIG. 3 is a brightness distribution diagram of a 55-inch AMOLED display panel
  • Figure 4 is a graph showing a percentage representation of the luminance profile shown in Figure 3;
  • FIG. 5 is a circuit diagram of a pixel driving circuit in the AMOLED display panel shown in FIG. 3;
  • FIG. 6 is a flow chart of a method for compensating for a voltage drop of an AMOLED according to the present invention.
  • FIG. 7 is a system architecture diagram of a compensated AMOLED voltage drop according to the present invention.
  • FIG. 8 is a circuit diagram of a plurality of pixel driving circuits connected in series on the same power supply line in a system for compensating an AMOLED voltage drop according to the present invention
  • Figure 9 is a circuit diagram of the first pixel driving circuit
  • FIG. 10 is an equivalent circuit diagram corresponding to the driving thin film transistor and the organic light emitting diode of FIG. 9;
  • FIG. 11 is a schematic structural diagram of an OVDD dual-drive AMOLED display device applying the method for compensating for a voltage drop of an AMOLED according to the present invention.
  • the present invention first provides a method for compensating for a voltage drop of an AMOLED, including the following steps:
  • Step 1 provides an AMOLED display panel, as shown in FIG. 7 and FIG. 8, comprising: a calculation unit, a storage unit, a compensation unit, and a plurality of pixel driving circuits.
  • the pixel driving circuit includes at least two N-type thin film transistors, a capacitor C, and an organic light emitting diode OLED, wherein the N-type thin film transistor connected to the organic light emitting diode OLED is a driving thin film transistor.
  • the power supply voltage of each pixel driving circuit connected in series on the same power supply line L is set to the standard power supply voltage by using the memory unit, that is, setting:
  • OVdd 1 , OVdd 2 , OVdd n-1 , and OVdd n respectively represent power supply voltages of the first, second, n-1th, and nth pixel driving circuits
  • OVdd represents a standard power supply voltage
  • n is greater than A positive integer of 1.
  • the first pixel driving circuit to the nth pixel driving circuit are sequentially connected in series to the power supply line L, and the first pixel driving circuit closest to the standard power supply voltage OVdd is farthest from the standard power supply voltage OVdd.
  • the nth pixel drive circuit is sequentially connected in series to the power supply line L, and the first pixel driving circuit closest to the standard power supply voltage OVdd is farthest from the standard power supply voltage OVdd.
  • the pixel driving circuit may be, but not limited to, a 2T1C structure, and the pixel driving circuit shown in FIG. 8 and FIG. 9 is taken as an example, and includes a switching thin film transistor T1, a driving thin film transistor T2, and a capacitor C1.
  • the gate of the thin film transistor T1 is electrically connected to the scan signal Gate, the source is electrically connected to the data signal Data, the drain is electrically connected to the gate of the driving thin film transistor T2, and one end of the capacitor C; the drain of the driving thin film transistor T2
  • the pole is electrically connected to the anode of the organic light-emitting diode D; the cathode of the organic light-emitting diode D is electrically connected to the low potential OVss of the power source; one end of the capacitor C is electrically connected to the switch film
  • the drain of the transistor T1 is electrically connected to the drain of the driving thin film transistor T2.
  • Step 2 The computing unit reads the power voltage of each pixel driving circuit from the storage unit, and
  • VGS i Vdata i -(VS i + ⁇ VS i ) (2)
  • VDS i OVdd i -(VS i + ⁇ VS i ) (3)
  • Ids i K ⁇ (VGS i -
  • Ids i represents the driving current of the i-th pixel driving circuit
  • K represents the structural parameters of the driving thin film transistor in each pixel driving circuit
  • VGS i represents the gate-source voltage of the driving thin film transistor in the i-th pixel driving circuit
  • Vth represents each a threshold voltage of the driving thin film transistor in the pixel driving circuit
  • represents a coefficient
  • VDS i represents a source/drain voltage of the driving thin film transistor in the ith pixel driving circuit
  • Vdata i represents an initial value of a data signal voltage pre-inputted to the i-th pixel driving circuit
  • VS i represents a source voltage of a driving thin film transistor in the i-th pixel driving circuit
  • ⁇ VS i represents a variation value of VS i ;
  • the source voltage VS i of the driving thin film transistor in the ith pixel driving circuit in step 2 is a function of Vdata i , which is obtained by simulation; the calculation formula of the variation value ⁇ VS i of VS i is:
  • R represents the equivalent resistance of the power supply line L between each adjacent two pixel drive circuits
  • r OLED represents the equivalent resistance of the organic light emitting diode OLED in each pixel drive circuit
  • r o represents the drive in each pixel drive circuit
  • the equivalent resistance between the source and drain of the thin film transistor is a constant.
  • the calculation value of the change value ⁇ VS 1 of VS 1 is as follows:
  • Step 3 the driving current Ids calculation unit according to step 2 is calculated for each pixel drive circuit Ids to n-1, each pixel driving circuit of reverse power supply voltage to a OVDD OVdd n.
  • OVdd n OVdd n-1 -Ids n ⁇ R
  • OVdd n-1 OVdd n-2 - (Ids n + Ids n-1 ) ⁇ R
  • OVdd 2 OVdd 1 -(Ids n +Ids n-1 +...+Ids 3 +Ids 2 ) ⁇ R
  • OVdd 1 OVdd-(Ids n +Ids n-1 +...+Ids 2 +Ids 1 ) ⁇ R
  • the calculating unit further stores the power voltages OVdd 1 to OVdd n of the respective pixel driving circuits obtained back to the storage unit;
  • Step 4 the calculation unit calculates each adjacent two pixels obtained in Comparative Step 3 trans driving circuit power supply voltage OVdd i-1 ratio of the power supply voltage OVDD i i i th pixel driving circuit ⁇ OVdd i of the difference between OVDD If the requirement is less than a specific design value, the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits are sent to the compensation unit, and the subsequent step 5 is performed. Otherwise, the steps 2 and 3 are repeated and the OVdd 1 to OVdd n are continued. Do iterative calculations. The number of iterations is not limited.
  • Step 5 The compensation unit adjusts and compensates the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits according to the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the last iteration of the calculating unit, and outputs The compensated data signal voltages Vdata 1 to Vdata n corresponding to the respective pixel driving circuits.
  • the compensation values of the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits are respectively the power supply voltages OVdd 1 of the respective pixel driving circuits calculated by the calculation unit last iteration.
  • the pixel driving circuit receives the compensated data signal voltages Vdata 1 to Vdata n from the compensation unit, and drives the organic light emitting diode OLED to emit light, so that the driving current flowing through each pixel is relatively uniform to improve the AMOLED display panel. Brightness uniformity solves the problem of uneven brightness caused by IR Drop.
  • the above method for compensating the voltage drop of the AMOLED can be applied to the OVDD single-drive AMOLED display device shown in FIG. 1 or to the OVDD dual-drive AMOLED display device shown in FIG.
  • the OVDD dual-drive AMOLED display device shown in Fig. 11 adds a second X-direction substrate 3' and a second COF terminal 4', and the compensation results of the two drivers are superimposed when applying the method of compensating the voltage drop of the AMOLED.
  • the present invention further provides a system for compensating an AMOLED voltage drop, comprising a computing unit, a storage unit, a compensation unit, and a plurality of pixel driving circuits;
  • the pixel driving circuit includes at least two N-type films The transistor, a capacitor C, and an organic light emitting diode OLED, wherein the N-type thin film transistor connected to the organic light emitting diode OLED is a driving thin film transistor.
  • the computing unit is electrically connected to the data signal input end, the storage unit, and the compensation unit; the storage unit is electrically connected to the computing unit; and the compensation unit is electrically connected to the computing unit and the pixel driving circuit.
  • the storage unit is configured to set a power supply voltage of each pixel driving circuit connected in series on the same power supply line L to a standard power supply voltage, and store a power supply voltage of each pixel driving circuit calculated by the calculating unit.
  • the calculating unit is configured to read a power supply voltage of each pixel driving circuit from the storage unit, calculate a driving current corresponding to a power supply voltage of each pixel driving circuit, and reversely calculate according to the calculated driving current of each pixel driving circuit.
  • the power supply voltages of the respective pixel driving circuits are stored in the memory cells of the respective pixel driving circuits, and the power supply voltage of each adjacent two pixel driving circuits is OVdd after the calculation of the iteration.
  • the compensation unit adjusts and compensates the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits according to the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the last iteration of the computing unit, and outputs compensation The subsequent data signal voltages Vdata 1 to Vdata n corresponding to the respective pixel driving circuits.
  • the pixel driving circuit receives the compensated data signal voltages Vdata 1 to Vdata n from the compensation unit to drive the organic light emitting diode OLED to emit light.
  • the calculation unit calculates a driving current corresponding to a power supply voltage of each pixel driving circuit as:
  • VGS i Vdata i -(VS i + ⁇ VS i ) (2)
  • VDS i OVdd i -(VS i + ⁇ VS i ) (3)
  • Ids i K ⁇ (VGS i -
  • OVdd i represents the power supply voltage of the ith pixel driving circuit
  • Ids i represents the driving current of the ith pixel driving circuit
  • K represents the structural parameters of the driving thin film transistor in each pixel driving circuit
  • VGS i represents the ith pixel driving circuit Driving the gate-to-source voltage of the thin film transistor
  • Vth represents the threshold voltage of the driving thin film transistor in each pixel driving circuit
  • represents a coefficient
  • VDS i represents the source-drain voltage of the driving thin film transistor in the ith pixel driving circuit
  • Vdata i represents an initial value of a data signal voltage pre-inputted to the i-th pixel driving circuit
  • VS i represents a source voltage of a driving thin film transistor in the i-th pixel driving circuit
  • ⁇ VS i represents a variation value of VS i ;
  • the calculating unit calculates the power supply voltage of each pixel driving circuit according to the calculated driving current of each pixel driving circuit as follows:
  • R is the equivalent resistance of the power trace L between each adjacent two pixel drive circuits
  • the source voltage VS i of the driving thin film transistor in the ith pixel driving circuit is a function of Vdata i , which is obtained by simulation; the calculation formula of the variation value ⁇ VS i of VS i is:
  • r OLED represents the equivalent resistance of the organic light emitting diode OLED in each pixel driving circuit
  • r o represents an equivalent resistance between the source and the drain of the driving thin film transistor in each pixel driving circuit, which is a constant
  • the compensation values of the compensation unit for the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits are respectively the power supply voltages OVdd 1 to OVdd n of the respective pixel driving circuits calculated by the calculation unit last iteration and the standard The difference between the supply voltages.
  • the pixel driving circuit can be, but is not limited to, a 2T1C structure.
  • the pixel driving circuit shown in FIG. 8 and FIG. 9 includes a switching thin film transistor T1, a driving thin film transistor T2, and a capacitor C1.
  • the gate is electrically connected to the scan signal Gate, the source is electrically connected to the data signal Data, the drain is electrically connected to the gate of the driving thin film transistor T2, and one end of the capacitor C; the drain electrical property of the driving thin film transistor T2 Connected to the power supply line L, the source is electrically connected to the anode of the organic light-emitting diode D; the cathode of the organic light-emitting diode D is electrically connected to the power supply low potential OVss; one end of the capacitor C is electrically connected to the switching thin film transistor T1 The drain is electrically connected to the drain of the driving thin film transistor T2.
  • the method for compensating the voltage drop of the AMOLED of the present invention performs multiple iteration calculations on the power supply voltage and the driving current of each pixel driving circuit connected in series on the same power supply line, and calculates each according to the last iteration calculation.
  • the power supply voltages OVdd 1 to OVdd n of the pixel driving circuit adjust and compensate the initial values Vdata 1 to Vdata n of the data signal voltages to be input to the respective pixel driving circuits, and output the compensated data signal voltages Vdata 1 corresponding to the respective pixel driving circuits to Vdata n can make the driving current flowing through each pixel relatively uniform, to improve the brightness uniformity of the AMOLED display panel, and solve the problem of uneven brightness caused by IR Drop.
  • the system for compensating the voltage drop of the AMOLED of the present invention can improve the brightness uniformity of the AMOLED display panel by setting the calculation unit, the storage unit, the compensation unit, and the plurality of pixel driving circuits, and solve the problem of uneven brightness caused by the IR Drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种补偿AMOLED电压降的方法及系统,该补偿AMOLED电压降的方法通过对串联于同一电源走线上的各个像素驱动电路的电源电压与驱动电流进行多次迭代计算,并依据最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan,能够使得流经各个像素的驱动电流较均匀,解决由IR Drop引起的亮度不均问题。该补偿AMOLED电压降的系统,通过设置计算单元、存储单元、补偿单元、及多个像素驱动电路,能够改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。

Description

补偿AMOLED电压降的方法及系统 技术领域
本发明涉及显示技术领域,尤其涉及一种补偿AMOLED电压降的方法及系统。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED按照驱动方式可以分为无源驱动和有源驱动两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,有源驱动也称为有源矩阵(Active Matrix,AM)型,AMOLED中的每个发光单元都由TFT寻址独立控制。发光单元和TFT寻址电路组成的像素结构需要通过导线对其加载直流电源电压(OVdd)进行驱动。
随着时代及技术的进步,大尺寸、高分辨率的AMOLED显示装置逐渐发展起来,相应的,大尺寸AMOLED显示装置也需要较大尺寸的面板及较多数量的像素,面板导线长度将越来越长,导线电阻也越大。不可避免的,电源电压(OVdd)会在导线上产生电压降(IR Drop),导线的电阻值使得每一个像素电路获得的电源电压不同,从而使得在相同的数据信号电压输入下,不同的像素有不同的电流、亮度输出,导致整个面板的显示亮度不均匀,并且画面不同,像素的IR drop也会跟着不同。
图1所示为一种大尺寸AMOLED显示装置的结构示意图,该AMOLED显示装置为OVdd单驱型,包括显示面板1、OVdd走线2、X向基板(Xboard)3、覆晶薄膜端(Chip On Film,COF)端4。通常,在靠近COF端4即靠近OVdd电源供电位置区域的电源电压相比离供电位置较远区域的电源电压要高。图2所示为图1所示AMOLED显示装置中一个像素的驱动电路图,由两个N型薄膜晶体管T10、T20与一个电容C10组成,即最常见的2T1C结构,其中第一薄膜晶体管T10为开关薄膜晶体管,受扫描信号Gate控制,用于传递数据信号Data,第二薄膜晶体管T20为驱动薄膜晶体管,受数据信号Data控制,用于驱动有机发光二极管OLED发光,电容C10为存储电容。该2T1C结构的像素驱动电路,仅能起到将电压变换为电流从而 驱动有机发光二极管发光的作用,不具有任何补偿功能。
图3所示为现有的一种55英寸AMOLED显示面板的亮度分布图,此时,画面灰阶是255。如图3所示,该显示面板的最大亮度为111.6,最低亮度为88.1,结合图4,设最大亮度值111.6为100%亮度,以最大亮度值为基准将其余位置的亮度值转换为最大亮度值的百分比形式,则最低的亮度值仅为78.9%,可见该AMOLED显示面板的亮度均匀性较差。进一步地,请参阅图5,图5为图3所示AMOLED显示面板中一个像素的驱动电路图,由三个N型薄膜晶体管T10、T20、T30与一个电容C10组成,即3T1C结构,其中,第一薄膜晶体管T10仍为开关薄膜晶体管,第二薄膜晶体管T20仍为驱动薄膜晶体管,增设的第三薄膜晶体管T30接入一外部信号线monitor line,电容C10为存储电容。该3T1C结构的像素驱动电路能够补偿有机发光二极管OLED及驱动薄膜晶体管T20的阈值电压,但无法补偿IR Drop,所以AMOLED显示面板的亮度均匀性依旧较差。
上述图5所示的3T1C结构的像素驱动电路,采用的是AMOLED外部补偿方法中的电性补偿,只能补偿驱动TFT和OLED的阈值电压,无法补偿IR Drop;此外,AMOLED外部补偿方法还包括光学补偿,光学补偿虽能补偿IR Drop,却无法做到实时补偿。相对的,AMOLED的补偿方法还包括内部补偿,AMOLED内部补偿只有针对驱动TFT的阈值电压(Vth)或沟道迁移率(μ)做补偿,很少能补偿IR drop。内部补偿电路要补偿IR Drop,由于多设置了多个TFT和电容,开口率会牺牲很多,所需控制信号也较多。
发明内容
本发明的目的在于提供一种补偿AMOLED电压降的方法,能够改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。
本发明的目的还在于提供一种补偿AMOLED电压降的系统,能够改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。
为实现上述目的,本发明首先提供一种补偿AMOLED电压降的方法,包括如下步骤:
步骤1、提供一AMOLED显示面板,包括:计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
首先使用存储单元将串联于同一电源走线上的各个像素驱动电路的电 源电压均设置为标准电源电压,即设置:
OVdd1=OVdd2=......=OVddn-1=OVddn=OVdd  (1)
其中,OVdd1、OVdd2、OVddn-1、OVddn分别表示第1个、第2个、第n-1个、第n个像素驱动电路的电源电压,OVdd表示标准电源电压;
步骤2、计算单元从存储单元中读取各个像素驱动电路的电源电压,并
计算出对应于各个像素驱动电路的电源电压的驱动电流,计算公式为:
VGSi=Vdatai-(VSi+ΔVSi)          (2)
VDSi=OVddi-(VSi+ΔVSi)          (3)
Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
Idsi表示第i个像素驱动电路的的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
i=1,2,……n;
步骤3、计算单元依据步骤2计算出的各个像素驱动电路的驱动电流Ids1至Idsn,反求各个像素驱动电路的电源电压OVdd1至OVddn,计算公式为:
Figure PCTCN2015082166-appb-000001
其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
i=1,2,……n;
此时完成第一次迭代运算;
然后,计算单元再将反求出的各个像素驱动电路的电源电压OVdd1至OVddn存回存储单元;
步骤4、计算单元计算比较步骤3中反求出的每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电 压OVddi的比值是否达到小于特定设计值的要求,达到则将各个像素驱动电路的电源电压OVdd1至OVddn输送至补偿单元,进行后续步骤5,否则返回并重复步骤2与步骤3继续对OVdd1至OVddn做迭代计算;
步骤5、补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
所述步骤2中第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
Figure PCTCN2015082166-appb-000002
其中,
Figure PCTCN2015082166-appb-000003
Figure PCTCN2015082166-appb-000004
rOLED表示各个像素驱动电路中的有机发光二极管(OLED)的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
i=1,2,……n。
所述补偿AMOLED电压降的方法,应用于OVDD单驱AMOLED显示装置或OVDD双驱AMOLED显示装置。
所述步骤5中,对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压OVdd之间的差值。
所述像素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
本发明还提供一种补偿AMOLED电压降的系统,包括计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
所述存储单元用于将串联于同一电源走线上的各个像素驱动电路的电源电压均设置为标准电源电压,并存储由计算单元迭代计算出的各个像素驱动电路的电源电压;
所述计算单元用于从存储单元中读取各个像素驱动电路的电源电压,计算出对应于各个像素驱动电路的电源电压的驱动电流,并依据计算出的各个像素驱动电路的驱动电流来反求各个像素驱动电路的电源电压,再将反求出的各个像素驱动电路的电源电压存回存储单元;所述计算单元经过多次迭代计算后,使得每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值达到小于特定设计值的要求,其中i=1,2,……n;
所述补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管发光。
所述计算单元计算对应于各个像素驱动电路的电源电压的驱动电流的公式为:
VGSi=Vdatai-(VSi+ΔVSi)          (2)
VDSi=OVddi-(VSi+ΔVSi)          (3)
Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
OVddi表示第i个像素驱动电路的电源电压,Idsi表示第i个像素驱动电路的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
所述计算单元依据计算出的各个像素驱动电路的驱动电流反求各个像素驱动电路的电源电压的计算公式为:
Figure PCTCN2015082166-appb-000005
其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
i=1,2,……n。
所述第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
Figure PCTCN2015082166-appb-000006
其中,
Figure PCTCN2015082166-appb-000007
Figure PCTCN2015082166-appb-000008
rOLED表示各个像素驱动电路中的有机发光二极管的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
i=1,2,……n。
所述补偿单元对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压之间的差值。
所述像素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
本发明还提供一种补偿AMOLED电压降的系统,包括计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
所述存储单元用于将串联于同一电源走线上的各个像素驱动电路的电源电压均设置为标准电源电压,并存储由计算单元迭代计算出的各个像素驱动电路的电源电压;
所述计算单元用于从存储单元中读取各个像素驱动电路的电源电压,计算出对应于各个像素驱动电路的电源电压的驱动电流,并依据计算出的 各个像素驱动电路的驱动电流来反求各个像素驱动电路的电源电压,再将反求出的各个像素驱动电路的电源电压存回存储单元;所述计算单元经过多次迭代计算后,使得每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值达到小于特定设计值的要求,其中i=1,2,……n;
所述补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管发光;
其中,所述计算单元计算对应于各个像素驱动电路的电源电压的驱动电流的公式为:
VGSi=Vdatai-(VSi+ΔVSi)          (2)
VDSi=OVddi-(VSi+ΔVSi)          (3)
Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
OVddi表示第i个像素驱动电路的电源电压,Idsi表示第i个像素驱动电路的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
所述计算单元依据计算出的各个像素驱动电路的驱动电流反求各个像素驱动电路的电源电压的计算公式为:
Figure PCTCN2015082166-appb-000009
其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
i=1,2,……n。
其中,所述补偿单元对欲输入各个像素驱动电路的数据信号电压的初 始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压之间的差值;
其中,所述像素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
本发明的有益效果:本发明提供的一种补偿AMOLED电压降的方法,通过对串联于同一电源走线上的各个像素驱动电路的电源电压与驱动电流进行多次迭代计算,并依据最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan,能够使得流经各个像素的驱动电流较均匀,以改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。本发明提供的一种补偿AMOLED电压降的系统,通过设置计算单元、存储单元、补偿单元、及多个像素驱动电路,能够改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为一种大尺寸OVDD单驱AMOLED显示装置的结构示意图;
图2为2T1C结构的像素驱动电路的电路图;
图3为一种55英寸AMOLED显示面板的亮度分布图;
图4为图3所示的亮度分布图的百分比表示图;
图5为图3所示的AMOLED显示面板中一个像素驱动电路的电路图;
图6为本发明的补偿AMOLED电压降的方法的流程图;
图7为本发明的补偿AMOLED电压降的系统架构图;
图8为本发明的补偿AMOLED电压降的系统中串联于同一电源走线上的多个像素驱动电路的电路图;
图9为第一个像素驱动电路的电路图;
图10为对应图9中驱动薄膜晶体管与有机发光二极管的等效电路图;
图11为应用本发明补偿AMOLED电压降的方法的OVDD双驱AMOLED显示装置的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图6,本发明首先提供一种补偿AMOLED电压降的方法,包括如下步骤:
步骤1、提供一AMOLED显示面板,如图7、图8所示,包括:计算单元、存储单元、补偿单元、及多个像素驱动电路。所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容C、及一个有机发光二级管OLED,其中连接有机发光二极管OLED的N型薄膜晶体管为驱动薄膜晶体管。
首先使用存储单元将串联于同一电源走线L上的各个像素驱动电路的电源电压均设置为标准电源电压,即设置:
OVdd1=OVdd2=......=OVddn-1=OVddn=OVdd   (1)
其中,OVdd1、OVdd2、OVddn-1、OVddn分别表示第1个、第2个、第n-1个、第n个像素驱动电路的电源电压,OVdd表示标准电源电压,n为大于1的正整数。如图8所示,第1个像素驱动电路至第n个像素驱动电路依序串联于电源走线L上,最靠近标准电源电压OVdd的为第1个像素驱动电路,最远离标准电源电压OVdd的为第n个像素驱动电路。
具体地,所述像素驱动电路可以但不限于为2T1C结构,以如图8、图9所示的像素驱动电路为例,包括开关薄膜晶体管T1、驱动薄膜晶体管T2、及电容C1,所述开关薄膜晶体管T1的栅极电性连接扫描信号Gate,源极电性连接数据信号Data,漏极与驱动薄膜晶体管T2的栅极、及电容C的一端电性连接;所述驱动薄膜晶体管T2的漏极电性连接至电源走线L,源极电性连接有机发光二级管D的阳极;有机发光二级管D的阴极电性连接于电源低电位OVss;电容C的一端电性连接开关薄膜晶体管T1的漏极,另一端电性连接驱动薄膜晶体管T2的漏极。
步骤2、计算单元从存储单元中读取各个像素驱动电路的电源电压,并
计算出对应于各个像素驱动电路的电源电压的驱动电流,计算公式为:
VGSi=Vdatai-(VSi+ΔVSi)           (2)
VDSi=OVddi-(VSi+ΔVSi)           (3)
Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
Idsi表示第i个像素驱动电路的的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
i=1,2,……n。
进一步地,该步骤2中第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
Figure PCTCN2015082166-appb-000010
其中,
Figure PCTCN2015082166-appb-000011
Figure PCTCN2015082166-appb-000012
R表示电源走线L在每相邻两个像素驱动电路之间的等效电阻,rOLED表示各个像素驱动电路中的有机发光二极管OLED的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数。
以图9、图10所示的第一个像素驱动电路为例,VS1的变化值ΔVS1的计算方式为:
ΔOVdd1=OVdd-OVdd1=Ids1×R
Figure PCTCN2015082166-appb-000013
步骤3、计算单元依据步骤2计算出的各个像素驱动电路的驱动电流Ids1至Idsn,反求各个像素驱动电路的电源电压OVdd1至OVddn
如图8所示,在第1个至第n个像素驱动电路中:
OVddn=OVddn-1-Idsn×R
OVddn-1=OVddn-2-(Idsn+Idsn-1)×R
·
·
·
OVdd2=OVdd1-(Idsn+Idsn-1+...+Ids3+Ids2)×R
OVdd1=OVdd-(Idsn+Idsn-1+...+Ids2+Ids1)×R
可推得该步骤3的计算公式为:
Figure PCTCN2015082166-appb-000014
其中,R为电源走线L在每相邻两个像素驱动电路之间的等效电阻;i=1,2,……n;
此时完成第一次迭代运算;
然后,计算单元再将反求出的各个像素驱动电路的电源电压OVdd1至OVddn存回存储单元;
步骤4、计算单元计算比较步骤3中反求出的每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值是否达到小于特定设计值的要求,达到则将各个像素驱动电路的电源电压OVdd1至OVddn输送至补偿单元,进行后续步骤5,否则返回并重复步骤2与步骤3继续对OVdd1至OVddn做迭代计算。迭代次数不做限定。
步骤5、补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
具体地,在该步骤5中,对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压OVdd之间的差值。
完成步骤5后,所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管OLED发光,能够使得流经各个像素的驱动电流较均匀,以改善AMOLED显示面板的亮度均匀性,解决 由IR Drop引起的亮度不均问题。
上述补偿AMOLED电压降的方法既可以应用于图1所示的OVDD单驱AMOLED显示装置,也可以应用于如图11所示的OVDD双驱AMOLED显示装置。图11所示的OVDD双驱AMOLED显示装置增加了第二X向基板3’与第二COF端4’,应用该补偿AMOLED电压降的方法时将两个驱动的补偿结果进行叠加即可。
请参阅图7至图10,本发明还提供一种补偿AMOLED电压降的系统,包括计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容C、及一个有机发光二级管OLED,其中连接有机发光二极管OLED的N型薄膜晶体管为驱动薄膜晶体管。所述计算单元与数据信号输入端、存储单元、及补偿单元电性连接;存储单元与计算单元电性连接;补偿单元与计算单元及像素驱动电路电性连接。
所述存储单元用于将串联于同一电源走线L上的各个像素驱动电路的电源电压均设置为标准电源电压,并存储由计算单元迭代计算出的各个像素驱动电路的电源电压。
所述计算单元用于从存储单元中读取各个像素驱动电路的电源电压,计算出对应于各个像素驱动电路的电源电压的驱动电流,并依据计算出的各个像素驱动电路的驱动电流来反求各个像素驱动电路的电源电压,再将反求出的各个像素驱动电路的电源电压存回存储单元;所述计算单元经过多次迭代计算后,使得每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值达到小于特定设计值的要求,其中i=1,2,……n。
所述补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管OLED发光。
具体地,所述计算单元计算对应于各个像素驱动电路的电源电压的驱动电流的公式为:
VGSi=Vdatai-(VSi+ΔVSi)              (2)
VDSi=OVddi-(VSi+ΔVSi)              (3)
Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
OVddi表示第i个像素驱动电路的电源电压,Idsi表示第i个像素驱动电路的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
所述计算单元依据计算出的各个像素驱动电路的驱动电流反求各个像素驱动电路的电源电压的计算公式为:
Figure PCTCN2015082166-appb-000015
其中,R为电源走线L在每相邻两个像素驱动电路之间的等效电阻;
i=1,2,……n。
进一步地,所述第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
Figure PCTCN2015082166-appb-000016
其中,
Figure PCTCN2015082166-appb-000017
Figure PCTCN2015082166-appb-000018
rOLED表示各个像素驱动电路中的有机发光二极管OLED的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
i=1,2,……n。
所述补偿单元对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压之间的差值。所述像素驱动电路可以但不限于为2T1C结构,以如图8、图9所示的像素驱动电路为例,包括开关薄膜晶体管T1、驱动薄膜晶体管T2、及电容C1,所述开关薄膜晶体管T1的栅极电性连接扫描信号Gate,源极电性连接数据信 号Data,漏极与驱动薄膜晶体管T2的栅极、及电容C的一端电性连接;所述驱动薄膜晶体管T2的漏极电性连接至电源走线L,源极电性连接有机发光二级管D的阳极;有机发光二级管D的阴极电性连接于电源低电位OVss;电容C的一端电性连接开关薄膜晶体管T1的漏极,另一端电性连接驱动薄膜晶体管T2的漏极。
综上所述,本发明的补偿AMOLED电压降的方法,通过对串联于同一电源走线上的各个像素驱动电路的电源电压与驱动电流进行多次迭代计算,并依据最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan,能够使得流经各个像素的驱动电流较均匀,以改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。本发明的补偿AMOLED电压降的系统,通过设置计算单元、存储单元、补偿单元、及多个像素驱动电路,能够改善AMOLED显示面板的亮度均匀性,解决由IR Drop引起的亮度不均问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种补偿AMOLED电压降的方法,包括如下步骤:
    步骤1、提供一AMOLED显示面板,包括:计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
    首先使用存储单元将串联于同一电源走线上的各个像素驱动电路的电源电压均设置为标准电源电压,即设置:
    OVdd1=OVdd2=......=OVddn-1=OVddn=OVdd   (1)
    其中,OVdd1、OVdd2、OVddn-1、OVddn分别表示第1个、第2个、第n-1个、第n个像素驱动电路的电源电压,OVdd表示标准电源电压;
    步骤2、计算单元从存储单元中读取各个像素驱动电路的电源电压,并
    计算出对应于各个像素驱动电路的电源电压的驱动电流,计算公式为:
    VGSi=Vdatai-(VSi+ΔVSi)   (2)
    VDSi=OVddi-(VSi+ΔVSi)   (3)
    Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
    Idsi表示第i个像素驱动电路的的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
    Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
    i=1,2,……n;
    步骤3、计算单元依据步骤2计算出的各个像素驱动电路的驱动电流Ids1至Idsn,反求各个像素驱动电路的电源电压OVdd1至OVddn,计算公式为:
    Figure PCTCN2015082166-appb-100001
    其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
    i=1,2,……n;
    此时完成第一次迭代运算;
    然后,计算单元再将反求出的各个像素驱动电路的电源电压OVdd1至OVddn存回存储单元;
    步骤4、计算单元计算比较步骤3中反求出的每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值是否达到小于特定设计值的要求,达到则将各个像素驱动电路的电源电压OVdd1至OVddn输送至补偿单元,进行后续步骤5,否则返回并重复步骤2与步骤3继续对OVdd1至OVddn做迭代计算;
    步骤5、补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
  2. 如权利要求1所述的补偿AMOLED电压降的方法,其中,所述步骤2中第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
    Figure PCTCN2015082166-appb-100002
    其中,
    Figure PCTCN2015082166-appb-100003
    rOLED表示各个像素驱动电路中的有机发光二极管的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
    i=1,2,……n。
  3. 如权利要求1所述的补偿AMOLED电压降的方法,其中,应用于OVDD单驱AMOLED显示装置或OVDD双驱AMOLED显示装置。
  4. 如权利要求1所述的补偿AMOLED电压降的方法,其中,所述步骤5中,对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压OVdd之间的差值。
  5. 如权利要求1所述的补偿AMOLED电压降的方法,其中,所述像 素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
  6. 一种补偿AMOLED电压降的系统,包括计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
    所述存储单元用于将串联于同一电源走线上的各个像素驱动电路的电源电压均设置为标准电源电压,并存储由计算单元迭代计算出的各个像素驱动电路的电源电压;
    所述计算单元用于从存储单元中读取各个像素驱动电路的电源电压,计算出对应于各个像素驱动电路的电源电压的驱动电流,并依据计算出的各个像素驱动电路的驱动电流来反求各个像素驱动电路的电源电压,再将反求出的各个像素驱动电路的电源电压存回存储单元;所述计算单元经过多次迭代计算后,使得每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值达到小于特定设计值的要求,其中i=1,2,……n;
    所述补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
    所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管发光。
  7. 如权利要求6所述的补偿AMOLED电压降的系统,其中,所述计算单元计算对应于各个像素驱动电路的电源电压的驱动电流的公式为:
    VGSi=Vdatai-(VSi+ΔVSi)   (2)
    VDSi=OVddi-(VSi+ΔVSi)   (3)
    Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
    OVddi表示第i个像素驱动电路的电源电压,Idsi表示第i个像素驱动电路的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
    Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
    所述计算单元依据计算出的各个像素驱动电路的驱动电流反求各个像素驱动电路的电源电压的计算公式为:
    Figure PCTCN2015082166-appb-100004
    其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
    i=1,2,……n。
  8. 如权利要求7所述的补偿AMOLED电压降的系统,其中,所述第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
    Figure PCTCN2015082166-appb-100005
    其中,
    Figure PCTCN2015082166-appb-100006
    rOLED表示各个像素驱动电路中的有机发光二极管的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
    i=1,2,……n。
  9. 如权利要求6所述的补偿AMOLED电压降的系统,其中,所述补偿单元对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压之间的差值。
  10. 如权利要求6所述的补偿AMOLED电压降的系统,其中,所述像素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有 机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
  11. 一种补偿AMOLED电压降的系统,包括计算单元、存储单元、补偿单元、及多个像素驱动电路;所述像素驱动电路至少包括两个N型薄膜晶体管、一个电容、及一个有机发光二级管,其中连接有机发光二极管的N型薄膜晶体管为驱动薄膜晶体管;
    所述存储单元用于将串联于同一电源走线上的各个像素驱动电路的电源电压均设置为标准电源电压,并存储由计算单元迭代计算出的各个像素驱动电路的电源电压;
    所述计算单元用于从存储单元中读取各个像素驱动电路的电源电压,计算出对应于各个像素驱动电路的电源电压的驱动电流,并依据计算出的各个像素驱动电路的驱动电流来反求各个像素驱动电路的电源电压,再将反求出的各个像素驱动电路的电源电压存回存储单元;所述计算单元经过多次迭代计算后,使得每相邻两个像素驱动电路的电源电压OVddi-1与OVddi之差ΔOVddi与第i个像素驱动电路的电源电压OVddi的比值达到小于特定设计值的要求,其中i=1,2,……n;
    所述补偿单元依据计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan进行调整补偿,输出补偿后的对应各个像素驱动电路的数据信号电压Vdata1至Vdatan
    所述像素驱动电路从补偿单元接收补偿后的数据信号电压Vdata1至Vdatan,驱动有机发光二极管发光;
    其中,所述计算单元计算对应于各个像素驱动电路的电源电压的驱动电流的公式为:
    VGSi=Vdatai-(VSi+ΔVSi)   (2)
    VDSi=OVddi-(VSi+ΔVSi)   (3)
    Idsi=K×(VGSi-|Vth|)2×(1+λ·VDSi)   (4)
    OVddi表示第i个像素驱动电路的电源电压,Idsi表示第i个像素驱动电路的驱动电流,K表示各个像素驱动电路中驱动薄膜晶体管的结构参数,VGSi表示第i个像素驱动电路中驱动薄膜晶体管的栅源极电压,Vth表示各个像素驱动电路中驱动薄膜晶体管的阈值电压,λ表示一系数,VDSi表示 第i个像素驱动电路中驱动薄膜晶体管的源漏极电压;
    Vdatai表示预输入第i个像素驱动电路的数据信号电压的初始值,VSi表示第i个像素驱动电路中驱动薄膜晶体管的源极电压,ΔVSi表示VSi的变化值;
    所述计算单元依据计算出的各个像素驱动电路的驱动电流反求各个像素驱动电路的电源电压的计算公式为:
    Figure PCTCN2015082166-appb-100007
    其中,R为电源走线在每相邻两个像素驱动电路之间的等效电阻;
    i=1,2,……n。
    其中,所述补偿单元对欲输入各个像素驱动电路的数据信号电压的初始值Vdata1至Vdatan的补偿值分别为计算单元最后一次迭代计算得到的各个像素驱动电路的电源电压OVdd1至OVddn与标准电源电压之间的差值;
    其中,所述像素驱动电路包括开关薄膜晶体管、驱动薄膜晶体管、及电容,所述开关薄膜晶体管的栅极电性连接扫描信号,源极电性连接补偿后的数据信号,漏极与驱动薄膜晶体管的栅极、及电容的一端电性连接;所述驱动薄膜晶体管的漏极电性连接至电源走线,源极电性连接有机发光二级管的阳极;有机发光二级管的阴极电性连接于电源低电位;电容的一端电性连接开关薄膜晶体管的漏极,另一端电性连接驱动薄膜晶体管的漏极。
  12. 如权利要求11所述的补偿AMOLED电压降的系统,其中,所述第i个像素驱动电路中驱动薄膜晶体管的源极电压VSi为Vdatai的函数,由模拟仿真得到;VSi的变化值ΔVSi的计算公式为:
    Figure PCTCN2015082166-appb-100008
    其中,
    Figure PCTCN2015082166-appb-100009
    rOLED表示各个像素驱动电路中的有机发光二极管的等效电阻,ro表示各个像素驱动电路中的驱动薄膜晶体管源漏极之间的等效电阻,为一常数;
    i=1,2,……n。
PCT/CN2015/082166 2015-05-28 2015-06-24 补偿amoled电压降的方法及系统 WO2016187919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,802 US9653024B1 (en) 2015-05-28 2015-06-24 Method of compensating AMOLED IR drop and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510284710.6A CN104821152B (zh) 2015-05-28 2015-05-28 补偿amoled电压降的方法及系统
CN201510284710.6 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016187919A1 true WO2016187919A1 (zh) 2016-12-01

Family

ID=53731430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082166 WO2016187919A1 (zh) 2015-05-28 2015-06-24 补偿amoled电压降的方法及系统

Country Status (3)

Country Link
US (1) US9653024B1 (zh)
CN (1) CN104821152B (zh)
WO (1) WO2016187919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495798A (zh) * 2022-02-28 2022-05-13 北京京东方显示技术有限公司 控制装置及控制方法、显示设备、存储介质

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996374B (zh) * 2014-05-12 2016-09-07 京东方科技集团股份有限公司 外部动态补偿显示屏有源区直流电压降的装置及方法
CN105096830B (zh) * 2015-08-20 2018-03-30 上海和辉光电有限公司 一种amoled面板及其制备方法、显示器件
CN105070248B (zh) * 2015-09-08 2017-05-31 深圳市华星光电技术有限公司 提高画面对比度的oled驱动系统及驱动方法
CN105405405B (zh) * 2016-01-04 2018-06-08 京东方科技集团股份有限公司 电压降补偿方法及装置、显示装置
CN105427823A (zh) 2016-01-04 2016-03-23 京东方科技集团股份有限公司 一种栅极驱动电压的调节方法、调节装置及显示装置
CN106251810B (zh) * 2016-08-19 2019-09-27 深圳市华星光电技术有限公司 Amoled显示屏驱动方法、驱动电路及显示装置
CN106128359A (zh) * 2016-09-06 2016-11-16 昆山国显光电有限公司 Oled 显示装置及其亮度补偿方法
CN106816137B (zh) * 2017-04-13 2019-09-27 京东方科技集团股份有限公司 显示装置及增加该显示装置亮度均一性的方法
CN107180613B (zh) * 2017-05-26 2019-03-12 京东方科技集团股份有限公司 有机发光二极管显示面板及其驱动方法
CN107316601B (zh) * 2017-08-18 2020-08-14 芯颖科技有限公司 Ir drop补偿方法及装置
CN107301843A (zh) * 2017-08-28 2017-10-27 深圳市华星光电半导体显示技术有限公司 顶发射amoled面板的电源配置结构及配置方法
CN108492766B (zh) * 2018-01-19 2020-02-07 昆山国显光电有限公司 补偿电压计算方法及装置、补偿方法及系统、驱动芯片
CN110444165B (zh) * 2018-05-04 2021-03-12 上海和辉光电股份有限公司 像素补偿电路以及显示装置
CN108932931A (zh) * 2018-08-03 2018-12-04 武汉华星光电半导体显示技术有限公司 Oled发光补偿方法、装置、存储介质及显示装置
CN112689868A (zh) * 2018-12-24 2021-04-20 深圳市柔宇科技股份有限公司 显示面板及其制备方法、显示装置
CN112639950B (zh) * 2018-12-28 2022-11-29 深圳市柔宇科技股份有限公司 显示屏及显示装置
CN109686306B (zh) * 2019-03-05 2020-12-01 京东方科技集团股份有限公司 补偿因子获取方法及装置、驱动方法、显示设备
CN111862891B (zh) * 2019-04-25 2021-10-01 上海和辉光电股份有限公司 一种有机发光显示器
CN110264949B (zh) * 2019-06-26 2023-01-10 京东方科技集团股份有限公司 一种像素单元及其补偿方法和显示装置
EP4020444A4 (en) * 2019-08-23 2022-06-29 BOE Technology Group Co., Ltd. Temperature compensation method for display panel, display panel, and electronic device
CN110660347B (zh) * 2019-09-24 2022-11-22 信利(惠州)智能显示有限公司 Amoled面板模组阻抗的测试方法
CN110660361B (zh) * 2019-09-29 2021-01-26 昆山国显光电有限公司 显示屏及提高显示屏亮度均一性的方法
CN111276101B (zh) * 2019-10-25 2021-10-01 信利(惠州)智能显示有限公司 Amoled面板模组及其压降补偿方法
CN110767178B (zh) * 2019-11-08 2021-01-22 京东方科技集团股份有限公司 一种有机发光二极管的电压补偿方法
CN110782835A (zh) * 2019-11-29 2020-02-11 深圳市华星光电半导体显示技术有限公司 Oled显示面板ovss电压降的改善方法及oled显示面板
KR102674165B1 (ko) * 2020-02-20 2024-06-13 삼성디스플레이 주식회사 표시 장치
CN111477160A (zh) * 2020-05-27 2020-07-31 京东方科技集团股份有限公司 一种源极驱动电路的推力调节方法及其装置、显示装置
CN111627396B (zh) * 2020-06-29 2021-08-20 武汉天马微电子有限公司 一种数据线电压确定方法、确定装置及驱动方法
US11348528B2 (en) 2020-09-02 2022-05-31 Tcl China Star Optoelectronics Technology Co., Ltd. Display panel for outputting different setting voltage based on equivalent resistance
CN112017595A (zh) * 2020-09-02 2020-12-01 Tcl华星光电技术有限公司 显示面板及电子设备
CN113178167A (zh) * 2021-04-16 2021-07-27 Tcl华星光电技术有限公司 显示面板及其驱动方法
CN113571015B (zh) * 2021-07-16 2022-11-08 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
CN113674692B (zh) * 2021-09-03 2023-04-07 深圳市华星光电半导体显示技术有限公司 电压降补偿方法、装置及电子设备
CN113808538B (zh) * 2021-09-22 2023-06-06 昆山国显光电有限公司 显示面板及其驱动方法、驱动装置及显示装置
CN113808529B (zh) * 2021-09-28 2023-03-21 深圳市华星光电半导体显示技术有限公司 像素电路及其外部补偿方法
CN115985252B (zh) * 2022-11-30 2024-03-26 惠科股份有限公司 有机发光二极管显示面板及其驱动方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390653B2 (en) * 2009-01-09 2013-03-05 Global Oled Technology Llc Electroluminescent pixel with efficiency compensation by threshold voltage overcompensation
CN103943080A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 一种显示器件像素亮度补偿控制方法及装置
CN104537985A (zh) * 2015-01-19 2015-04-22 深圳市华星光电技术有限公司 一种有机发光显示面板及其压降补偿方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345752A (ja) * 2004-06-03 2005-12-15 Hitachi Ltd 映像表示装置
DE102004028233A1 (de) * 2004-06-11 2005-12-29 Deutsche Thomson-Brandt Gmbh Verfahren zur Ansteuerung und Schaltung eines Elements einer Leuchtanzeige
US8149230B2 (en) * 2004-07-28 2012-04-03 Samsung Mobile Display Co., Ltd. Light emitting display
KR100600332B1 (ko) * 2004-08-25 2006-07-14 삼성에스디아이 주식회사 발광 표시장치
KR100725499B1 (ko) * 2006-08-25 2007-06-08 삼성전자주식회사 Led 구동회로
WO2008093519A1 (ja) * 2007-01-30 2008-08-07 Kyocera Corporation 画像表示装置、およびその駆動方法
JP5138428B2 (ja) * 2008-03-07 2013-02-06 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 表示装置
JP4737221B2 (ja) * 2008-04-16 2011-07-27 ソニー株式会社 表示装置
KR101894768B1 (ko) * 2011-03-14 2018-09-06 삼성디스플레이 주식회사 액티브 매트릭스 디스플레이 장치 및 그 구동 방법
KR20120111675A (ko) * 2011-04-01 2012-10-10 삼성디스플레이 주식회사 유기발광 표시 장치, 유기발광 표시 장치를 위한 데이터 구동 장치 및 그 구동 방법
WO2013094104A1 (ja) * 2011-12-20 2013-06-27 パナソニック株式会社 表示装置およびその駆動方法
KR101441958B1 (ko) * 2012-09-28 2014-09-18 엘지디스플레이 주식회사 박막트랜지스터 보상회로를 포함하는 액정표시장치
JP2014115539A (ja) * 2012-12-11 2014-06-26 Samsung Display Co Ltd 画素回路及び表示装置
KR102028504B1 (ko) * 2012-12-14 2019-10-04 엘지디스플레이 주식회사 보상회로를 포함하는 유기발광 표시장치
KR101470968B1 (ko) * 2013-11-01 2014-12-09 호서대학교 산학협력단 Vdd 전원 라인 없이 문턱전압과 전압강하를 보상하는 유기발광 다이오드 화소 회로
KR20150084095A (ko) * 2014-01-13 2015-07-22 삼성디스플레이 주식회사 유기전계 발광 표시장치
CN104123911B (zh) * 2014-07-01 2016-05-04 京东方科技集团股份有限公司 一种驱动方法、驱动装置及有机电致发光显示器件
KR102192722B1 (ko) * 2014-07-08 2020-12-18 삼성디스플레이 주식회사 표시장치
CN105446512B (zh) * 2014-08-08 2018-10-26 宸鸿科技(厦门)有限公司 触控电极结构及应用其的触控面板
KR102263574B1 (ko) * 2014-10-01 2021-06-11 삼성디스플레이 주식회사 표시 장치
CN104299569B (zh) * 2014-10-30 2019-03-01 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示装置
CN104361858B (zh) * 2014-11-12 2016-10-12 京东方科技集团股份有限公司 电压驱动像素电路、显示面板及其驱动方法
KR102294670B1 (ko) * 2014-12-11 2021-08-31 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
KR20160100428A (ko) * 2015-02-13 2016-08-24 삼성디스플레이 주식회사 전압 강하 보상 장치 및 이를 포함하는 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390653B2 (en) * 2009-01-09 2013-03-05 Global Oled Technology Llc Electroluminescent pixel with efficiency compensation by threshold voltage overcompensation
CN103943080A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 一种显示器件像素亮度补偿控制方法及装置
CN104537985A (zh) * 2015-01-19 2015-04-22 深圳市华星光电技术有限公司 一种有机发光显示面板及其压降补偿方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495798A (zh) * 2022-02-28 2022-05-13 北京京东方显示技术有限公司 控制装置及控制方法、显示设备、存储介质
CN114495798B (zh) * 2022-02-28 2024-03-22 北京京东方显示技术有限公司 控制装置及控制方法、显示设备、存储介质

Also Published As

Publication number Publication date
CN104821152A (zh) 2015-08-05
CN104821152B (zh) 2017-09-01
US20170148382A1 (en) 2017-05-25
US9653024B1 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
WO2016187919A1 (zh) 补偿amoled电压降的方法及系统
KR101944645B1 (ko) Amoled의 전압강하 보상방법
US9947273B2 (en) Voltage drop compensation method, voltage drop compensation device, and display device
US8941309B2 (en) Voltage-driven pixel circuit, driving method thereof and display panel
WO2019071724A1 (zh) Amoled显示装置及其驱动方法
WO2018133144A1 (zh) Amoled像素驱动系统及amoled像素驱动方法
WO2018214258A1 (zh) Oled显示装置的ovss电压降的补偿方法及像素驱动电路
CN104680980B (zh) 像素驱动电路及其驱动方法、显示装置
CN107767815B (zh) Oled显示面板的补偿系统及方法
TWI517122B (zh) 顯示面板、顯示裝置及電子系統
KR20190067877A (ko) Amoled 픽셀 구동 회로 및 구동 방법
US20190066580A1 (en) Pixel circuit, driving method thereof, and display device
US10235940B2 (en) Pixel-driving circuit, the driving method thereof, and display device
TWI625714B (zh) 有機發光顯示器
US10049621B2 (en) Organic light emitting display device with increased luminance uniformity
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2020062352A1 (zh) Amoled像素驱动电路及驱动方法
JP2012242838A (ja) 画素ユニット回路及びoled表示装置
US20210335254A1 (en) Display device and driving method thereof
US10339863B2 (en) Pixel circuit, display device, and drive method therefor
WO2019119616A1 (zh) 像素驱动电路及有机发光二极管显示器
WO2020001003A1 (zh) 显示数据调整系统及显示数据调整方法
US20180330666A1 (en) Display device and pixel compensation method
JP6593899B2 (ja) Oled表示パネルのコントラスト比向上方法及びそのシステム
US20210335280A1 (en) Method for improving ovss voltage drop of oled display panel and oled display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771802

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893000

Country of ref document: EP

Kind code of ref document: A1