WO2016185835A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016185835A1
WO2016185835A1 PCT/JP2016/061840 JP2016061840W WO2016185835A1 WO 2016185835 A1 WO2016185835 A1 WO 2016185835A1 JP 2016061840 W JP2016061840 W JP 2016061840W WO 2016185835 A1 WO2016185835 A1 WO 2016185835A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
tire
cord
layer
carcass
Prior art date
Application number
PCT/JP2016/061840
Other languages
English (en)
French (fr)
Inventor
敬士 ▲高▼田
宏行 横倉
淳子 齊藤
佑太 星野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201680029237.XA priority Critical patent/CN107614285B/zh
Priority to US15/574,840 priority patent/US20180147889A1/en
Priority to EP16796229.9A priority patent/EP3299180B1/en
Publication of WO2016185835A1 publication Critical patent/WO2016185835A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1835Rubber strips or cushions at the belt edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C2009/1885Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers with belt ply between adjacent carcass plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2016Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 10 to 30 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2019Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 30 to 60 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2022Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 60 to 90 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2038Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel using lateral belt strips at belt edges, e.g. edge bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2048Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by special physical properties of the belt plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/208Modulus of the cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2083Density in width direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane

Definitions

  • An embodiment of the present invention relates to a pneumatic tire in which a reinforcing layer in which a steel reinforcing cord is embedded is disposed between carcass plies.
  • This is composed of two or more carcass plies in which both end portions in the width direction are folded around a pair of bead cores and a plurality of carcass cords made of organic fibers inclined with respect to the tire equator are embedded therein,
  • a carcass layer extending in the shape of a belt, a belt layer disposed radially outward of the carcass layer, a tread disposed radially outward of the belt layer, and a position overlapping the belt layer radially between adjacent carcass plies.
  • the reinforcing layer is composed of a reinforcing ply in which reinforcing cords made of a plurality of steels inclined with respect to the tire equator are embedded.
  • the reinforcing cord embedded in the reinforcing ply described above with respect to the tire equator is a large value of 40 degrees or more, a large compressive force is repeatedly applied to the reinforcing cord during traveling.
  • the present inventor has found that when a pneumatic tire is run for a long period of time, the reinforcing cord buckles and cord breakage may occur. This is because, when the pneumatic tire is deformed so as to come into contact with the road surface and become flat, the reinforcing ply is stretched in the circumferential direction due to the tensile deformation in the circumferential direction due to the pantograph effect of the belt cord in the belt layer.
  • the belt layer and the reinforcement ply extend in the circumferential direction due to the diameter growth of the tread portion due to high-speed traveling, and the expansion of the reinforcement ply tends to be narrowed by such extension.
  • the reinforcement cord having the inclination angle described above is embedded in the reinforcement ply, the reinforcement cord is stretched to suppress the narrowing of the width of the reinforcement ply to some extent, This is considered to be because the compressive force in the direction parallel to the reinforcing cord (longitudinal direction) acts repeatedly. Note that the lateral force acting on the pneumatic tire during cornering and the compressive force acting on the reinforcing cord due to the projection input to the tread during traveling are even greater.
  • An object of one embodiment of the present invention is to provide a pneumatic tire capable of effectively suppressing buckling and cord breakage of a reinforcing cord in a reinforcing layer.
  • the purpose of this is from two or more carcass plies in which both ends in the width direction are folded around a pair of bead cores and a plurality of carcass cords made of organic fibers inclined with respect to the tire equator S are embedded therein.
  • a carcass layer configured to extend in a toroidal shape, a belt layer disposed radially outward of the carcass layer, a tread disposed radially outward of the belt layer, and a belt layer and a radial direction between adjacent carcass plies And a reinforcing layer arranged at a position overlapping with the air, and the reinforcing layer is composed of at least one reinforcing ply in which reinforcing cords made of a plurality of steels inclined with respect to the tire equator S are embedded.
  • the angle of inclination A of the reinforcing cord with respect to the tire equator S is within the range of 40 to 90 degrees, and the tire is parallel to the reinforcing cord. This can be achieved by setting the compression rigidity F per 50 mm width of the reinforcing layer in the direction in the range of 1000 to 2400 N.
  • the inclination angle A of the reinforcing cord with respect to the tire equator S is in the range of 40 to 90 degrees, and the compression rigidity F per 50 mm width of the reinforcing layer in the direction parallel to the reinforcing cord is 1000 N.
  • the reinforcing layer reinforcing ply
  • the reinforcing cord can effectively withstand the compressive force, and the reinforcing cord buckles. It is possible to effectively suppress the situation where the code breaks. If the compression rigidity F exceeds 2400 N, the durability and ground contact performance of the pneumatic tire are deteriorated, so that it cannot be used.
  • Embodiment 1 is a meridian cross-sectional view of a pneumatic tire showing Embodiment 1 of the present invention. It is the top view in which the one part was fractured
  • FIGS. 1 and 2 reference numeral 11 denotes a pneumatic tire for high-speed running mounted on a passenger car.
  • the pneumatic tire 11 has a pair of bead portions 13, and each bead core 13 has a ring shape. 12 are buried. As a result, the pneumatic tire 11 has a pair of bead cores 12.
  • the pneumatic tire 11 includes a pair of sidewall portions 14 extending from the bead portion 13 toward the outer side in the substantially radial direction, and a substantially cylindrical tread portion that couples the radially outer ends of the sidewall portions 14 to each other. 15 and further.
  • the pneumatic tire 11 has a carcass layer 16 that extends between the bead cores 12 in a toroidal shape and reinforces the sidewall portion 14 and the tread portion 15. Both ends of the carcass layer 16 in the tire width direction are the pair of tires.
  • the carcass layer 16 is folded around the bead core 12 from the inner side to the outer side. As a result, the carcass layer 16 is continuous between the bead cores 12 and the both side ends of the main body part 16a and extends outward from the bead cores 12. It is divided into a pair of positioned folded portions 16b.
  • the carcass layer 16 is composed of two or more, here two carcass plies 18 and 19, which are inclined at a cord angle of 70 to 90 degrees (here 80 degrees) with respect to the tire equator S.
  • the plurality of parallel carcass cords 20 and 21 are covered with a coating rubber.
  • a plurality of carcass cords 20 and 21 inclined with respect to the tire equator S are embedded in the carcass plies 18 and 19.
  • the carcass cords 20 and 21 are made of an organic fiber (here, nylon) such as nylon or polyester, and when the cord angle is less than 90 degrees as described above, these carcass cords Reference numerals 20 and 21 denote adjacent carcass plies 18 and 19 which are inclined in the opposite direction with respect to the tire equator S.
  • the carcass cords 20 and 21 may be hybrid cords formed by twisting two types of organic fibers, for example, nylon and aromatic polyamide filaments. In this way, the rigidity of the aromatic polyamide is exhibited at high loads and high temperatures, and high rigidity can be ensured even when the cord angle with respect to the tire equator S is as large as about 90 degrees.
  • Reference numeral 24 denotes a belt layer arranged to overlap the outer side in the radial direction of the carcass layer 16 in the tread portion 15, and this belt layer 24 has at least two (here, two) belt plies 25 and 26 in the radial direction.
  • Each belt ply 25, 26 is formed by laminating and coated with a plurality of parallel belt cords 27, 28 made of organic fibers (here, aromatic polyamide) such as steel, aromatic polyamide, nylon, etc. It is configured by covering with rubber. As a result, a plurality of belt cords 27 and 28 are embedded in the belt plies 25 and 26.
  • the belt cords 27 and 28 are inclined at a cord angle of 10 to 40 degrees (here 25 degrees) with respect to the tire equator S, and at least two belt plies (here, two belt plies 25 and 26). ) And the tire equator S, the direction of inclination is opposite and intersects each other. Further, the width of the belt ply 25 disposed on the radially inner side is formed slightly wider than the width of the belt ply 26 disposed on the radially outer side, and both ends of the belt ply 25 in the width direction are belt ply 26. Is folded outward in the radial direction. As a result, both end portions in the width direction of the belt ply 26 are enclosed by both end portions in the width direction of the belt ply 25, and distortion at both ends in the width direction of the belt plies 25 and 26 is effectively suppressed.
  • the carcass ply 18 extends greatly outward in the radial direction until both ends thereof are interposed between both ends in the width direction of the belt layer 24 (belt ply 25) and the carcass ply 19. ing.
  • both ends of the carcass ply 18 may extend to the vicinity of the tire maximum width position and finish.
  • both ends in the width direction of the belt ply 25 may extend substantially in parallel to the belt ply 26 without being folded back.
  • a central land portion 34 having a constant width extending across the tire equator S and continuously extending in the tire circumferential direction is formed between the main grooves 32 and 33, and between the main groove 32 and the tread end 35 on one side.
  • both side land portions 37 and 38 extending continuously in the tire circumferential direction and wider than the central land portion 34 are defined.
  • the main groove may be bent in a zigzag shape while extending in the circumferential direction.
  • two circumferential grooves 65, 66, 67, and 68 which extend continuously in the circumferential direction and have a narrower groove width than the main grooves 32, 33, are formed on the both land portions 37 and 38, respectively.
  • a land portion 69 extending continuously in the circumferential direction is provided between the directional groove 65 and the main groove 32, and a land portion 70 extending continuously in the circumferential direction is provided between the circumferential groove 67 and the main groove 33. Is formed.
  • land portions 71 and 72 extending continuously in the circumferential direction are defined between the circumferential grooves 65 and 66 and between the circumferential grooves 67 and 68, respectively.
  • These land portions 69, 71 and 70, 72 have a plurality of inclined grooves 73, 74 inclined toward the outer side in the tire width direction from the tire equator S and separated in the circumferential direction from the front side in the tire rotating direction toward the rear side in the rotating direction. 75 and 76 are formed in these land portions 69, 71 and 70 and 72, respectively, thereby being divided into a plurality of blocks 77, 78 and 79 and 80 that are separated in the circumferential direction.
  • a land portion 83 defined between the circumferential groove 66 and the one side tread end 35 and continuously extending in the circumferential direction is inclined in the same direction as the inclined grooves 73 and 74, and the tire equator S Are divided into a plurality of circumferentially separated blocks 85 by a plurality of circumferentially separated inclined grooves 84 having an inclination angle with respect to the inclined grooves 73 and 74, and between the circumferential groove 68 and the other side.
  • a land portion 86 defined between the tread end 36 and continuously extending in the circumferential direction is inclined in the same direction as the inclined grooves 75 and 76, and an inclination angle with respect to the tire equator S is greater than that of the inclined grooves 75 and 76.
  • a plurality of circumferentially separated inclined grooves 87 are divided into a plurality of blocks 88 separated in the circumferential direction.
  • 46 and 47 are a pair of belt reinforcement layers provided radially outward at both ends in the width direction of the belt layer 24. These belt reinforcement layers 46 and 47 are arranged so as to straddle the width direction both ends of the belt layer 24. Has been.
  • These belt reinforcing layers 46 and 47 are formed by coating reinforcing cords 48 and 49 made of organic fibers (here, nylon) such as a plurality of nylons and polyesters extending in the circumferential direction with a coating rubber. As a result, a plurality of reinforcing cords 48 and 49 parallel to the tire equator S are embedded in the belt reinforcing layers 46 and 47.
  • the reinforcing layer 52 is between any adjacent carcass plies, here between the carcass ply 18 and the carcass ply 19, but when there are three or more carcass plies, it is interposed between any adjacent carcass plies.
  • the reinforcing layer 52 is disposed on the tread portion 15 that overlaps the belt layer 24 in the radial direction, and here overlaps in the radial direction inside.
  • the reinforcing layer 52 is composed of at least one (here, one) reinforcing ply 53.
  • the reinforcing ply 53 is formed by coating a plurality of parallel reinforcing cords 54 made of steel with a coating rubber. Yes.
  • the reinforcing cord 54 is inclined with respect to the tire equator S at an inclination angle A (in this case, 60 degrees) within a range of 40 to 90 degrees.
  • the tire equator S is located inside the reinforcing layer 52.
  • the reinforcing layer 52 is composed of a plurality of reinforcing plies 53
  • the reinforcing cords 54 intersect with each other with the tire equator S inclined in the opposite direction in the two adjacent reinforcing plies 53.
  • the reinforcing cord 54 is constituted by twisting a plurality of filaments.
  • the reinforcing layer 52 is assumed to have a compression rigidity per 50 mm width in a direction parallel to the reinforcing cord 54 (a band extending in parallel to the reinforcing cord 54 is assumed, and the width of the band is 50 mm).
  • the value of the longitudinal compression stiffness (F) of the belt-like body is within the range of 1000N to 2400N.
  • the inclination angle A of the reinforcing cord 54 with respect to the tire equator S is within the range of 40 to 90 degrees
  • the compression rigidity F per 50 mm width of the reinforcing layer 52 in the direction parallel to the reinforcing cord 54 is 1000 N.
  • the reinforcing ply 53 is affected by the deformation of the belt layer 24 and the diameter growth of the tread portion 15 as described above, so that the compressive force is applied to the reinforcing cord 54.
  • the reinforcing cord 54 can effectively withstand the compressive force, and can effectively suppress a situation in which the reinforcing cord 54 buckles and progresses to break the cord as described later.
  • a cord having a bending rigidity D in the range of 230 to 300 N ⁇ m 2 is used, and the reinforcing cord 54 is driven into the reinforcing layer 52 (reinforcing ply 53) by 40 to 80 per 50 mm width.
  • the value of the compression rigidity F per 50 mm width of the reinforcing layer 52 can be easily within the range of 1000N to 2400N as described later.
  • the inclination angle A with respect to the tire equator S is 55 degrees or more, the above-described cord breakage occurs frequently, so that it is particularly effective for the reinforcing layer 52 in which the inclination angle A of the reinforcement cord 54 is 55 degrees or more. .
  • the value of the compression rigidity F is obtained as follows.
  • Each rubber sample is formed.
  • compress each sample by 1 mm in the height direction at room temperature, and measure the compression force required at that time.
  • a value obtained by subtracting the compression force of the rubber sample from the compression force of the sample including the reinforcement cord is defined as the compression rigidity of one reinforcement cord.
  • any number (for example, 30) of the 40 to 80 reinforcing cords are arranged in parallel in a space of 50 mm width, and the total compression rigidity in this state is obtained. Is obtained by multiplying the compression rigidity of the obtained one reinforcing cord by any one of the numbers (for example, 30) to obtain the value of the compressive rigidity F per 50 mm width in the direction parallel to the reinforcing cord 54.
  • the bending rigidity D of the reinforcing cord 54 exceeds 300 N ⁇ m 2 or if the number of driven reinforcing cords 54 per 50 mm width exceeds 80,
  • the compression rigidity F may exceed 2400N.
  • the coating rubber gauge between the adjacent reinforcing cords 54 becomes small and the coating rubber breaks, and the durability of the pneumatic tire 11 decreases, or the reinforcing layer Since the bending rigidity of 52 becomes high and the contact deformation of the tread portion 15 during traveling decreases, and the steering stability of the pneumatic tire 11 decreases, it cannot be used.
  • the bending stiffness D (N ⁇ m 2 ) of the cord described above can be obtained by a well-known simple model calculation formula for the bending stiffness of the cord shown in the following formula 1.
  • N is the number of filaments
  • is the twist angle of the filament
  • E is the longitudinal elastic modulus of the filament
  • G is the transverse elastic modulus of the filament
  • I is the secondary moment of section
  • Ip is the secondary pole moment of section
  • d is the filament
  • the diameter, ⁇ f is the Poisson's ratio of the filament.
  • the value obtained by multiplying the twist pitch Q of the filament by the filament diameter and the number of filaments constituting the reinforcing cord 54 It is preferable to be within a range of 1.3 to 10.0 times V (here, 3.0 times). If the value of Q / V is within the above-described range, the reinforcing cord 54 functions like a compression spring. Therefore, even if a large compressive force acts repeatedly on the reinforcing cord 54, the reinforcing cord 54 This is because it is possible to strongly suppress the buckling and bending of the material.
  • the tread 31 has a plurality of grooves (main grooves 32, 33, circumferential grooves 65, 66, 67, 68, inclined grooves 73, 74, 75, 76, 84, as described above.
  • 87 is divided into a plurality of land parts (central land part 34, blocks 77, 78, 79, 80, 85, 88), and these land parts are located in a position overlapping with the reinforcing layer 52 in the radial direction.
  • the inner land portion 57 located between one end 52a in the width direction of the reinforcing layer 52 and the other end 52b in the width direction
  • the outer side in the tire width direction from the reinforcing layer 52 (the width of the reinforcing layer 52).
  • Tire width at any part of the inner land portion 57 when divided into a pair of outer land portions 58 and 59 (positioned between the one end 52a in the direction and the other end 52b in the width direction and the tread ends 35 and 36, respectively)
  • the length in the direction is also smaller than the maximum length in the tire width direction at the outer land portions 58 and 59.
  • the length in the width direction of the blocks 85 and 88 is the land portion in the outer land portions 58 and 59. Is the maximum length J in the tire width direction.
  • a central land portion 34 and blocks 77, 78, 79, and 80 are formed within the range of the inner land portion 57. The lengths in the tire width direction of these central land portion 34 and blocks 77, 78, 79, and 80 are formed.
  • the length K is the same value, and as a result, the maximum length K in the tire width direction is the maximum value in the tire width direction length of the land portion in the inner land portion 57.
  • the maximum length K in the tire width direction is smaller than the maximum length J in the tire width direction.
  • the inner land portion is secured while ensuring drainage and gripping power. The damage of 57 can be suppressed effectively.
  • the reason is that, if configured as described above, the number of grooves extending in the circumferential direction can be increased in the inner land portion 57, and drainage can be easily ensured, while the outer land portions 58 and 59 can be easily landed. Since the length of the portion in the tire width direction is increased, the rigidity is increased and the grip force can be easily ensured. However, if the length in the tire width direction of the land portion in the inner land portion 57 is shortened, the amount of deformation due to external force is increased and the land portion is liable to be damaged such as chipping. Since the two are superposed, the foundation for supporting the land portion is strengthened, and the above-described damage to the land portion can be effectively suppressed.
  • Test Example 1 a comparative tire 1 provided with a reinforcing layer having a compression stiffness F of 754N, a comparative tire 2 provided with a reinforcing layer having a compression stiffness F of 803N, and a reinforcing layer having a compression stiffness F of 947N.
  • Comparison tire 3 provided with a compression layer F
  • an implementation tire 1 provided with a reinforcement layer having a compression stiffness F of 993N
  • an implementation tire 2 provided with a reinforcement layer having a compression stiffness F of 1224N
  • Example tire 3 provided with a reinforcing layer
  • Example tire 4 provided with a reinforcing layer having a compression rigidity F of 2407 N
  • Comparison tire 4 provided with a reinforcement layer having a compression rigidity F of 2451 N
  • a comparative tire 5 provided with a reinforcing layer having a rigidity F of 2510N and a comparative tire 6 provided with a reinforcing layer having a compression rigidity F of 2558N were prepared.
  • each tire described above is 245 / 45R18, and its structure is the same as that of the tire described in the first embodiment.
  • a load of 1 kN was applied under the conditions of a camber angle of 0 degrees and a slip angle of 1 degree, and a speed of 300 km / While running at h, 10 cycles of a 9 kN load and 1 second impulse input were applied during such running.
  • each tire was dissected and the number of cord breakage points of the reinforcing cords was measured.
  • the result (cord breakage) is shown in Table 1 with the implementation tire 2 as an index of 100. Here, it is shown that the smaller the numerical value, the smaller the number of code breakage points and the better.
  • Example tire 5 is the same as the implementation tire 2 except that the Q / V value obtained by dividing the twist pitch Q by the value V is 1.1, and the implementation tire except that the Q / V value is 1.2.
  • Example tire 6 that is the same as Example 2
  • Example tire 7 that is the same as Example tire 2 except that the value of Q / V is 1.3
  • Example tire 2 (Q / V value is 3.0)
  • Q / V Example tire 8 that is the same as Example tire 2 except that the value of V is 10.0
  • Example tire 9 that is the same as Example tire 2 except that the value of Q / V is 10.3, and the value of Q / V is
  • An implementation tire 10 that was the same as the implementation tire 2 except that it was 12.0 was prepared.
  • One embodiment of the present invention can be applied to the industrial field in which a reinforcing layer in which a steel reinforcing cord is embedded is disposed between carcass plies of a pneumatic tire.

Abstract

空気入りタイヤ(11)は、補強層(11)を、内部にタイヤ赤道Sに対して傾斜した複数本のスチールからなる補強コード(54)が埋設された少なくとも1枚の補強プライ(53)から構成した空気入りタイヤにおいて、補強コード(54)のタイヤ赤道Sに対する傾斜角Aを40~90度の範囲内とするとともに、補強コード(54)に平行な方向における補強層(52)の50mm幅当たりの圧縮剛性Fを1000~2400Nの範囲内とする。

Description

空気入りタイヤ
 本発明の一実施形態は、カーカスプライ間にスチール製補強コードが埋設された補強層が配置されている空気入りタイヤに関する。
 従来の空気入りタイヤとしては、例えば特開2012-153214公報に記載されているようなものが知られている。
 これは、幅方向両端部が一対のビードコア回りに折り返されるとともに、内部にタイヤ赤道に対して傾斜した有機繊維からなる複数本のカーカスコードが埋設された2枚以上のカーカスプライから構成され、トロイド状に延びるカーカス層と、カーカス層の半径方向外側に配置されたベルト層と、該ベルト層の半径方向外側に配置されたトレッドと、隣接するカーカスプライ間でベルト層と半径方向に重なり合う位置に配置された補強層とを備え、該補強層を、内部にタイヤ赤道に対して傾斜した複数本のスチールからなる補強コードが埋設された補強プライから構成したものである。
 ここで、前述した補強プライ内に埋設されている補強コードのタイヤ赤道に対する傾斜角が40度以上という大きな値である場合には、該補強コードに走行時に繰り返し大きな圧縮力が作用し、この結果、空気入りタイヤを長期間走行させると、該補強コードが座屈しコード折れが発生することがあるという課題を、本発明者は見出した。これは、前記空気入りタイヤが路面に接地して平坦となるよう変形すると、ベルト層内のベルトコードのパンタグラフ効果により、前記補強プライは周方向の引っ張り変形を受けて周方向に伸長し、また、高速走行によるトレッド部の径成長により、ベルト層、補強プライが周方向に伸長するが、このような伸長により該補強プライは幅が狭くなるよう変形しようとする。このとき、補強プライ内には傾斜角が前述した値のスチール補強コードが埋設されているため、該補強コードが突っ張りとなって補強プライの幅の狭小化をある程度抑える一方、補強コードには該補強コードに平行な方向(長手方向)の圧縮力が繰り返し作用するためであると考えられる。なお、旋回走行時に空気入りタイヤに作用する横力や、走行時にトレッドに対し突起入力が入ることによって前記補強コードに作用する圧縮力はさらに大きな値となる。
 この発明の一実施形態は、補強層内の補強コードの座屈、コード折れを効果的に抑制することができる空気入りタイヤを提供することを目的とする。
 このような目的は、幅方向両端部が一対のビードコア回りに折り返されるとともに、内部にタイヤ赤道Sに対して傾斜した有機繊維からなる複数本のカーカスコードが埋設された2枚以上のカーカスプライから構成され、トロイド状に延びるカーカス層と、カーカス層の半径方向外側に配置されたベルト層と、該ベルト層の半径方向外側に配置されたトレッドと、隣接するカーカスプライ間でベルト層と半径方向に重なり合う位置に配置された補強層とを備え、該補強層を、内部にタイヤ赤道Sに対して傾斜した複数本のスチールからなる補強コードが埋設された少なくとも1枚の補強プライから構成した空気入りタイヤにおいて、前記補強コードのタイヤ赤道Sに対する傾斜角Aを40~90度の範囲内とするとともに、補強コードに平行な方向における補強層の50mm幅当たりの圧縮剛性Fを1000~2400Nの範囲内とすることにより、達成することができる。
 この発明の一実施形態においては、補強コードのタイヤ赤道Sに対する傾斜角Aを40~90度の範囲内とするとともに、補強コードに平行な方向における補強層の50mm幅当たりの圧縮剛性Fを1000N以上としたので、補強層(補強プライ)が幅方向に狭くなろうとして補強コードに圧縮力を付与しても、該補強コードは圧縮力に有効に耐えることができ、補強コードが座屈してコード折れに進展するような事態を効果的に抑制することができる。なお、前記圧縮剛性Fが2400Nを超えると、空気入りタイヤの耐久性、接地性が低下するため、使用することはできない。
この発明の実施形態1を示す空気入りタイヤの子午線断面図である。 その一部が破断された平面図である。
 以下、この発明の実施形態1を図面に基づいて説明する。
 図1、2において、11は乗用車に装着される高速走行用の空気入りタイヤであり、この空気入りタイヤ11は一対のビード部13を有し、これらビード部13にはそれぞれリング状を呈するビードコア12が埋設されている。この結果、前記空気入りタイヤ11は一対のビードコア12を有していることになる。また、前記空気入りタイヤ11は、前記ビード部13から略半径方向外側に向かって延びる一対のサイドウォール部14と、両サイドウォール部14の半径方向外端同士を連結する略円筒状のトレッド部15とをさらに備えている。そして、この空気入りタイヤ11は前記ビードコア12間をトロイド状に延びてサイドウォール部14、トレッド部15を補強するカーカス層16を有し、このカーカス層16のタイヤ幅方向両端部は前記一対のビードコア12の回りに内側から外側に向かって折り返されており、この結果、該カーカス層16はビードコア12間に位置する本体部16aと、本体部16aの両側端に連続し前記ビードコア12より外側に位置する一対の折返し部16bとに区分される。
 前記カーカス層16は2枚以上、ここでは2枚のカーカスプライ18、19から構成され、これらカーカスプライ18、19はタイヤ赤道Sに対し70~90度(ここでは80度)のコード角で傾斜した複数本の互いに平行なカーカスコード20、21をコーティングゴムで被覆することにより構成している。この結果、前記カーカスプライ18、19の内部にはタイヤ赤道Sに対して傾斜した複数本のカーカスコード20、21が埋設されていることになる。ここで、前記カーカスコード20、21はナイロン、ポリエステル等の有機繊維(ここでは、ナイロン)から構成されており、また、前述のようにコード角が90度未満である場合には、これらカーカスコード20、21は隣接するカーカスプライ18、19でタイヤ赤道Sに対し逆方向に傾斜している。また、前記カーカスコード20、21として、2種類の有機繊維、例えば、ナイロンと芳香族ポリアミドとのフィラメントを撚り合わせて構成したハイブリッドコードを用いるようにしてもよい。このようにすれば、高負荷、高温時に芳香族ポリアミドの剛性が発揮され、タイヤ赤道Sに対するコード角が90度程度の大きな場合でも高い剛性を確保することができる。
 24はトレッド部15において前記カーカス層16の半径方向外側に重ね合わされて配置されたベルト層であり、このベルト層24は少なくとも2枚(ここでは2枚)のベルトプライ25、26を半径方向に積層することで構成され、各ベルトプライ25、26は、例えばスチール、あるいは芳香族ポリアミド、ナイロン等の有機繊維(ここでは芳香族ポリアミド)からなる互いに平行な複数本のベルトコード27、28をコーティングゴムで被覆することにより構成している。この結果、前記ベルトプライ25、26の内部には複数本のベルトコード27、28が埋設されていることになる。ここで、前記ベルトコード27、28はタイヤ赤道Sに対し10~40度(ここでは25度)のコード角で傾斜するとともに、少なくとも2枚のベルトプライ(ここでは2枚のベルトプライ25、26)においてタイヤ赤道Sに対し傾斜方向が逆方向となり互いに交差している。また、半径方向内側に配置されているベルトプライ25の幅は半径方向外側に配置されているベルトプライ26の幅より若干広く形成されるとともに、該ベルトプライ25の幅方向両端部はベルトプライ26の半径方向外側に折り返されている。この結果、前記ベルトプライ25の幅方向両端部によりベルトプライ26の幅方向両端部は包み込まれており、これらベルトプライ25、26の幅方向両端における歪みは効果的に抑制されている。
 ここで、前記カーカスプライ18はその両端部が前記ベルト層24(ベルトプライ25)の幅方向両端部とカーカスプライ19との間に介装されるまで、半径方向外側に向かって大きく延在している。なお、この実施形態においては、前記カーカスプライ18の両端はタイヤ最大幅位置近傍まで延在して終了してもよい。また、この実施形態においては、ベルトプライ25の幅方向両端部は折り返されることなく、ベルトプライ26とほぼ平行に延びていてもよい。31は前記カーカス層16、ベルト層24の半径方向外側に配置されたゴムからなるトレッドであり、このトレッド31の踏面(外周)30中央部にはタイヤ周方向に連続して延びる一対の主溝32、33が形成され、これら主溝32、33はタイヤ赤道Sを挟むよう該タイヤ赤道Sの両側に形成されている。この結果、これら主溝32、33間にはタイヤ赤道Sを跨ぎタイヤ周方向に連続して延びる一定幅の中央陸部34が、また、前記主溝32と一側のトレッド端35との間、および、前記主溝33と他側のトレッド端36との間にはタイヤ周方向に連続して延び、前記中央陸部34より広幅の両側陸部37、38がそれぞれ画成される。なお、この実施形態においては、主溝は周方向に延びながらジグザグ状に折れ曲がっていてもよい。
 ここで、前述した両側陸部37および38には周方向に連続して延び主溝32、33より溝幅が狭い2本の周方向溝65、66および67、68がそれぞれ形成され、該周方向溝65と主溝32との間には周方向に連続して延びる陸部69が、また、周方向溝67と主溝33との間には周方向に連続して延びる陸部70が形成されている。一方、前記周方向溝65、66間、および、周方向溝67、68間にはそれぞれ周方向に連続して延びる陸部71、72が画成されている。これら陸部69、71および70、72は、タイヤ回転方向前側から回転方向後側に向かうに従いタイヤ赤道Sからタイヤ幅方向外側に向かうよう傾斜し周方向に離れた複数の傾斜溝73、74および75、76がこれら陸部69、71および70、72にそれぞれ形成されることで、周方向に離れた複数のブロック77、78および79、80に区画されている。
 さらに、前記周方向溝66と一側のトレッド端35との間に画成され周方向に連続して延びる陸部83は、前記傾斜溝73、74と同一方向に傾斜するとともに、タイヤ赤道Sに対する傾斜角が前記傾斜溝73、74より大である複数の周方向に離れた傾斜溝84により、周方向に離れた複数のブロック85に区画され、また、前記周方向溝68と他側のトレッド端36との間に画成され周方向に連続して延びる陸部86は、前記傾斜溝75、76と同一方向に傾斜するとともに、タイヤ赤道Sに対する傾斜角が前記傾斜溝75、76より大である複数の周方向に離れた傾斜溝87により、周方向に離れた複数のブロック88に区画されている。46、47はベルト層24の幅方向両端部でその半径方向外側に設けられた一対のベルト補強層であり、これらのベルト補強層46、47は前記ベルト層24の幅方向両端を跨ぐよう配置されている。これらベルト補強層46、47は周方向に延びる互いに平行な複数本のナイロン、ポリエステル等の有機繊維(ここではナイロン)からなる補強コード48、49をコーティングゴムで被覆することにより構成しており、この結果、これらベルト補強層46、47の内部にはタイヤ赤道Sに平行な複数本の補強コード48、49が埋設されていることになる。
 52は隣接するいずれかのカーカスプライ間に、ここではカーカスプライ18とカーカスプライ19との間であるが、カーカスプライが3枚以上である場合には、いずれかの隣接するカーカスプライ間に介装された補強層であり、この補強層52は前記ベルト層24と半径方向に重なり合う、ここでは半径方向内側において重なり合う位置のトレッド部15に配置されている。前記補強層52は少なくとも1枚(ここでは1枚)の補強プライ53から構成され、該補強プライ53はスチールからなる互いに平行な複数本の補強コード54をコーティングゴムで被覆することにより構成している。ここで、前記補強コード54はタイヤ赤道Sに対し40~90度の範囲内の傾斜角A(ここでは60度)で傾斜しており、この結果、前記補強層52の内部にはタイヤ赤道Sに対して傾斜した複数本のスチール製の補強コード54が埋設されていることになる。なお、前記補強層52が複数枚の補強プライ53から構成されているときには、補強コード54を隣接する2枚の補強プライ53においてタイヤ赤道Sに対し傾斜方向を逆方向とし互いに交差させる。また、前記補強コード54は複数本のフィラメントを撚ることで構成している。そして、このように傾斜角Aが40度以上であると、前述のように補強コード54に繰り返し圧縮力が付与され、該補強コード54が座屈しコード折れ(フィラメントの破断)が発生することがある。
 このため、この実施形態では、前記補強層52として、補強コード54に平行な方向における50mm幅当たりの圧縮剛性(補強コード54に平行に延びる帯状体を仮定するとともに、該帯状体の幅を50mmとしたときの該帯状体の長手方向圧縮剛性)Fの値が1000N~2400Nの範囲内のものを用いるようにしたのである。そして、前述のように補強コード54のタイヤ赤道Sに対する傾斜角Aを40~90度の範囲内とするとともに、補強コード54に平行な方向における補強層52の50mm幅当たりの圧縮剛性Fを1000N以上とすれば、前述のように補強プライ53がベルト層24の変形、トレッド部15の径成長の影響を受けて幅方向に狭くなろうとすることで、補強コード54に圧縮力が付与されても、該補強コード54は該圧縮力に有効に耐えることができ、後述のように該補強コード54が座屈してコード折れに進展するような事態を効果的に抑制することができる。そして、前記補強コード54として、曲げ剛性Dが 230~300N・m2 の範囲内のコードを用い、また、補強コード54を補強層52(補強プライ53)に50mm幅当たり40~80本の打込み本数Uだけ打ち込むようにすれば、後述のように補強層52の50mm幅当たりの圧縮剛性Fの値を容易に1000N~2400Nの範囲内に収めることができる。そして、タイヤ赤道Sに対する傾斜角Aが55度以上となると、前述のようなコード折れが頻繁に発生するので、補強コード54の傾斜角Aが55度以上である補強層52に特に有効である。
 ここで、前記圧縮剛性Fの値は次のようにして求められる。即ち、直径25mm、高さが25mmの円柱ゴムの中心軸上に、長さが25mmである1本の補強コードを埋設した補強コード入りサンプルと、前述した補強コードが埋設されていないゴムだけのゴムサンプルをそれぞれ形成する。次に、室温下で各サンプルを高さ方向に 1mmだけ圧縮し、そのときに要する圧縮力を測定する。そして、補強コード入りサンプルでの圧縮力から、ゴムサンプルでの圧縮力を減じた値を、1本の補強コードの圧縮剛性とする。次に、50mm幅の空間に前記補強コードを40~80本のうちの、いずれかの本数(例えば30本)だけ並列配置させたと仮定し、この状態での合計圧縮剛性を求める、具体的には、前記求めた1本の補強コードの圧縮剛性に、前記いずれかの本数(例えば30)を乗じて、補強コード54に平行な方向における50mm幅当たりの圧縮剛性Fの値とする。但し、補強コード54の曲げ剛性Dが300N・m2を超えたり、あるいは、50mm幅当たりの補強コード54の打込み本数が80本を超えると、
前記圧縮剛性Fが2400Nを超えることがある。このように圧縮剛性Fの値が2400Nを超えると、隣接する補強コード54間のコーティングゴムゲージが小さくなってコーティングゴムが破断し、空気入りタイヤ11の耐久性が低下したり、あるいは、補強層52の曲げ剛性が高くなって走行時におけるトレッド部15の接地変形が少なくなり、空気入りタイヤ11の操縦安定性が低下したりするため、使用することができない。なお、前述したコードの曲げ剛性D(N・m2 )は、以下の数1に示した、良く知られているコードの曲げ剛性の簡易モデル計算式により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 この式において、Nはフィラメント本数、αはフィラメントの撚り角度、Eはフィラメントの縦弾性係数、Gはフィラメントの横弾性係数、Iは断面2次モーメント、Ipは断面2次極モーメント、dはフィラメントの直径、μfはフィラメントのポアソン比である。
 ここで、前述のように補強コード54が複数本のフィラメントを撚ることで構成されている場合、該フィラメントの撚りピッチQを、フィラメント径に補強コード54を構成するフィラメントの本数を乗じた値Vの 1.3~10.0倍の範囲内(ここでは 3.0倍)とすることが好ましい。それは、前記Q/Vの値を前述のような範囲内とすれば、補強コード54が圧縮ばねのように機能するため、補強コード54に繰り返し大きな圧縮力が作用しても、該補強コード54の座屈、折れを強力に抑制することができるからである。また、この実施形態では、前述のようにトレッド31の踏面30を複数の溝(主溝32、33、周方向溝65、66、67、68、傾斜溝73、74、75、76、84、87)により複数の陸部(中央陸部34、ブロック77、78、79、80、85、88)に区画しているが、これら陸部を前記補強層52と半径方向に重なる位置に位置している(補強層52の幅方向一端52aと幅方向他端52bと間に位置する)内側陸部57と、前記補強層52よりタイヤ幅方向両外側に位置している(補強層52の幅方向一端52aおよび幅方向他端52bと、トレッド端35、36との間にそれぞれ位置する)一対の外側陸部58、59とに区分したとき、前記内側陸部57のいずれの部位におけるタイヤ幅方向長さも、前記外側陸部58、59におけるタイヤ幅方向最大長さより小としている。
 例えば、この実施形態では、外側陸部58、59に形成された陸部はブロック85、88のみであるため、該ブロック85、88の幅方向長さが、外側陸部58、59における陸部のタイヤ幅方向最大長さJである。一方、内側陸部57の範囲内には中央陸部34、ブロック77、78、79、80が形成されているが、これら中央陸部34、ブロック77、78、79、80のタイヤ幅方向長さKは同一値であり、この結果、前記タイヤ幅方向最大長さKが内側陸部57における陸部のタイヤ幅方向長さの最大値となる。そして、この実施形態ではタイヤ幅方向最大長さKを前記タイヤ幅方向最大長さJより小としたのである。このように内側陸部57のいずれの部位におけるタイヤ幅方向長さも、外側陸部58、59におけるタイヤ幅方向最大長さJより小とすれば、排水性、グリップ力を確保しながら内側陸部57の破損を効果的に抑制することができる。
 その理由は、前述のように構成すれば、内側陸部57においては周方向に延びる溝の数が多くなって排水性を容易に確保することができる一方、外側陸部58、59においては陸部のタイヤ幅方向長さが長いことによって剛性が高くなり、グリップ力を容易に確保することができる。しかしながら、内側陸部57において陸部のタイヤ幅方向長さが短くなると、外力による変形量が大きくなって陸部に欠け等の破損が生じ易くなるが、この内側陸部57には補強層52が重ね合わされて配置されているため、陸部を支持する土台が強固となり、前述した陸部の破損を効果的に抑制することができるのである。
 次に、試験例1について説明する。この試験に当たっては、圧縮剛性Fが754Nであ
る補強層が設けられた比較タイヤ1と、圧縮剛性Fが 803Nである補強層が設けられた比較タイヤ2と、圧縮剛性Fが 947Nである補強層が設けられた比較タイヤ3と、圧縮剛性Fが 993Nである補強層が設けられた実施タイヤ1と、圧縮剛性Fが1224Nである補強層が設けられた実施タイヤ2と、圧縮剛性Fが1811Nである補強層が設けられた実施タイヤ3と、圧縮剛性Fが2407Nである補強層が設けられた実施タイヤ4と、圧縮剛性Fが2451Nである補強層が設けられた比較タイヤ4と、圧縮剛性Fが2510Nである補強層が設けられた比較タイヤ5と、圧縮剛性Fが2558Nである補強層が設けられた比較タイヤ6とを準備した。
 ここで、前述した各タイヤのサイズは245/45R18であり、その構造は実施形態1で説明したタイヤと同様である。次に、前述した各タイヤを9Jのリムに装着するとともに 210kPaの内圧を充填した後、キャンバ角0度、スリップ角1度の条件下で1kNの荷重を負荷しながらドラム外周上を速度 300km/hで走行させるとともに、このような走行中に荷重9kN、1秒間のインパルス入力を10サイクル付与した。その後、各タイヤを解剖し補強コードのコード折れ箇所数を計測し、その結果(コード折れ)を、実施タイヤ2を指数 100として表1に示した。ここで、数値が小であるほどコード折れ箇所数が少なく優れていることを示している。
Figure JPOXMLDOC01-appb-T000002
 次に、前記各タイヤに210kPaの内圧を充填した後、排気量2000ccの乗用車に装着して1名乗車状態でテストコースを走行し、テストドライバーの官能で操縦安定性を評価した。その結果を表1に示すが、数値が大きいほど操縦安定性に優れている。次に、前記各タイヤに 210kPaの内圧を充填した後、キャンバ角0度、スリップ角1度の条件下で8kNの荷重を負荷しながらドラム外周上を速度 250km/hから10分毎に10km/hのステップで速度を増加させつつ走行させ、各タイヤの補強層に故障が発生したときの速度を求めた。その結果(耐久性)を表1に実施タイヤ2を指数 100として示した。ここで、数値が大であるほど耐久性が優れている。
 次に、試験例2について説明する。この試験に当たっては、撚りピッチQを値Vで除したQ/Vの値が 1.1である以外は実施タイヤ2と同様である実施タイヤ5と、Q/Vの値が 1.2である以外は実施タイヤ2と同様である実施タイヤ6と、Q/Vの値が 1.3である以外は実施タイヤ2と同様である実施タイヤ7と、前記実施タイヤ2(Q/Vの値は3.0)と、Q/Vの値が10.0である以外は実施タイヤ2と同様である実施タイヤ8と、Q/Vの値が10.3である以外は実施タイヤ2と同様である実施タイヤ9と、Q/Vの値が12.0である以外は実施タイヤ2と同様である実施タイヤ10とを準備した。次に、前述したコード折れ試験と同様の条件下でコード折れ試験を行った。その後、各タイヤを解剖して補強コードの折れ箇所数を計測し、その結果(コード折れ)を表1と同様に、実施タイヤ2を指数 100として表2に示した。ここで、数値が小であるほどコード折れ箇所数が少なく優れていることを示している。
Figure JPOXMLDOC01-appb-T000003
 この発明の一実施形態は、空気入りタイヤのカーカスプライ間にスチール製補強コードが埋設された補強層を配置した産業分野に適用できる。
 2015年5月21日に出願された日本国特許出願2015-103482号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1.  幅方向両端部が一対のビードコア回りに折り返されるとともに、内部にタイヤ赤道Sに対して傾斜した有機繊維からなる複数本のカーカスコードが埋設された2枚以上のカーカスプライから構成され、トロイド状に延びるカーカス層と、カーカス層の半径方向外側に配置されたベルト層と、該ベルト層の半径方向外側に配置されたトレッドと、隣接するカーカスプライ間でベルト層と半径方向に重なり合う位置に配置された補強層とを備え、該補強層を、内部にタイヤ赤道Sに対して傾斜した複数本のスチールからなる補強コードが埋設された少なくとも1枚の補強プライから構成した空気入りタイヤにおいて、前記補強コードのタイヤ赤道Sに対する傾斜角Aを40~90度の範囲内とするとともに、補強コードに平行な方向における補強層の50mm幅当たりの圧縮剛性Fを1000~2400Nの範囲内としたことを特徴とする空気入りタイヤ。
  2.  前記トレッドの踏面を溝により複数の陸部に区画する一方、前記補強層と半径方向に重なる位置に位置している内側陸部のタイヤ幅方向長さを、前記補強層よりタイヤ幅方向両外側に位置している外側陸部のタイヤ幅方向最大長さより小とした請求項1記載の空気入りタイヤ。
  3.  前記補強コードを複数本のフィラメントを撚ることで構成する一方、該フィラメントの撚りピッチQを、フィラメント径に補強コードを構成するフィラメント本数を乗じた値Vの 1.3~10.0倍の範囲内とした請求項1または2記載の空気入りタイヤ。
  4.  前記補強コードとして、曲げ剛性Dが 230~ 300N・m2 の範囲内のコードを用い、また、補強コードを補強層に50mm幅当たり40~80本打ち込むようにした請求項1~3のいずれか一項に記載の空気入りタイヤ。
  5.  前記補強コードのタイヤ赤道Sに対する傾斜角Aを55度以上とした請求項1~4のいずれか一項に記載の空気入りタイヤ。
PCT/JP2016/061840 2015-05-21 2016-04-12 空気入りタイヤ WO2016185835A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680029237.XA CN107614285B (zh) 2015-05-21 2016-04-12 充气轮胎
US15/574,840 US20180147889A1 (en) 2015-05-21 2016-04-12 Pneumatic tire
EP16796229.9A EP3299180B1 (en) 2015-05-21 2016-04-12 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103482A JP6507029B2 (ja) 2015-05-21 2015-05-21 空気入りタイヤ
JP2015-103482 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185835A1 true WO2016185835A1 (ja) 2016-11-24

Family

ID=57319824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061840 WO2016185835A1 (ja) 2015-05-21 2016-04-12 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20180147889A1 (ja)
EP (1) EP3299180B1 (ja)
JP (1) JP6507029B2 (ja)
CN (1) CN107614285B (ja)
WO (1) WO2016185835A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180290497A1 (en) * 2017-04-11 2018-10-11 Super ATV, LLC Vehicle tire
JP2019077260A (ja) * 2017-10-23 2019-05-23 Toyo Tire株式会社 空気入りタイヤ
KR102497823B1 (ko) * 2021-02-10 2023-02-08 한국타이어앤테크놀로지 주식회사 스틸벨트가 적용된 공기입 타이어

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161664A (ja) * 1997-08-22 1999-03-05 Bridgestone Corp ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2000229504A (ja) * 1998-12-11 2000-08-22 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2001277820A (ja) * 2000-03-29 2001-10-10 Bridgestone Corp 空気入りタイヤ
JP2002192910A (ja) * 2000-08-10 2002-07-10 Soc De Technol Michelin 非対称クラウン補強体を備えたタイヤおよび該タイヤを車両に装着する方法
JP2003530251A (ja) * 2000-04-11 2003-10-14 アライドシグナル インコーポレイテッド 低いより係数および改良された圧縮係数を有する有機繊維を含む複合品
WO2005087516A1 (ja) * 2004-03-12 2005-09-22 Bridgestone, Corporation 空気入りタイヤ
JP2012153214A (ja) * 2011-01-25 2012-08-16 Bridgestone Corp タイヤ
JP2013139165A (ja) * 2011-12-28 2013-07-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880706A (ja) * 1994-09-13 1996-03-26 Toyo Tire & Rubber Co Ltd ラジアルタイヤのベルト
CN1325291C (zh) * 2001-07-10 2007-07-11 普利司通株式会社 充气轮胎
JP2008254671A (ja) * 2007-04-06 2008-10-23 Bridgestone Corp 空気入りラジアルタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161664A (ja) * 1997-08-22 1999-03-05 Bridgestone Corp ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2000229504A (ja) * 1998-12-11 2000-08-22 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2001277820A (ja) * 2000-03-29 2001-10-10 Bridgestone Corp 空気入りタイヤ
JP2003530251A (ja) * 2000-04-11 2003-10-14 アライドシグナル インコーポレイテッド 低いより係数および改良された圧縮係数を有する有機繊維を含む複合品
JP2002192910A (ja) * 2000-08-10 2002-07-10 Soc De Technol Michelin 非対称クラウン補強体を備えたタイヤおよび該タイヤを車両に装着する方法
WO2005087516A1 (ja) * 2004-03-12 2005-09-22 Bridgestone, Corporation 空気入りタイヤ
JP2012153214A (ja) * 2011-01-25 2012-08-16 Bridgestone Corp タイヤ
JP2013139165A (ja) * 2011-12-28 2013-07-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Also Published As

Publication number Publication date
JP6507029B2 (ja) 2019-04-24
CN107614285A (zh) 2018-01-19
CN107614285B (zh) 2019-11-22
EP3299180B1 (en) 2019-06-12
EP3299180A1 (en) 2018-03-28
JP2016215853A (ja) 2016-12-22
US20180147889A1 (en) 2018-05-31
EP3299180A4 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP5756486B2 (ja) 空気入りタイヤ
JP4540487B2 (ja) 空気入りタイヤ
EP2236318B1 (en) Pneumatic tire
JP6442228B2 (ja) 乗用車用空気入りタイヤ
JP4814979B2 (ja) タイヤ用コード及びそれを用いた空気入りタイヤ
WO2005087516A1 (ja) 空気入りタイヤ
JP4467419B2 (ja) 空気入りタイヤ
JP4698525B2 (ja) 空気入りタイヤ
JP6203597B2 (ja) 空気入りタイヤ
WO2016185835A1 (ja) 空気入りタイヤ
JP2004083001A (ja) 空気入りラジアルタイヤ
JP2009262828A (ja) 空気入りタイヤ
JP4270928B2 (ja) 空気入りラジアルタイヤ
JP5778916B2 (ja) 空気入りタイヤ
JP4711740B2 (ja) 空気入りタイヤ
JP2009196548A (ja) 空気入りタイヤ
JPH0913288A (ja) ゴム物品補強用スチールコードおよび空気入りラジアルタイヤ
JP6710995B2 (ja) 空気入りタイヤ
JP2006103397A (ja) 空気入りタイヤ
WO2021085385A1 (ja) タイヤ
JP2009255619A (ja) 空気入りタイヤ
JPH1120405A (ja) 空気入りタイヤ
JP2011105100A (ja) 空気入りタイヤ
JP2012228995A (ja) 自動二輪車用空気入りタイヤ
JP7188038B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574840

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016796229

Country of ref document: EP