WO2016186016A1 - 無線端末及び基地局 - Google Patents

無線端末及び基地局 Download PDF

Info

Publication number
WO2016186016A1
WO2016186016A1 PCT/JP2016/064230 JP2016064230W WO2016186016A1 WO 2016186016 A1 WO2016186016 A1 WO 2016186016A1 JP 2016064230 W JP2016064230 W JP 2016064230W WO 2016186016 A1 WO2016186016 A1 WO 2016186016A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
period
wireless terminal
base station
data
Prior art date
Application number
PCT/JP2016/064230
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP16796409.7A priority Critical patent/EP3297339A4/en
Priority to JP2017519174A priority patent/JP6813481B2/ja
Priority to US15/574,093 priority patent/US10735982B2/en
Publication of WO2016186016A1 publication Critical patent/WO2016186016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a radio terminal and a base station used in a mobile communication system.
  • 3GPP Third Generation Partnership Project
  • TTI Transmission Time Interval
  • a radio terminal includes a control unit that monitors a PDCCH within an on period that occurs every DRX cycle, and a special downlink control that does not include scheduling information within the on period via the PDCCH.
  • a receiving unit that receives information from the base station. The control unit continues to monitor the PDCCH over a DRX idle period in response to reception of the special downlink control information.
  • the base station includes a control unit that performs communication with a wireless terminal that monitors the PDCCH within an on period that occurs every DRX cycle.
  • the control unit performs processing of transmitting special downlink control information not including scheduling information to the radio terminal via the PDCCH within the on period.
  • the special downlink control information is used to allow the wireless terminal to continue monitoring the PDCCH over a DRX idle period.
  • the wireless terminal is expected to receive downlink data when transmitting the uplink data to the base station and the control unit that monitors the PDCCH within an on period that occurs every DRX cycle.
  • a transmission unit that transmits a notification indicating the above to the base station.
  • the control unit monitors the PDCCH in a predetermined period after transmitting the notification, even outside the on period.
  • a base station includes a control unit that performs communication with a wireless terminal that monitors a PDCCH within an on period that occurs every DRX cycle, and a downlink when receiving uplink data from the wireless terminal.
  • a receiving unit that receives a notification indicating that data reception is expected from the wireless terminal.
  • the control unit performs a process of transmitting downlink control information to the wireless terminal via the PDCCH in a predetermined period after receiving the notification, even outside the on period.
  • a wireless terminal includes a control unit that monitors the PDCCH within an on period that occurs every DRX cycle.
  • the controller monitors the PHICH in order to receive ACK / NACK corresponding to the uplink data from the base station after transmitting the uplink data to the base station.
  • the control unit also monitors the PDCCH when monitoring the PHICH even outside the ON period.
  • the base station includes a control unit that performs communication with a wireless terminal that monitors the PDCCH within an on period that occurs every DRX cycle.
  • the control unit performs processing of transmitting ACK / NACK corresponding to the uplink data to the wireless terminal via PHICH after receiving the uplink data from the wireless terminal.
  • the control unit transmits downlink control information to the radio terminal via the PDCCH when transmitting the ACK / NACK even outside the ON period.
  • LTE system mobile communication system
  • UE radio terminal
  • eNB base station
  • eNB base station
  • wireless interface in a LTE system
  • eNB base station
  • wireless frame in a LTE system
  • movement of UE in the DRX state of RRC connected mode It is a figure for demonstrating the outline
  • communication sequence in a LTE system It is a figure which shows an example of the operation
  • FIG. 6 shows a top 5 application by mobile traffic volume and a mobile application analysis.
  • FIG. 3 is a diagram illustrating modeling in a typical use case using HTTP / FTP. It is a figure which shows the problem which may occur concerning an additional remark.
  • the wireless terminal performs a DRX (Discontinuous reception) operation in order to reduce power consumption. Specifically, the wireless terminal monitors the PDCCH within an on period that occurs every DRX cycle. The base station knows the ON period in the wireless terminal, and transmits downlink control information (DCI) to the wireless terminal via the PDCCH within the ON period. DCI includes scheduling information indicating resources allocated to wireless terminals.
  • the base station After receiving data from the core network, the base station must wait for data transmission to the wireless terminal until the wireless terminal enters the on period.
  • the time from when the base station receives data from the core network to when the data is transmitted to the wireless terminal is referred to as “DL transfer delay”.
  • DL transfer delay the time from when the base station receives data from the core network to when the data is transmitted to the wireless terminal.
  • downlink transfer delay can be a serious problem.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and also as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • FIG. 2 is a block diagram of the UE 100 (wireless terminal). As illustrated in FIG. 2, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal. The processor executes the above-described processing and processing described later.
  • FIG. 3 is a block diagram of the eNB 200 (base station). As illustrated in FIG. 3, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes the above-described processing and processing described later.
  • the backhaul communication unit 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control information. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected mode, otherwise, the UE 100 is in the RRC idle mode.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • the UE 100 has the fourth to seventh layers of the OSI reference model as an upper protocol of the radio interface protocol.
  • the transport layer which is the fourth layer, includes TCP (Transmission Control Protocol). TCP will be described later.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • Orthogonal Division Multiple Access (OFDMA) is applied to the downlink
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe mainly includes a physical downlink control channel (PDCCH) for transmitting downlink control information and a physical HARQ indicator for transmitting HARQ ACK / NACK information.
  • PDCCH physical downlink control channel
  • PHICH physical HARQ indicator for transmitting HARQ ACK / NACK information.
  • PHICH physical downlink control channel
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDSCH physical downlink shared channel
  • the eNB 200 basically transmits downlink control information (DCI) to the UE 100 using the PDCCH, and transmits downlink data to the UE 100 using the PDSCH.
  • the downlink control information carried by the PDCCH includes uplink scheduling information, downlink scheduling information, and a TPC command.
  • the uplink scheduling information is scheduling information (UL grant) related to uplink radio resource allocation
  • the downlink scheduling information is scheduling information related to downlink radio resource allocation.
  • the TPC command is information instructing increase / decrease in uplink transmission power.
  • the eNB 200 includes, in the downlink control information, the CRC bits scrambled with the identifier (RNTI: Radio Network Temporary ID) of the destination UE 100 in order to identify the destination UE 100 of the downlink control information.
  • RTI Radio Network Temporary ID
  • Each UE 100 performs blind decoding (blind decoding) on the PDCCH by descrambling the CRC bits with the RNTI of the own UE for the downlink control information that may be addressed to the own UE, and the downlink control information addressed to the own UE. Is detected.
  • the PDSCH carries downlink data using downlink radio resources (resource blocks) indicated by the downlink scheduling information.
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control information.
  • the remaining part in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • the UE 100 basically transmits uplink control information (UCI) to the eNB 200 using the PUCCH, and transmits uplink data to the eNB 200 using the PUSCH.
  • the uplink control information carried by the PUCCH includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), scheduling request (SR), and HARQ ACK / NACK.
  • CQI is an index indicating downlink channel quality, and is used for determining an MCS to be used for downlink transmission.
  • PMI is an index indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is an index indicating the number of layers (number of streams) that can be used for downlink transmission.
  • SR is information for requesting allocation of PUSCH resources.
  • HARQ ACK / NACK is delivery confirmation information indicating whether downlink data has been correctly received.
  • FIG. 6 is a diagram illustrating an operation of the UE 100 in the DRX state of the RRC connected mode.
  • the UE 100 in the DRX state in the RRC connected mode intermittently monitors the PDCCH.
  • the period for monitoring the PDCCH is referred to as “DRX cycle”. Further, the monitoring period that occurs every DRX cycle is referred to as an “on period”. “On duration” may be referred to as “wake-up period”.
  • the period in which the PDCCH need not be monitored may be referred to as a “sleep period” (or “Opportunity for DRX”).
  • Downlink data is transmitted via the PDSCH, and PDSCH scheduling information (downlink scheduling information) is included in the PDCCH.
  • PDSCH scheduling information downlink scheduling information
  • the UE 100 detects scheduling information via the PDCCH in “On duration”, the UE 100 can receive downlink data using the PDSCH resource specified by the scheduling information.
  • DRX cycle includes short DRX cycle and long DRX cycle.
  • “On duration” is the same, and the length of the sleep period is different.
  • “On duration” can be set by “On duration timer” between 1 ms and 200 ms.
  • the long DRX cycle (and offset time) is set by “longDRX-CycleStartOffset”, and the short DRX cycle is set by “shortDRX-Cycle”.
  • long DRX is an indispensable function and short DRX is an optional function in 3GPP specifications. Therefore, the short DRX cycle may not be set in the UE 100.
  • DRX is controlled based on a plurality of timers as follows.
  • Drx-InactivityTimer Number of consecutive subframes (PDCCH subframes) after correctly decoding PDCCH indicating scheduling of uplink (UL) or downlink (DL) user data
  • HARQ RTT Timer HARQ retransmission of DL Minimum number of subframes before the transmission is performed.
  • Drx-RetransmissionTimer period used for retransmission
  • the UE 100 activates “drx-InactivityTimer” when it successfully decodes the PDCCH addressed to itself during “On duration”. At the same time, “HARQ RTT Timer” is started. If DL data cannot be decoded correctly, “HARQ RTT Timer” expires and “drx-RetransmissionTimer” is activated at the same time. The UE 100 stops the “drx-RetransmissionTimer” when receiving the retransmission of the DL data and successfully decoding the DL data. Then, when “drx-InactivityTimer” expires, the sleep period starts.
  • UE100 monitors PDCCH in an Active state.
  • the setting information (On duration, various timers, long DRX cycle, short DRX cycle, etc.) including the above-described DRX parameters is set in the UE 100 by the eNB 200 by “DRX-Config” which is an information element in the individual RRC message.
  • FIG. 7 is a diagram for explaining the outline of TCP.
  • the UE 100 performs TCP communication with a server on the Internet via the LTE system network.
  • the server determines the congestion status of the network based on “TCP ACK” from the UE 100.
  • the server gradually increases the window size in response to reception of “TCP ACK”.
  • the window size is the amount of “TCP Segment” that is continuously transmitted without waiting for “TCP ACK”.
  • the server fails to receive “TCP ACK” (timeout)
  • the server halves the window size. Such control is referred to as “slow start”.
  • the downlink TCP throughput cannot be increased.
  • the time from when the eNB 200 receives data from the EPC 20 to when the data is transmitted to the UE 100 can be shortened, the downlink TCP throughput can be increased.
  • FIG. 8 is a diagram for explaining an example of a communication sequence in the LTE system.
  • UE100 performs DRX operation
  • step S1 the eNB 200 receives a TCP packet (TCP segment) from the EPC 20.
  • TCP segment TCP packet
  • step S2 the eNB 200 allocates the PDSCH resource to the UE 100 using the PDCCH resource. Moreover, eNB200 transmits the downlink data corresponding to the TCP packet received from EPC20 to UE100 using PDSCH resource. Specifically, the eNB 200 transmits DCI including downlink scheduling information to the UE 100 on the PDCCH, and transmits downlink data to the UE 100 using the PDSCH resource indicated by the DCI.
  • the eNB 200 after receiving the TCP packet from the EPC 20, the eNB 200 must wait for data transmission to the UE 100 until the UE 100 enters the ON period.
  • downlink transfer delay DL transfer delay
  • the eNB 200 may allocate (periodic) PUSCH resources to the UE 100 in advance using the PDCCH resources (step S2A). Specifically, eNB200 may transmit DCI containing uplink scheduling information (UL grant) to UE100 on PDCCH. Such a technique is referred to as “Pre-grant”. Note that the following steps S3 to S6 are operations when “Pre-grant” is not performed.
  • the UE 100 receives the downlink data, and moves the downlink data to an upper layer of the UE 100.
  • the upper layer of the UE 100 generates a TCP ACK and notifies the lower layer of the UE 100.
  • the UE 100 determines a PUSCH resource allocation request for the eNB 200 in response to the presence of uplink data (TCP ACK packet) in the transmission buffer (lower layer of the UE 100).
  • step S3 UE100 transmits SR for requesting allocation of a PUSCH resource to eNB200 using a PUCCH resource.
  • step S4 the eNB 200 allocates a PUSCH resource to the UE 100 in response to reception of the SR.
  • step S5 the UE 100 transmits a BSR including buffer information indicating the amount of uplink data in the transmission buffer of the UE 100 to the eNB 200 using the PUSCH resource allocated from the eNB 200.
  • step S6 the eNB 200 allocates an appropriate amount of PUSCH resources to the UE 100 in response to reception of the BSR.
  • UE100 transmits the uplink data (TCP ACK packet) in the transmission buffer of UE100 to eNB200 using the PUSCH resource allocated from eNB200.
  • TCP ACK packet uplink data
  • the UE100 which concerns on 1st Embodiment performs DRX operation
  • the UE 100 receives the special downlink control information that does not include scheduling information from the eNB 200 via the PDCCH and the DRX idle period according to the reception of the special downlink control information. And a control unit 130 that continues to monitor the PDCCH.
  • the special downlink control information may include information specifying a DRX idle period.
  • ENB200 which concerns on 1st Embodiment performs communication with UE100 which performs DRX operation
  • eNB200 is provided with control part 230 which performs processing which transmits special downlink control information which does not contain scheduling information to UE100 via PDCCH within an ON period.
  • the special downlink control information is used for causing the UE 100 to continue monitoring the PDCCH over the DRX idle period.
  • the special downlink control information may include information specifying a DRX idle period.
  • FIG. 9 is a diagram illustrating an example of an operation sequence according to the first embodiment.
  • UE100 performs DRX operation
  • step S11 the UE 100 transmits uplink data (UL data) to the eNB 200 via the PUSCH.
  • the UL data is, for example, an FTP (File Transfer Protocol) get command. However, step S11 is not essential and may be omitted.
  • the eNB 200 transfers the UL data received from the UE 100 to the EPC 20.
  • step S12 the UE 100 monitors the PDCCH within an on period.
  • the eNB 200 transmits special downlink control information (DCI) that does not include scheduling information (“Resource block assignment” and MCS) to the UE 100 via the PDCCH within the ON period.
  • DCI downlink control information
  • Special DCI does not include HARQ process information and TCP commands. That is, the special DCI is substantially empty DCI.
  • the eNB 200 may transmit special DCI to the UE 100 in response to reception of UL data from the UE 100.
  • step S14 the UE 100 activates “drx-InactivityTimer” in response to the successful decoding of the PDCCH addressed to itself within the ON period. That is, the UE 100 shifts to the DRX idle period defined by “drx-InactivityTimer” and continues to monitor the PDCCH over the DRX idle period.
  • the special DCI may include information specifying the value (number of subframes) of “drx-InactivityTimer” temporarily used.
  • the UE 100 monitors the PDCCH during the designated subframe period.
  • step S15 the eNB 200 receives data (TCP packet) from the EPC 20.
  • data TCP packet
  • the eNB 200 recognizes that the UE 100 continues to monitor the PDCCH even after the end of the ON period (that is, the Active state). Therefore, the eNB 200 determines that the PDCCH (and DL data) can be transmitted to the UE 100 even after the end of the ON period.
  • step S16 the eNB 200 transmits DCI including downlink scheduling information to the UE 100 on the PDCCH.
  • step S17 the eNB 200 transmits downlink data (DL data) to the UE 100 using the PDSCH resource indicated by the DCI (downlink scheduling information).
  • the UE 100 receives DL data.
  • the eNB 200 can promptly perform data transmission to the UE 100 after receiving the TCP packet from the EPC 20. Therefore, even when the DRX cycle is long, the downlink transfer delay (DL transfer delay) can be shortened. As a result, downlink TCP throughput can be increased.
  • DL transfer delay downlink transfer delay
  • the UE 100 performs a DRX operation.
  • the UE 100 transmits a notification indicating that reception of the downlink data is expected to the eNB 200, and is turned on in a predetermined period after transmitting the notification.
  • a control unit 130 that continuously monitors the PDCCH even outside the period.
  • the notification includes information indicating the predetermined period, information indicating allocation data amount or throughput expected to receive downlink data, information indicating timing at which downlink data is expected to be received, continuous PDCCH It may include at least one piece of information indicating that monitoring is started. Such information can be obtained from the application layer of the UE 100, for example.
  • ENB200 which concerns on 2nd Embodiment performs communication with UE100 which performs DRX operation
  • the eNB 200 receives uplink data from the UE 100
  • the eNB 200 receives a notification indicating that the downlink data is expected to be received from the UE 100, and is turned on in a predetermined period after receiving the notification.
  • a control unit 230 that performs processing of transmitting downlink control information (DCI) to the UE 100 via the PDCCH even outside the period.
  • DCI downlink control information
  • FIG. 10 is a diagram illustrating an example of an operation sequence according to the second embodiment.
  • UE100 performs DRX operation
  • the UE 100 transmits uplink data (UL data) to the eNB 200 via the PUSCH.
  • the UL data is, for example, an FTP get command.
  • the UE 100 transmits a notification (hereinafter referred to as “DL notification”) indicating that reception of downlink data (DL data) is expected to the eNB 200.
  • the DL notification is transmitted by, for example, a MAC control element (MAC layer signaling).
  • the eNB 200 transfers the UL data received from the UE 100 to the EPC 20.
  • the eNB 200 when receiving the DL notification from the UE 100, the eNB 200 recognizes that the UE 100 is in a state in which monitoring of the PDCCH is continued even during the fixed period outside the ON period (that is, the Active state). Therefore, the eNB 200 determines that the PDCCH (and DL data) can be transmitted to the UE 100 even during the fixed period outside the ON period.
  • the DL notification includes information indicating the certain period, information indicating an allocation data amount or throughput expected to receive DL data, information indicating an expected timing of receiving DL data (for example, after 15 subframes), May be included. These pieces of information are used by the eNB 200 in the DL data transmission process (steps S24 and S25).
  • step S22 the UE 100 starts a timer corresponding to a certain period in response to the transmission of the DL notification. That is, the UE 100 shifts to the DRX idle period determined by the timer, and continues to monitor the PDCCH over the DRX idle period.
  • step S23 the eNB 200 receives data (TCP packet) from the EPC 20.
  • step S24 the eNB 200 transmits DCI including downlink scheduling information to the UE 100 on the PDCCH.
  • the eNB 200 generates downlink scheduling information based on the information.
  • step S25 the eNB 200 transmits DL data to the UE 100 using the PDSCH resource indicated by the DCI (downlink scheduling information).
  • the UE 100 receives DL data.
  • the downlink transfer delay can be shortened, as in the first embodiment.
  • downlink TCP throughput can be increased.
  • the UE 100 When transmitting the UL data in step S21, the UE 100 notifies the eNB 200 that the continuous monitoring (monitoring) of PDCCH is started by the MAC CE or the like, and starts the PDCCH monitoring in step S22 (that is, temporarily performs the DRX operation). May pause).
  • the UE 100 may stop the continuous monitoring of the PDCCH in step S22 when the next DL data is transmitted and return to the normal DRX operation (implicit PDCCH continuous monitoring stop).
  • the UE 100 receives the DL data corresponding to the UL data transmission (get command) in step S21, and stops the continuous monitoring of the PDCCH when notified of reception of the DL data by, for example, an upper layer. Also good.
  • the UE 100 may notify the eNB 200 of the stop of the PDCCH monitoring by MAC CE or the like (explicit PDCCH continuous monitoring stop).
  • the UE 100 performs a DRX operation.
  • UE100 is provided with the control part 130 which monitors PHICH in order to receive ACK / NACK (HARQ ACK / NACK) corresponding to uplink data from eNB200, after transmitting uplink data to eNB200.
  • the UE 100 monitors PHICH regardless of the ON period.
  • the control unit 130 of the UE 100 also monitors the PDCCH when monitoring the PHICH even outside the on period.
  • ENB200 which concerns on 3rd Embodiment communicates with UE100 which performs DRX operation
  • eNB200 is provided with the control part 230 which performs the process which transmits ACK / NACK corresponding to uplink data to UE100 via PHICH, after receiving uplink data from UE100.
  • the control unit 230 transmits downlink control information (DCI) to the UE 100 via the PDCCH when transmitting ACK / NACK even outside the on period.
  • DCI downlink control information
  • FIG. 11 is a diagram illustrating an example of an operation sequence according to the third embodiment.
  • UE100 performs DRX operation
  • step S31 the UE 100 transmits uplink data (UL data) to the eNB 200 via the PUSCH.
  • the eNB 200 transfers the UL data received from the UE 100 to the EPC 20.
  • step S32 the eNB 200 receives data (TCP packet) from the EPC 20.
  • step S33 the UE 100 monitors PHICH in order to receive ACK / NACK corresponding to UL data from the eNB 200.
  • the UE 100 also monitors the PDCCH when monitoring the PHICH even outside the on period. Specifically, the UE 100 monitors the PDCCH in the subframe for monitoring the PHICH.
  • step S34 the eNB 200 transmits ACK / NACK corresponding to the UL data to the UE 100 via the PHICH.
  • UE100 receives ACK / NACK.
  • step S35 the eNB 200 transmits DCI including downlink scheduling information to the UE 100 on the PDCCH.
  • the UE 100 receives the DCI.
  • the DCI may include uplink scheduling information (UL grant) in addition to the downlink scheduling information or instead of the downlink scheduling information.
  • step S36 the eNB 200 transmits DL data to the UE 100 using the PDSCH resource indicated by the DCI (downlink scheduling information).
  • the UE 100 receives DL data.
  • the third embodiment similarly to the first embodiment, it is possible to reduce the downlink transfer delay (DL transfer delay). As a result, downlink TCP throughput can be increased.
  • DL transfer delay downlink transfer delay
  • FIG. 12 is a diagram illustrating an operation according to a modification of the embodiment.
  • the present modification example relates to a method for appropriately controlling the operation according to the above-described embodiment (that is, the operation of reducing the downlink transfer delay).
  • the UE 100 is in the RRC connected mode in the cell of the eNB 200.
  • the UE 100 transmits capability information (UE Capability Information) indicating that the UE 100 has the function according to the embodiment (that is, the function of reducing the downlink transfer delay) to the eNB 200 (step S101). ).
  • the eNB 200 receives “UE Capability Information”. However, the eNB 200 may obtain the “UE Capability Information” from the MME 300 without receiving the “UE Capability Information” from the UE 100.
  • the eNB 200 confirms that the UE 100 has the function according to the embodiment based on “UE Capability Information”. Or UE100 may transmit the notice of interest which shows that it is interested in the function to shorten the transmission delay of a downlink to eNB200.
  • the interest notification may be transmitted from the UE 100 to the eNB 200 by “UE Assistance Information” which is a type of RRC message.
  • the UE 100 may transmit only one or both of the “UE Capability Information” and the interest notification (UE Assistance Information) to the eNB 200.
  • eNB200 transmits the setting information (Configurations) containing the parameter regarding the function which concerns on embodiment to UE100 (step S102).
  • the UE 100 stores the configuration (parameter).
  • the UE 100 performs the operation according to the above-described embodiment only when the configuration (parameter) is stored.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a system other than the LTE system.
  • RAN2 TTI shortening and reduced processing time
  • RAN1 Fast uplink access solutions are resource efficient compared to some implementation technologies with and without some implementation techniques that maintain the current TTI length and processing time, ie TTI shortening. Is expected to improve.
  • This appendix provides initial consideration for research on high-speed uplink access solutions.
  • RAN2 may assume latency reduction due to protocol enhancements as well as shortened TTI. In conclusion, this aspect of this study is to show which latency reduction is desirable [RAN2].
  • the solution is expected to improve network capacity, UE power consumption, and control channel resources.
  • improved TCP throughput can be considered as a key performance indicator.
  • the active UE is continuously transmitting / receiving data. Therefore, the UE is considered in active time. That is, DRX is not applied because the inactivity timer is operating.
  • a UE that has been inactive for a long time but remains RRC connected interprets that the UE needs to transmit at least SR and BSR in order to apply long DRX cycles and perform uplink transmissions Can be done. Furthermore, if the time alignment timer TAT expires, the UE starts a random access procedure before sending the SR. This reduces the user experience, ie the actual response time.
  • the fast uplink access solution should be more resource efficient even if the current TTI length and processing length are assumed.
  • TTI shortening is a more general solution and is expected to reduce not only downlink delivery but also uplink access latency due to increased HARQ interaction.
  • the motivation document states that a possible approach for high-speed uplink access is based on pre-scheduling, which is an implementation technology, and e-allocating uplink resources before SR reception by pre-scheduling.
  • pre-scheduling which is an implementation technology
  • the pre-scheduling technique consumes radio resources on the uplink control channel (ie, PUSCH) and downlink control channel (ie, PDCCH).
  • PUSCH uplink control channel
  • PDCCH downlink control channel
  • the motivational document therefore proposed that a standardized approach is expected to enhance the pre-scheduling technique. This may include pre-authorization, SPS-like mechanisms, no padding when data is not available, and / or a smooth transition to dynamic scheduling.
  • the report also points out that social networking and web browsing use mobile traffic as the second dominant application, which makes these applications typically built on HTTP and therefore use TCP. ing. As many 3GPP representatives are already familiar with, the 3GPP FTP service can be accessed continuously by each agent to download Tdocs that also use TCP. Therefore, the behavior in applications built on HTTP or FTP should be considered as a typical use case.
  • Proposal 1 User behavior in applications built on HTTP and FTP should be considered a typical use case in this study.
  • FIG. 13 is a diagram showing the top five applications and mobile application analysis by mobile traffic volume.
  • the most typical behavior in such an application can be modeled as a request / response dialog. For example, if the user wants to download a file by FTP, the client first sends a RETR command (also known as get) to the server, after which the file download starts.
  • RETR command also known as get
  • the web browser first sends a get, and then the web page is downloaded when the user opens the web page.
  • RAN2 simply assumes that the first uplink data transmission preceding the corresponding DL TCP packet (eg, get-like request) is assumed or fast uplink access resolution. It should be discussed whether measures should be strengthened.
  • Proposal 2 RAN2 should discuss whether the first uplink data transmission preceding the corresponding DL TCP packet is only assumed or should be enhanced in high speed uplink access solutions It is.
  • Serious problem 1 DL transmission delay DL transmission delay is caused by a long DRX cycle. In the worst case, the serving cell needs to wait for a transmission opportunity for 10-2560 subframes after receiving the DL TCP packet.
  • Serious problem 2 Too early / too late assignment
  • Premature assignment can be caused by a pre-scheduling technique or a pre-authorization approach prior to SR reception.
  • an allocation that is too late is an uplink resource for the TCP ACK packet (and thus UE) based on the SR period, ie SR period * sr-ProhibitTimer, or based on a scheduler implementation that is too simple, ie corresponding BSR reception (7 subframes after SR transmission) is allocated.
  • Too many / too few assignments can be caused by a pre-scheduling technique or a pre-authorization approach before BSR. Without knowing the UE buffer status, the scheduler needs to allocate uplink resources blindly.
  • Serious issue 4 Initial uplink delay As stated in observation 4, if TAT is terminated, the UE should initiate a random access procedure before any uplink transmission.
  • Proposal 3 DL transmission delay, too early / too late assignment, too much / too little assignment, TAT termination should be optimized by high speed uplink access solution.
  • RACH procedure enhancement using additional functions for UL data authorization.
  • RAN2 should study not only the UL authorization mechanism itself, but also the procedures related to UL authorization.
  • Proposal 4 RAN2 should also study DRX, SR, BSR, and RACH enhancements.
  • the present invention is useful in the communication field.

Abstract

一つの実施形態に係る無線端末は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部と、前記オン期間内で、前記PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報を基地局から受信する受信部とを備える。前記制御部は、前記特殊な下りリンク制御情報の受信に応じて、DRX休止期間にわたって前記PDCCHの監視を継続する。

Description

無線端末及び基地局
 本発明は、移動通信システムにおいて用いられる無線端末及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、無線通信におけるレイテンシを低減するレイテンシ低減機能の導入が検討されている。このようなレイテンシ低減機能を実現するための技術として、高速上りリンクアクセス技術及びTTI(Transmission Time Interval)短縮技術等が挙げられる。
 一つの実施形態に係る無線端末は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部と、前記オン期間内で、前記PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報を基地局から受信する受信部とを備える。前記制御部は、前記特殊な下りリンク制御情報の受信に応じて、DRX休止期間にわたって前記PDCCHの監視を継続する。
 一つの実施形態に係る基地局は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部を備える。前記制御部は、前記オン期間内で、前記PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報を前記無線端末に送信する処理を行う。前記特殊な下りリンク制御情報は、前記PDCCHの監視をDRX休止期間にわたって前記無線端末に継続させるために用いられる。
 一つの実施形態に係る無線端末は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部と、上りリンクデータを基地局に送信する際に、下りリンクデータの受信が予想されることを示す通知を前記基地局に送信する送信部とを備える。前記制御部は、前記通知を送信してから所定の期間において、前記オン期間外であっても前記PDCCHを監視する。
 一つの実施形態に係る基地局は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部と、上りリンクデータを前記無線端末から受信する際に、下りリンクデータの受信が予想されることを示す通知を前記無線端末から受信する受信部とを備える。前記制御部は、前記通知を受信してから所定の期間において、前記オン期間外であっても、前記PDCCHを介して下りリンク制御情報を前記無線端末に送信する処理を行う。
 一つの実施形態に係る無線端末は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部を備える。前記制御部は、上りリンクデータを基地局に送信した後、前記上りリンクデータに対応するACK/NACKを前記基地局から受信するためにPHICHを監視する。前記制御部は、前記オン期間外であっても、前記PHICHを監視する際に前記PDCCHも監視する。
 一つの実施形態に係る基地局は、DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部を備える。前記制御部は、上りリンクデータを前記無線端末から受信した後、PHICHを介して前記上りリンクデータに対応するACK/NACKを前記無線端末に送信する処理を行う。前記制御部は、前記オン期間外であっても、前記ACK/NACKを送信する際に、前記PDCCHを介して下りリンク制御情報を前記無線端末に送信する。
LTEシステム(移動通信システム)を示す図である。 UE(無線端末)のブロック図である。 eNB(基地局)のブロック図である。 LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 LTEシステムにおいて用いられる無線フレームの構成図である。 RRCコネクティッドモードのDRX状態にあるUEの動作を示す図である。 TCPの概要を説明するための図である。 LTEシステムにおける通信シーケンスの一例を説明するための図である。 第1実施形態に係る動作シーケンスの一例を示す図である。 第2実施形態に係る動作シーケンスの一例を示す図である。 第3実施形態に係る動作シーケンスの一例を示す図である。 第1実施形態乃至第3実施形態の変更例に係る動作を示す図である。 モバイルトラフィックボリュームによる上位5つのアプリケーションを示す図及びモバイルアプリケーション分析を示す図である。 HTTP/FTPを用いた典型的な使用の場合のモデル化を示す図である。 付記に係る起こり得る問題を示す図である。
 [実施形態の概要]
 無線端末は、消費電力を削減するために、DRX(Discontinuous reception)動作を行う。具体的には、無線端末は、DRXサイクルごとに発生するオン期間(On duration)内でPDCCHを監視する。基地局は、無線端末におけるオン期間を把握しており、オン期間内でPDCCHを介して下りリンク制御情報(DCI)を無線端末に送信する。DCIは、無線端末への割当リソースを示すスケジューリング情報を含む。
 基地局は、コアネットワークからデータを受信した後、無線端末がオン期間になるまで、当該無線端末に対するデータ送信を待たなければならない。以下において、基地局がコアネットワークからデータを受信してから当該データを無線端末に送信するまでの時間を「下りリンクの転送遅延(DL transfer delay)」と称する。特に、DRXサイクルが長い場合には、下りリンクの転送遅延が深刻な問題になり得る。
 以下の実施形態において、下りリンクの転送遅延を短縮可能とする技術が開示される。
 [移動通信システム]
 以下において、実施形態に係る移動通信システムであるLTE(Long Term Evolution)システムの概要について説明する。
 (移動通信システムの構成)
 図1は、LTEシステムの構成を示す図である。図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、無線端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる他に、UE100との無線通信を行う機能を示す用語としても用いられる。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、ネットワークを構成する。
 (無線端末の構成)
 図2は、UE100(無線端末)のブロック図である。図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、上述した処理及び後述する処理を実行する。
 (基地局の構成)
 図3は、eNB200(基地局)のブロック図である。図3に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、上述した処理及び後述する処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
 (無線インターフェイスの構成)
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御情報を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードであり、そうでない場合、UE100はRRCアイドルモードである。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 UE100は、無線インターフェイスプロトコルの上位のプロトコルとしてOSI参照モデルの第4層乃至第7層を有する。第4層であるトランスポート層は、TCP(Transmission Control Protocol)を含む。TCPについては後述する。
 (LTE下位層の概要)
 図5は、LTEシステムにおいて用いられる無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御情報を伝送するための物理下りリンク制御チャネル(PDCCH)、及び、HARQ ACK/NACK情報を伝送するための物理HARQインジケータチャネル(PHICH)として用いられる領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH)として用いることができる領域である。
 eNB200は、基本的には、PDCCHを用いて下りリンク制御情報(DCI)をUE100に送信し、PDSCHを用いて下りリンクデータをUE100に送信する。PDCCHが搬送する下りリンク制御情報は、上りリンクスケジューリング情報、下りリンクスケジューリング情報、TPCコマンドを含む。上りリンクスケジューリング情報は上りリンク無線リソースの割当てに関するスケジューリング情報(UL grant)であり、下りリンクスケジューリング情報は、下りリンク無線リソースの割当てに関するスケジューリング情報である。TPCコマンドは、上りリンクの送信電力の増減を指示する情報である。eNB200は、下りリンク制御情報の送信先のUE100を識別するために、送信先のUE100の識別子(RNTI:Radio Network Temporary ID)でスクランブリングしたCRCビットを下りリンク制御情報に含める。各UE100は、自UE宛ての可能性がある下りリンク制御情報について、自UEのRNTIでCRCビットをデスクランブリングすることにより、PDCCHをブラインド復号(Blind decoding)し、自UE宛の下りリンク制御情報を検出する。PDSCHは、下りリンクスケジューリング情報が示す下りリンク無線リソース(リソースブロック)により下りリンクデータを搬送する。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御情報を伝送するための物理上りリンク制御チャネル(PUCCH)として用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH)として用いることができる領域である。
 UE100は、基本的には、PUCCHを用いて上りリンク制御情報(UCI)をeNB200に送信し、PUSCHを用いて上りリンクデータをeNB200に送信する。PUCCHが運搬する上りリンク制御情報は、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、スケジューリング要求(SR)、HARQ ACK/NACKを含む。CQIは、下りリンクのチャネル品質を示すインデックスであり、下りリンク伝送に用いるべきMCSの決定等に用いられる。PMIは、下りリンクの伝送のために用いることが望ましいプレコーダマトリックスを示すインデックスである。RIは、下りリンクの伝送に用いることが可能なレイヤ数(ストリーム数)を示すインデックスである。SRは、PUSCHリソースの割り当てを要求する情報である。HARQ ACK/NACKは、下りリンクデータを正しく受信したか否かを示す送達確認情報である。
 (RRCコネクティッドモードにおけるDRX)
 以下において、RRCコネクティッドモードにおけるDRXについて説明する。図6は、RRCコネクティッドモードのDRX状態にあるUE100の動作を示す図である。
 図6に示すように、RRCコネクティッドモードにおいてDRX状態にあるUE100は、PDCCHを間欠的に監視する。PDCCHを監視する周期は「DRXサイクル(DRX Cycle)」と称される。また、DRXサイクルごとに発生する監視期間は「オン期間(On duration)」と称される。「On duration」は、「ウェイクアップ期間」と称されることもある。PDCCHを監視しなくてもよい期間は、「スリープ期間」(又は「Opportunity for DRX」)と称されることもある。
 下りリンクデータはPDSCHを介して伝送され、PDSCHのスケジューリング情報(下りリンクスケジューリング情報)がPDCCHに含まれている。UE100は、「On duration」においてPDCCHを介してスケジューリング情報を検出した場合、スケジューリング情報により指定されたPDSCHリソースを用いて下りリンクデータを受信することができる。
 DRXサイクルには、ショートDRXサイクル及びロングDRXサイクルがある。ショートDRXサイクル及びロングDRXサイクルは、「On duration」は同じで、スリープ期間の長さが異なる。例えば、「On duration」は、1msから200msまでの間で「On duration timer」により設定が可能である。ロングDRXサイクル(及びオフセット時間)は「longDRX-CycleStartOffset」により設定され、ショートDRXサイクルは「shortDRX-Cycle」により設定される。なお、DRXが設定される場合において、3GPPの仕様上、ロングDRXが必須機能であり、ショートDRXはオプション機能である。よって、ショートDRXサイクルは、UE100に設定されないことがある。
 DRXは、下記のような複数のタイマに基づいて制御される。
 ・drx-InactivityTimer: 上りリンク(UL)或いは下りリンク(DL)のユーザデータのスケジューリングを示すPDCCHを正しく復号した後の連続するサブフレーム(PDCCHサブフレーム)の数
 ・HARQ RTT Timer: DLのHARQ再送が行われるまでの最小サブフレーム数
 ・drx-RetransmissionTimer: 再送に使用される期間
 UE100は、「On duration」中に自身宛のPDCCHの復号に成功すると「drx-InactivityTimer」を起動する。同時に、「HARQ RTT Timer」を起動する。DLデータを正しく復号できなかった場合、「HARQ RTT Timer」が満了すると同時に「drx-RetransmissionTimer」を起動する。UE100は、DLデータの再送を受け、正しく復号できた場合、「drx-RetransmissionTimer」を停止する。そして、「drx-InactivityTimer」が満了すると同時にスリープ期間に移る。
 なお、「On duration timer」、「drx-InactivityTimer」、又は「drx-RetransmissionTimer」が動作中の状態は、「Active状態」と称される。UE100は、Active状態においてPDCCHを監視する。
 上述したDRXの各パラメータを含む設定情報(On duration、各種タイマ、ロングDRXサイクル、ショートDRXサイクル等)は、個別RRCメッセージ中の情報要素である「DRX-Config」によりeNB200がUE100に設定する。
 (TCPの概要)
 図7は、TCPの概要を説明するための図である。実施形態において、UE100は、LTEシステムのネットワークを介して、インターネット上のサーバとのTCP通信を行う。
 図7に示すように、サーバは、UE100からの「TCP ACK」に基づいてネットワークの混雑状況を判断する。サーバは、「TCP ACK」の受信に応じて、ウィンドウサイズを徐々に増加させる。ウィンドウサイズとは、「TCP ACK」を待たずに連続的に送信する「TCP Segment」の量である。一方、サーバは、「TCP ACK」の受信に失敗(タイムアウト)した場合、ウィンドウサイズを半減させる。このような制御は「スロースタート」と称される。
 よって、eNB200が下りリンクにおいてデータ(TCP Segment)を速やかに送信し、且つ、UE100が上りリンクにおいて「TCP ACK」を速やかに送信しなければ、下りリンクのTCPスループットを高めることができない。換言すると、eNB200がEPC20からデータを受信してから当該データをUE100に送信するまでの時間(下りリンクの転送遅延)を短縮できれば、下りリンクのTCPスループットを高めることができる。
 (通信シーケンスの一例)
 図8は、LTEシステムにおける通信シーケンスの一例を説明するための図である。図8において、UE100は、eNB200とのRRC接続を確立した状態(すなわち、RRCコネクテッドモード)においてDRX動作を行う。
 図8に示すように、ステップS1において、eNB200は、EPC20からTCPパケット(TCPセグメント)を受信する。
 ステップS2において、eNB200は、PDCCHリソースを用いて、PDSCHリソースをUE100に割り当てる。また、eNB200は、PDSCHリソースを用いて、EPC20から受信したTCPパケットに対応する下りリンクデータをUE100に送信する。具体的には、eNB200は、下りリンクスケジューリング情報を含むDCIをPDCCH上でUE100に送信し、当該DCIが示すPDSCHリソースを用いてUE100に下りリンクデータを送信する。
 但し、eNB200は、EPC20からTCPパケットを受信した後、UE100がオン期間になるまで、当該UE100に対するデータ送信を待たなければならない。特に、DRXサイクルが長い場合には、下りリンクの転送遅延(DL transfer delay)が深刻な問題になり得る。
 この段階で、eNB200は、PDCCHリソースを用いて、(周期的な)PUSCHリソースを予めUE100に割り当ててもよい(ステップS2A)。具体的には、eNB200は、上りリンクスケジューリング情報(UL grant)を含むDCIをPDCCH上でUE100に送信してもよい。このような手法は、「Pre-grant」と称される。なお、以下のステップS3乃至S6は、「Pre-grant」を行わない場合の動作である。
 UE100は下りリンクデータを受信し、下りリンクデータをUE100の上位層に移動する。UE100の上位層は、TCP ACKを生成してUE100の下位層に通知する。UE100は、送信バッファ(UE100の下位層)に上りリンクデータ(TCP ACKパケット)が存在することに応じて、eNB200に対するPUSCHリソースの割り当ての要求を決定する。
 ステップS3において、UE100は、PUSCHリソースの割り当てを要求するためのSRを、PUCCHリソースを用いてeNB200に送信する。
 ステップS4において、eNB200は、SRの受信に応じて、UE100にPUSCHリソースを割り当てる。
 ステップS5において、UE100は、eNB200から割り当てられたPUSCHリソースを用いて、UE100の送信バッファ内の上りリンクデータの量を示すバッファ情報を含むBSRをeNB200に送信する。
 ステップS6において、eNB200は、BSRの受信に応じて、適切な量のPUSCHリソースをUE100に割り当てる。UE100は、eNB200から割り当てられたPUSCHリソースを用いて、UE100の送信バッファ内の上りリンクデータ(TCP ACKパケット)をeNB200に送信する。
 [第1実施形態]
 以下において、第1実施形態について説明する。
 第1実施形態に係るUE100は、DRXサイクルごとに発生するオン期間内でPDCCHを監視するDRX動作を行う。UE100は、オン期間内で、PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報をeNB200から受信する受信部110と、特殊な下りリンク制御情報の受信に応じて、DRX休止期間にわたってPDCCHの監視を継続する制御部130と、を備える。特殊な下りリンク制御情報は、DRX休止期間を指定する情報を含んでもよい。
 第1実施形態に係るeNB200は、DRXサイクルごとに発生するオン期間内でPDCCHを監視するDRX動作を行うUE100との通信を行う。eNB200は、オン期間内で、PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報をUE100に送信する処理を行う制御部230を備える。特殊な下りリンク制御情報は、PDCCHの監視をDRX休止期間にわたってUE100に継続させるために用いられる。特殊な下りリンク制御情報は、DRX休止期間を指定する情報を含んでもよい。
 図9は、第1実施形態に係る動作シーケンスの一例を示す図である。図9において、UE100は、eNB200とのRRC接続を確立した状態(すなわち、RRCコネクテッドモード)においてDRX動作を行う。
 ステップS11において、UE100は、PUSCHを介して上りリンクデータ(ULデータ)をeNB200に送信する。ULデータは、例えばFTP(File Transfer Protocol)のgetコマンドである。但し、ステップS11は必須ではなく、省略してもよい。eNB200は、UE100から受信したULデータをEPC20に転送する。
 ステップS12において、UE100は、オン期間(On duration)内でPDCCHを監視する。
 ステップS13において、eNB200は、オン期間内で、PDCCHを介して、スケジューリング情報(「Resource block assignment」及びMCS)を含まない特殊な下りリンク制御情報(DCI)をUE100に送信する。特殊なDCIは、HARQプロセス情報及びTCPコマンド等も含まない。すなわち、特殊なDCIは、実質的に空のDCIである。eNB200は、UE100からのULデータの受信に応じて、特殊なDCIをUE100に送信してもよい。
 ステップS14において、UE100は、オン期間内で自身宛のPDCCHの復号に成功したことに応じて、「drx-InactivityTimer」を起動する。すなわち、UE100は、「drx-InactivityTimer」により定められるDRX休止期間に移行し、DRX休止期間にわたってPDCCHの監視を継続する。
 なお、特殊なDCIは、一時的に用いられる「drx-InactivityTimer」の値(サブフレーム数)を指定する情報を含んでもよい。この場合、UE100は、指定されたサブフレーム期間中は、PDCCHの監視を行う。
 ステップS15において、eNB200は、EPC20からデータ(TCPパケット)を受信する。なお、特殊なDCIをUE100に送信した場合、eNB200は、オン期間終了後もUE100がPDCCHの監視を継続する状態(すなわち、Active状態)であると認識する。よって、eNB200は、オン期間終了後もUE100に対するPDCCH(及びDLデータ)の送信が可能であると判断する。
 ステップS16において、eNB200は、下りリンクスケジューリング情報を含むDCIをPDCCH上でUE100に送信する。
 ステップS17において、eNB200は、当該DCI(下りリンクスケジューリング情報)が示すPDSCHリソースを用いて、UE100に下りリンクデータ(DLデータ)を送信する。UE100は、DLデータを受信する。
 このように、第1実施形態によれば、eNB200は、EPC20からTCPパケットを受信した後、当該UE100に対するデータ送信を速やかに行うことができる。よって、DRXサイクルが長い場合でも、下りリンクの転送遅延(DL transfer delay)を短縮することができる。その結果、下りリンクのTCPスループットを高めることができる。
 [第2実施形態]
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。
 第2実施形態に係るUE100は、DRX動作を行う。UE100は、上りリンクデータをeNB200に送信する際に、下りリンクデータの受信が予想されることを示す通知をeNB200に送信する送信部120と、当該通知を送信してから所定の期間において、オン期間外であってもPDCCHを継続的に監視する制御部130と、を備える。当該通知は、当該所定の期間を示す情報、下りリンクデータを受信するために期待する割り当てデータ量又はスループットを示す情報、下りリンクデータの受信が予想されるタイミングを示す情報、PDCCHの継続的な監視を開始することを示す情報のうち少なくとも1つを含んでもよい。これらの情報は、例えば、UE100のアプリケーション層等から得ることができる。
 第2実施形態に係るeNB200は、DRX動作を行うUE100との通信を行う。eNB200は、上りリンクデータをUE100から受信する際に、下りリンクデータの受信が予想されることを示す通知をUE100から受信する受信部220と、当該通知を受信してから所定の期間において、オン期間外であっても、PDCCHを介して下りリンク制御情報(DCI)をUE100に送信する処理を行う制御部230と、を備える。
 図10は、第2実施形態に係る動作シーケンスの一例を示す図である。図10において、UE100は、eNB200とのRRC接続を確立した状態(すなわち、RRCコネクテッドモード)においてDRX動作を行う。
 ステップS21において、UE100は、PUSCHを介して上りリンクデータ(ULデータ)をeNB200に送信する。ULデータは、例えばFTPのgetコマンドである。UE100は、ULデータをeNB200に送信する際に、下りリンクデータ(DLデータ)の受信が予想されることを示す通知(以下、「DL通知」と称する)をeNB200に送信する。DL通知は、例えばMAC制御要素(MAC層シグナリング)により送信される。eNB200は、UE100から受信したULデータをEPC20に転送する。また、eNB200は、DL通知をUE100から受信した場合、一定期間の間はオン期間外でもUE100がPDCCHの監視を継続する状態(すなわち、Active状態)であると認識する。よって、eNB200は、一定期間の間はオン期間外でもUE100に対するPDCCH(及びDLデータ)の送信が可能であると判断する。
 DL通知は、当該一定期間を示す情報、DLデータを受信するために期待する割り当てデータ量又はスループットを示す情報、DLデータの受信が予想されるタイミング(例えば、15サブフレーム後)を示す情報、のうち少なくとも1つを含んでもよい。これらの情報は、DLデータの送信処理(ステップS24及びS25)においてeNB200により利用される。
 ステップS22において、UE100は、DL通知の送信に応じて、一定期間に対応するタイマを起動する。すなわち、UE100は、当該タイマにより定められるDRX休止期間に移行し、DRX休止期間にわたってPDCCHの監視を継続する。
 ステップS23において、eNB200は、EPC20からデータ(TCPパケット)を受信する。
 ステップS24において、eNB200は、下りリンクスケジューリング情報を含むDCIをPDCCH上でUE100に送信する。DLデータを受信するために期待する割り当てデータ量又はスループットを示す情報がDL通知に含まれていた場合、eNB200は、当該情報に基づいて下りリンクスケジューリング情報を生成する。
 ステップS25において、eNB200は、当該DCI(下りリンクスケジューリング情報)が示すPDSCHリソースを用いて、UE100にDLデータを送信する。UE100は、DLデータを受信する。
 このように、第2実施形態によれば、第1実施形態と同様に、下りリンクの転送遅延(DL transfer delay)を短縮することができる。その結果、下りリンクのTCPスループットを高めることができる。
 [第2実施形態の変更例]
 図10に示すシーケンスは、以下のように一部を変更可能である。
 UE100は、ステップS21におけるULデータ送信時に、MAC CE等で、PDCCHの継続的な監視(モニタ)を開始する旨をeNB200に通知し、ステップS22におけるPDCCH監視を開始(つまり、DRX動作を一時的に休止)してもよい。
 また、UE100は、ステップS22におけるPDCCHの継続的な監視を、次回DLデータが伝送された場合に停止して、通常DRX動作に戻してもよい(暗示的なPDCCH継続監視停止)。或いは、UE100は、ステップS21におけるULデータ送信(getコマンド)に対応するDLデータを受信し、例えば上位レイヤから当該DLデータの受信を通知された場合に、PDCCHの継続的な監視を停止してもよい。この場合、UE100は、当該PDCCH監視の停止をMAC CE等でeNB200に通知してもよい(明示的なPDCCH継続監視停止)。
 [第3実施形態]
 以下において、第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
 第3実施形態に係るUE100は、DRX動作を行う。UE100は、上りリンクデータをeNB200に送信した後、上りリンクデータに対応するACK/NACK(HARQ ACK/NACK)をeNB200から受信するためにPHICHを監視する制御部130を備える。なお、LTEの仕様上、UE100は、オン期間と無関係にPHICHを監視する。UE100の制御部130は、オン期間外であっても、PHICHを監視する際にPDCCHも監視する。
 第3実施形態に係るeNB200は、DRX動作を行うUE100との通信を行う。eNB200は、上りリンクデータをUE100から受信した後、PHICHを介して上りリンクデータに対応するACK/NACKをUE100に送信する処理を行う制御部230を備える。制御部230は、オン期間外であっても、ACK/NACKを送信する際に、PDCCHを介して下りリンク制御情報(DCI)をUE100に送信する。
 図11は、第3実施形態に係る動作シーケンスの一例を示す図である。図11において、UE100は、eNB200とのRRC接続を確立した状態(すなわち、RRCコネクテッドモード)においてDRX動作を行う。
 ステップS31において、UE100は、PUSCHを介して上りリンクデータ(ULデータ)をeNB200に送信する。eNB200は、UE100から受信したULデータをEPC20に転送する。
 ステップS32において、eNB200は、EPC20からデータ(TCPパケット)を受信する。
 ステップS33において、UE100は、ULデータに対応するACK/NACKをeNB200から受信するためにPHICHを監視する。UE100は、オン期間外であっても、PHICHを監視する際にPDCCHも監視する。具体的には、UE100は、PHICHを監視するサブフレーム中のPDCCHを監視する。
 ステップS34において、eNB200は、PHICHを介して、ULデータに対応するACK/NACKをUE100に送信する。UE100は、ACK/NACKを受信する。
 ステップS35において、eNB200は、下りリンクスケジューリング情報を含むDCIをPDCCH上でUE100に送信する。UE100は、当該DCIを受信する。当該DCIは、下りリンクスケジューリング情報に加えて、又は下りリンクスケジューリング情報に代えて、上りリンクスケジューリング情報(UL grant)を含んでもよい。
 ステップS36において、eNB200は、当該DCI(下りリンクスケジューリング情報)が示すPDSCHリソースを用いて、UE100にDLデータを送信する。UE100は、DLデータを受信する。
 このように、第3実施形態によれば、第1実施形態と同様に、下りリンクの転送遅延(DL transfer delay)を短縮することができる。その結果、下りリンクのTCPスループットを高めることができる。
 [その他の実施形態]
 図12は、実施形態の変更例に係る動作を示す図である。本変更例は、上述した実施形態に係る動作(すなわち、下りリンクの転送遅延を短縮する動作)を適切に制御するための方法に関する。図12の初期状態において、UE100は、eNB200のセルにおいてRRCコネクティッドモードである。
 図12に示すように、UE100は、実施形態に係る機能(すなわち、下りリンクの転送遅延を短縮する機能)をUE100が有することを示す能力情報(UE Capability Information)をeNB200に送信する(ステップS101)。eNB200は、「UE Capability Information」を受信する。但し、eNB200は、「UE Capability Information」をUE100から受信せずに、「UE Capability Information」をMME300から取得してもよい。eNB200は、「UE Capability Information」に基づいて、実施形態に係る機能をUE100が有することを確認する。或いは、UE100は、下りリンクの転送遅延を短縮する機能に興味を持つことを示す興味通知をeNB200に送信してもよい。興味通知は、RRCメッセージの一種である「UE Assistance Information」によりUE100からeNB200に送信されてもよい。UE100は、「UE Capability Information」及び興味通知(UE Assistance Information)のうち、何れか一方のみ又は両方をeNB200に送信してもよい。eNB200は、実施形態に係る機能に関するパラメータを含む設定情報(Configurations)をUE100に送信する(ステップS102)。UE100は、当該Configurations(パラメータ)を記憶する。UE100は、当該Configurations(パラメータ)を記憶している場合にのみ、上述した実施形態に係る動作を行う。
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外のシステムに本発明を適用してもよい。
 [付記]
 (1.はじめに)
 LTEのためのレイテンシ低減技術に関する新たな研究項目が承認された。この研究の目的は、以下のように、パケットデータレイテンシを低減するために2つの技術分野を識別する。
 ・高速アップリンクアクセス解決策[RAN2]:
 ・TTIショートニングおよび低減された処理時間[RAN1]:
 高速上りリンクアクセス解決策は、現在のTTI長さおよび処理時間、すなわちTTIショートニングを維持することを備えたいくつかの実施技術、および、備えていないいくつかの実施技術と比較して、リソース効率を改善することが期待されている。
 本付記では、高速上りリンクアクセス解決策に関する研究に対する初期検討が提供される。
 (2.議論)
 (2.1.作業仮説)
 本研究のモチベーション文書は、上りリンクリソース割当のための現在の標準化されたメカニズムが、TCPスループットの観点から、LTEの潜在的なスループットパフォーマンスを圧迫することを示している。TCPスループットの低下は、往復時間レイテンシ、すなわちULにおけるTCP-ACK送信によるTCPスロー開始アルゴリズムによって引き起こされる。したがって、高速上りリンクアクセス解決策は、TCPレイヤにおいて構築された上部レイヤによって提供されるユーザ経験を改善することが期待されている。作業仮説のために、SIDは、高速上りリンクアクセス解決策に言及する。
 研究分野は、エアインターフェース容量、バッテリ寿命、制御チャネルリソース、仕様インパクト、および技術的可能性を含むリソース効率を含んでいる。FDDデュプレクスモードとTDDデュプレクスモードとの両方が考慮される。
 第1の態様として、典型的なアプリケーションおよび使用の場合に関するレイテンシ改善による、低減された応答時間、および、改善されたTCPスループットのような潜在的な利得が識別され、文書化される。この評価では、RAN2は、短縮化されたTTIと同様に、プロトコル強化によるレイテンシ低減を仮定し得る。結論として、この研究の本態様は、どのレイテンシ低減が、望ましいであるのかを示すことになっている[RAN2]。
 その解決策は、ネットワーク容量、UE電力消費、制御チャネルリソースを改善することが期待されている。特に、改善されたTCPスループットは、主要なパフォーマンスインジケータとして考慮され得る。
 観察1:DL TCPスループットが、ULレイテンシ低減解決策によって改善されることが期待される。
 高速上りリンクアクセス解決策特有の態様の場合;
 アクティブなUEと、長期間、非アクティブであったが、RRC接続コネクティッドに維持されているUEとのために、スケジュールされたUL送信のためのユーザプレーンレイテンシを低減することと、現在のTTI長さおよび処理時間を維持する維持しない両方について今日の規格によって許容されている事前スケジューリング解決策と比較して、プロトコル強化およびシグナリング強化によって、より高いリソース効率の解決策を得ることと、に注目されるべきである。
 アクティブなUEは、データを連続的に送信/受信していると仮定される。したがって、UEは、アクティブ時間にあると考えられる。すなわち、非アクティビティタイマが動作していることにより、DRXは適用されない。
 観察2:アクティブ時間にあるUEが考慮される。
 長い時間、非アクティブであるが、RRCコネクティッドに維持されているUEは、UEが長いDRXサイクルを適用し、上りリンク送信を実行するために少なくともSRとBSRとを送信する必要があると解釈され得る。さらに、時間アライメントタイマTATが終了した場合、UEは、SR送信前に、ランダムアクセスプロシージャを開始する。これは、ユーザ経験、すなわち、実際の応答時間を低下させる。
 観察3:長いDRXサイクルの適用を備え、UL許可のないUEが考慮される。
 観察4:UEが長い間非アクティブであれば、時間アライメントタイマが終了し得る。
 事前スケジューリング解決策と比較して、高速上りリンクアクセス解決策は、たとえ現在のTTI長さおよび処理長さが仮定されていても、より高いリソース効率であるべきである。TTIショートニングは、より一般的な解決策であり、増加されたHARQインタラクションのおかげで、下りリンク配信のみならず、上りリンクアクセスレイテンシのレイテンシも低減することが期待されている。
 観察5:高速上りリンク解決策は、TTIショートニングアプローチと独立した利得を有する。
 モチベーション文書では、高速上りリンクアクセスのための可能なアプローチが、実施技術である事前スケジューリングに基づいており、事前スケジューリングによって、eNBが、SR受信前に上りリンクリソースを割り当てることが述べられている。しかしながら、UEが送るべき上りリンクデータを有していなくても、事前スケジューリング技術は、上りリンク制御チャネル(すなわち、PUSCH)および下りリンク制御チャネル(すなわち、PDCCH)においてラジオリソースを消費する。既存のSPSが事前スケジューリングのために使用されている場合において、UEは、設定されたSPSリソースの暗黙的な解放を回避するために、パディングデータを送信する必要があることも議論されている。したがって、動機付け文書は、標準化されたアプローチが事前スケジューリング技術を強化することを期待されることを提案した。これは、事前許可、SPS同様のメカニズム、データが利用可能ではない場合における無パディング、および/または、動的なスケジューリングへの円滑な移行を含み得る。
 観察6:標準化されたアプローチは、実施技術と比較して、リソース効率を強化することが期待されている。
 (2.2.典型的な使用の場合)
 今日のモバイルトラフィックの増加は、モバイルビデオトラフィックの成長によって引き起こされ、この傾向は、パブリックレポートによれば、将来のトラフィックを支配することが予想されている。ビデオストリーミングは、(UDPによる)ライブストリーミング向けでなければ、典型的にTCP(TCPによるHTTP)を用いることが良く知られている。したがって、ビデオストリーミングの使用の場合は、この研究の範囲に沿っている。
 レポートはまた、ソーシャルネットワーキングおよびウェブブラウジングは、モバイルトラフィックを、第2の支配的なアプリケーションとして用い、これによって、これらアプリケーションは、典型的にHTTPに構築され、したがって、TCPを使用することを指摘している。多くの3GPP代表者は既に通じているように、3GPP FTPサービスは、TCPも用いるTdocsをダウンロードするために、各代理人によって連続的にアクセスされ得る。したがって、HTTPまたはFTPに構築されたアプリケーションにおける振る舞いは、典型的な使用の場合であると考えられるべきである。
 提案1:HTTPおよびFTPに構築されたアプリケーションにおけるユーザ振る舞いは、この研究における典型的な使用の場合であると考えられるべきである。
 図13は、モバイルトラフィックボリュームによる上位5つのアプリケーション及びモバイルアプリケーション分析を示す図である。
 そのようなアプリケーションにおける最も典型的な振る舞いは、要求/応答ダイアログとしてモデル化され得る。たとえば、ユーザがFTPでファイルをダウンロードしたい場合、クライアントは、RETRコマンド(別名、ゲット)をサーバに先ず送り、その後、ファイルダウンロードが開始する。同じ振る舞いは、HTTPに対しても適用可能である。これによって、図14に例示されるように、ウェブブラウザは、先ずゲットを送り、その後、ユーザがウェブページを開いた時にウェブページがダウンロードされる。典型的な振る舞いを考慮すると、RAN2は、対応するDL TCPパケット(たとえば、ゲットのような要求)に先行する最初の上りリンクデータ送信が、単に仮定されるだけか、または、高速上りリンクアクセス解決策においても強化されるべきであるかを議論すべきである。
 提案2:RAN2は、対応するDL TCPパケットに先行する最初の上りリンクデータ送信が、単に仮定されるだけか、または、高速上りリンクアクセス解決策においても強化されるべきであるかを議論すべきである。
 (2.3.本質的な問題)
 2.1で言及したように、上りリンクアクセスレイテンシに至る深刻な問題は、事前スケジューリング技術、または、強化されたSPSを用いた事前許可技術の何れによっても解決されることはできない。
 深刻な問題1:DL伝送遅れ
 DL伝送遅れは、長いDRXサイクルによって引き起こされる。最悪の場合では、サービス提供セルは、DL TCPパケット受信後、10~2560サブフレームの間、送信機会を待つ必要がある。
 深刻な問題2:早過ぎる/遅過ぎる割当
 早過ぎる割当は、事前スケジューリング技術、または、SR受信前の事前許可アプローチによって引き起こされ得る。一方、遅過ぎる割当は、SR周期、すなわち、SR周期*sr-ProhibitTimerによって、または、単純過ぎるスケジューラ実施、すなわち、対応するBSR受信に基づいて、TCP ACKパケットのための上りリンクリソース(したがって、UEのSR送信後の7サブフレーム)を割り当てるものによって可能となる。
 深刻な問題3:多過ぎる/少な過ぎる割当
 多過ぎる/少な過ぎる割当は、事前スケジューリング技術、または、BSR前の事前許可アプローチによって引き起こされ得る。UEのバッファステータスを知ることなく、スケジューラは、上りリンクリソースを盲目的に割り当てる必要がある。
 深刻な問題4:初期上りリンク遅れ
 観察4で述べられたように、TATが終了した場合、UEは、あらゆる上りリンク送信の前に、ランダムアクセスプロシージャを開始すべきである。
 もちろん、賢い実施が、3つの深刻な問題によるネガティブなインパクト、たとえば、DL IPパケットの内部を理解すること、および、以前の上りリンク許可の使用に基づいて上りリンクリソースを割り当てること、のうちのいくつかを低減し得る。しかしながら、標準化されたアプローチは、上記リストされたすべての問題ではないが、ほとんどを解決することが期待されるであろう。
 提案3:DL伝送遅れ、早過ぎる/遅過ぎる割当、多過ぎる/少な過ぎる割当、TAT終了は、高速上りリンクアクセス解決策によって最適化されるべきである。
 (2.4.潜在的な解決策アプローチ)
 2.3で議論されたように、DRX、SR、BSR、および/または、プロシージャが再考されなければ、深刻な問題は解決されないであろう。これらの問題は、たとえ強化されたSPSを用いた事前許可アプローチが適用されても、対処されることはないであろう。なぜなら、実際の許可と理想的な割当との間のミスマッチ(図15)が、エアインターフェース容量、バッテリ寿命、制御チャネルリソースを含むリソース効率の低下を引き起こすからである。
 観察7:事前許可アプローチは、既存の実施技術と比べて良好なパフォーマンスを有し得るが、これら深刻な問題を未だに解決することはないであろう。
 これら深刻な問題を解決するために、以下の解決策アプローチが考慮され得る。
 たとえば、最初のUL送信(すなわち、ゲット)によってトリガされた、高速なDL割当のための、DRXにおける拡張されたOnDurationハンドリング。
 たとえば、SRとBSRとの統合による、最初のULパケット送信のためのシグナリング往復の低減。
 スペクトル効率へのインパクトの少ない、より短いSR周期[RAN1]。
 たとえば、ULデータ許可のための追加の機能を用いた、RACHプロシージャ強化。
 したがって、RAN2は、UL許可メカニズム自体だけでなく、UL許可に関連するプロシージャも研究すべきである。
 提案4:RAN2はまた、DRX、SR、BSR、およびRACHの強化を研究すべきである。
 (3.結論)
 この付記では、承認された作業項目説明に基づいて作業仮説が議論された。典型的な使用の場合およびそのモデリングが提供される。4つの深刻な問題および潜在的な解決策アプローチが、この研究のために特定される。
 [相互参照]
 米国仮出願第62/162123号(2015年5月15日出願)の全内容が参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (12)

  1.  DRX(Discontinuous reception)サイクルごとに発生するオン期間内でPDCCH(Physical Downlink Control Channel)を監視する制御部と、
     前記オン期間内で、前記PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報を基地局から受信する受信部と、を備え、
     前記制御部は、前記特殊な下りリンク制御情報の受信に応じて、DRX休止期間にわたって前記PDCCHの監視を継続する、
     無線端末。
  2.  前記特殊な下りリンク制御情報は、前記DRX休止期間を指定する情報を含む、
     請求項1に記載の無線端末。
  3. 基地局であって、
     DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部を備え、
     前記制御部は、前記オン期間内で、前記PDCCHを介して、スケジューリング情報を含まない特殊な下りリンク制御情報を前記無線端末に送信する処理を行い、
     前記特殊な下りリンク制御情報は、前記PDCCHの監視をDRX休止期間にわたって前記無線端末に継続させるために用いられる、
     基地局。
  4.  前記特殊な下りリンク制御情報は、前記DRX休止期間を指定する情報を含む、
     請求項3に記載の基地局。
  5.  DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部と、
     上りリンクデータを基地局に送信する際に、下りリンクデータの受信が予想されることを示す通知を前記基地局に送信する送信部と、を備え、
     前記制御部は、前記通知を送信してから所定の期間において、前記オン期間外であっても前記PDCCHを継続的に監視する、
     無線端末。
  6.  前記所定の期間は、前記無線端末が前記基地局から前記下りリンクデータを受信した際に終了する、
     請求項5に記載の無線端末。
  7.  前記通知は、前記所定の期間を示す情報、前記下りリンクデータを受信するために期待する割り当てデータ量又はスループットを示す情報、前記下りリンクデータの受信が予想されるタイミングを示す情報、前記PDCCHの継続的な監視を開始することを示す情報のうち少なくとも1つを含む、
     請求項5に記載の無線端末。
  8.  前記制御部は、前記PDCCHの継続的な監視を停止する場合に、当該停止を前記基地局に通知する、
     請求項5に記載の無線端末。
  9.  DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部と、
     上りリンクデータを前記無線端末から受信する際に、下りリンクデータの受信が予想されることを示す通知を前記無線端末から受信する受信部と、を備え、
     前記制御部は、前記通知を受信してから所定の期間において、前記オン期間外であっても、前記PDCCHを介して下りリンク制御情報を前記無線端末に送信する処理を行う、
     基地局。
  10.  前記通知は、前記一定の期間を示す情報、前記下りリンクデータを受信するために期待する割り当てデータ量又はスループットを示す情報、前記下りリンクデータの受信が予想されるタイミングを示す情報、のうち少なくとも1つを含む、
     請求項9に記載の基地局。
  11. 無線端末であって、
     DRXサイクルごとに発生するオン期間内でPDCCHを監視する制御部を備え、
     前記制御部は、上りリンクデータを基地局に送信した後、前記上りリンクデータに対応するACK(Acknowledgement)/NACK(Negative ACK)を前記基地局から受信するためにPHICH(Physical HARQ Indicator Channel)を監視し、
     前記制御部は、前記オン期間外であっても、前記PHICHを監視する際に前記PDCCHも監視する、
     無線端末。
  12.  基地局であって、
     DRXサイクルごとに発生するオン期間内でPDCCHを監視する無線端末との通信を行う制御部を備え、
     前記制御部は、上りリンクデータを前記無線端末から受信した後、PHICHを介して前記上りリンクデータに対応するACK/NACKを前記無線端末に送信する処理を行い、
     前記制御部は、前記オン期間外であっても、前記ACK/NACKを送信する際に、前記PDCCHを介して下りリンク制御情報を前記無線端末に送信する、
     基地局。
PCT/JP2016/064230 2015-05-15 2016-05-13 無線端末及び基地局 WO2016186016A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16796409.7A EP3297339A4 (en) 2015-05-15 2016-05-13 Wireless terminal and base station
JP2017519174A JP6813481B2 (ja) 2015-05-15 2016-05-13 無線端末及び基地局
US15/574,093 US10735982B2 (en) 2015-05-15 2016-05-13 Radio terminal and base station for monitoring a physical downlink control channel during a discontinuous reception operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562162123P 2015-05-15 2015-05-15
US62/162,123 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016186016A1 true WO2016186016A1 (ja) 2016-11-24

Family

ID=57319913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064230 WO2016186016A1 (ja) 2015-05-15 2016-05-13 無線端末及び基地局

Country Status (4)

Country Link
US (1) US10735982B2 (ja)
EP (1) EP3297339A4 (ja)
JP (1) JP6813481B2 (ja)
WO (1) WO2016186016A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205091A1 (en) * 2017-05-08 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Discontinuous reception (drx) in wireless communication networks
CN111699721A (zh) * 2018-02-16 2020-09-22 上海诺基亚贝尔股份有限公司 用于非许可无线电频带场景的临时浮动下行链路定时方法
JP2021511749A (ja) * 2018-01-31 2021-05-06 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 間欠伝送の方法と装置
JP2021520143A (ja) * 2018-04-13 2021-08-12 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 物理下り制御チャネルのモニタリング方法、ユーザ機器及びネットワーク側機器
CN113873621A (zh) * 2017-03-24 2021-12-31 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
JP2022509323A (ja) * 2018-10-31 2022-01-20 オッポ広東移動通信有限公司 Pdcchのモニタリング方法及び装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015831A1 (zh) * 2015-07-27 2017-02-02 华为技术有限公司 一种传输信息的方法和设备
CN109891969B (zh) * 2016-11-04 2021-09-14 华为技术有限公司 一种调度方法和设备
CN108259150B (zh) * 2016-12-29 2020-09-11 华为技术有限公司 一种信息传输方法及装置
WO2018126357A1 (en) * 2017-01-04 2018-07-12 Qualcomm Incorporated Techniques for indicating or using information about a subsequent physical downlink control channel transmission
CN110351739B (zh) * 2018-04-04 2022-03-25 展讯通信(上海)有限公司 监测pdcch的方法、装置、基站及用户设备
WO2020060278A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 단말의 전력을 절약하는 방법 및 이를 위한 장치
WO2020060284A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 물리 하향링크 제어 채널을 모니터링하는 방법 및 이를 위한 장치
US20220077960A1 (en) * 2019-03-28 2022-03-10 Lg Electronics Inc. Method and apparatus for performing downlink reception based on drx retransmission timer in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086039A1 (ja) * 2010-12-22 2012-06-28 富士通株式会社 移動局、基地局、無線通信システムおよび無線通信方法
WO2014168336A1 (ko) * 2013-04-11 2014-10-16 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169957B2 (en) * 2007-02-05 2012-05-01 Qualcomm Incorporated Flexible DTX and DRX in a wireless communication system
EP2413638B1 (en) * 2007-09-14 2015-10-07 BlackBerry Limited System and method for discontinuous reception control start time
CN101483891B (zh) * 2008-01-08 2012-12-05 株式会社Ntt都科摩 对用户设备设置激活期起始点的方法及装置
US8085694B2 (en) * 2008-03-21 2011-12-27 Sunplus Mmobile Inc. Method for avoiding unnecessary excessive stay of short cycle in discontinuous reception mechanism
GB2461158B (en) * 2008-06-18 2011-03-02 Lg Electronics Inc Method for performing random access procedures and terminal therof
GB2461780B (en) * 2008-06-18 2011-01-05 Lg Electronics Inc Method for detecting failures of random access procedures
WO2010044721A1 (en) * 2008-10-17 2010-04-22 Telefonaktiebolaget L M Ericsson (Publ) Method for improving battery life and harq retransmissions in wireless communications systems
KR101642309B1 (ko) * 2008-11-06 2016-07-25 엘지전자 주식회사 단말의 하향링크 제어채널 모니터링 방법
KR20100052064A (ko) * 2008-11-10 2010-05-19 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
US20110002281A1 (en) * 2008-12-30 2011-01-06 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
EP3761750A1 (en) * 2009-03-12 2021-01-06 Interdigital Patent Holdings, Inc. Method and apparatus for monitoring for a radio link failure
US8817681B2 (en) * 2009-04-20 2014-08-26 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method using a gap pattern
BR122018010328B1 (pt) * 2009-06-15 2021-03-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd método para operar um equipamento de usuário em uma rede sem fio, o equipamento de usuário suportando múltiplas portadoras, e equipamento de usuário
WO2010148192A1 (en) * 2009-06-18 2010-12-23 Interdigital Patent Holdings, Inc. Operating in a discontinuous reception mode employing carrier aggregation
US9264184B2 (en) * 2009-10-30 2016-02-16 Sony Corporation Coordinated signaling of scheduling information for uplink and downlink communications
CN102421148B (zh) * 2010-09-28 2016-03-30 华为技术有限公司 一种控制多种通信系统实现通信的方法和用户设备
CN105898848B (zh) * 2010-09-30 2019-08-06 索尼公司 电子设备、通信方法以及用户设备
ES2799894T3 (es) * 2010-11-15 2020-12-22 Samsung Electronics Co Ltd Procedimiento y aparato para optimizar el consumo de potencia de un terminal en un sistema de comunicación móvil
KR20120067856A (ko) * 2010-12-16 2012-06-26 한국전자통신연구원 단말의 저전력 운용을 위한 무선 통신 시스템 및 무선 통신 시스템의 동작 방법
WO2012115414A2 (en) * 2011-02-21 2012-08-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
EP2692073B1 (en) * 2011-03-31 2018-10-17 LG Electronics Inc. Method and apparatus for monitoring downlink control channel
CA2832067C (en) * 2011-04-01 2019-10-01 Interdigital Patent Holdings, Inc. Method and apparatus for controlling connectivity to a network
US9204392B2 (en) * 2011-04-04 2015-12-01 Kyocera Corporation Mobile communication method and radio terminal
KR20140091697A (ko) * 2011-10-27 2014-07-22 삼성전자주식회사 이동통신 시스템에서 단말의 전력 소모를 효과적으로 감소시키는 방법 및 장치
US20130182626A1 (en) * 2012-01-13 2013-07-18 Innovative Sonic Corporation Method and apparatus for reducing user equipment (ue) power consumption in the rrc (radio resource control) connected mode
US9706422B2 (en) * 2012-02-03 2017-07-11 Nokia Technologies Oy Data buffer status influenced control channel monitoring
EP2849501B1 (en) * 2012-05-09 2020-09-30 Samsung Electronics Co., Ltd. Method and apparatus for controlling discontinuous reception in mobile communication system
CN103391549B (zh) * 2012-05-10 2018-04-06 中兴通讯股份有限公司 一种不连续接收的动态配置方法、终端和基站
KR20140014544A (ko) * 2012-07-24 2014-02-06 주식회사 팬택 다중 요소 반송파 시스템에서 불연속 수신 장치 및 방법
WO2014035074A1 (en) * 2012-08-27 2014-03-06 Lg Electronics Inc. Method and apparatus for configuring a discontinuous reception (drx) operation in a wireless communication system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
WO2014065535A1 (en) * 2012-10-28 2014-05-01 Lg Electronics Inc. Operation with various timers in a wireless communication system
US9204395B2 (en) * 2013-01-15 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for discontinuous receive in communication systems with large number of antennas
US20150098452A1 (en) * 2013-10-09 2015-04-09 Nokia Corporation Method and apparatus for performing discontinuous reception
US10721720B2 (en) * 2014-01-30 2020-07-21 Qualcomm Incorporated Cell On-Off procedure for dual connectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086039A1 (ja) * 2010-12-22 2012-06-28 富士通株式会社 移動局、基地局、無線通信システムおよび無線通信方法
WO2014168336A1 (ko) * 2013-04-11 2014-10-16 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297339A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873621B (zh) * 2017-03-24 2024-04-05 Lg电子株式会社 用于接收寻呼消息的方法和无线设备
CN113873621A (zh) * 2017-03-24 2021-12-31 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
WO2018205091A1 (en) * 2017-05-08 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Discontinuous reception (drx) in wireless communication networks
US11641691B2 (en) 2018-01-31 2023-05-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for discontinuous transmission
JP2021511749A (ja) * 2018-01-31 2021-05-06 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 間欠伝送の方法と装置
JP7027561B2 (ja) 2018-01-31 2022-03-01 オッポ広東移動通信有限公司 間欠伝送の方法と装置
CN111699721A (zh) * 2018-02-16 2020-09-22 上海诺基亚贝尔股份有限公司 用于非许可无线电频带场景的临时浮动下行链路定时方法
EP3753304A4 (en) * 2018-02-16 2021-12-29 Nokia Technologies Oy Temporarily floating dl timing approach for unlicensed radio band scenarios
US11895586B2 (en) 2018-02-16 2024-02-06 Nokia Technologies Oy Temporarily floating dl timing approach for unlicensed radio band scenarios
CN111699721B (zh) * 2018-02-16 2024-02-02 上海诺基亚贝尔股份有限公司 用于非许可无线电频带场景的临时浮动下行链路定时方法
JP7214750B2 (ja) 2018-04-13 2023-01-30 維沃移動通信有限公司 物理下り制御チャネルのモニタリング方法、ユーザ機器及びネットワーク側機器
US11510141B2 (en) 2018-04-13 2022-11-22 Vivo Mobile Communication Co., Ltd. Method, user equipment and network side device for monitoring physical downlink control channel
JP2021520143A (ja) * 2018-04-13 2021-08-12 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 物理下り制御チャネルのモニタリング方法、ユーザ機器及びネットワーク側機器
JP2022509323A (ja) * 2018-10-31 2022-01-20 オッポ広東移動通信有限公司 Pdcchのモニタリング方法及び装置

Also Published As

Publication number Publication date
JP6813481B2 (ja) 2021-01-13
US10735982B2 (en) 2020-08-04
US20180302810A1 (en) 2018-10-18
JPWO2016186016A1 (ja) 2018-03-01
EP3297339A1 (en) 2018-03-21
EP3297339A4 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6813481B2 (ja) 無線端末及び基地局
JP6510700B2 (ja) 基地局及び無線通信方法
JP6783755B2 (ja) 無線端末、基地局、及びプロセッサ
US10833831B2 (en) Controlling UE behavior for CSI/SRS reporting during DRX
US10117229B2 (en) Method and apparatus for using a configured resource in a wireless communication system
US8811323B2 (en) Apparatus and method for discontinuous data reception in wireless communication system
JP6641034B2 (ja) 無線端末、基地局、無線通信方法、及び無線通信システム
JP7203229B2 (ja) Nrユーザ機器のための選択的クロススロットスケジューリング
JP6886399B2 (ja) 無線端末、基地局、及びプロセッサ
WO2014163139A1 (ja) 基地局、ユーザ端末、及び通信制御方法
KR20120115956A (ko) 이동통신 시스템에서 배터리 세이빙 모드의 단말이 역방향 제어 신호를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519174

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE