WO2020060278A1 - 단말의 전력을 절약하는 방법 및 이를 위한 장치 - Google Patents

단말의 전력을 절약하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020060278A1
WO2020060278A1 PCT/KR2019/012221 KR2019012221W WO2020060278A1 WO 2020060278 A1 WO2020060278 A1 WO 2020060278A1 KR 2019012221 W KR2019012221 W KR 2019012221W WO 2020060278 A1 WO2020060278 A1 WO 2020060278A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
downlink data
dci
base station
received
Prior art date
Application number
PCT/KR2019/012221
Other languages
English (en)
French (fr)
Inventor
황대성
박창환
서인권
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020060278A1 publication Critical patent/WO2020060278A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method for saving power of a terminal and an apparatus therefor. More specifically, the terminal receives additional information for power saving of the terminal from the base station, and the terminal is based on the additional information. It relates to a method for receiving the PDSCH (Physical Downlink Shared Channel) and a device therefor.
  • PDSCH Physical Downlink Shared Channel
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means to provide streams rated at hundreds of megabits per second to gigabit per second. This fast speed is required to deliver TV in 4K (6K, 8K and higher) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include almost immersive sports events. Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
  • Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high-quality connections regardless of their location and speed.
  • Another example of application in the automotive field is the augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window, and superimposes and displays information telling the driver about the distance and movement of the object.
  • wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system helps the driver to reduce the risk of accidents by guiding alternative courses of action to make driving safer.
  • the next step will be remote control or a self-driven vehicle.
  • This requires very reliable and very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
  • self-driving vehicles will perform all driving activities, and drivers will focus only on traffic beyond which the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles require ultra-low delays and ultra-high-speed reliability to increase traffic safety to levels beyond human reach.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each assumption.
  • Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include supplier and consumer behavior, so smart grids can improve efficiency, reliability, economics, production sustainability and distribution of fuels like electricity in an automated way.
  • the smart grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with cable-like delay, reliability and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems.
  • Logistics and freight tracking use cases typically require low data rates, but require wide range and reliable location information.
  • the present invention is to provide a method for saving power of a terminal and an apparatus therefor.
  • a random access preamble (Random Access Preamble) related to an SS / PBCH block (Synchronization Signal / Physical Broadcast Channel Block) received from a base station And transmits a RRC connection with the base station by requesting a radio resource control (RRC) connection based on a random access response (RAR) received from the base station, and transmits it for a specific time period
  • RRC radio resource control
  • RAR random access response
  • the information related to the downlink data is information on the amount of downlink data transmitted during the specific time period, and receiving the DCI means that downlink data corresponding to the amount of downlink data Until received, the DCI may be received.
  • the information related to the downlink data is information on the number of transport blocks (TBs) transmitted during the specific time period, and receiving the DCI receives TBs corresponding to the number of TBs. Until, DCI can be received.
  • TBs transport blocks
  • the information related to the downlink data is information on the number of downlink control channels transmitted during the specific time period, and receiving the DCI, a downlink control channel corresponding to the number of downlink control channels Until this is received, the DCI can be received.
  • the information related to the downlink data is information related to the start point and length of the specific time interval, and receiving the DCI can receive the DCI based on the start point and length of the specific time interval.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for receiving downlink data comprising: at least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • Random Access Preamble a random access preamble related to the SS / PBCH block (Synchronization Signal / Physical Broadcast Channel Block) received from the RRC (RRC) based on the random access response (Random Access Response; RAR) received from the base station Radio Resource Control) requesting a connection to acquire an RRC connection with the base station, receive information related to the downlink data transmitted during a specific time period, and downlink based on the information related to the downlink data Receives downlink control information (DCI) and downlinks based on the DCI You may receive a larger data.
  • RRC Random Access Preamble
  • RAR Random Access Response
  • the information related to the downlink data is information on the amount of downlink data transmitted during the specific time period, and receiving the DCI means that downlink data corresponding to the amount of downlink data Until received, the DCI may be received.
  • the information related to the downlink data is information on the number of transport blocks (TBs) transmitted during the specific time period, and receiving the DCI receives TBs corresponding to the number of TBs. Until, DCI can be received.
  • TBs transport blocks
  • the information related to the downlink data is information on the number of downlink control channels transmitted during the specific time period, and receiving the DCI, a downlink control channel corresponding to the number of downlink control channels Until this is received, the DCI can be received.
  • the information related to the downlink data is information related to the start point and length of the specific time interval, and receiving the DCI can receive the DCI based on the start point and length of the specific time interval.
  • the device may be able to communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle.
  • a terminal for receiving downlink data comprising: at least one transceiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • a random access preamble (Random Access Preamble) related to the SS / PBCH block (Synchronization Signal / Physical Broadcast Channel Block) received from the RRC (RRC) based on the random access response (Random Access Response; RAR) received from the base station Radio Resource Control) requesting a connection to acquire an RRC connection with the base station, receive information related to the downlink data transmitted during a specific time period through the at least one transceiver, and receive the at least one Through the transceiver, the downlink system based on the information related to the downlink data Information; receiving (Downlink Control Information DCI), and through the at least one transmitter, can receive the downlink data based on the DCI.
  • RRC Random Access Preamble
  • RAR Random Access Response
  • the power consumption of the terminal can be optimized to transmit and receive downlink signals.
  • 1 to 3 show examples of various wireless devices to which embodiments of the present invention are applied.
  • FIG. 4 shows an example of a signal processing circuit to which embodiments of the present invention are applied.
  • FIG. 5 is a diagram showing a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 6 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
  • FIGS. 7 to 8 are diagrams showing an example of the structure and transmission of an SS / PBCH block (Synchronization Signal / Physical Broadcast Channel Block) used in the NR system.
  • SS / PBCH block Synchronization Signal / Physical Broadcast Channel Block
  • 10 to 12 are diagrams for describing a downlink control channel (PDCCH) in an NR system.
  • PDCCH downlink control channel
  • 13 to 15 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • 16 to 18 show an example of an operation implementation of a terminal, a base station and a network according to an embodiment of the present invention.
  • FIG. 19 shows an example of a wireless communication environment to which embodiments of the present invention can be applied.
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, as an example, the embodiment of the present invention can be applied to any communication system corresponding to the above definition.
  • the name of the base station may be used as a comprehensive term including a remote radio head (RRH), eNB, transmission point (TP), reception point (RP), relay, and the like.
  • RRH remote radio head
  • eNB transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlinks corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • the format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and reference signals and synchronization signals Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the gNB and the UE know each other, for example, cell specific RS, UE- UE-specific RS (UE-RS), positioning RS (positioning RS, PRS), and channel state information RS (channel state information RS, CSI-RS) are defined as downlink reference signals.
  • UE-RS UE-UE-specific RS
  • positioning RS positioning RS
  • PRS positioning RS
  • channel state information RS channel state information RS
  • CSI-RS channel state information RS
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from a higher layer. Defines uplink physical signals.
  • a physical uplink shared channel PUSCH
  • a physical uplink control channel PUCCH
  • a physical random access channel PRACH
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • downlink ACK / NACK ACKnowlegement / Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE, respectively. It is referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource.
  • the expression that the user equipment transmits PUCCH / PUSCH / PRACH is uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
  • the gNB transmits the PDCCH / PCFICH / PHICH / PDSCH, respectively, is the downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH. It is used in the same sense as sending it.
  • CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured (configured) OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier It is called / subcarrier / RE.
  • an OFDM symbol to which tracking RS (TRS) is assigned or configured is called a TRS symbol
  • a subcarrier to which TRS is assigned or configured is called a TRS subcarrier
  • a TRS is assigned.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a synchronization signal (eg, PSS and / or SSS) is transmitted is a synchronization signal subframe or a PSS / SSS subframe. It is called.
  • the OFDM symbols / subcarriers / REs to which PSS / SSS is assigned or configured are called PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are antenna ports configured to transmit CRS and antenna ports configured to transmit UE-RS, respectively.
  • Antenna ports configured to transmit CRSs may be distinguished from each other by positions of REs occupied by CRSs according to CRS ports, and antenna ports configured to transmit UE-RSs are configured to UEs.
  • UE-RS may be distinguished by location of REs occupied, and antenna ports configured to transmit CSI-RSs are occupied by CSI-RS according to CSI-RS ports. It can be distinguished from each other by the location of the REs.
  • CRS / UE-RS / CSI-RS / TRS port is also used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS within a certain resource region.
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and Ultra-reliable and Low Latency Communications (URLLC) domain.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, dedicated voice services may not be seen.
  • 5G it is expected that voice will be processed as an application program simply using the data connection provided by the communication system.
  • the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile internet connections will become more widely used as more devices connect to the internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data transfer rate.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end delay to maintain a good user experience when a tactile interface is used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential for smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires a very low delay and an instantaneous amount of data.
  • URLLC includes new services that will transform the industry through ultra-reliable / low-latency links, such as remote control of the main infrastructure and self-driving vehicles. Reliability and level of delay are essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • FIG. 1 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and / or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 102 and the memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and / or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • the following operations are described based on the control operation of the processor 102 from the viewpoint of the processor 102, but may be stored in the memory 104 or the like for software code for performing the operation.
  • the processor 102 may control the transceiver 106 to receive information on a packet generated by the second wireless device 200 based on the amount and / or characteristics of downlink data to be transmitted to the processor 102. .
  • a method of receiving information on the packet may be in accordance with embodiments described below.
  • the processor 102 monitors a PDCCH (Physical Downlink Control Channel) based on the information on the packet, and a transceiver to receive a Physical Downlink Shared Channel (PDSCH) based on the Downlink Control Information (DCI) included in the PDCCH ( 106) can be controlled.
  • a PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • Processor 202 controls memory 204 and / or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information / signal, and then transmit a wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information / signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and / or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and / or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • the following operations are described based on the control operation of the processor 202 from the viewpoint of the processor 202, but may be stored in the memory 204, such as software code for performing the operation.
  • the processor 202 may control the transceiver 206 to transmit information on the generated packet based on the amount and / or characteristics of downlink data to be transmitted to the first wireless device 100. At this time, a method for generating and transmitting information on the packet may be in accordance with embodiments described below.
  • the processor 202 controls the transceiver 206 to transmit a PDCCH (Physical Downlink Control Channel) based on the information on the packet, and a Physical Downlink Shared PDSCH (PDSCH) based on the Downlink Control Information (DCI) included in the PDCCH Channel), the transceiver 206 may be controlled.
  • a PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared PDSCH
  • DCI Downlink Control Information
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and / or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data or information may be obtained according to the fields.
  • signals eg, baseband signals
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202, or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and / or instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium and / or combinations thereof.
  • the one or more memories 104, 204 may be located inside and / or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals / channels, and the like referred to in the methods and / or operational flowcharts of the present document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals / channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 process the received user data, control information, radio signals / channels, etc. using one or more processors 102, 202, and receive radio signals / channels from the RF band signal. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals / channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and / or filters.
  • the wireless device 2 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-example / service (see FIG. 19).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 1, and various elements, components, units / units, and / or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver (s) 114.
  • communication circuit 112 may include one or more processors 102 and 202 of FIG. 1 and / or one or more memories 104 and 204.
  • the transceiver (s) 114 may include one or more transceivers 106,206 and / or one or more antennas 108,208 of FIG. 1.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless / wired interface through the communication unit 110, or externally (eg, through the communication unit 110) Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130. Accordingly, the operation process of the specific control unit 120 according to the present invention and the programs / codes / instructions / information stored in the memory unit 130 include at least one operation and memory 104, 204 of the processors 102, 202 of FIG. ).
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an input / output unit (I / O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 19, 100A), vehicles (FIGS. 19, 100B-1, 100B-2), XR devices (FIGS. 19, 100C), portable devices (FIGS. 19, 100D), and household appliances. (Fig. 19, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate / environment device
  • It may be implemented in the form of an AI server / device (FIGS. 19 and 400), a base station (FIGs. 19 and 200), a network node, and the like.
  • the wireless device may be movable or used in a fixed place depending on the use-example / service.
  • various elements, components, units / parts, and / or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and / or combinations thereof.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130 / 140a through 140d correspond to blocks 110/130/140 in FIG. 15, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward / Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed / direction adjustment).
  • a driving plan eg, speed / direction adjustment.
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • FIG. 4 illustrates a signal processing circuit for a transmission signal.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations / functions of FIG. 4 may be performed in the processors 102, 202 and / or transceivers 106, 206 of FIG.
  • the hardware elements of FIG. 4 can be implemented in the processors 102, 202 and / or transceivers 106, 206 of FIG. 1.
  • blocks 1010 to 1060 may be implemented in processors 102 and 202 of FIG. 1.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 1
  • block 1060 may be implemented in the transceivers 106 and 206 of FIG. 1.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 4.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, UL-SCH transport block, DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on the initialization value, and the initialization value may include ID information of the wireless device.
  • the scrambled bit sequence can be modulated into a modulated symbol sequence by the modulator 1020.
  • the modulation method may include pi / 2-Binary Phase Shift Keying (pi / 2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port (s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N * M.
  • N is the number of antenna ports and M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transformation) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to time-frequency resources.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • the signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal can be transmitted to other devices through each antenna. To this end, the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, etc. .
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the inverse of the signal processing processes 1010 to 1060 of FIG. 4.
  • a wireless device eg, 100 and 200 in FIG. 2 may receive a wireless signal from the outside through an antenna port / transceiver.
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal recoverer may include a frequency downlink converter (ADC), an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC frequency downlink converter
  • ADC analog-to-digital converter
  • CP remover a CP remover
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • the codeword can be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a de-scrambler and a decoder.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane means a path through which data generated at the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transmission channel. Data is moved between the medium access control layer and the physical layer through the transmission channel. Data is moved between the physical layer of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources. Specifically, the physical channel is modulated by OFDMA (Orthogonal Frequency Division Multiple Access) in the downlink, and modulated by Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • the radio bearer means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode).
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a PCH (Paging Channel) for transmitting paging messages, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH Policy Channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH, or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transmission channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast. Traffic Channel
  • FIG. 6 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
  • the terminal performs an initial cell search operation such as synchronizing with the base station when the power is turned on or newly enters the cell (S601).
  • the terminal may receive a primary synchronization signal (Primary Synchronization Signal, PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS) from the base station to synchronize with the base station and obtain information such as cell ID.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE obtains more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information carried on the PDCCH. It can be done (S602).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (Random Access Procedure, RACH) to the base station (S603 to S606).
  • RACH Random Access Procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and a response message for the preamble through a PDCCH and a corresponding PDSCH ((Random Access (RAR) Response) message)
  • PRACH physical random access channel
  • RAR Random Access
  • a contention resolution procedure may be additionally performed (S606).
  • the UE that has performed the above-described procedure is a general uplink / downlink signal transmission procedure, and then receives PDCCH / PDSCH (S607) and physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink). Control Channel (PUCCH) transmission (S608) may be performed.
  • the terminal may receive downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and formats may be differently applied according to purpose of use.
  • control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like.
  • the UE may transmit the control information such as CQI / PMI / RI described above through PUSCH and / or PUCCH.
  • the NR system is considering using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high transmission rate to a large number of users using a wide frequency band.
  • a high ultra-high frequency band that is, a millimeter frequency band of 6 GHz or more
  • this is called NR, and in the present invention, it will be referred to as NR system in the future.
  • the NR system uses an OFDM transmission scheme or a similar transmission scheme.
  • the NR system may follow OFDM parameters different from those of LTE.
  • the NR system follows the existing neurology of LTE / LTE-A, but may have a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of neurology. That is, UEs operating with different numerology can coexist in one cell.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is mixed with SS / PBCH (Synchronization Signal / Physical Broadcast channel) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast channel
  • SSB is composed of PSS, SSS and PBCH.
  • SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS / PBCH and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers
  • PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH.
  • the PBCH is composed of a data RE and a DMRS (Demodulation Reference Signal) RE for each OFDM symbol. There are three DMRS REs for each RB, and three data REs exist between the DMRS REs.
  • Cell search refers to a process in which a terminal acquires time / frequency synchronization of a cell and detects a cell ID (eg, Physical layer Cell ID, PCID) of the cell.
  • PSS is used to detect the cell ID in the cell ID group
  • SSS is used to detect the cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as in Table 1 below.
  • 336 cell ID groups exist, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs.
  • Information about the cell ID group to which the cell ID of the cell belongs is provided / obtained through the SSS of the cell, and information about the cell ID among the 336 cells in the cell ID is provided / obtained through the PSS
  • the SSB is periodically transmitted according to the SSB period.
  • the SSB basic period assumed by the UE is defined as 20 ms.
  • the SSB period can be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a network eg, a base station.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum transmission number L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains up to two SSBs.
  • the time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
  • the time position of the SSB candidate is indexed from 0 to L-1 according to the time order within the SSB burst set (ie, half-frame) (SSB index).
  • -Case A-15 kHz SCS The index of the starting symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14 * n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case B-30 kHz SCS The index of the starting symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
  • n 0.
  • n 0, 1.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the random access process of the UE can be summarized as shown in Table 2 and FIG. 8.
  • Type of signal Actions / Information Obtained Stage 1 PRACH preamble in UL * Initial beam acquisition * Random selection of random access preamble ID Stage 2 Random access response on PDSCH * Timing advance information * Random access preamble ID * Initial UL grant, temporary C-RNTI Stage 3 UL transmission on PUSCH * RRC connection request * UE identifier Stage 4 Contention resolution on DL * Temporary C-RNTI on PDCCH for initial access * C-RNTI on PDCCH for UE that is RRC_CONNECTED
  • the random access process is used for various purposes.
  • the random access procedure may be used for network initial access, handover, and UE-triggered UL data transmission.
  • the UE may acquire UL synchronization and UL transmission resources through a random access process.
  • the random access process is divided into a contention-based random access process and a contention-free random access process.
  • 9 illustrates an example of a random access process. In particular, Figure 9 illustrates a contention-based random access process.
  • the UE may transmit a random access preamble as Msg1 of a random access process in the UL through the PRACH.
  • Random access preamble sequences having two different lengths are supported.
  • the long sequence length 839 applies for subcarrier spacing of 1.25 and 5 kHz, and the short sequence length 139 applies for subcarrier spacing of 15, 30, 60 and 120 kHz.
  • RACH configuration for a cell is included in system information of the cell and provided to the UE.
  • the RACH setting includes information on the subcarrier spacing of the PRACH, available preambles, preamble format, and the like.
  • the RACH configuration includes association information between SSBs and RACH (time-frequency) resources. The UE transmits a random access preamble in the RACH time-frequency resource associated with the detected or selected SSB.
  • the threshold of the SSB for RACH resource association may be set by the network, and the reference signal received power (RSRP) measured based on the SSB may transmit the RACH preamble based on the SSB that satisfies the threshold. Or retransmission is performed.
  • the UE may select one of the SSB (s) that satisfies the threshold, and transmit or retransmit the RACH preamble based on the RACH resource associated with the selected SSB.
  • the BS When the BS receives a random access preamble from the UE, the BS sends a random access response (RAR) message (Msg2) to the UE.
  • RAR random access response
  • the PDCCH for scheduling the PDSCH carrying the RAR is CRC masked and transmitted with a random access (RA) radio network temporary identifier (RNTI) (RA-RNTI).
  • RA-RNTI random access radio network temporary identifier
  • a UE that detects a PDCCH masked with RA-RNTI may receive RAR from a PDSCH scheduled by a DCI carried by the PDCCH.
  • the UE checks whether the preamble transmitted by itself, that is, random access response information for Msg1 is in the RAR.
  • Whether random access information for Msg1 transmitted by the user exists may be determined by whether a random access preamble ID for the preamble transmitted by the UE exists. If there is no response to Msg1, the UE may retransmit the RACH preamble within a predetermined number of times while performing power ramping. The UE calculates the PRACH transmit power for retransmission of the preamble based on the most recent path loss and power ramping counter.
  • the random access response information includes timing advance information for UL synchronization, UL grant, and UE temporary UE receiving random access response information for itself on a PDSCH
  • the UE timing advance information for UL synchronization, initial UL Grant, UE temporary (temporary) cell RNTI (cell RNTI, C-RNTI) can be known.
  • the timing advance information is used to control uplink signal transmission timing.
  • the network eg, BS
  • the UE may transmit UL transmission on the uplink shared channel as Msg3 of a random access process based on random access response information.
  • Msg3 may include an RRC connection request and a UE identifier.
  • the network can send Msg4, which can be treated as a contention resolution message on the DL.
  • Msg4 the UE can enter the RRC connected state.
  • the contention-free random access procedure may be used when the UE is handed over to another cell or BS, or may be performed when requested by the BS.
  • the basic process of the contention-free random access process is similar to the contention-based random access process.
  • the preamble hereinafter, a dedicated random access preamble
  • the preamble is determined by BS It is assigned to the UE.
  • Information on the dedicated random access preamble may be included in an RRC message (eg, handover command) or provided to the UE through a PDCCH order.
  • the UL grant in the RAR schedules PUSCH transmission to the UE.
  • the PUSCH carrying the initial UL transmission by the UL grant in the RAR is also referred to as Msg3 PUSCH.
  • the content of the RAR UL grant starts at MSB and ends at LSB, and is given in Table 3.
  • RAR UL grant field Number of bits Frequency hopping flag One Msg3 PUSCH frequency resource allocation 12 Msg3 PUSCH time resource allocation 4 Modulation and coding scheme (MCS) 4 Transmit power control (TPC) for Msg3 PUSCH 3 CSI request One
  • the TPC command is used to determine the transmission power of the Msg3 PUSCH, and is interpreted according to Table 4, for example.
  • the CSI request field in the RAR UL grant indicates whether the UE includes the aperiodic CSI report in the corresponding PUSCH transmission.
  • the subcarrier interval for Msg3 PUSCH transmission is provided by the RRC parameter.
  • the UE will transmit PRACH and Msg3 PUSCH on the same uplink carrier in the same service providing cell.
  • UL BWP for Msg3 PUSCH transmission is indicated by SIB1 (SystemInformationBlock1).
  • the base station transmits the related signal to the terminal through the downlink channel described below, and the terminal receives the related signal from the base station through the downlink channel described below.
  • PDSCH Physical downlink shared channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAMK), 64 QAM, and 256 QAM are used. Applies.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. For each codeword, scrambling and modulation mapping are performed, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) and is generated as an OFDM symbol signal and transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8 and 16 control channel elements (CCEs) according to an aggregation level (AL).
  • CCE is composed of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents a RE to which DMRS is mapped
  • DMRS is mapped to RE # 1, RE # 5 and RE # 9 in the frequency domain direction in one symbol.
  • CORESET Control Resource Set
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.). Multiple OCRESETs for one UE may overlap in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific upper layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of symbols (up to 3) constituting the CORESET may be set by higher layer signaling.
  • the precoder granularity in the frequency domain for each CORESET is set to one of the following by higher layer signaling:
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, REGs are sequentially numbered from 0 starting from the first OFDM symbol in the lowest-numbered resource block inside CORESET.
  • the CCE to REG mapping type is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • Fig. 11 (a) illustrates the non-interleaved CCE-REG mapping type
  • Fig. 11 (b) illustrates the interleaved CCE-REG mapping type.
  • Non-interleaved CCE-REG mapping type (or localized mapping type): 6 REGs for a given CCE constitute one REG bundle, and all REGs for a given CCE are contiguous. One REG bundle corresponds to one CCE
  • CCE-REG mapping type (or Distributed mapping type): 2, 3 or 6 REGs for a given CCE constitute one REG bundle, and the REG bundle is interleaved within CORESET.
  • the REG bundle in CORESET composed of 1 OFDM symbol or 2 OFDM symbols consists of 2 or 6 REGs, and the REG bundle in CORESET composed of 3 OFDM symbols consists of 3 or 6 REGs.
  • the size of REG bundle is set per CORESET
  • the number of rows (A) of the (block) interleaver for the interleaving operation as described above is set to one of 2, 3, and 6.
  • the number of columns of the block interleaver is equal to P / A.
  • the write operation for the block interleaver is performed in the row-first direction as shown in FIG. 12 below, and the read operation is performed in the column-first direction.
  • the cyclic shift (CS) of the interleaving unit is applied based on an ID that can be independently set and an ID that can be set for DMRS.
  • the UE obtains DCI transmitted through the PDCCH by performing decoding (aka blind decoding) on the set of PDCCH candidates.
  • the set of PDCCH candidates that the UE decodes is defined as a set of PDCCH search spaces.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more set of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more search space sets, and each search space set is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId represents the control resource set related to the search space set
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol (s) of the control resource set)
  • Table 5 illustrates the features of each search space type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 6 illustrates DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group) -based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used to schedule the TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule the TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH You can.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH (PDCCH), which is a PDCCH delivered to UEs defined as one group.
  • PDCH group common PDCCH
  • FIG. 13 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1ms subframes (Subframe, SF).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Normally, if CP is used, each slot contains 14 symbols.
  • each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 7 exemplifies that when CP is normally used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to SCS.
  • Table 8 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • P contiguous RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 4) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot.
  • a DL control channel hereinafter, DL control region
  • the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • the resource region hereinafter referred to as a data region
  • the resource region (hereinafter referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • the following configuration may be considered. Each section was listed in chronological order.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • DCI downlink control information
  • DL data scheduling information for example, DL data scheduling information, UL data scheduling information, and the like
  • uplink control information for example, ACK / NACK (Positive Acknowledgement / Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode.
  • some symbols at a time point of switching from DL to UL may be set to GP.
  • up to 400 MHz can be supported per carrier.
  • the UE operating in such a wideband carrier is always operated with the radio frequency (RF) module for the entire carrier turned on, UE battery consumption may increase.
  • RF radio frequency
  • different numerology eg, subcarrier spacing
  • the base station may instruct the UE to operate only in a partial bandwidth, not the entire bandwidth of the wideband carrier, and the corresponding partial bandwidth is referred to as a bandwidth part (BWP).
  • BWP bandwidth part
  • BWP is a subset of contiguous common resource blocks defined for the neurology ⁇ i in the bandwidth part i on the carrier, and one neurology (eg, subcarrier spacing, CP length, slot / mini-slot) Duration) can be set.
  • one neurology eg, subcarrier spacing, CP length, slot / mini-slot
  • the base station may set one or more BWPs in one carrier set for the UE.
  • some UEs may be moved to another BWP for load balancing.
  • some spectrums of the entire bandwidth may be excluded and both BWPs of the cell may be set in the same slot in consideration of frequency domain inter-cell interference cancellation between neighboring cells.
  • the base station may set at least one DL / UL BWP to a UE associated with a wideband carrier and at least one DL / UL BWP (physical) of DL / UL BWP (s) set at a specific time Layer control signal L1 signaling, MAC layer control signal MAC control element (control element, CE, or RRC signaling, etc.) can be activated (activated) and switched to another set DL / UL BWP (L1 signaling, MAC CE, or RRC signaling), or by setting a timer value, when the timer expires (expire), the UE may switch to a predetermined DL / UL BWP.
  • L1 signaling MAC layer control signal MAC control element
  • MAC control element control element, CE, or RRC signaling, etc.
  • DCI format 1_1 or DCI format 0_1 may be used to indicate switching to another set DL / UL BWP.
  • the activated DL / UL BWP is particularly called an active DL / UL BWP.
  • the UE may not receive a configuration for DL / UL BWP.
  • the DL / UL BWP assumed by the UE is referred to as an initial active DL / UL BWP.
  • the DL BWP is a BWP for transmitting and receiving downlink signals such as PDCCH and / or PDSCH
  • the UL BWP is a BWP for transmitting and receiving uplink signals such as PUCCH and / or PUSCH.
  • the temporal position for PDCCH monitoring may be different depending on the configuration for the control resource set (CORESET) and the configuration for the search space.
  • CORESET control resource set
  • One or more CORESET and / or search spaces may be set for the UE, and the UE may monitor the PDCCH at a slot location and / or symbol location indicated in each setup.
  • PDCCH blind decoding is continuously performed at a time when PDCCH monitoring is set. This may be inefficient in terms of UE complexity and UE power consumption. For example, when the packet size to be scheduled by the base station is scheduled to the UE, the UE schedules a transport block (TB) or PDSCH at a level greater than the packet size (packet size) ( Expecting to be scheduled can be inefficient.
  • TB transport block
  • PDSCH Packet size
  • the present invention proposes the operations of the UE according to traffic conditions or traffic information. Also, in order to assist the operation of the UE, a method of configuring and transmitting additional information that the base station can deliver to the UE is proposed.
  • the PDCCH monitoring method is listed as a reference, but the present invention can be extended to other UE operations such as measurement / reporting.
  • an embodiment of an operation based on this by the UE receiving the additional information from the base station has been described, but on the contrary, the base station can receive the additional information from the UE and confirm and apply it as an operation based on this.
  • the proposed method described in the embodiments of the present invention and methods extendable from the method may be implemented as an apparatus, and the present invention also includes a description of an apparatus implementing the proposed method.
  • 16 to 18 show an example of an operation implementation of a UE, a base station and a network according to an embodiment of the present invention.
  • the base station may transmit information on a packet generated based on the amount and / or characteristics of downlink data to be transmitted to the UE (S1601).
  • a method for generating and transmitting information on the packet May be in accordance with the embodiments described below.
  • the base station may transmit a physical downlink control channel (PDCCH) based on the information on the packet (S1603), and may transmit a physical downlink shared channel (PDSCH) based on downlink control information (DCI) included in the PDCCH ( S1605).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • DCI downlink control information
  • the UE may receive information on a packet generated based on the amount and / or characteristics of downlink data to be transmitted to the UE by the base station (S1701). At this time, the UE receives information on the packet.
  • the method can be in accordance with the embodiments described below.
  • the UE may monitor a Physical Downlink Control Channel (PDCCH) based on the information on the packet (S1703) and receive a Physical Downlink Shared Channel (PDSCH) based on the Downlink Control Information (DCI) included in the PDCCH. (S1705).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • the base station may transmit information on a packet generated based on the amount and / or characteristics of downlink data to be transmitted to the UE (S1801).
  • a method for generating and transmitting information on the packet May be in accordance with the embodiments described below.
  • the base station transmits a physical downlink control channel (PDCCH) based on the information on the packet (S1803), and the UE can monitor a physical downlink control channel (PDCCH) based on the information on the packet (S1805). Thereafter, the base station may transmit a Physical Downlink Shared Channel (PDSCH) to the UE based on Downlink Control Information (DCI) included in the PDCCH (S1807).
  • PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • a base station when a base station schedules DCI for UL grant to a UE, the base station determines the amount of UL resource required by the UE, such as buffer status reporting (BSR) from the UE, or the UL data to be transmitted by the UE. Information about the quantity can be received.
  • the base station may allocate and transmit DCI for an UL grant indicating an appropriate amount of UL data and an appropriate UL resource allocation based on information transmitted by the UE, such as a BSR.
  • the base station allocated and transmitted DCI for DL assignment to the UE without scheduling for the amount of DL data to be received by the UE, and the UE received DCI for DL assignment. Based on this, the PDSCH can be decoded.
  • the base station provides information about DL data to the UE for the power saving operation of the UE.
  • additional information about a packet eg, DL data
  • the base station may transmit the amount of DL data to be transmitted to the UE by the base station during a specific time period defined by the UE or the UE group or configured by a higher layer. For example, the base station may transmit a number of bits corresponding to the amount of DL data to be transmitted to the UE or a metric value corresponding thereto.
  • the base station may transmit information about the packet size (Packet size) to the UE or the sum of the TB size to be scheduled by the base station to the UE.
  • the TB size may be a size excluding the CRC (Cyclic Redundancy Check), or the TB CRC and / or the CB CRC size, and the base station may transmit information in a suitable form according to the UE implementation.
  • the UE may monitor the PDCCH for all or part of the CORESET and / or search space until all of the packet size included in the information transmitted by the base station or the total of TB sizes to be scheduled is received. In other words, when all the sums of the packet size or the TB size to be scheduled included in the information transmitted by the base station are received, PDCCH monitoring for all or part of the CORESET and / or search space may be stopped. .
  • the value included in the information may be stored in a separate storage space.
  • the UE successfully receives a TB corresponding to new data from a specific time point, such as when the information is received (for example, a slot or symbol in which the information was received) or from a specific offset from the specific time point /
  • the size of the corresponding TB may be subtracted from the packet size obtained through the received information or the sum of TB sizes.
  • the TB corresponding to the new data may mean different TBs classified according to a combination of HARQ process and NDI (New Data Indicator).
  • the base station transmits information about the size of a sufficiently large packet or the sum of the sufficiently large TB size to the UE, and the UE successfully performs TB without distinguishing between new data and retransmission data.
  • the size of the corresponding TB may be subtracted from the packet size obtained through the received information or the sum of TB sizes.
  • the UE may continuously monitor the PDCCH in all or part of the CORESET and / or search space. If the DRX operation is configured (Configuration), the PDCCH monitoring may be continued at the PDCCH monitoring opportunity (Occasion) set by the DRX operation.
  • the UE may stop monitoring the PDCCH for all or part of the CORESET and / or search space. Or, if the subtracted value is negative or zero, the UE may not expect to receive all or part of the PDSCH transmission overlapped in time. Meanwhile, a common search space (CSS) may be excluded from a CORESET and / or a search space where PDCCH monitoring is stopped, which may be advantageous in receiving broadcast messages.
  • SCS common search space
  • the time when the UE stops monitoring the PDCCH should be a time at which it is possible to determine whether or not the decoding of the PDSCH is successful, it may be a time after a specific offset from the time when the corresponding PDSCH is received, and HARQ for the corresponding PDSCH- It may be a time when the ACK is transmitted from the UE or a time when the base station receives the HARQ-ACK for the corresponding PDSCH.
  • the specific offset may be expressed in units of slots and / or symbols.
  • the power consumption mode of the UE eg, normal access state (normal) according to the relationship between the additional information on the packet received from the base station and the sum of the TB size actually received by the UE
  • the access state or power saving state may be changed.
  • the UE successfully receives a TB corresponding to new data from a specific time point, such as when the information is received (for example, a slot or symbol in which the information was received) or after a specific offset from the specific time point.
  • a specific time point such as when the information is received (for example, a slot or symbol in which the information was received) or after a specific offset from the specific time point.
  • the size of the successfully received / decoded TB may be accumulated and stored in a separate storage space.
  • the operation of the UE may be set differently depending on the case where the stored value is less than or equal to the sum of the packet size or the TB size received by the base station, and other cases.
  • the UE can continue PDCCH monitoring, and the stored value is greater than the sum of the packet size or TB size received from the base station. Or, the UE may stop monitoring the PDCCH.
  • the base station may provide the number of TBs that the base station will transmit to the UE during a specific time period defined or configured by a higher layer to the UE or the UE group.
  • the PDSCH may include one or more TBs (eg, 2 TBs) according to scheduling information, and the base station transmits information on the total number of TBs to be transmitted from the one or more PDSCHs to the UE You can.
  • the UE may monitor the PDCCH for all or part of the CORESET and / or search space until receiving TBs corresponding to the total number of TBs set. In other words, when all the TBs as many as the total number of TBs are received, PDCCH monitoring for all or part of the CORESET and / or the search space may be stopped.
  • the value included in the information may be stored in a separate storage space.
  • the UE successfully receives a TB corresponding to new data from a specific time point, such as when the information is received (for example, a slot or symbol in which the information was received) or from a specific offset from the specific time point /
  • the number of TBs may be subtracted from the number of TBs obtained through the received information.
  • the TB corresponding to the new data may mean different TBs classified according to a combination of HARQ process and NDI (New Data Indicator).
  • the base station transmits information about the number of sufficiently large TBs to the UE, and the UE corresponds to the case where the TB is successfully received / decoded without distinguishing between new data and retransmission data.
  • the number of TBs may be subtracted from the number of TBs obtained through the received information.
  • the UE may continuously monitor the PDCCH in all or part of the CORESET and / or search space. If the DRX operation is configured (Configuration), the PDCCH monitoring may be continued at the PDCCH monitoring opportunity (Occasion) set by the DRX operation.
  • the UE may stop monitoring the PDCCH for all or part of the CORESET and / or search space. Or, if the subtracted value is negative or zero, the UE may not expect to receive all or part of the PDSCH transmission overlapped in time. Meanwhile, a common search space (CSS) may be excluded from a CORESET and / or a search space where PDCCH monitoring is stopped, which may be advantageous in receiving broadcast messages.
  • SCS common search space
  • the time when the UE stops monitoring the PDCCH should be a time at which it is possible to determine whether or not the decoding of the PDSCH is successful, it may be a time after a specific offset from the time when the corresponding PDSCH is received, and HARQ for the corresponding PDSCH- It may be a time when the ACK is transmitted from the UE or a time when the base station receives the HARQ-ACK for the corresponding PDSCH.
  • the specific offset may be expressed in units of slots and / or symbols.
  • the power consumption mode of the UE (eg, normal access state or normal access state) according to the relationship between the number of TBs that the UE has actually successfully received and additional information about a packet received from the base station by the UE.
  • the power saving state may be changed.
  • the UE successfully receives a TB corresponding to new data from a specific time point, such as a time point when the information is received (for example, a slot or symbol in which the information was received) or a specific offset from the specific time point.
  • a specific time point such as a time point when the information is received (for example, a slot or symbol in which the information was received) or a specific offset from the specific time point.
  • the number of successfully received / decoded TBs can be accumulated and stored in a separate storage space.
  • the operation of the UE may be set differently depending on the case where the stored value is less than or equal to the sum of the packet size or the TB size received by the base station, and other cases.
  • the UE can continue monitoring the PDCCH, and if the stored value is greater than or equal to the number of TBs received from the base station, the UE monitors the PDCCH Can be stopped.
  • the base station may transmit information on the number of PDCCHs and / or PDSCHs that the base station will transmit to the UE during a specific time period that is preset to the UE or the UE group or configured through the upper layer.
  • the number of PDCCHs may be expressed as the number of short DRX cycles, the number of long DRX cycles, or the number of PDCCH monitoring opportunities.
  • the base station may transmit information on COREST, search space, and / or DCI format on which PDCCH monitoring is performed to the UE.
  • the PDCCH may be limited to a PDCCH including a DCI scheduling PDSCH.
  • the corresponding PDCCH and / or PDSCH may correspond to unicast data or may be limited to data scrambling and / or CRC masking determined by the UE ID.
  • the case where the CRC masking is determined as the UE ID may be a case where the CRC masking is performed with C-RNTI, CS-RNTI or MCS-C-RNTI.
  • the base station transmits information on the number of PDCCHs to the UE. You can.
  • the UE may monitor the PDCCH in all or part of the CORESET and / or search space until the PDCCH and / or PDSCHs corresponding to the number of PDCCH and / or PDSCHs included in the information received from the base station are received. have. In other words, when all PDCCHs and / or PDSCHs corresponding to the number of PDCCHs and / or PDSCHs are received, PDCCH monitoring for all or part of the CORESET and / or search space may be stopped.
  • a value included in the information may be stored in a separate storage space.
  • the UE successfully receives / decodes all or part of the TB transmitted through the PDSCH from a specific time point, such as a time point when the information was received (for example, a slot or symbol in which the information was received) or a specific offset from the specific time point.
  • the number of PDCCHs and / or PDSCHs corresponding to the number of PDCCHs and / or PDSCHs obtained through the received information is subtracted. can do.
  • the base station transmits information about the number of sufficiently large PDCCH and / or PDSCH to the UE, and the UE receives the PDCCH and / or PDSCH regardless of whether PDSCH decoding is successful or not.
  • the number of PDCCHs and / or PDSCHs may be subtracted from the number of PDCCHs and / or PDSCHs obtained through the received information.
  • the UE may continuously monitor the PDCCH in all or part of the CORESET and / or search space. If the DRX operation is configured (Configuration), the PDCCH monitoring may be continued at the PDCCH monitoring opportunity (Occasion) set by the DRX operation.
  • the UE may stop monitoring the PDCCH for all or part of the CORESET and / or search space. Or, if the subtracted value is negative or zero, the UE may not expect to receive all or part of the PDSCH transmission overlapped in time. Meanwhile, a common search space (CSS) may be excluded from a CORESET and / or a search space where PDCCH monitoring is stopped, which may be advantageous in receiving broadcast messages.
  • SCS common search space
  • the time when the UE stops monitoring the PDCCH should be a time at which it is possible to determine whether or not the decoding of the PDSCH is successful, it may be a time after a specific offset from the time when the corresponding PDSCH is received, and HARQ for the corresponding PDSCH- It may be a time when the ACK is transmitted from the UE or a time when the base station receives the HARQ-ACK for the corresponding PDSCH.
  • the specific offset may be expressed in units of slots and / or symbols.
  • the power consumption mode of the UE (eg, normal access state or power saving state) according to the relationship between the information received by the UE from the base station and the number of PDCCHs and / or PDSCHs actually received by the UE (power saving state) may be changed.
  • the UE receives the PDCCH and / or PDSCH from a specific time point, such as when the information is received (for example, the slot or symbol where the information was received) or a specific offset from the specific time point, or PDCCH during a specific time interval. And / or when the PDSCH is received, the number of corresponding PDCCH and / or PDSCH may be accumulated and stored in a separate storage space. In this case, the operation of the UE may be set differently depending on a case where the stored value is less than or equal to the sum of the number of PDCCH and / or PDSCH received by the base station and other cases.
  • the UE can continue monitoring the PDCCH, and the stored value is the sum of the number of PDCCH and / or PDSCH received from the base station If greater or equal, the UE may stop monitoring the PDCCH.
  • the base station may transmit information on an active duration (T) capable of receiving data to a corresponding UE or UE group.
  • T active duration
  • the active period may be smaller than or equal to the active time period by the DRX timer.
  • the active period may be determined according to the amount of data for the corresponding UE or UE group, the channel condition of the UE and the load and / or scheduling condition of the network.
  • the value of the corresponding active section is configured separately through a radio resource control (RRC) among a variety of candidate values, a subset of candidate values that can be indicated (Configuration), and the set subset is set. One of the included values may be indicated.
  • RRC radio resource control
  • the base station may transmit information about a scheduling pattern or the like to the UE or UE group.
  • the scheduling pattern may be determined according to a network scheduling condition and a traffic rate.
  • the base station may transmit a value for a blocking probability of a network to the UE. For example, if the blocking probability of the network is low, the UE may monitor the PDCCH based on the minimum aggregation level set and / or the number of minimum PDCCH candidates. On the other hand, when the blocking probability of the network is high, it is possible to increase the scheduling flexibility of the network by increasing the aggregation level set and the number of PDCCH candidates.
  • the UE when the UE receives information on an active duration (T) capable of receiving data, it is applied after a specific offset from the time at which the information was received or from the time. During the active period, the UE may continuously monitor the PDCCH in all or part of the CORESET and / or search space. If the DRX operation is configured (Configuration), the PDCCH monitoring may be continued at the PDCCH monitoring opportunity (Occasion) set by the DRX operation.
  • the UE may stop monitoring the PDCCH for all or part of the CORESET and / or search space. Or, the UE may not expect that all or part of the PDSCH transmission overlapped in time is received at a time point other than the corresponding active period. Meanwhile, a common search space (CSS) may be excluded from a CORESET and / or a search space where PDCCH monitoring is stopped, which may be advantageous in receiving broadcast messages.
  • SCS common search space
  • the base station may independently transmit packet information for PDSCH scheduled based on DCI and packet information for PDSCH corresponding to DL Semi-Persistent Scheduling (SPS) to the UE. In this case, a release signal for the DL SPS may not be received.
  • SPS Semi-Persistent Scheduling
  • the base station can only transmit additional information on the packet of the PDSCH scheduled (scheduling) based on DCI to the UE.
  • This may be a packet for a Voice Over Internet Protocol (VoIP) in the case of DL SPS, so managing multiple packets individually may be useful in terms of network resource management or TB management of the UE. to be.
  • VoIP Voice Over Internet Protocol
  • a base station may additionally schedule a new packet or change the amount of a packet being transmitted before scheduling or completing a scheduling for a specific packet to a specific UE.
  • the base station may provide the UE with additional information about the updated packet (packet) to the UE again, the base station to the UE about the change in the additional information about the packet (packet), for example , It can transmit information about the decrease / increase / maintenance of packets.
  • the UE may determine a PDCCH monitoring method based on additional information about a packet updated or transmitted by the base station.
  • the base station may transmit a specific signal or channel so that the UE continues PDCCH monitoring for all or part of the CORESET and / or search space.
  • the UE when the base station transmits additional information about a packet updated to the UE to the UE, the UE receives the most recent of the additional information about a plurality of packets received from the base station In other words, PDCCH monitoring can be performed based on additional information on the packet received last.
  • the UE may receive a specific signal or channel to continue PDCCH monitoring in the entire or partial CORESET and / or search space from the base station, in which case, predetermined or higher layer PDCCH can be continuously monitored for a set period.
  • PDCCH monitoring at a specific point in time for receiving a broadcast message may be limitedly performed.
  • PDCCH monitoring for a fallback DCI such as DCI format 1-0 / 0-0 in a specific Common Search Space (CSS) can still be performed.
  • PDCCH monitoring at a specific point in time for receiving the broadcast message is to monitor PDCCH based on PDCCH CRC masking and / or PDSCH data scrambling based on SI-RNTI, P-RNTI, RA-RNTI or TC-RNTI. It may be for
  • the above-described operation may be applied to the same or similar method of changing UE operation according to a load of an IAB node associated with a relay, such as an Integrated Access Backhaul (IAB).
  • IAB Integrated Access Backhaul
  • the UE may receive a PDSCH through a single serving cell or a PDSCH through a plurality of serving cells by carrier aggregation (CA). Accordingly, the additional information on the above-described packet may be transmitted to the UE by the base station as a value for all serving cells, and additional information on the packet for each serving cell or each serving cell group may be transmitted.
  • the base station may transmit to the UE.
  • the UE may perform a BWP switching operation based on the additional information on the packet in addition to or separately from the operation of attempting power saving. For example, if the UE receives a TB scheduling that satisfies the packet size or TB size received by the base station, and / or when decoding for the TB is successfully performed, the UE is basic after a specific point in time from the time. (default) The active BWP can be changed to a BWP or a third BWP set for power saving purposes.
  • a point in time at which BWP switching starts may be after a specific offset from a last symbol or a last symbol in which a PDSCH for a corresponding packet is transmitted.
  • the specific offset may be expressed in units of slots and / or symbols.
  • the processing time may be a processing time corresponding to the corresponding PDSCH, or a time when the HARQ-ACK for the corresponding PDSCH is transmitted from the UE or the HARQ-ACK for the corresponding PDSCH by the base station. It may be a time point of reception.
  • the UE may receive the PDSCH through a single serving cell or may receive the PDSCH from a plurality of serving cells based on carrier aggregation (CA).
  • CA carrier aggregation
  • the additional information about the packet may be transmitted to the UE as a value for all serving cells, and the UE may packet based on PDCCH, PDSCH and / or TB scheduled from a plurality of serving cells.
  • the PDCCH monitoring method and / or the active BWP may be configured differently.
  • the UE may receive additional information about a packet for each serving cell or each serving cell group, and in this case, additional information about the packet and a UE for each serving cell or for each serving cell group
  • the PDCCH monitoring method and / or the active BWP may be configured differently based on the received PDCCH, PDSCH, and / or TB.
  • additional information on the packet provided by the base station to the UE may be transmitted as follows.
  • DCI may be the same size as a fallback DCI such as DCI format 1-0, or the payload size of the DCI may be set through a higher layer.
  • the CRC of the DCI may be masked with a third RNTI.
  • information of packets related to a plurality of UEs may be multiplexed in the DCI.
  • mapping information between each UE and packet information may be set in advance through higher layer signaling, and the UE may monitor the PDCCH based on the information of the packet corresponding to each.
  • CORESET and / or search space in which DCI is transmitted may be configured through a higher layer, and CORESET and / or in which DCI is transmitted in units of one or more slots, symbols, or symbol groups Alternatively, a period for the search space may be set. Alternatively, additional fields or reserved states of a specific field may be used for scheduling DCI. For example, the base station may indicate whether the corresponding PDSCH is for the last packet through scheduling DCI.
  • the UE may receive additional information about the packet through the DCI included in the PDCCH as described above.
  • the DCI may be set to the same size as the fallback DCI such as DCI format 1-0, or the payload size may be set through an upper layer.
  • the CRC of the DCI may be masked with a third RNTI.
  • the UE may monitor the PDCCH based on additional information about a packet corresponding to the UE, among additional information about a packet for a plurality of UEs received through a higher layer. .
  • the UE is the first symbol of the PDCCH monitoring opportunity included in the next period from the first symbol or the last symbol of the PDCCH monitoring occasion where the corresponding PDCCH is transmitted based on the additional information on the packet.
  • PDCCH monitoring may be performed during a time period up to the last symbol.
  • a specific offset expressed in slots and / or symbol units in the time period may be additionally applied.
  • only the start time to perform PDCCH monitoring is determined, and the end time may not be defined separately. This is to efficiently update (add) additional information on the packet based on the PDCCH monitoring periodicity.
  • the paging information may transmit additional information on a packet of the UE to the UE along with information on the identity of the UE.
  • the paging information can be distinguished from existing paging information.
  • paging information including additional information about a packet may be defined as an extended paging record.
  • the existing paging record and the extended paging record may be classified as a paging occasion or based on PDCCH CRC masking and / or PDSCH data scrambling through a separate eP-RNTI. .
  • the UE may additionally receive additional information about a packet.
  • the paging information may transmit additional information on a packet of the UE to the UE along with information on the identity of the UE.
  • the paging information can be distinguished from existing paging information.
  • paging information including additional information about a packet may be defined as an extended paging record.
  • the existing paging record and the extended paging record may be classified as a paging occasion or based on PDCCH CRC masking and / or PDSCH data scrambling through a separate eP-RNTI. .
  • the UE that has received the paging PDCCH or the paging PDSCH as described above may monitor the PDCCH based on additional information about the corresponding packet.
  • the UE based on the additional information about the packet (packet) from the first symbol or the last symbol of the paging occasion (paging occasion) from the first symbol or the last symbol of the paging occasion (paging occasion) of the next period (period) PDCCH can be monitored for a period of time up to.
  • a specific offset expressed in slots and / or symbol units in the time period may be additionally applied.
  • only the start time to perform PDCCH monitoring is determined, and the end time may not be defined separately.
  • Additional information on the packet may be transmitted to the UE through a medium access control (MAC) message.
  • the MAC message may be transmitted through the PDSCH, and CRC masking and / or PDSCH data scrambling of the PDCCH corresponding to the MAC message of the UE through UE ID such as C-RNTI, CS-RNTI or MCS-C-RNTI Can be distinguished.
  • the corresponding MAC message may be included in another MAC message or transmitted simultaneously with other MAC messages.
  • the corresponding MA message may be included in the TCI update MAC message.
  • the UE may transmit additional information about the packet through the Medium Access Control (MAC) message as described above.
  • the MAC message may be transmitted through the PDSCH, and CRC masking and / or PDSCH data scrambling of the PDCCH corresponding to the MAC message of the UE through UE ID such as C-RNTI, CS-RNTI or MCS-C-RNTI Can be distinguished.
  • the UE that has received the PDSCH including the MAC message can monitor the PDCCH based on additional information about the corresponding packet.
  • the UE is based on the additional information on the packet (packet) based on the slot and / or symbol after a specific offset expressed in slots and / or symbol units from the slot or the last symbol that the PDSCH is transmitted or the last symbol is transmitted.
  • PDCCH monitoring can be started.
  • the corresponding MAC message may be included in another MAC message or transmitted simultaneously with other MAC messages.
  • the corresponding MA message may be included in the TCI update MAC message.
  • Packet information up to the next wake-up signal transmission may be transmitted through a wake-up signal, or packet information may be included when a corresponding wake-up signal is required, or such packet information may be used as a wake-up signal.
  • the terminal receives a wake-up signal in an active state, it is assumed that the corresponding wake-up signal includes assistance information such as additional information or additional information about a packet. You can.
  • a corresponding wake-up signal When a corresponding wake-up signal is transmitted for a wake-up purpose, additional information and / or additional information about a packet may be transmitted together to determine whether to control the control channel of the terminal. .
  • the wake-up signal may be replaced with a go-to-sleep signal, and in this case, information that further restricts PDCCH monitoring of the terminal may be transmitted together.
  • the wake-up signal is a signal indicating whether the UE actually performs an operation for monitoring the PDCCH during the active time corresponding to the wake-up signal. If a wake-up signal is not received, the UE during the active time PDCCH monitoring operation may not be performed.
  • the UE may not perform a PDCCH monitoring operation during the corresponding Active Time.
  • the communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), An Internet of Thing (IoT) device 100f, and an AI device / server 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR) / Virtual Reality (VR) / Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may directly communicate (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V) / Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication / connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication / connection is various wireless access such as uplink / downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices / base stations / wireless devices, base stations and base stations can transmit / receive radio signals to each other through wireless communication / connections 150a, 150b, 150c.
  • the wireless communication / connections 150a, 150b, 150c can transmit / receive signals through various physical channels.
  • various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • a specific operation described as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network consisting of a plurality of network nodes including a base station can be performed by a base station or other network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), access point, and the like.
  • a method for saving power of a terminal and an apparatus for the same are mainly described in an example applied to the 5th generation NewRAT system, but can be applied to various wireless communication systems in addition to the 5th generation NewRAT system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 단말이 하향링크 데이터를 수신하는 방법을 개시한다. 특히, 상기 방법은, 기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고, 상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고, 특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고, 상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 DCI를 기반으로 상기 하향링크 데이터를 수신하는 것을 특징으로 한다.

Description

단말의 전력을 절약하는 방법 및 이를 위한 장치
본 발명은 단말의 전력을 절약하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 단말의 전력 절약(Power Saving)을 위한 부가 정보를 기지국으로부터 단말이 수신하여, 상기 부가 정보를 기반으로 단말이 PDSCH(Physical Downlink Shared Channel)을 수신하는 방법 및 이를 위한 장치에 관한 것이다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
본 발명은 단말의 전력을 절약하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 단말이 하향링크 데이터를 수신하는 방법에 있어서, 기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고, 상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고, 특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고, 상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 DCI를 기반으로 상기 하향링크 데이터를 수신할 수 있다.
이 때, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 상기 하향링크 데이터의 양에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 하향링크 데이터의 양에 대응하는 하향링크 데이터가 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 전송 블록(Transport Block; TB)들의 개수에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 TB들의 개수에 대응하는 TB들이 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 하향링크 제어 채널의 개수에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 하향링크 제어 채널의 개수에 대응하는 하향링크 제어 채널이 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간의 시작 지점 및 길이에 관련된 정보이고, 상기 DCI를 수신하는 것은, 상기 특정 시간 구간의 시작 지점 및 길이를 기반으로 상기 DCI를 수신할 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고, 상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고, 특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고, 상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 DCI를 기반으로 상기 하향링크 데이터를 수신할 수 있다.
이 때, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 상기 하향링크 데이터의 양에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 하향링크 데이터의 양에 대응하는 하향링크 데이터가 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 전송 블록(Transport Block; TB)들의 개수에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 TB들의 개수에 대응하는 TB들이 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간 동안 전송되는 하향링크 제어 채널의 개수에 관한 정보이고, 상기 DCI를 수신하는 것은, 상기 하향링크 제어 채널의 개수에 대응하는 하향링크 제어 채널이 수신될 때까지, 상기 DCI를 수신할 수 있다.
또한, 상기 하향링크 데이터에 관련된 정보는, 상기 특정 시간 구간의 시작 지점 및 길이에 관련된 정보이고, 상기 DCI를 수신하는 것은, 상기 특정 시간 구간의 시작 지점 및 길이를 기반으로 상기 DCI를 수신할 수 있다.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른, 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 단말에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고, 상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고, 상기 적어도 하나의 송수신기를 통해, 특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고, 상기 적어도 하나의 송수신기를 통해, 상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 적어도 하나의 송수신기를 통해, 상기 DCI를 기반으로 상기 하향링크 데이터를 수신할 수 있다.
본 발명에 따르면, 단말의 소비 전력을 최적화하여 하향링크 신호를 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1 내지 도 3은 본 발명의 실시 예들이 적용되는 다양한 무선 기기의 예시들을 나타낸다.
도 4는 본 발명의 실시 예들이 적용되는 신호 처리 회로의 예시를 나타낸다.
도 5는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 6은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 7 내지 도 8은 NR 시스템에서 사용되는 SS/PBCH 블록(Synchronization Signal/Physical Broadcast Channel Block)의 구조 및 전송의 예시를 나타내는 도면이다.
도 9는 임의 접속 과정 (Random Access Procedure)의 예시를 나타내는 도면이다.
도 10 내지 도 12는 NR 시스템에서 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH)에 대해 설명하기 위한 도면이다.
도 13 내지 도15는 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 16 내지 도 18은 본 발명의 실시 예에 따른 단말, 기지국 및 네트워크의 동작 구현 예를 나타낸다.
도 19는 본 발명의 실시 예들이 적용될 수 있는 무선 통신 환경의 예시를 나타낸다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
도 1은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 1을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 19의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(104)에 저장될 수 있다.
프로세서(102)는 제 2 무선 기기(200)가 프로세서(102)에게 전송할 하향링크 데이터의 양 및/또는 특성 등을 기반으로 생성한 패킷에 대한 정보를 수신하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 패킷에 대한 정보를 수신하는 방법은 후술하는 실시 예들에 따를 수 있다.
프로세서(102)는 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 모니터링하고, 상기 PDCCH 내에 포함된 DCI(Downlink Control Information)를 기반으로 PDSCH (Physical Downlink Shared Channel)을 수신하도록 송수신기(106)을 제어할 수 있다. 이 때, PDCCH 및 PDSCH를 수신하는 방법은 후술하는 실시 예들에 따를 수 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(204)에 저장될 수 있다.
프로세서(202)는 제 1 무선 기기(100)에게 전송할 하향링크 데이터의 양 및/또는 특성 등을 기반으로 생성한 패킷에 대한 정보를 전송하도록 송수신기(206)를 제어할 수 있다. 이 때, 상기 패킷에 대한 정보를 생성 및 전송하는 방법은 후술하는 실시 예들에 따를 수 있다.
프로세서(202)는 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 전송하도록 송수신기(206)를 제어하고, 상기 PDCCH 내에 포함된 DCI(Downlink Control Information)를 기반으로 PDSCH (Physical Downlink Shared Channel)을 전송하도록 송수신기(206)를 제어할 수 있다. 이 때, PDCCH 및 PDSCH를 전송하는 방법은 후술하는 실시 예들에 따를 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 2는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 19 참조).
도 2를 참조하면, 무선 기기(100, 200)는 도 1의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 1의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 1의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다. 따라서, 본 발명에 따른 구체적인 제어부(120)의 동작 과정 및 메모리부(130)에 저장된 프로그램/코드/명령/정보들은 도 1의 프로세서 (102, 202) 중 적어도 하나의 동작 및 메모리(104, 204) 중 적어도 하나의 동작과 대응될 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 19, 100a), 차량(도 19, 100b-1, 100b-2), XR 기기(도 19, 100c), 휴대 기기(도 19, 100d), 가전(도 19, 100e), IoT 기기(도 19, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 19, 400), 기지국(도 19, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 2에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 2의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 3은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 3을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 15의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 4는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 4를 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 4의 동작/기능은 도 1의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 4의 하드웨어 요소는 도 1의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 1의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 1의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 1의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 4의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 4의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 2의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 5는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 6은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S603 내지 S606). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S606).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
또한, NR 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. NR 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는, NR 시스템은 기존의 LTE/LTE-A의 뉴머롤로지를 그대로 따르나, 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는, 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤리지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
도 7은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 7을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 1과 같이 정리될 수 있다.
Type of Signals Operations
1 st step PSS * SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group(3 hypothesis)
2 nd Step SSS * Cell ID group detection (336 hypothesis)
3 rd Step PBCH DMRS * SSB index and Half frame (HF) index(Slot and frame boundary detection)
4 th Step PBCH * Time information (80 ms, System Frame Number (SFN), SSB index, HF)* Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration
5 th Step PDCCH and PDSCH * Cell access information* RACH configuration
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
도 8은 SSB 전송을 예시한다. 도 8을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
UE의 임의 접속 과정은 표 2 및 도 8과 같이 요약할 수 있다.
신호의 타입 획득되는 동작/정보
제 1단계 UL에서의 PRACH 프리앰블(preamble) * 초기 빔 획득* 임의 접속 프리앰블 ID의 임의 선택
제 2단계 PDSCH 상의 임의 접속 응답 * 타이밍 어드밴스 정보* 임의 접속 프리앰블 ID* 초기 UL 그랜트, 임시 C-RNTI
제 3단계 PUSCH 상의 UL 전송 * RRC 연결 요청* UE 식별자
제 4단계 DL 상의 경쟁 해결(contention resolution) * 초기 접속을 위한 PDCCH 상의 임시 C-RNTI* RRC_CONNECTED인 UE에 대한 PDCCH 상의 C-RNTI
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 도 9는 임의 접속 과정의 일례를 예시한다. 특히 도 9는 경쟁 기반 임의 접속 과정을 예시한다.
먼저, UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다.
서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
다수의 프리앰블 포맷들이 하나 또는 그 이상의 RACH OFDM 심볼들 및 서로 다른 순환 프리픽스(cyclic prefix) (및/또는 가드 시간(guard time))에 의해 정의된다. 셀을 위한 RACH 설정(configuration)이 상기 셀의 시스템 정보에 포함되어 UE에게 제공된다. 상기 RACH 설정은 PRACH의 부반송파 간격, 이용 가능한 프리앰블들, 프리앰블 포맷 등에 관한 정보를 포함한다. 상기 RACH 설정은 SSB들과 RACH (시간-주파수) 자원들 간의 연관 정보를 포함한다. UE는 검출한 혹은 선택한 SSB와 연관된 RACH 시간-주파수 자원에서 임의 접속 프리앰블을 전송한다.
RACH 자원 연관을 위한 SSB의 임계값이 네트워크에 의해 설정될 수 있으며, SSB 기반으로 측정된 참조 신호 수신 전력(reference signal received power, RSRP)가 상기 임계값을 충족하는 SSB를 기반으로 RACH 프리앰블의 전송 또는 재전송이 수행된다. 예를 들어, UE는 임계값을 충족하는 SSB(들) 중 하나를 선택하고, 선택된 SSB에 연관된 RACH 자원을 기반으로 RACH 프리앰블을 전송 또는 재전송할 수 있다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
임의 접속 응답 정보는 UL 동기화를 위한 타이밍 어드밴스 정보, UL 그랜트 및 UE 임시UE가 PDSCH 상에서 자신에 대한 임의 접속 응답 정보를 수신하면, 상기 UE는 UL 동기화를 위한 타이밍 어드밴스(timing advance) 정보, 초기 UL 그랜트, UE 임시(temporary) 셀 RNTI(cell RNTI, C-RNTI)를 알 수 있다. 상기 타이밍 어드밴스 정보는 상향링크 신호 전송 타이밍을 제어하는 데 사용된다. UE에 의한 PUSCH/PUCCH 전송이 네트워크 단에서 서브프레임 타이밍과 더 잘 정렬(align)되도록 하기 위해, 네트워크(예, BS)는 PUSCH/PUCCH/SRS 수신 및 서브프레임 간 시간 차이를 측정하고 이를 기반으로 타이밍 어드밴스 정보를 보낼 수 있다. 상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
한편, 경쟁-프리 임의 접속 과정은 UE가 다른 셀 혹은 BS로 핸드오버 하는 과정에서 사용되거나, BS의 명령에 의해 요청되는 경우에 수행될 수 있다. 경쟁-프리 임의 접속 과정의 기본적인 과정은 경쟁 기반 임의 접속 과정과 유사하다. 다만, UE가 복수의 임의 접속 프리앰블들 중 사용할 프리앰블을 임의로 선택하는 경쟁 기반 임의 접속 과정과 달리, 경쟁-프리 임의 접속 과정의 경우에는 UE가 사용할 프리앰블(이하 전용 임의 접속 프리앰블)이 BS에 의해 상기 UE에게 할당된다. 전용 임의 접속 프리앰블에 대한 정보는 RRC 메시지(예, 핸드오버 명령)에 포함되거나 PDCCH 오더(order)를 통해 UE에게 제공될 수 있다. 임의 접속 과정이 개시되면 UE는 전용 임의 접속 프리앰블을 BS에게 전송한다. 상기 UE가 상기 BS로부터 임의 접속 과정을 수신하면 상기 임의 접속 과정은 완료(complete)된다.
앞서 언급한 바와 같이 RAR 내 UL 그랜트는 UE에게 PUSCH 전송을 스케줄링한다. RAR 내 UL 그랜트에 의한 초기 UL 전송을 나르는 PUSCH는 Msg3 PUSCH로 칭하기도 한다. RAR UL 그랜트의 컨텐츠는 MSB에서 시작하여 LSB에서 끝나며, 표 3에서 주어진다.
RAR UL grant field Number of bits
Frequency hopping flag 1
Msg3 PUSCH frequency resource allocation 12
Msg3 PUSCH time resource allocation 4
Modulation and coding scheme (MCS) 4
Transmit power control (TPC) for Msg3 PUSCH 3
CSI request 1
TPC 명령은 Msg3 PUSCH의 전송 전력을 결정하는 데 사용되며, 예를 들어, 표 4에 따라 해석된다.
TPC command value [dB]
0 -6
1 -4
2 -2
3 0
4 2
5 4
6 6
7 8
경쟁 프리 임의 접속 과정에서, RAR UL 그랜트 내 CSI 요청 필드는 UE가 비주기적 CSI 보고를 해당 PUSCH 전송에 포함시킬 것인지 여부를 지시한다. Msg3 PUSCH 전송을 위한 부반송파 간격은 RRC 파라미터에 의해 제공된다. UE는 동일한 서비스 제공 셀의 동일한 상향링크 반송파 상에서 PRACH 및 Msg3 PUSCH을 전송하게 될 것이다. Msg3 PUSCH 전송을 위한 UL BWP는 SIB1(SystemInformationBlock1)에 의해 지시된다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 10은 하나의 REG 구조를 예시한다. 도 10에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로, RE #1, RE #5 및 RE #9에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정된다:
- sameAsREG-bundle: 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs: CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다. 도 11(a)는 비-인터리빙된 CCE-REG 매핑 타입을 예시하고, 도 11(b)는 인터리빙된 CCE-REG 매핑 타입을 예시한다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 12는 블록 인터리버를 예시한다. 위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 12와 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 5는 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 6은 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
도 13은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 7은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 8은 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 14는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 4개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 15는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
대역폭 파트 (Bandwidth part, BWP)
NR 시스템에서는 하나의 반송파(carrier)당 최대 400 MHz까지 지원될 수 있다. 이러한 와이드밴드(wideband) 반송파에서 동작하는 UE가 항상 반송파 전체에 대한 무선 주파수(radio frequency, RF) 모듈을 켜둔 채로 동작한다면 UE 배터리 소모가 커질 수 있다. 혹은 하나의 와이드밴드 반송파 내에 동작하는 여러 사용 예(use case)들 (e.g., eMBB, URLLC, mMTC, V2X 등)을 고려할 때 해당 반송파 내에 주파수 대역별로 서로 다른 뉴머롤로지(예, 부반송파 간격)가 지원될 수 있다. 혹은 UE별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 와이드밴드 반송파의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 UE에게 지시할 수 있으며, 해당 일부 대역폭을 대역폭 파트(bandwidth part, BWP)라 칭한다. 주파수 도메인에서 BWP는 반송파 상의 대역폭 파트 i 내 뉴머롤러지 μ i에 대해 정의된 인접한(contiguous) 공통 자원 블록들의 서브셋이며, 하나의 뉴머롤로지(예, 부반송파 간격, CP 길이, 슬롯/미니-슬롯 지속기간)가 설정될 수 있다.
한편, 기지국은 UE에게 설정된 하나의 반송파 내에 하나 이상의 BWP를 설정할 수 있다. 혹은, 특정 BWP에 UE들이 몰리는 경우 부하 밸런싱(load balancing)을 위해 일부 UE들을 다른 BWP로 옮길 수 있다. 혹은, 이웃 셀들 간의 주파수 도메인 인터-셀 간섭 소거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼을 배제하고 셀의 양쪽 BWP들을 동일 슬롯 내에 설정할 수 있다. 즉, 기지국은 와이드밴드 반송파와 연관(associate)된 UE에게 적어도 하나의 DL/UL BWP를 설정해 줄 수 있으며, 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (물리 계층 제어 신호인 L1 시그널링, MAC 계층 제어 신호인 MAC 제어 요소(control element, CE), 또는 RRC 시그널링 등에 의해) 활성화(activate)시킬 수 있고 다른 설정된 DL/UL BWP로 스위칭할 것을 (L1 시그널링, MAC CE, 또는 RRC 시그널링 등에 의해) 지시하거나, 타이머 값을 설정하여 타이머가 만료(expire)되면 UE가 정해진 DL/UL BWP로 스위칭하도록 할 수도 있다. 이 때, 다른 설정된 DL/UL BWP로 스위칭할 것을 지시하기 위하여, DCI 포맷 1_1 또는 DCI 포맷 0_1을 사용할 수 있다. 활성화된 DL/UL BWP를 특히 활성(active) DL/UL BWP라고 한다. UE가 초기 접속(initial access) 과정에 있거나, 혹은 UE의 RRC 연결이 셋업 되기 전 등의 상황에서는 UE가 DL/UL BWP에 대한 설정(configuration)을 수신하지 못할 수도 있다. 이러한 상황에서 UE가 가정하는 DL/UL BWP는 초기 활성 DL/UL BWP라고 한다.
한편, 여기서 DL BWP는 PDCCH 및/또는 PDSCH 등과 같은 하향링크 신호를 송수신하기 위한 BWP이고, UL BWP는 PUCCH 및/또는 PUSCH 등과 같은 상향링크 신호를 송수신하기 위한 BWP이다.
NR (New RAT) 시스템에서, PDCCH 모니터링을 위한 시간적인 위치는 CORESET (control resource set)에 대한 설정(configuration)과 검색 공간(search space)에 대한 설정(configuration)에 따라서 상이할 수 있다. UE에게 하나 이상의 CORESET 및/또는 검색 공간(search space)이 설정될 수 있으며, UE는 각각의 설정에서 지시되는 슬롯(slot) 위치 및/또는 심볼(symbol) 위치에서 PDCCH를 모니터링할 수 있다.
그런데, 패킷의 도달율(arrival rate) 및/또는 지연 요구 사항(latency requirement) 등의 트래픽(Traffic) 특성에 따라서는 PDCCH 모니터링(monitoring)이 설정된 시점에서 계속해서 PDCCH 블라인드 디코딩 (blind decoding)을 수행하는 것은 UE의 복잡성(complexity) 및 UE의 전력 소모(power consumption) 측면에서 비효율적일 수 있다. 예를 들어, 기지국이 UE에게 스케줄링(scheduling)할 패킷 크기(packet size)가 고정된 경우에는 UE가 해당 패킷 크기(packet size)보다 큰 수준으로 전송 블록(Transport Block; TB) 또는 PDSCH를 스케줄링(scheduling)되기를 기대하는 것은 비효율적일 수 있다.
따라서, 본 발명에서는 트래픽(traffic) 상황 혹은 트래픽 정보에 따른 UE의 동작들을 제안하도록 한다. 또한, 이러한 UE의 동작을 보조하기 위하여 기지국이 UE에게 전달할 수 있는 부가 정보를 구성하는 방법 및 전송하는 방법을 제안한다.
한편, 본 발명에서는 설명의 편의상 PDCCH 모니터링(monitoring) 방법을 기준으로 나열하였으나, 측정/보고(measurement/reporting) 등과 같이 다른 UE 동작에 대해서도 본 발명을 확장할 수 있다. 또한, 본 발명에서는 UE가 기지국으로부터 부가 정보를 수신하여 이를 기반으로 한 동작의 실시 예를 설명하였으나, 그 반대로 기지국이 UE로부터 부가 정보를 수신하여 이를 기반으로 하는 동작으로 확하여 적용할 수 있다. 또한, 본 발명의 실시 예에서 설명한 제안 방법 및 그 방법으로부터 확장 가능한 방법들은 장치로써 구현될 수도 있으며, 본 발명은 제안 방법을 구현하는 장치에 대한 내용도 포함한다.
도 16 내지 도 18은 본 발명의 실시 예에 따른 UE, 기지국 및 네트워크의 동작 구현 예를 나타낸다.
도 16을 참조하여, 본 발명의 실시 예에 따른 기지국의 동작 구현 예를 살펴보도록 한다. 도 16에 따르면, 기지국은 UE에게 전송할 하향링크 데이터의 양 및/또는 특성 등을 기반으로 생성한 패킷에 대한 정보를 전송할 수 있다(S1601) 이 때, 상기 패킷에 대한 정보를 생성 및 전송하는 방법은 후술하는 실시 예들에 따를 수 있다.
기지국은 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 전송하고(S1603), 상기 PDCCH 내에 포함된 DCI(Downlink Control Information)를 기반으로 PDSCH (Physical Downlink Shared Channel)을 전송할 수 있다(S1605). 이 때, PDCCH 및 PDSCH를 전송하는 방법은 후술하는 실시 예들에 따를 수 있다.
도 17을 참조하여, 본 발명의 실시 예에 따른 단말의 동작 구현 예를 살펴보도록 한다. 도 17에 따르면, UE는 기지국이 UE에게 전송할 하향링크 데이터의 양 및/또는 특성 등을 기반으로 생성한 패킷에 대한 정보를 수신할 수 있다(S1701) 이 때, 상기 패킷에 대한 정보를 수신하는 방법은 후술하는 실시 예들에 따를 수 있다.
UE는 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 모니터링하고(S1703), 상기 PDCCH 내에 포함된 DCI(Downlink Control Information)를 기반으로 PDSCH (Physical Downlink Shared Channel)을 수신할 수 있다(S1705). 이 때, PDCCH 및 PDSCH를 수신하는 방법은 후술하는 실시 예들에 따를 수 있다.
도 18을 참조하여, 본 발명의 실시 예에 따른 네트워크의 동작 구현 예를 살펴보도록 한다.
도 18에 따르면, 기지국은 UE에게 전송할 하향링크 데이터의 양 및/또는 특성 등을 기반으로 생성한 패킷에 대한 정보를 전송할 수 있다(S1801) 이 때, 상기 패킷에 대한 정보를 생성 및 전송하는 방법은 후술하는 실시 예들에 따를 수 있다.
기지국은 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 전송하고(S1803), UE는 상기 패킷에 대한 정보를 기반으로 PDCCH (Physical Downlink Control Channel)을 모니터링할 수 있다(S1805). 그 후, 기지국은 UE에게 상기 PDCCH 내에 포함된 DCI(Downlink Control Information)를 기반으로 PDSCH (Physical Downlink Shared Channel)을 전송할 수 있다(S1807). 이 때, PDCCH 및 PDSCH를 송수신하는 방법은 후술하는 실시 예들에 따를 수 있다.
NR 시스템에서 기지국이 UE에게 UL 그랜트(grant)를 위한 DCI를 스케줄링(scheduling)할 때, 기지국은 UE로부터 BSR (buffer status reporting)과 같이 UE가 요구하는 UL 자원의 양 또는 UE가 전송할 UL 데이터의 양에 대한 정보를 수신할 수 있다. 또한, 기지국은 BSR과 같이 UE가 전송한 정보를 기반으로 적합한 UL 데이터의 양 및 적합한 UL 자원 할당(resource allocation)을 지시하는 UL 그랜트를 위한 DCI를 할당 및 전송할 수 있다.
반면, DL 데이터의 경우, UE가 수신할 DL 데이터의 양에 대한 스케줄링 없이 기지국이 DL 할당(assignment)를 위한 DCI를 UE에게 할당 및 전송하였고, UE는 DL 할당(assignment)를 위한 DCI를 수신하여 이를 기반으로 PDSCH를 디코딩할 수 있다.
하지만 NR 시스템에서는 전력을 효율적으로 절약하기 위하여 PDCCH 모니터링(monitoring)을 효율적으로 수행할 필요가 있다. 예를 들어, UE가 수신하는 DL 데이터의 양 또는 DL 데이터의 특성에 따라서 PDCCH 모니터링을 상이하게 수행할 수 있다. 그러므로, 본 발명의 실시 예들은 UE의 전력 절약(power saving) 동작을 위해 기지국은 UE에게 DL 데이터에 대한 정보를 제공할 것을 제안한다. 다음은 기지국이 UE에게 제공할 수 있는 패킷(packet) (예를 들어, DL 데이터)에 대한 부가 정보에 대한 구체적인 실시 예들이다.
실시 예 1
기지국은 UE 또는 UE 그룹에게 기 정의되거나 상위 계층에 의해 설정(Configuration)된 특정 시간 구간 동안에 기지국이 UE에게 전송할 DL 데이터의 양을 전송할 수 있다. 예를 들어, 기지국은 UE에게 전송할 DL 데이터의 양에 대응하는 비트 수 또는 이에 대응하는 메트릭 값을 전송할 수 있다.
또한, 기지국은 UE에게 패킷 크기(Packet size)에 대한 정보 또는 기지국이 스케줄링할 TB 크기의 총합에 대한 정보를 UE에게 전송할 수 있다. 이 때, TB 크기는 CRC(Cyclic Redundancy Check)를 제외한 크기일 수도 있고, TB CRC 및/도는 CB CRC를 포함한 크기일 수도 있으며, 기지국은 UE 구현에 따라서 적합한 형태의 정보를 전송할 수 있다.
UE는 기지국이 전송한 정보에 포함된 패킷 크기 또는 스케줄링할 TB 크기의 총합을 모두 수신할 때까지 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대하여 PDCCH를 모니터링할 수 있다. 다시 말해, 기지국이 전송한 정보에 포함된 패킷 크기 또는 스케줄링할 TB 크기의 총합을 모두 수신하면, 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링(monitoring)을 중단할 수 있다.
상술한 PDCCH 모니터링 방법에 대해 구체적으로 살펴보면, UE가 패킷 크기(packet size) 또는 스케줄링할 TB 크기의 총합에 관한 정보를 수신하면, 해당 정보에 포함된 값을 별도의 저장 공간에 저장할 수 있다. UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 새로운 데이터(new data)에 대응하는 TB를 성공적으로 수신/디코딩(decoding)하거나 특정 시간 구간 동안에 새로운 데이터에 대응하는 TB를 성공적으로 수신/디코딩한 경우, 해당 TB의 크기만큼을 상기 수신한 정보를 통해 획득한 패킷 크기 또는 TB 크기의 총합에서 차감할 수 있다. 한편, 여기서 새로운 데이터에 대응하는 TB란, HARQ 프로세스(process), NDI (New Data Indicator) 조합에 따라서 구분되는 서로 상이한 TB를 의미할 수 있다.
또는, PDCCH 검출을 실패하는 경우를 고려하여, 기지국이 충분히 큰 패킷의 크기 정보 또는 충분히 큰 TB 크기의 총합에 관한 정보를 UE에게 전송하고, UE는 새로운 데이터 및 재전송 데이터의 구분 없이, TB를 성공적으로 수신/디코딩한 경우에 해당 TB의 크기만큼을 상기 수신한 정보를 통해 획득한 패킷 크기 또는 TB 크기의 총합에서 차감할 수 있다. 이 때, 차감된 값이 양수 또는 음이 아닌 수인 경우, UE는 전체 또는 일부 CORESET 및/또는 검색 공간(Search space)에서 PDCCH를 지속적으로 모니터링할 수 있다. 만약, DRX 동작이 설정(Configuration)된다면, DRX 동작에 의하여 설정된 PDCCH 모니터링 기회(Occasion)에서 PDCCH 모니터링을 지속할 수 있다.
차감된 값이 음수이거나 0인 경우에, UE는 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링을 중단할 수 있다. 또는, UE는 차감된 값이 음수이거나 0인 경우, 시간 상으로 중첩된(overlapped) PDSCH 전송의 전체 혹은 일부가 수신되는 것을 기대하지 않을 수 있다. 한편, PDCCH 모니터링(monitoring)이 중단되는 CORESET 및/또는 검색 공간(search space)에서 공통 검색 공간(Common Search Space; CSS)는 제외될 수 있으며, 이는 방송 메지시 수신에서 이점이 있을 수 있다.
또한, UE가 PDCCH 모니터링을 중단하는 시점은 PDSCH의 디코딩(decoding) 성공 여부를 결정할 수 있는 시점이어야 하므로, 해당 PDSCH가 수신이 완료된 시점으로부터 특정 오프셋 이후의 시점일수도 있고, 해당 PDSCH에 대한 HARQ-ACK이 UE로부터 전송되는 시점 또는 해당 PDSCH에 대한 HARQ-ACK을 기지국이 수신하는 시점일 수 있다. 한편, 상기 특정 오프셋은 슬롯 및/또는 심볼 단위로 표현될 수 있다. 또한, UE가 기지국으로부터 수신한 패킷(packet)에 대한 부가 정보와 UE가 실제 성공적으로 수신한 TB 크기(size)의 총합 간의 관계에 따라 UE의 전력 소모 모드 (예를 들어, 일반 접속 상태(normal access state) 또는 전력 절약 상태(power saving state))가 변경될 수도 있다.
한편, UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 새로운 데이터(new data)에 대응하는 TB를 성공적으로 수신/디코딩(decoding)하거나 특정 시간 구간 동안에 새로운 데이터에 대응하는 TB를 성공적으로 수신/디코딩한 경우, 성공적으로 수신/디코딩한 TB의 크기를 별도의 저장 공간에 축척(accumulate)하여 저장할 수 있다. 이러한 경우, 저장된 값이 기지국으로 수신한 패킷 크기 또는 TB 크기의 총합보다 작거나 같은 경우와 그 이외의 경우에 따라서 UE의 동작이 상이하게 설정될 수 있다.
예를 들어, 저장된 값이 기지국으로부터 수신한 패킷 크기 또는 TB 크기의 총합보다 작거나 같은 경우, UE는 PDCCH 모니터링을 지속할 수 있고, 저장된 값이 기지국으로부터 수신한 패킷 크기 또는 TB 크기의 총합보다 크거나 같은 경우, UE는 PDCCH 모니터링을 중단할 수 있다.
실시 예 2
기지국은 UE 또는 UE 그룹에게 기 정의되거나 상위 계층에 의해 설정(Configuration)된 특정 시간 구간 동안에 기지국이 UE에게 전송할 TB의 개수를 제공할 수 있다. 예를 들어, PDSCH는 스케줄링(scheduling) 정보에 따라서 하나 이상의 TB(예를 들어, 2개의 TB)를 포함할 수 있으며, 기지국은 하나 이상의 PDSCH로부터 전송될 TB의 총 개수에 대한 정보를 UE에게 전송할 수 있다.
UE는 설정된 TB의 총 개수에 대응하는 TB들을 수신할 때까지, 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH를 모니터링할 수 있다. 다시 말해, TB의 총 개수만큼의 TB들을 모두 수신하면, 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링(monitoring)을 중단할 수 있다.
상술한 PDCCH 모니터링 방법에 대해 구체적으로 살펴보면, UE가 TB 개수에 관한 정보를 수신하면, 해당 정보에 포함된 값을 별도의 저장 공간에 저장할 수 있다. UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 새로운 데이터(new data)에 대응하는 TB를 성공적으로 수신/디코딩(decoding)하거나 특정 시간 구간 동안에 새로운 데이터에 대응하는 TB를 성공적으로 수신/디코딩한 경우, 해당 TB의 개수만큼을 상기 수신한 정보를 통해 획득한 TB의 개수에서 차감할 수 있다. 한편, 여기서 새로운 데이터에 대응하는 TB란, HARQ 프로세스(process), NDI (New Data Indicator) 조합에 따라서 구분되는 서로 상이한 TB를 의미할 수 있다.
또는, PDCCH 검출을 실패하는 경우를 고려하여, 기지국이 충분히 큰 TB 의 개수에 관한 정보를 UE에게 전송하고, UE는 새로운 데이터 및 재전송 데이터의 구분 없이, TB를 성공적으로 수신/디코딩한 경우에 해당 TB의 개수만큼을 상기 수신한 정보를 통해 획득한 TB 개수에서 차감할 수 있다. 이 때, 차감된 값이 양수 또는 음이 아닌 수인 경우, UE는 전체 또는 일부 CORESET 및/또는 검색 공간(Search space)에서 PDCCH를 지속적으로 모니터링할 수 있다. 만약, DRX 동작이 설정(Configuration)된다면, DRX 동작에 의하여 설정된 PDCCH 모니터링 기회(Occasion)에서 PDCCH 모니터링을 지속할 수 있다.
차감된 값이 음수이거나 0인 경우에, UE는 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링을 중단할 수 있다. 또는, UE는 차감된 값이 음수이거나 0인 경우, 시간 상으로 중첩된(overlapped) PDSCH 전송의 전체 혹은 일부가 수신되는 것을 기대하지 않을 수 있다. 한편, PDCCH 모니터링(monitoring)이 중단되는 CORESET 및/또는 검색 공간(search space)에서 공통 검색 공간(Common Search Space; CSS)는 제외될 수 있으며, 이는 방송 메지시 수신에서 이점이 있을 수 있다.
또한, UE가 PDCCH 모니터링을 중단하는 시점은 PDSCH의 디코딩(decoding) 성공 여부를 결정할 수 있는 시점이어야 하므로, 해당 PDSCH가 수신이 완료된 시점으로부터 특정 오프셋 이후의 시점일수도 있고, 해당 PDSCH에 대한 HARQ-ACK이 UE로부터 전송되는 시점 또는 해당 PDSCH에 대한 HARQ-ACK을 기지국이 수신하는 시점일 수 있다. 한편, 상기 특정 오프셋은 슬롯 및/또는 심볼 단위로 표현될 수 있다. 또한, UE가 기지국으로부터 수신한 패킷(packet)에 대한 부가 정보와 UE가 실제 성공적으로 수신한 TB의 개수 간의 관계에 따라 UE의 전력 소모 모드 (예를 들어, 일반 접속 상태(normal access state) 또는 전력 절약 상태(power saving state))가 변경될 수도 있다.
한편, UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 새로운 데이터(new data)에 대응하는 TB를 성공적으로 수신/디코딩(decoding)하거나 특정 시간 구간 동안에 새로운 데이터에 대응하는 TB를 성공적으로 수신/디코딩한 경우, 성공적으로 수신/디코딩한 TB의 개수를 별도의 저장 공간에 축척(accumulate)하여 저장할 수 있다. 이러한 경우, 저장된 값이 기지국으로 수신한 패킷 크기 또는 TB 크기의 총합보다 작거나 같은 경우와 그 이외의 경우에 따라서 UE의 동작이 상이하게 설정될 수 있다.
예를 들어, 저장된 값이 기지국으로부터 수신한 TB의 개수보다 작거나 같은 경우, UE는 PDCCH 모니터링을 지속할 수 있고, 저장된 값이 기지국으로부터 수신한 TB의 개수보다 크거나 같은 경우, UE는 PDCCH 모니터링을 중단할 수 있다.
실시 예 3
기지국은 UE 또는 UE 그룹에게 기 설정되거나 상위 계층을 통해 설정(Configuration)된 특정 시간 구간 동안에 기지국이 UE에게 전송할 PDCCH 및/또는 PDSCH의 개수에 대한 정보를 전송할 수 있다. 예를 들어, PDCCH에 대한 개수는 짧은 DRX 사이클의 개수, 긴 DRX 사이클의 개수 또는 PDCCH 모니터링 기회(occasion)의 개수로 표현될 수 있다. 또한, 기지국은 PDCCH 모니터링(monitoring)이 수행되는 COREST, 검색 공간(search space) 및/또는 DCI 포맷에 대한 정보를 UE에게 전송할 수도 있다. 이 때, 해당 PDCCH는 PDSCH를 스케줄링하는 DCI를 포함하는 PDCCH로 한정될 수 있다. 또한, 해당 PDCCH 및/또는 PDSCH는 유니캐스트 데이터에 대응하거나 데이터 스크램블링 및/또는 CRC 마스킹이 UE ID로 결정되는 것에 한정될 수 있다. 여기서, CRC 마스킹이 UE ID로 결정되는 경우란, C-RNTI, CS-RNTI 또는 MCS-C-RNTI 등으로 CRC 마스킹이 수행되는 경우일 수 있다.
또한, PDSCH 스케줄링, PUSCH 스케줄링, 동적 SFI(Slot Format Indicator), 중단 정보(interruption information) 또는 TPC (Transmission Power Control) 등과 같이 DCI의 종류 및 목적을 기반으로 기지국은 UE에게 PDCCH 개수에 대한 정보를 전송할 수 있다.
UE는 기지국으로부터 수신한 정보에 포함된 PDCCH 및/또는 PDSCH의 개수에 대응하는 PDCCH 및/또는 PDSCH들을 수신할 때까지, 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에서 PDCCH를 모니터링할 수 있다. 다시 말해, PDCCH 및/또는 PDSCH의 개수에 대응하는 PDCCH 및/또는 PDSCH를 모두 수신하면, 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링(monitoring)을 중단할 수 있다.
상술한 PDCCH 모니터링 방법에 대해 구체적으로 살펴보면, UE가 PDCCH 및/또는 PDSCH의 개수에 대한 정보를 수신하면, 해당 정보에 포함된 값을 별도의 저장 공간에 저장할 수 있다. UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 PDSCH를 통해 전송되는 전체 또는 일부 TB를 성공적으로 수신/디코딩하거나 특정 시간 구간 동안에 PDSCH를 통해 전송되는 전체 또는 일부 TB를 성공적으로 수신/디코딩한 경우, 해당 PDCCH 및/또는 PDSCH의 개수만큼을 상기 수신한 정보를 통해 획득한 PDCCH 및/또는 PDSCH의 개수에서 차감할 수 있다.
또는, 지연(latency)를 고려하여, 기지국이 충분히 큰 PDCCH 및/또는 PDSCH의 개수에 관한 정보를 UE에게 전송하고, UE는 PDSCH 디코딩 성공 여부에 관계 없이, PDCCH 및/또는 PDSCH를 수신한 경우에 해당 PDCCH 및/또는 PDSCH의 개수만큼을 상기 수신한 정보를 통해 획득한 PDCCH 및/또는 PDSCH의 개수에서 차감할 수 있다.
이 때, 차감된 값이 양수 또는 음이 아닌 수인 경우, UE는 전체 또는 일부 CORESET 및/또는 검색 공간(Search space)에서 PDCCH를 지속적으로 모니터링할 수 있다. 만약, DRX 동작이 설정(Configuration)된다면, DRX 동작에 의하여 설정된 PDCCH 모니터링 기회(Occasion)에서 PDCCH 모니터링을 지속할 수 있다.
차감된 값이 음수이거나 0인 경우에, UE는 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링을 중단할 수 있다. 또는, UE는 차감된 값이 음수이거나 0인 경우, 시간 상으로 중첩된(overlapped) PDSCH 전송의 전체 혹은 일부가 수신되는 것을 기대하지 않을 수 있다. 한편, PDCCH 모니터링(monitoring)이 중단되는 CORESET 및/또는 검색 공간(search space)에서 공통 검색 공간(Common Search Space; CSS)는 제외될 수 있으며, 이는 방송 메지시 수신에서 이점이 있을 수 있다.
또한, UE가 PDCCH 모니터링을 중단하는 시점은 PDSCH의 디코딩(decoding) 성공 여부를 결정할 수 있는 시점이어야 하므로, 해당 PDSCH가 수신이 완료된 시점으로부터 특정 오프셋 이후의 시점일수도 있고, 해당 PDSCH에 대한 HARQ-ACK이 UE로부터 전송되는 시점 또는 해당 PDSCH에 대한 HARQ-ACK을 기지국이 수신하는 시점일 수 있다. 한편, 상기 특정 오프셋은 슬롯 및/또는 심볼 단위로 표현될 수 있다. 또한, UE가 기지국으로부터 수신한 정보와 UE가 실제 성공적으로 수신한 PDCCH 및/또는 PDSCH의 개수 간의 관계에 따라 UE의 전력 소모 모드 (예를 들어, 일반 접속 상태(normal access state) 또는 전력 절약 상태(power saving state))가 변경될 수도 있다.
한편, UE는 상기 정보가 수신된 시점(예를 들어, 상기 정보가 수신된 슬롯 또는 심볼)과 같은 특정 시점 또는 해당 특정 시점으로부터 특정 오프셋 이후부터 PDCCH 및/또는 PDSCH를 수신하거나 특정 시간 구간 동안에 PDCCH 및/또는 PDSCH를 수신한 경우, 해당 PDCCH 및/또는 PDSCH의 개수를 별도의 저장 공간에 축척(accumulate)하여 저장할 수 있다. 이러한 경우, 저장된 값이 기지국으로 수신한 PDCCH 및/또는 PDSCH 개수의 총합보다 작거나 같은 경우와 그 이외의 경우에 따라서 UE의 동작이 상이하게 설정될 수 있다.
예를 들어, 저장된 값이 기지국으로부터 수신한 PDCCH 및/또는 PDSCH 개수의 총합보다 작거나 같은 경우, UE는 PDCCH 모니터링을 지속할 수 있고, 저장된 값이 기지국으로부터 수신한 PDCCH 및/또는 PDSCH 개수의 총합보다 크거나 같은 경우, UE는 PDCCH 모니터링을 중단할 수 있다.
실시 예 4
기지국은 해당 UE 또는 UE 그룹에 데이터를 수신할 수 있는 활성 구간 (Active Duration) (T)에 대한 정보를 전송할 수 있다. 이 때, DRX 동작이 설정되었다면, 상기 활성 구간은 DRX 타이머에 의한 Active Time 구간 보다 작거나 같을 수도 있다.
이러한 활성 구간은 해당 UE 또는 UE 그룹을 위한 데이터의 양과 UE의 채널상황 및 네크워크의 부하(load) 및/또는 스케줄링 상황 등에 따라 결정될 수 있다. 또한, 해당 활성 구간의 값은 RRC(Radio Resource Control)을 통해 여러 가지 후보 값들 중, 지시(indication)할 수 있는 후보 값들의 서브셋(subset)을 별도로 설정(Configuration)하고, 설정된 서브셋(subset)에 포함된 값들 중 하나의 값을 지시(indication) 할 수 있다.
또한, 기지국은 UE 또는 UE 그룹에 스케줄링 패턴 (Scheduling Pattern) 등에 대한 정보를 전송할 수 있다. 스케줄링 패턴은 네트워크(network)의 스케줄링 상황 및 트래픽 양(traffic rate) 등에 따라 결정될 수 있다. 또한, UE의 제어 채널 모니터링 동작(control channel monitoring behaviour)을 결정하기 위하여 기지국은 네트워크(network)의 블록킹 확률(blocking probability)에 대한 값을 UE에게 전송할 수 있다. 예를 들어, 네트워크의 블록킹 확률(blocking probability) 이 낮은 경우, 최소 집성 레벨 집합(minimum Aggregation Level set) 및/또는 최소 PDCCH 후보들의 수를 기반으로 UE가 PDCCH를 모니터링할 수 있다. 반면, 네트워크의 블록킹 확률(blocking probability)이 높은 경우, 집성 레벨 집합과 PDCCH 후보들의 수를 높여서 네트워크의 스케줄링 유연성(scheduling flexibility) 을 높일 수 있다.
상술한 PDCCH 모니터링 방법에 대해 구체적으로 살펴보면, UE가 데이터를 수신할 수 있는 활성 구간 (Active Duration) (T)에 대한 정보를 수신하면, 상기 정보가 수신된 시점 또는 해당 시점으로부터 특정 오프셋 이후부터 해당 활성 구간 동안 UE는 전체 또는 일부 CORESET 및/또는 검색 공간(Search space)에서 PDCCH를 지속적으로 모니터링할 수 있다. 만약, DRX 동작이 설정(Configuration)된다면, DRX 동작에 의하여 설정된 PDCCH 모니터링 기회(Occasion)에서 PDCCH 모니터링을 지속할 수 있다.
다시 말해, 해당 활성 구간 이외의 시점에서, UE는 전체 혹은 일부 CORESET 및/또는 검색 공간(Search space)에 대한 PDCCH 모니터링을 중단할 수 있다. 또는, UE는 해당 활성 구간 이외의 시점에서, 시간 상으로 중첩된(overlapped) PDSCH 전송의 전체 혹은 일부가 수신되는 것을 기대하지 않을 수 있다. 한편, PDCCH 모니터링(monitoring)이 중단되는 CORESET 및/또는 검색 공간(search space)에서 공통 검색 공간(Common Search Space; CSS)는 제외될 수 있으며, 이는 방송 메지시 수신에서 이점이 있을 수 있다.
실시 예 1 내지 실시 예 4에서 DCI 기반으로 스케줄링(scheduling)되는 PDSCH에 대한 패킷 정보와 DL SPS(Semi-Persistent Scheduling)에 대응되는 PDSCH에 대한 패킷 정보를 기지국이 UE에게 독립적으로 전송할 수 있다. 이러한 경우, DL SPS에 대한 해제(Release) 신호를 수신하지 않을 수 있다.
또한, 기지국은 UE에게 DCI 기반으로 스케줄링(scheduling)되는 PDSCH의 패킷(packet)에 대한 부가 정보만 전송할 수 있다. 이는 DL SPS의 경우에는 VoIP(Voice Over Internet Protocol)을 위한 패킷(packet) 일 수 있으므로 복수의 패킷(packet)을 개별적으로 관리하는 것이 네트워크 자원 관리 측면이나 UE의 TB관리 측면에서 유용할 수 있기 때문이다.
한편, 기지국이 특정 UE에게 특정 패킷(Packet)에 대한 스케줄링(scheduling)을 진행 중이거나 완료하기 전에 새로운 패킷(packet)을 추가로 스케줄링하거나 전송 중인 패킷(packet)의 양에 변화가 있을 수 있다. 이러한 경우, 기지국은 UE에게 갱신(updated)된 패킷(packet)에 대한 부가 정보를 다시 UE에게 제공할 수도 있고, 기지국이 UE에게 패킷(packet)에 대한 부가 정보의 변화에 대한 내용, 예를 들어, 패킷의 감소/증가/유지 등에 대한 정보를 전송할 수 있다. 또한, UE는 기지국이 갱신하거나 전송한 패킷(packet)에 대한 부가 정보를 기반으로 PDCCH 모니터링(monitoring) 방법을 결정할 수 있다. 또한, 기지국은 UE가 전체 혹은 일부 CORESET 및/또는 검색 공간(search space)에 대하여 PDCCH 모니터링(monitoring)을 지속하도록 특정 신호 또는 채널을 전송할 수도 있다.
예를 들어, 기지국이 UE에게 갱신(updated)된 패킷(packet)에 대한 부가 정보를 UE에게 전송하면, UE는 기지국으로부터 수신한 복수의 패킷(packet)에 대한 부가 정보들 중, 가장 최근에 수신한, 즉, 가장 나중에 수신한 패킷(packet)에 대한 부가 정보를 기반으로 PDCCH 모니터링을 수행할 수 있다. 추가로 UE는 기지국으로부터 전체 혹은 일부 CORESET 및/또는 검색 공간(search space)에서 PDCCH 모니터링(monitoring)을 지속하도록 하는 특정 신호 또는 채널을 수신할 수 있으며, 이러한 경우, 사전에 미리 정해지거나 상위 계층을 통해 설정된 구간 동안에는 지속하여 PDCCH를 모니터링할 수 있다.
또한, PDCCH 모니터링(monitoring)을 중단해야 하는 경우에도 방송 메시지(broadcast message)를 수신하기 위한 특정 시점에서의 PDCCH 모니터링은 제한적으로 수행될 수 있다. 예를 들어, 특정 공통 검색 공간(Common Search Space; CSS)에서의 DCI 포맷 1-0/0-0과 같은 폴백 DCI에 대한 PDCCH 모니터링은 여전히 수행될 수 있다. 한편, 상기 방송 메시지를 수신하기 위한 특정 시점에서의 PDCCH 모니터링은 PDCCH CRC 마스킹 및/또는 PDSCH 데이터 스크램블링이 SI-RNTI, P-RNTI, RA-RNTI 또는 TC-RNTI등을 기반으로 하는 PDCCH를 모니터링 하기 위한 것일 수 있다. 또한, 상술한 동작은 IAB (Integrated Access Backhaul)과 같이 릴레이(relay)와 연관된 IAB 노드의 부하(load)에 따라 UE 동작을 변경하는 방법에도 동일하거나 유사하게 적용될 수 있다.
이 때, UE는 단일 서빙 셀(single serving cell)을 통해 PDSCH를 수신할 수도 있고, 반송파 집성(carrier aggregation; CA)에 의하여 복수의 서빙 셀(serving cell)을 통해 PDSCH를 수신할 수도 있다. 따라서, 상술한 패킷(packet)에 대한 부가 정보는 모든 서빙 셀(serving cell)에 대한 값으로 기지국이 UE에게 전송할 수도 있고, 각 서빙 셀 또는 각 서빙 셀 그룹 별로 패킷(packet)에 대한 부가 정보를 기지국이 UE에게 전송할 수도 있다.
패킷(packet)에 대한 부가 정보를 기반으로 UE가 전력 절약(power saving)을 시도하는 동작에 추가적으로 또는 개별적으로 상기 패킷(packet)에 대한 부가 정보를 기반으로 BWP 스위칭 동작을 수행할 수도 있다. 예를 들어, UE는 기지국으로 수신한 패킷 크기 또는 TB 크기를 만족시키기는 TB 스케줄링을 수신한 경우 및/또는 해당 TB에 대한 디코딩이 성공적으로 수행된 경우, 해당 시점으로부터 특정 시점 이후에 UE는 기본(default) BWP 또는 전력 절약 목적으로 설정된 제 3의 BWP로 활성 BWP를 변경할 수 있다.
이를 통해, 패킷(packet)을 성공적으로 수신한 UE는 패킷(packet)에 대한 새로운 정보를 수신하기 전까지 활성 BWP의 크기를 감소시켜 전력을 절약할 수 있다. 한편, BWP 스위칭(switching)이 시작되는 시점은 해당 패킷(packet)에 대한 PDSCH가 전송된 마지막 슬롯 또는 마지막 심볼에서부터 특정 오프셋 이후일 수 있다. 이 때, 특정 오프셋은 슬롯 및/또는 심볼 단위로 표현될 수 있다. 이러한 특정 오프셋에 대한 구체적인 예시로는, 해당 PDSCH에 대응하는 프로세싱 시간(processing time)일 수도 있고, 또는 해당 PDSCH에 대한 HARQ-ACK이 UE로부터 전송되는 시점 또는 해당 PDSCH에 대한 HARQ-ACK을 기지국이 수신하는 시점일 수 있다.
UE는 단일 서빙 셀(single serving cell)을 통해 PDSCH를 수신할 수도 있고, 반송파 집성(carrier aggregation; CA)을 기반으로 복수의 서빙 셀(serving cell)들로부터 PDSCH를 수신할 수도 있다. 이 때, 패킷(packet)에 대한 부가 정보는 모든 서빙 셀(serving cell)에 대한 값으로 UE에게 전송될 수 있으며, UE는 복수의 서빙 셀들로부터 스케줄링된 PDCCH, PDSCH 및/또는 TB를 기반으로 패킷(packet) 에 대한 정보와 비교한 후에 PDCCH 모니터링 방법 및/또는 활성(active) BWP를 상이하게 설정(Configure)할 수 있다. 또한, UE는 각 서빙 셀 또는 각 서빙셀 그룹 별 패킷(packet)에 대한 부가 정보를 수신할 수 있으며, 이러한 경우, 각 서빙 셀 별 또는 각 서빙 셀 그룹 별로 패킷(packet)에 대한 부가 정보와 UE가 수신한 PDCCH, PDSCH 및/또는 TB를 기반으로 PDCCH 모니터링 방법 및/또는 활성(active) BWP를 상이하게 설정(Configure)할 수 있다.
한편, 실시 예 1 내지 실시 예 4에서 기지국이 UE에게 제공하는 상기 패킷에 대한 부가 정보는 다음과 같이 전송될 수 있다.
실시 예 5
DCI가 포함된 PDCCH를 통해서 전송될 수 있다. 예를 들어, 해당 DCI는 DCI 포맷 1-0과 같은 폴백 DCI와 동일한 크기일 수도 있고, 상위 계층(higher layer)을 통해 해당 DCI의 페이로드 크기가 설정될 수도 있다. 또한, 해당 DCI의 CRC는 제 3의 RNTI로 마스킹(masking)될 수 있다.
또한, 해당 DCI에는 복수 UE들과 관련된 패킷(packet)들의 정보가 멀티플렉싱(multiplexing)될 수 있다. 이러한 경우, 사전에 상위 계층 시그널링을 통해서 각 UE와 패킷의 정보 간의 맵핑 정보가 설정될 수 있으며, UE는 각각에 대응하는 패킷의 정보를 기반으로 PDCCH를 모니터링할 수 있다.
또한, DCI가 전송되는 CORESET 및/또는 검색 공간(Search space)은 상위 계층(higher layer)을 통해 설정(Configuration)할 수 있으며, 하나 이상의 슬롯, 심볼 또는 심볼 그룹 단위로 DCI가 전송되는 CORESET 및/또는 검색 공간에 대한 주기(periodicity)도 설정될 수 있다. 또는, 스케줄링(scheduling) DCI에 추가 필드 또는 특정 필드의 예약된 상태(reserved states)를 이용할 수 있다. 예를 들어, 기지국은 스케줄링(scheduling) DCI를 통해서 해당 PDSCH가 마지막 패킷(packet)에 대한 것인지 여부를 지시할 수 있다.
이에 따른 UE의 동작 과정을 살펴보면, UE는 상술한 바에 따라 패킷(packet)에 대한 부가 정보를 PDCCH에 포함된 DCI를 통해서 수신할 수 있다. 이 때, DCI는 DCI 포맷 1-0과 같은 폴백 DCI와 동일한 크기로 설정되거나, 상위 계층을 통해서 페이로드 크기가 설정될 수도 있다. 한편, 상기 DCI의 CRC는 제 3의 RNTI로 마스킹(masking)될 수 있다.
UE는 상위 계층(higher layer)을 통해 수신된 복수의 UE들을 위한 패킷(packet)에 대한 부가 정보들 중, 해당 UE에 대응되는 패킷(packet)에 대한 부가 정보를 기반으로 PDCCH를 모니터링할 수 있다. UE는 패킷(packet)에 대한 부가 정보를 기반으로 해당 PDCCH가 전송되는 PDCCH 모니터링 기회(monitoring occasion)의 첫 심볼 또는 마지막 심볼에서부터 다음 주기(period)에 포함된 PDCCH 모니터링 기회(monitoring occasion)의 첫 심볼 또는 마지막 심볼까지의 시간 구간 동안 PDCCH 모니터링을 수행할 수 있다. 한편, PDCCH/PDSCH 디코딩 시간(decoding time)을 고려하여 상기 시간 구간에서 슬롯 및/또는 심볼 단위로 표현되는 특정 오프셋을 추가로 적용할 수 있다. 반면, PDCCH 모니터링을 수행할 시작 시점만 정해지고 종료 시점은 별도로 정의되지 않을 수 있다. 이는 PDCCH 모니터링 주기(monitoring periodicity)를 기준으로 패킷(packet)에 대한 부가 정보를 효율적으로 갱신(update)하기 위함이다.
실시 예 6
패이징 기록(paging record)과 같은 패이징 정보의 일부를 통해 UE에게 전송될 수 있다. 예를 들어, 패이징 정보는 해당 UE의 식별(identity)에 대한 정보와 함께 해당 UE의 패킷(packet)에 대한 부가 정보를 UE에게 전송할 수 있다. 패이징 정보는 기존의 패이징 정보와 구분될 수 있다. 예를 들어, 패킷(packet)에 대한 부가 정보를 포함하는 패이징 정보는 확장된 패이징 기록(extended paging record)으로 정의될 수 있다. 한편, 이러한 경우, 기존의 패이징 기록과 확장된 패이징 기록은 패이징 기회(paging occasion)로 구분되거나 별도의 eP-RNTI를 통한 PDCCH CRC 마스킹 및/또는 PDSCH 데이터 스크램블링을 기반으로 구분될 수 있다.
이에 따른 UE의 동작 과정을 살펴보면, UE는 상술한 바에 따라 패이징 기록과 같은 패이징 정보를 수신할 때, UE가 추가로 패킷(packet)에 대한 부가 정보를 수신할 수 있다. 예를 들어, 패이징 정보는 해당 UE의 식별(identity)에 대한 정보와 함께 해당 UE의 패킷(packet)에 대한 부가 정보를 UE에게 전송할 수 있다. 패이징 정보는 기존의 패이징 정보와 구분될 수 있다. 예를 들어, 패킷(packet)에 대한 부가 정보를 포함하는 패이징 정보는 확장된 패이징 기록(extended paging record)으로 정의될 수 있다. 한편, 이러한 경우, 기존의 패이징 기록과 확장된 패이징 기록은 패이징 기회(paging occasion)로 구분되거나 별도의 eP-RNTI를 통한 PDCCH CRC 마스킹 및/또는 PDSCH 데이터 스크램블링을 기반으로 구분될 수 있다.
상술한 것과 같은 패이징 PDCCH 또는 패이징 PDSCH를 수신한 UE는 해당 패킷(packet)에 대한 부가 정보를 기반으로 PDCCH를 모니터링할 수 있다. 이 때, UE는 패킷(packet)에 대한 부가 정보를 기반으로 해당 패이징 기회(paging occasion)의 첫 심볼 또는 마지막 심볼에서부터 다음 주기(period)의 패이징 기회(paging occasion)의 첫 심볼 혹은 마지막 심볼까지의 시간 구간 동안 PDCCH를 모니터링할 수 있다. 한편, PDCCH/PDSCH 디코딩 시간(decoding time)을 고려하여 상기 시간 구간에서 슬롯 및/또는 심볼 단위로 표현되는 특정 오프셋을 추가로 적용할 수 있다. 반면, PDCCH 모니터링을 수행할 시작 시점만 정해지고 종료 시점은 별도로 정의되지 않을 수 있다.
실시 예 7
MAC (Medium Access Control) 메시지를 통해 패킷(packet)에 대한 부가 정보가 UE에게 전송될 수 있다. 해당 MAC 메시지는 PDSCH를 통해서 전송될 수 있으며, C-RNTI, CS-RNTI 또는 MCS-C-RNTI와 같은 UE ID를 통해 해당 UE의 MAC 메시지에 대응되는 PDCCH의 CRC 마스킹 및/또는 PDSCH 데이터 스크램블링이 구분될 수 있다. 이 때, 해당 MAC 메시지는 다른 MAC 메시지에 포함되거나 다른 MAC 메시지와 동시에 전송될 수 있다. 예를 들어, 해당 MA 메시지는 TCI 갱신 MAC 메시지(TCI update MAC message)에 포함될 수 있다.
이에 따른 UE의 동작 과정을 살펴보면, UE는 상술한 바에 따라 MAC (Medium Access Control) 메시지를 통해 패킷(packet)에 대한 부가 정보가 UE에게 전송될 수 있다. 해당 MAC 메시지는 PDSCH를 통해서 전송될 수 있으며, C-RNTI, CS-RNTI 또는 MCS-C-RNTI와 같은 UE ID를 통해 해당 UE의 MAC 메시지에 대응되는 PDCCH의 CRC 마스킹 및/또는 PDSCH 데이터 스크램블링이 구분될 수 있다. 한편, MAC 메시지를 포함하는 PDSCH를 수신한 UE는 해당 패킷(packet)에 대한 부가 정보를 기반으로 PDCCH를 모니터링할 수 있다. 예를 들어, UE는 패킷(packet)에 대한 부가 정보 기반으로 해당 PDSCH가 전송된 슬롯 또는 해당 PDSCH가 전송된 마지막 심볼에서부터 슬롯 및/또는 심볼 단위로 표현되는 특정 오프셋 이후의 슬롯 및/또는 심볼에서 PDCCH 모니터링을 시작할 수 있다. 이 때, 해당 MAC 메시지는 다른 MAC 메시지에 포함되거나 다른 MAC 메시지와 동시에 전송될 수 있다. 예를 들어, 해당 MA 메시지는 TCI 갱신 MAC 메시지(TCI update MAC message)에 포함될 수 있다.
실시 예 8
wake-up signal 을 통하여 다음 wake-up signal 전송까지의 패킷 정보를 전송하거나 해당 wake-up signal이 필요 시에 패킷 정보를 포함하거나 이러한 패킷 정보를 wake-up signal로 사용할 수 있다. 예를 들어, 단말이 활성(active) 상태에서 wake-up signal을 수신하면, 해당 wake-up signal은 패킷(packet)에 대한 부가 정보 또는 부가 정보와 같은 도움(assistance) 정보를 포함하는 것으로 가정할 수 있다.
Wake-up 용도로 해당 wake-up signal이 전송되는 경우, 단말의 제어 채널 모니터링(control channel monitoring) 여부를 결정하기 위하여, 부가 정보 및/또는 패킷(packet)에 대한 부가 정보가 함께 전송될 수 있다. 이 때, 상기 wake-up signal은 go-to-sleep signal로 대체될 수도 있으며, 이러한 경우, 단말의 PDCCH 모니터링(monitoring)을 좀 더 제한하는 정보가 함께 전송될 수 있다.
한편, wake-up signal은 wake-up signal에 대응하는 Active Time 동안에 실제로 UE가 PDCCH를 모니터링하기 위한 동작을 수행할 것인지를 지시하는 신호로서, wake-up signal이 수신되지 않으면, 해당 Active Time 동안에 UE는 PDCCH 모니터링 동작을 수행하지 않을 수 있다.
또한, go-to-sleep signal이 수신되면, 해당 Active Time 동안에 UE는 PDCCH 모니터링 동작을 수행하지 않을 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 19는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 19를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 단말의 전력을 절약하는 방법 및 이를 위한 장치는, 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (13)

  1. 무선 통신 시스템에서 단말이 하향링크 데이터를 수신하는 방법에 있어서,
    기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고,
    상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고,
    특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고,
    상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 DCI를 기반으로 상기 하향링크 데이터를 수신하는 것을 특징으로 하는,
    하향링크 데이터 수신 방법.
  2. 제 1 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 상기 하향링크 데이터의 양에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 하향링크 데이터의 양에 대응하는 하향링크 데이터가 수신될 때까지, 상기 DCI를 수신하는 것인,
    하향링크 데이터 수신 방법.
  3. 제 1 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 전송 블록(Transport Block; TB)들의 개수에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 TB들의 개수에 대응하는 TB들이 수신될 때까지, 상기 DCI를 수신하는 것인,
    하향링크 데이터 수신 방법.
  4. 제 1 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 하향링크 제어 채널의 개수에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 하향링크 제어 채널의 개수에 대응하는 하향링크 제어 채널이 수신될 때까지, 상기 DCI를 수신하는 것인,
    하향링크 데이터 수신 방법.
  5. 제 1 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간의 시작 지점 및 길이에 관련된 정보이고,
    상기 DCI를 수신하는 것은, 상기 특정 시간 구간의 시작 지점 및 길이를 기반으로 상기 DCI를 수신하는 것인,
    하향링크 데이터 수신 방법.
  6. 제 1 항에 있어서,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    하향링크 데이터 수신 방법.
  7. 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고,
    상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고,
    특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고,
    상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 DCI를 기반으로 상기 하향링크 데이터를 수신하는 것을 특징으로 하는,
    장치.
  8. 제 7 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 상기 하향링크 데이터의 양에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 하향링크 데이터의 양에 대응하는 하향링크 데이터가 수신될 때까지, 상기 DCI를 수신하는 것인,
    장치.
  9. 제 7 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 전송 블록(Transport Block; TB)들의 개수에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 TB들의 개수에 대응하는 TB들이 수신될 때까지, 상기 DCI를 수신하는 것인,
    장치.
  10. 제 7 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간 동안 전송되는 하향링크 제어 채널의 개수에 관한 정보이고,
    상기 DCI를 수신하는 것은, 상기 하향링크 제어 채널의 개수에 대응하는 하향링크 제어 채널이 수신될 때까지, 상기 DCI를 수신하는 것인,
    장치.
  11. 제 7 항에 있어서,
    상기 하향링크 데이터에 관련된 정보는,
    상기 특정 시간 구간의 시작 지점 및 길이에 관련된 정보이고,
    상기 DCI를 수신하는 것은, 상기 특정 시간 구간의 시작 지점 및 길이를 기반으로 상기 DCI를 수신하는 것인,
    장치.
  12. 제 7 항에 있어서,
    상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    장치.
  13. 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 단말에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    기지국으로부터 수신된 SS/PBCH 블록 (Synchronization Signal/Physical Broadcast Channel Block)와 관련된 임의 접속 프리앰블(Random Access Preamble)을 전송하고,
    상기 기지국으로부터 수신된 임의 접속 응답(Random Access Response; RAR)을 기반으로 RRC (Radio Resource Control) 연결을 요청하여 상기 기지국과의 RRC 연결을 획득(establishment)하고,
    상기 적어도 하나의 송수신기를 통해, 특정 시간 구간 동안 전송되는 상기 하향링크 데이터에 관련된 정보를 수신하고,
    상기 적어도 하나의 송수신기를 통해, 상기 하향링크 데이터에 관련된 정보를 기반으로 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 적어도 하나의 송수신기를 통해, 상기 DCI를 기반으로 상기 하향링크 데이터를 수신하는 것을 특징으로 하는,
    단말.
PCT/KR2019/012221 2018-09-21 2019-09-20 단말의 전력을 절약하는 방법 및 이를 위한 장치 WO2020060278A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180114351 2018-09-21
KR10-2018-0114351 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020060278A1 true WO2020060278A1 (ko) 2020-03-26

Family

ID=69887658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012221 WO2020060278A1 (ko) 2018-09-21 2019-09-20 단말의 전력을 절약하는 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2020060278A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9706422B2 (en) * 2012-02-03 2017-07-11 Nokia Technologies Oy Data buffer status influenced control channel monitoring
US20170332410A1 (en) * 2016-05-11 2017-11-16 Ofinno Technologies, Llc Random access process in a wireless device and wireeless network
EP3297339A1 (en) * 2015-05-15 2018-03-21 Kyocera Corporation Wireless terminal and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9706422B2 (en) * 2012-02-03 2017-07-11 Nokia Technologies Oy Data buffer status influenced control channel monitoring
EP3297339A1 (en) * 2015-05-15 2018-03-21 Kyocera Corporation Wireless terminal and base station
US20170332410A1 (en) * 2016-05-11 2017-11-16 Ofinno Technologies, Llc Random access process in a wireless device and wireeless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DCI monitoring occasions and blind detections", R1-1700078. 3GPP TSG RAN WG1 NR AD HOC MEETING, 9 January 2017 (2017-01-09), Spokane, USA, XP051202503 *
SAMSUNG: "On UE Power Savings", R1-1801977. 3GPP TSG RAN WG1 MEETING #92, 20 February 2018 (2018-02-20), Athens, Greece, XP051398351 *

Similar Documents

Publication Publication Date Title
WO2020085880A1 (ko) 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법 및 이를 위한 단말
WO2020060281A1 (ko) 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
WO2020085813A1 (ko) 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2020145751A1 (ko) 비면허 대역에서 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2021033946A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
WO2020167083A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2019216690A1 (ko) 시스템 정보를 송수신하는 방법 및 이를 위한 장치
WO2020032546A1 (ko) Nr v2x에서 자원 예약을 수행하는 방법 및 장치
WO2020027637A1 (ko) Nr v2x에서 캐리어 (재)선택을 수행하는 방법 및 장치
WO2020027635A1 (ko) Nr v2x에서 동기화를 수행하는 방법 및 장치
WO2020060089A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020060214A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 단말
WO2020167084A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020159312A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2020145746A1 (ko) 비면허 대역에서 동기 신호 블록의 시간 정보를 획득하는 방법 및 이를 위한 장치
WO2020036426A1 (ko) 무선 통신 시스템에서 tc와 pppp를 맵핑하는 방법 및 장치
WO2020145487A1 (ko) 무선 통신 시스템에서 신호를 전송하는 방법 및 단말
WO2020226378A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2021033944A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020076011A1 (ko) 무선 통신 시스템에서 단말의 동기화 수행 방법 및 상기 방법을 이용하는 단말
WO2020145497A1 (ko) 비면허 대역에서 무선 링크를 측정하는 방법 및 이를 위한 장치
WO2020085732A1 (ko) 무선 통신 시스템에서 사이드링크 단말의 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2022019435A1 (en) Method and apparatus for transmitting emergency buffer status report in wireless communication system
WO2020085885A1 (ko) Nr v2x에서 재전송을 수행하는 방법 및 장치
WO2021066277A1 (ko) 비면허 대역에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862871

Country of ref document: EP

Kind code of ref document: A1