WO2016185813A1 - 多軸触覚センサ及び多軸触覚センサの製造法 - Google Patents

多軸触覚センサ及び多軸触覚センサの製造法 Download PDF

Info

Publication number
WO2016185813A1
WO2016185813A1 PCT/JP2016/061052 JP2016061052W WO2016185813A1 WO 2016185813 A1 WO2016185813 A1 WO 2016185813A1 JP 2016061052 W JP2016061052 W JP 2016061052W WO 2016185813 A1 WO2016185813 A1 WO 2016185813A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor chip
elastic body
sensor
substrate
adhesive
Prior art date
Application number
PCT/JP2016/061052
Other languages
English (en)
French (fr)
Inventor
康彦 森下
顕法 永野
大樹 木鋪
Original Assignee
タッチエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タッチエンス株式会社 filed Critical タッチエンス株式会社
Publication of WO2016185813A1 publication Critical patent/WO2016185813A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a multi-axis tactile sensor and a manufacturing method thereof.
  • Conventional tactile sensors mainly perform pressure detection, and in order to detect a shearing force (force in the sliding direction), it has been necessary to devise a method such as calculating from temporal changes in adjacent sensor outputs.
  • Patent Document 1 describes a tactile sensor that can detect a shearing force with a thin structure
  • Non-Patent Document 1 discloses a triaxial tactile sensor that uses the principle of the tactile sensor described in Patent Document 1.
  • a sensor is described.
  • the present applicant has developed and put to practical use an ultra-thin three-axis tactile sensor based on the MEMS technology using the principle of the tactile sensor described in Patent Document 1 and Non-Patent Document 1.
  • This multi-axis tactile sensor improves mounting convenience by making it smaller, thinner and lighter, enables simultaneous detection of shear force and pressure, and can adjust sensitivity and load-bearing characteristics by changing the outer sheath resin It has the advantage of being.
  • FIG. 1 A schematic diagram of a tactile sensor developed by the present applicant is shown in FIG.
  • a sensor chip 2 and a wire protective material 3 are provided on the substrate 1, and an exterior portion 4 ′ made of an elastic body is provided so as to cover the sensor chip 2 and the wire protective material 3 on the substrate.
  • a hard (for example, glass epoxy plate) surface portion 5 ′ is provided on the upper surface of the exterior portion 4 ′.
  • the surface of the sensor chip 2 includes a first beam as a shearing force detection element in the X-axis direction, a second beam as a shearing force detection element in the Y-axis direction, and a third beam as a pressure detection element in the Z-axis direction.
  • This tactile sensor is a piezoresistive MEMS sensor using a piezoresistive effect, and the principle of detecting force itself is well known (Patent Document 1, Non-Patent Document 1).
  • the exterior portion 4 ′ is provided not only on the sensor chip 2 but also on the wire protective material 3 and the substrate 1, the external load also acts on the wire protective material 3 and the substrate 1, and particularly detects the force in the Z-axis direction. There was a possibility that sensitivity might become dull.
  • the exterior portion 4 ′ is integrated with the substrate, sensor element, and wire protective material by insert molding, but at the time of insert molding, the resin forming the exterior portion 4 ′ enters the space formed below the beam ( This resin filling is good for the first beam and the second beam which are shear force detection beams), but the resin 83 ′ (see FIG. 14) filled below the third beam is in the Z-axis direction. It becomes a factor of detection sensitivity fall. Furthermore, the outsourcing cost of insert molding is high, and the removal of burrs (extrusion of material) in the subsequent process is complicated.
  • the present invention aims to increase the sensitivity of detecting a force (particularly pressure) applied to a tactile sensor in a multi-axis tactile sensor using a beam provided with a piezoresistive layer.
  • the technical means adopted by the present invention are: A substrate, A sensor chip provided on the substrate; At least one shearing force detecting element that is formed substantially flush with the sensor chip surface and has a beam extending in a predetermined direction and having a piezoresistive layer at a predetermined site so as to detect a force parallel to the sensor chip surface; A pressure detection element having a beam provided with a piezoresistive layer at a predetermined portion so as to detect a force perpendicular to the sensor chip surface, which is formed substantially flush with the sensor chip surface; An elastic body comprising an upper surface, a side surface, and a lower surface that is substantially the same as or smaller in area than the surface of the sensor chip, wherein the lower surface comprises the shear force detection element and the pressure detection An elastic body adhered on the surface of the sensor chip so as to cover the element; It is formed from a material harder than the elastic body, and is an exterior body that covers the sensor chip and the elastic body, and is provided in such a manner that a force applied to the exterior body can
  • the said elastic body is adhere
  • the adhesive is an elastic adhesive and the adhesive layer is an elastic adhesive layer.
  • Examples of such elastic adhesives include silyl group-terminated polymer adhesives and silicone adhesives, and an elastic adhesive layer is obtained after curing.
  • the silicone-based adhesive may be a condensation reaction type or an addition reaction type as long as it is an RTV (Room Temperature Vulcanizing) silicone that cures at room temperature to room temperature. According to the experiment by the present applicant, it has been found that the silicone-based adhesive is excellent in the stability of the output voltage at the initial stage of the sensor operation.
  • an elastic adhesive is advantageous in terms of sensitivity and responsiveness
  • the adhesive used in the present invention is not limited to an elastic adhesive, and a general instantaneous adhesive can also be used.
  • the elastic body is formed from a cured elastic adhesive.
  • a solid element rubber or the like
  • a sensor is manufactured by placing an elastic adhesive on a substrate and forming the elastic body from a cured elastic adhesive. May be. In this case, the step of placing the solid element can be omitted, and the cost can be reduced as the number of steps is reduced.
  • the exterior body includes an upper wall having a larger area than the upper surface of the elastic body, and a side wall.
  • a gap is formed between the lower end of the side wall and the substrate in a state where the lower surface of the upper wall is in contact with the upper surface of the elastic body.
  • the lower end of the side wall of the exterior body is bonded onto the substrate via an adhesive layer, and the gap is closed by the adhesive layer.
  • the adhesive layer is an elastic adhesive layer.
  • the lower surface of the upper wall and the upper surface of the elastic body are bonded via an adhesive layer.
  • the adhesive layer is an elastic adhesive layer.
  • examples of the adhesive forming the elastic adhesive layer include a silyl group-terminated polymer adhesive and a silicone adhesive.
  • the inner surface of the side wall of the said exterior body and the side surface of the said elastic body are spaced apart.
  • a bonding wire connecting the sensor chip and the detection circuit of the substrate;
  • a wire protective material provided across the sensor chip end and the substrate so as to cover the bonding wire;
  • With The lower surface of the elastic body is positioned and bonded to the inside of the wire protective material on the surface of the sensor chip.
  • the shear force detection element has a beam having a piezoresistive layer formed on a side surface.
  • the shear force detecting element has two parallel cantilever beams, and piezoresistive layers are formed symmetrically on the side surfaces of the two cantilever beams. If the piezoresistive effect can be used, the number and configuration of the beams are not limited, and one, three or more beams may be used, and cantilever beams or double-supported beams may be used.
  • the shear force detection element includes a first shear force detection element including a beam extending in a predetermined direction so as to detect a force in a first direction parallel to the surface of the sensor chip.
  • a second shearing force detecting element including a beam extending in a predetermined direction so as to detect a force in a second direction parallel to the surface of the sensor chip.
  • the length direction of the beam of the first shear force detection element and the length direction of the beam of the second shear force detection element are orthogonal to each other, but the mode of the beams arranged in different directions is the orthogonal direction. It is not limited to what was arranged in.
  • the pressure detection element includes a beam having a piezoresistive layer formed on a surface thereof.
  • the pressure detection element has two parallel cantilever beams, and a piezoresistive layer is formed asymmetrically on the surfaces of the two cantilever beams.
  • a substrate A sensor chip; An exterior body comprising an upper wall and a side wall; Prepare In the sensor chip, At least one shearing force detecting element that is formed substantially flush with the sensor chip surface and has a beam extending in a predetermined direction and having a piezoresistive layer at a predetermined site so as to detect a force parallel to the sensor chip surface; A pressure detection element including a beam provided with a piezoresistive layer at a predetermined portion so as to detect a force perpendicular to the sensor chip surface, which is formed substantially flush with the sensor chip surface; Is formed, Providing the sensor chip on the substrate; An elastic body comprising an upper surface, a side surface, and a lower surface that is substantially the same as or smaller than the area of the sensor chip surface so as to cover the sensor chip surface, the lower surface of the sensor chip surface Providing the sensor chip in a state of being adhered to the sensor chip, The outer body is harder than the elastic body, and the step of covering the elastic body in such
  • the elastic body is prepared in advance, and the elastic body is bonded to the sensor chip surface with an adhesive.
  • the adhesive is an elastic adhesive.
  • Such elastic adhesives include silyl group-terminated polymer adhesives and silicone adhesives.
  • the silicone-based adhesive may be a condensation reaction type or an addition reaction type as long as it is an RTV (Room Temperature Vulcanizing) silicone that cures at room temperature to room temperature.
  • the elastic body is formed by curing an adhesive layered on the surface of the sensor chip during the step of providing the elastic body on the sensor chip.
  • a gap is formed between the lower end of the side wall and the substrate, The lower end of the side wall of the exterior body is bonded onto the substrate via an adhesive layer, and the gap is closed by the adhesive layer.
  • the elastic body covers only the surface of the sensor chip and the elastic body does not cover the substrate or the substrate and the wire protective material, the external load can be applied to the sensor element (particularly, pressure detection) through the elastic body in a small area. It is possible to increase the sensitivity of detecting the pressure (force in the Z-axis direction) of the tactile sensor. Furthermore, similarly, since the elastic body is less in contact with parts that are not related to sensing, such as wire protection materials and substrates, compared to the conventional structure, shear force from the outside is easily transmitted to the sensor chip surface, and shear force ( It is also possible to increase the sensitivity of detection of the force in the XY axis direction.
  • the multi-axis tactile sensor according to the present invention can be manufactured by a simple process of assembling each element with an adhesive, and can be reduced in cost as compared with manufacturing by conventional insert injection molding.
  • the hard armor portion functions as a stopper at the time of overload, so that wrinkle sensor destruction can be prevented.
  • FIG. 2 it is a figure which removes and shows the adhesive layer between the lower end of the side wall of an exterior body, and a board
  • FIG. 1 is a schematic sectional view of a multi-axis tactile sensor according to this embodiment.
  • the tactile sensor includes a substrate 1 on which a circuit for extracting a detection signal detected by the sensor element is formed, a sensor chip 2 provided on the surface of the substrate 1, and a bonding wire that electrically connects the substrate 1 and the sensor chip 2. (Not shown), a wire protective material 3 covering the bonding wire, an elastic body 4 provided on the surface 20 of the sensor chip 2 so as to cover the surface 20, the sensor chip 2, the wire protective material 3, and the elasticity And an exterior body 5 provided so as to cover the body 4.
  • the sensor chip 2 is a plate having a substantially square shape in plan view, and has three sensor elements on the surface 20, that is, a first shear for the X axis.
  • a force detection element 6, a Y-axis second shearing force detection element 7, and a Z-axis pressure detection element 8 are formed.
  • the first shearing force detection element 6 detects a force parallel to the surface 20 of the sensor chip 2 and in the first direction (X direction), and the second shearing force detection element 7 is parallel to the surface 20 of the sensor chip 2.
  • the sensor chip 2 is a MEMS chip manufactured mainly using a silicon chip.
  • the first shearing force detecting element 6 is formed substantially flush with the sensor chip surface 20 and extends in a predetermined direction and piezoresistive at a predetermined portion so as to detect a force in a first direction parallel to the sensor chip surface 20.
  • a beam having a layer is provided, and a force in the first direction is detected using a change in resistivity caused by a stress applied to the resistance layer by deformation of the beam caused by a force in the first direction.
  • the first shearing force detection element 6 includes two parallel beams 60 and 61 extending in the second direction.
  • the second shearing force detecting element 7 is formed substantially flush with the sensor chip surface 20, extends in a predetermined direction and detects a force in a second direction parallel to the sensor chip surface 20 and piezoresistive at a predetermined part.
  • a beam having a layer is provided, and a force in the second direction is detected using a change in resistivity caused by stress applied to the resistance layer by deformation of the beam caused by the force in the second direction.
  • the second shearing force detecting element 7 includes two parallel beams 70 and 71 extending in the first direction.
  • the pressure detection element 8 is formed substantially flush with the sensor chip surface 20 and has a beam provided with a piezoresistive layer at a predetermined position so as to detect a force perpendicular to the sensor chip surface 20.
  • the force in the vertical direction is detected by using the change in resistivity caused by the stress applied to the resistance layer due to the deformation of the beam due to the force of.
  • the pressure detection element 8 includes two parallel beams 80 and 81 extending in the first direction.
  • the sensor chip 2 on which the first shearing force detection element 6, the second shearing force detection element 7, and the pressure detection element 8 are formed is a MEMS chip, and the area of the sensor chip 2 is smaller than the area of the surface of the substrate 1. .
  • the size of the sensor chip 2 is not limited, in one embodiment, it is 2 ⁇ 2 ⁇ 0.3 mm, and the beams 60, 61, 70, 71 of the shear force detection elements 6, 7 are 20 ⁇ m thick and long.
  • the beam of the pressure detection element 8 has a thickness of 20 ⁇ m, a length of 250 ⁇ 5 ⁇ m, and a width of 50 ⁇ 0.5 ⁇ m.
  • the widths of the beams 80 and 81 of the pressure detection element 8 are wider than the beams 60, 61, 70 and 71 of the shear force detection elements 6 and 7.
  • the wiring between the MEMS sensor chip 2 and the detection circuit on the substrate 1 is connected by a gold or aluminum fine wire (bonding wire) having a diameter of 10 to 50 ⁇ m.
  • the wire protective material 3 is formed from an epoxy resin for semiconductor encapsulation (low linear expansion coefficient and low thermal expansion stress). Since the tactile sensor according to the present invention is basically manufactured at room temperature, all of “reactive curable hard resins” can be applied.
  • a curable epoxy resin or a curable urethane resin having a D hardness of 40 ° or more can be used.
  • the elastic body 4 is a columnar flexible element including a circular upper surface, a circular lower surface, and side surfaces (circumferential surfaces).
  • the shape of the elastic body 4 is not limited to a cylindrical shape, and can take an arbitrary shape such as a cube, a rectangular parallelepiped, or an indefinite shape.
  • the area of the lower surface of the elastic body 4 is smaller than the area of the sensor chip surface 20.
  • the material of the elastic body 4 may be an elastic material having flexibility and elasticity that elastically deforms when external force acts and recovers elastically after the external force is removed, such as rubber (elastomer) or gel (rubber with extremely low hardness) All materials classified as) are applicable.
  • silicone rubber is used in consideration of material characteristics (low compression set, wide temperature characteristics).
  • the exterior body 5 is a lid body including a circular upper wall 50 and side walls (peripheral walls) 51.
  • the shape of the exterior body 5 is not limited to this,
  • the shape of an upper wall can take arbitrary shapes, such as a square, a polygon, and an indefinite shape.
  • the exterior body 5 is a hard exterior body formed from a material harder than the flexible material. Examples of the material of the outer package 5 include engineering plastics such as PEEK, PES, PC, PC / ABS, nylon 6, nylon 66, nylon 11, PPS, PBT, and PET.
  • the exterior body 5 may be formed from metal (aluminum, SUS, etc.).
  • the lower surface and the upper surface of the elastic body 4 are bonded to the sensor chip surface 20 and the lower surface of the upper wall 50 of the exterior body 5 through adhesive layers 40 and 41, respectively.
  • the adhesive layers 40 and 41 are elastic adhesive layers formed from an elastic adhesive.
  • a silyl group-terminated polymer adhesive / silicone adhesive is used as an adhesive for forming the adhesive layers 40 and 41, and the adhesive layers 40 and 41 obtained after curing have elasticity. It is an elastic adhesive layer.
  • the elastic body 4 has a rubber hardness (shore) A70 °, and the elastic adhesive is about A50 °.
  • the cured adhesive layer has elasticity (it is considered that external force is difficult to be transmitted to the beam if the adhesive layer is not flexible).
  • the adhesive used for bonding may be a resin material of a type that is initially liquid and hardens later, and does not exclude the use of an instantaneous adhesive (hard and brittle when cured).
  • the adhesive layer 40 between the lower surface of the elastic body 4 and the sensor chip surface 20 is formed from a silicone-based adhesive, and between the upper surface of the elastic body 4 and the lower surface of the upper wall 50 of the exterior body 5.
  • the adhesive layer 41 is formed from a silyl group-terminated polymer adhesive.
  • the silicone-based adhesive may be a condensation reaction type or an addition reaction type as long as it is an RTV (Room Temperature Vulcanizing) silicone that cures at room temperature to room temperature. According to the experiment by the present applicant, it has been found that the silicone-based adhesive is excellent in the stability of the output voltage at the initial stage of the sensor operation.
  • RTV Room Temperature Vulcanizing
  • the exterior body 5 has a gap G between the lower end of the side wall 51 and the substrate 1 with the lower surface of the upper wall 50 in contact with the upper surface of the elastic body 4.
  • This gap G affects the structural hardness and performance of the elastic body 4 (sensor sensitivity, durability, measurable load range).
  • the gap G is designed with a size of 100 to 300 ⁇ m.
  • the lower end of the side wall 51 of the exterior body 5 is bonded onto the substrate 1 via the adhesive layer 52, and the gap G is closed by the adhesive layer 42.
  • the adhesive layer 52 is an elastic adhesive layer.
  • a silyl group-terminated polymer adhesive / silicone adhesive is used as the adhesive forming the elastic adhesive layer, but the adhesive layer 52 is not limited to this. , Not only adhesives (reactive curable resins having strong adhesive strength), but also reactive curable resins in general can be applied.
  • the pair of beams 80 and 81 constituting the pressure detection element 8 are both flexible and deform together with the elastic body 4 according to the force acting on the elastic body 4 (via the exterior body 5).
  • Each beam is provided with a piezoresistive layer, and the deformation amount of the beam and the applied force are detected by using the change in resistivity due to the stress applied to the resistive layer by the deformation of the beam.
  • the piezoresistive layer is formed on a surface that expands or compressively deforms as the beam bulges downward or laterally due to external force.
  • a recess 62 is formed in a region below the beams 60 and 61, and the beams 60 and 61 are doubly supported beams whose both ends are supported so as to straddle the recess 62.
  • the upper surfaces of the beams 60 and 61 are flush with the surface 20 of the sensor chip 2.
  • the pair of beams 60 and 61 are side doped beams in which piezoresistive layers are formed symmetrically on the side surfaces. More specifically, as shown in FIG. 7, piezoresistive layers 600 and 610 are formed on the opposing side surfaces of the beams 60 and 61. In addition, you may form a piezoresistive layer in the side surface on the side which mutually spaces apart (refer patent document 1).
  • a piezoresistive layer is formed.
  • An elastic adhesive that forms an elastic adhesive layer 40 that bonds the elastic body 4 and the sensor chip surface 20 between the beams 60 and 61 may partially or wholly harden.
  • an elastic adhesive that forms the elastic adhesive layer 40 that adheres the elastic body 4 and the sensor chip surface 20 to the recess 62 may partially penetrate and be cured.
  • the beams 60 and 61 include main Si layers 601 and 611, piezoresistive layers 600 and 610 formed symmetrically on the sides of the Si layers 601 and 611, an Si layer 601, 611 and 612 formed on the surface of both sides in the longitudinal direction of 611, the surface of the sensor chip 2 around the beams 60 and 61 is provided with a conductive layer (Au layer),
  • the piezoresistive layer 201 is formed, the Si layer 202 is formed under the piezoresistive layer 201, the SiO 2 layer 203 is formed under the Si layer 202, and the Si layer 204 is formed thereunder.
  • a recess 72 is formed in a region below the beams 70 and 71.
  • the beams 70 and 71 are doubly supported beams whose both ends are supported so as to straddle the recess 72.
  • the upper surfaces of the beams 70 and 71 are flush with the surface 20 of the sensor chip 2.
  • the pair of beams 70 and 71 are side doped beams in which piezoresistive layers are formed symmetrically on the side surfaces. When a force perpendicular to the length of the beams 70 and 71 is applied, each side is expanded and compressed, and the piezoresistor is positioned so that the resistance value increases and decreases in the positive and negative directions according to the expansion and contraction. A layer is formed.
  • an elastic adhesive forming an elastic adhesive layer 40 for bonding the elastic body 4 and the sensor chip surface 20 may partially enter or be entirely cured.
  • an elastic adhesive that forms the elastic adhesive layer 40 that adheres the elastic body 4 and the sensor chip surface 20 to the recess 72 may partially penetrate and be cured.
  • a recess 82 is formed in a region below the beams 80 and 81.
  • the pair of beams 80 and 81 are surface doped beams having a piezoresistive layer formed on the surface. More specifically, as shown in FIGS. 8 and 9, a piezoresistive layer 800 is formed on the surface of the central portion in the longitudinal direction of the beam 80, and the surface of both side portions excluding the central portion in the longitudinal direction of the beam 81.
  • a piezoresistive layer 810 is formed. That is, the piezoresistive layer is formed at a position where the resistance value changes in the positive and negative directions when pressure (force in the Z direction) is applied.
  • the piezoresistive layer 800 formed at the center of the beam 80 is compressed and deformed, the resistance value is increased, and the piezoresistive layer 810 formed at both ends of the beam 81 is expanded. As a result, the resistance value decreases, and as a result, the voltage change of Z (pressure direction beam) is doubled.
  • An elastic adhesive that forms an elastic adhesive layer 40 that bonds the elastic body 4 and the sensor chip surface 20 between the beams 80 and 81 may partially penetrate or be cured.
  • the elastic adhesive forming the elastic adhesive layer 40 that bonds the elastic body 4 and the sensor chip surface 20 to the concave portion 82 may partially enter and be cured.
  • the space below the beams 80 and 81 is not densely filled with resin.
  • the beams 80 and 81 are composed of main Si layers 801 and 811, piezoresistive layers 800 and 810 formed asymmetrically at predetermined portions on the surfaces of the Si layers 801 and 811, and an Si layer.
  • a conductive layer (Au layer) 812 (the other not shown) formed adjacent to the piezoresistive layers 800 and 810 on the surfaces of 801 and 811, and the surface of the sensor chip 2 around the beams 80 and 81 is A conductive layer (Au layer) is provided, a piezoresistive layer 201 is formed thereunder, a Si layer 202 is formed thereunder, a SiO 2 layer 203 is formed thereunder, and a Si layer 204 is formed thereunder ing.
  • the surface 20 of the sensor chip 2 is formed with eight terminal portions (electrode pads) T, 1V, X, Gx, Y, Gy, Z, and Gz formed from an Au film. There are seven resistors between the terminals. The voltages at the eight terminal portions vary with changes in the seven resistances.
  • the connection of the terminal part is as follows. (1) 1V-X, (2) X-Gx, (3) 1V-Y, (4) Y-Gy, (5) 1VZ, (6) Z-Gz, (7) T-Gx, (1) (2), (3) (4), (5) (6) are a pair of bridge circuits.
  • the resistance between the T-Gx terminals is directly formed on the base of the silicone wafer, and the resistance does not change even when an external force is applied. Therefore, since only a change in resistance value with respect to temperature can be detected, a change in signal due to temperature can be canceled by monitoring the voltage between the T-Gx terminals.
  • the multi-axis tactile sensor configured as described above will be described in the case where a shearing force in the X direction is generated in the elastic body 4 as shown in FIG.
  • the beams 60 and 61 of the first shearing force detection element 6, the beams 70 and 71 of the second shearing force detection element 7, and the beams 80 and 81 of the pressure detection element 8 are planar. It retains a straight line shape and a horizontal shape when viewed from the side.
  • a shearing force in the X direction acts on the elastic body 4
  • the beams 60 and 61 of the first shearing force detection element 6 extending orthogonally to the X direction are deformed so that the central portion in the length direction swells.
  • the central portion in the longitudinal direction of the beam 60 is bent in a direction in which the surface on which the piezoresistive layer 600 is formed extends, and the central portion in the longitudinal direction of the beam 61 is in a direction in which the surface on which the piezoresistive layer 610 is formed is compressed. Bend. Since the resistance values of the beams 60 and 61 increase and decrease in the positive and negative directions in accordance with the respective expansion and contraction, the change in the resistance value can be measured by a bridge circuit, and the shear force can be measured (Pad1, Pad2, Pad3 in FIG. 11). , And FIG. 12). Note that, when a shearing force in the X direction acts on the elastic body 4, the output voltages of the beams 70 and 71 of the second shearing force detection element 7 and the beams 80 and 81 of the pressure detection element 8 do not change.
  • the resistance value change is measured by a bridge circuit, and the shear force is measured.
  • Such a multi-axis tactile sensor includes a substrate 1 on which a detection signal output circuit is formed, a sensor chip 2, an upper surface, a side surface, and an area of the sensor chip surface 20.
  • An elastic body 4 having a lower surface that is substantially the same or smaller in area than the elastic body 4, and an upper wall 50 that is made of a material harder than the elastic body 4 and has a larger area than the upper surface of the elastic body 4.
  • the exterior body 5 including the side wall 51 can be prepared and assembled using an adhesive (preferably an elastic adhesive).
  • the multi-axis tactile sensor includes a step of providing the sensor chip 2 on the substrate 1, a step of wire bonding the sensor chip 2 and the substrate 2, a step of providing the wire protective material 3 so as to cover the bonding wire, and elasticity.
  • the body 4 can be manufactured by a process of providing the body 4 on the sensor chip 2 by bonding the lower surface thereof to the inner region of the wire protection member 3 on the sensor chip surface 20 with an adhesive.
  • the lower surface of the elastic body 4 and the sensor chip surface 20 are bonded using a silicone-based adhesive, and the upper surface of the elastic body 4 and the lower surface of the upper wall 50 of the exterior body 5 are bonded to each other with a silyl group terminal polymer. Glue with the agent.
  • the MEMS sensor chip 2 can be manufactured by a known means (etching for trench formation, beam formation, various doping techniques such as thermal diffusion and ion implantation, metal film deposition, etc.) using an SOI wafer as a base material. Specific manufacturing methods are described in Patent Document 1 and Non-Patent Document 1, and these documents can be referred to for details. For the formation of the resistance layer in the sensor chip 2, it is advantageous to use ion implantation.

Abstract

ピエゾ抵抗層を備えた梁を用いた多軸触覚センサにおいて、触覚センサの圧力(Z軸方向の力)検出の高感度化を目的とする。 基板1と、基板1上に設けたセンサチップ2と、センサチップ表面と略面一に形成されたせん断力検出素子6、7と、圧力検出素子8と、センサチップ表面20の面積と略同じ、あるいは、それよりも小面積である下面を備え、前記下面が、せん断力検出素子6、7及び圧力検出素子8を覆うようにセンサチップ表面20上に接着されている弾性体4と、弾性体4よりも硬質の材料から形成され、前記センサチップ及び前記弾性体を覆う外装体5と、からなる多軸触覚センサ。

Description

多軸触覚センサ及び多軸触覚センサの製造法
本発明は、多軸触覚センサ及びその製造法に関するものである。
従来の触覚センサは主として圧力検出を行うものであり、せん断力(滑り方向の力)を検出するためには隣り合うセンサ出力の時間変化から算出するなどの工夫が必要であった。
特許文献1には、薄形の構造でせん断力を検出することができる触覚センサが記載されており、非特許文献1には、特許文献1に記載の触覚センサの原理を利用した3軸触覚センサが記載されている。本出願人は、特許文献1、非特許文献1に記載された触覚センサの原理を利用して、MEMS技術による超薄型3軸触覚センサを開発し、実用化している。この多軸触覚センサは、小型化・薄型化・軽量化で実装時の利便性を向上し、せん断力と圧力の同時検知が可能であり、 外装樹脂の変更で感度と耐加重特性を調整可能であるという利点を有している。
本出願人が開発した触覚センサの概略図を図13に示す。基板1上には、センサチップ2およびワイヤ保護材3が設けられ、基板上のセンサチップ2及びワイヤ保護材3を覆うように弾性体からなる外装部4´が設けられる。外装部4´の上面には、硬質(例えば、ガラスエポキシ板)の表面部5´が設けてある。センサチップ2の表面には、X軸方向のせん断力検出素子としての第1梁、Y軸方向のせん断力検出素子としての第2梁、Z軸方向の圧力検出素子としての第3梁を備えている。この触覚センサは、ピエゾ抵抗効果を利用するピエゾ抵抗型MEMSセンサであり、力の検出原理自体は公知である(特許文献1、非特許文献1)。
外装部4´はセンサチップ2のみならず、ワイヤ保護材3、基板1上にも設けられるので、外部荷重はワイヤ保護材3及び基板1にも作用し、特に、Z軸方向の力の検出感度が鈍くなるおそれがあった。
外装部4´は、インサート成形によって基板・センサ素子・ワイヤ保護材と一体化しているが、インサート成形時に、梁の下側に形成されている空間に外装部4´を形成する樹脂が入り込み(この樹脂の充填は、せん断力検出用梁である第1梁及び第2梁にとっては良いが)、第3梁の下側に充填された樹脂83´(図14参照)は、Z軸方向の検出感度低下の要因となる。さらに、インサート成形の外注コストが高い上、後工程のバリ(材料のはみ出し)除去が煩雑となっていた。
特開2013-68503号
ピエゾ抵抗型両持ち梁を用いた3 軸触覚センサに関する研究、立石科学技術振興財団助成研究成果集(第22号)2013
 本発明は、ピエゾ抵抗層を備えた梁を用いた多軸触覚センサにおいて、触覚センサに加えられた力(特に、圧力)の検出の高感度化を目的とするものである。
 本発明が採用した技術手段は、
 基板と、
 前記基板上に設けたセンサチップと、
 センサチップ表面と略面一に形成され、センサチップ表面に平行する力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有する少なくとも1つのせん断力検出素子と、
 センサチップ表面と略面一に形成され、センサチップ表面に対して垂直の力を検出するように、所定部位にピエゾ抵抗層を備えた梁を有する圧力検出素子と、
 上面と、側面と、前記センサチップ表面の面積と略同じ、あるいは、それよりも小面積である下面と、を備えた弾性体であって、前記下面が、前記せん断力検出素子及び前記圧力検出素子を覆うように前記センサチップ表面上に接着されている、弾性体と、
 前記弾性体よりも硬質の材料から形成され、前記センサチップ及び前記弾性体を覆う外装体であって、当該外装体に加えられた力が前記弾性体に伝達可能な態様で設けられている、外装体と、
 からなる多軸触覚センサ、である。
 1つの態様では、前記弾性体は、接着剤により形成された接着層を介して前記センサチップ表面に接着されている。
 1つの態様では、前記接着剤は弾性接着剤であり、前記接着層は弾性接着層である。
 このような弾性接着剤としては、シリル基末端ポリマー系接着剤、シリコーン系接着剤が例示され、硬化後に弾性接着層が得られる。
 シリコーン系接着剤は、好ましくは、室温ないし常温で硬化するRTV(Room Temperature Vulcanizing)シリコーンであれば、縮合反応型でも付加反応型でもよい。本出願人の実験によると、シリコーン系接着剤は、センサ動作初期時の出力電圧の安定性に優れることが判った。
 感度や応答性の面で弾性接着剤が有利であるが、本発明に用いられる接着剤は弾性接着剤に限定されず、一般的な瞬間接着剤の使用も可能である。
 1つの態様では、前記弾性体は、硬化した弾性接着剤から形成されている。
 典型的には、弾性体は予め用意された固体要素(ゴム等)が用いられるが、弾性接着剤を基板上に盛って、硬化した弾性接着剤から弾性体を形成することでセンサを製造してもよい。この場合、固体要素を載せる工程を省くことができ、工程の削減に伴う低コスト化が図れる。
 1つの態様では、前記外装体は、前記弾性体の上面よりも大面積である上壁と、側壁と、からなり、
 前記上壁の下面が前記弾性体の上面に当接した状態で、前記側壁の下端と前記基板との間に隙間が形成されている。
 1つの態様では、前記外装体の前記側壁の下端が接着層を介して前記基板上に接着されており、前記隙間は前記接着層によって閉塞されている。
 1つの態様では、前記接着層は、弾性接着層である。
 1つの態様では、前記上壁の下面と前記弾性体の上面は、接着層を介して接着されている。
 1つの態様では、前記接着層は、弾性接着層である。
 1つの態様では、前記弾性接着層を形成する接着剤としては、シリル基末端ポリマー系接着剤、シリコーン系接着剤が例示される。
 1つの態様では、前記外装体の側壁の内面と前記弾性体の側面は離間している。
 1つの態様では、前記センサチップと前記基板の検出回路を接続するボンディングワイヤと、
 前記ボンディングワイヤを被覆するようにセンサチップ端部と基板に亘って設けたワイヤ保護材と、
 を備え、
 前記弾性体の下面は、前記センサチップ表面上で前記ワイヤ保護材の内側に位置して接着されている。
 1つの態様では、前記せん断力検出素子は、側面にピエゾ抵抗層が形成された梁を有する。
 1つの態様では、前記せん断力検出素子は平行状の2本の両持ち梁を有し、2本の両持ち梁の側面には対称状にピエゾ抵抗層が形成されている。
 なお、ピエゾ抵抗効果を用いることができれば、梁の本数や構成は限定されず、1本、3本以上の梁を用いてもよく、また、片持ち梁でも両持ち梁でもよい。
 1つの態様では、前記せん断力検出素子は、センサチップ表面に平行な第1の方向の力を検出するように所定方向に延びる梁を備えた第1せん断力検出素子と、
 センサチップ表面に平行な第2の方向の力を検出するように所定方向に延びる梁を備えた第2せん断力検出素子と、を含む。
 典型的には、第1せん断力検出素子の梁の長さ方向と、第2せん断力検出素子の梁の長さ方向は直交するが、異なる方向に配置された梁の態様は、直交する方向に配置したものに限定されない。
 1つの態様では、前記圧力検出素子は、表面にピエゾ抵抗層が形成された梁を有する。
 1つの態様では、前記圧力検出素子は平行状の2本の両持ち梁を有し、2本の両持ち梁の表面には非対称状にピエゾ抵抗層が形成されている。
 本発明が採用した他の技術手段は、
 基板と、
 センサチップと、
 上壁と、側壁と、からなる外装体と、
 を用意し、
 前記センサチップには、
 センサチップ表面と略面一に形成され、センサチップ表面に平行する力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有する少なくとも1つのせん断力検出素子と、
 センサチップ表面と略面一に形成され、センサチップ表面に対して垂直の力を検出するように、所定部位にピエゾ抵抗層を備えた梁を備えた圧力検出素子と、
 が形成されており、
 前記基板上に前記センサチップを設ける工程と、
 前記センサチップ表面を覆うように、上面と、側面と、前記センサチップ表面の面積と略同じ、あるいは、それよりも小面積である下面と、を備える弾性体を、その下面が前記センサチップ表面に接着した状態でセンサチップ上に設ける工程と、
 前記外装体は前記弾性体よりも硬質であり、当該外装体に加えられた力が前記弾性体に伝達されるような態様で前記弾性体に被せる工程と、
 からなる、多軸触覚センサの製造方法である。
 1つの態様では、前記弾性体が予め用意されており、当該弾性体は、接着剤によってセンサチップ表面に接着される。
 1つの態様では、前記接着剤は弾性接着剤である。このような弾性接着剤としては、シリル基末端ポリマー系接着剤、シリコーン系接着剤が例示される。シリコーン系接着剤は、好ましくは、室温ないし常温で硬化するRTV(Room Temperature Vulcanizing)シリコーンであれば、縮合反応型でも付加反応型でもよい。
 1つの態様では、前記弾性体は、上記センサチップ上に弾性体を設ける工程中に、センサチップ表面上に盛った接着剤を硬化させることで形成される。
 1つの態様では、前記上壁の下面が前記弾性体の上面に当接した状態で、前記側壁の下端と前記基板との間に隙間が形成されており、
 前記外装体の前記側壁の下端が接着層を介して前記基板上に接着され、前記隙間は前記接着層によって閉塞される。
本発明によれば、弾性体がセンサチップ表面のみを覆い、前記弾性体が基板、あるいは、基板及びワイヤ保護材を覆わないので、外部荷重が弾性体を通して小面積でセンサ素子(特に、圧力検出素子)に伝わり、触覚センサの圧力(Z軸方向の力)検出の高感度化が可能となる。さらに、同様に、ワイヤ保護材や基板などの、センシングに関係がない箇所への弾性体の接触が従来構造に比べ少ないため、外部からのせん断力がセンサチップ表面に伝わり易くなり、せん断力(XY軸方向の力)の検出の高感度化も可能となる。
本発明に係る多軸触覚センサは、接着剤で各要素をアセンブリするというシンプルな工程で製造可能であり、従来のインサート射出成型による製造に比べて低コスト化が可能である。 
硬質外装部が過負荷時のストッパとして機能することで、 センサ破壊防止が図られる。
硬質外装部と基板との間に弾性体が存在するので、モーメントの影響を低減できる。また、各要素を接着する接着層及び弾性体が弾性的(低粘性係数)なので、センサの応答性が向上(低ヒステリシス)する。
本実施形態に係る多軸触覚センサの概略断面図である。 本実施形態に係る多軸触覚センサの正面図、平面図、側面図である。 図2において、外装体の側壁の下端と基板間の接着層を取り除いて示す図である。 図2から外装体を取り外した状態を示す正面図、平面図、側面図である。 図3から弾性体を取り外した状態を示す正面図、平面図、側面図である。 図3から弾性体を取り外した状態を示す斜視図である。 図4の平面図の部分拡大図である。 センサチップの部分断面図であり、第1せん断力検出梁の断面を示す。 センサチップの部分断面図であり、圧力検出梁の断面を示す。 センサチップの平面図である。 触覚センサにX方向の力が作用した場合を示す図である。 図10における各梁の変形を説明する図である。 力検出のための回路を示す。 インサート成形によって得られた多軸触覚センサの概略断面図である。 図14と類似の図であり、従来のインサート成形により得られた多軸触覚センサの圧力検出梁の部分を示す。
[A]多軸触覚センサの全体構成
本実施形態に係る多軸触覚センサの概略断面図を図1に示す。触覚センサは、センサ素子によって検出された検出信号を取り出す回路が形成された基板1と、基板1の表面に設けられたセンサチップ2と、基板1とセンサチップ2を電気的に接続するボンディングワイヤ(図示せず)と、ボンディングワイヤを覆うワイヤ保護材3と、センサチップ2の表面20に、当該表面20を覆うように設けられた弾性体4と、センサチップ2、ワイヤ保護材3、弾性体4を覆うように設けられた外装体5と、からなる。
図1、図4、図6、図9等に示すように、センサチップ2は、平面視ほぼ正方形状の板体であり、表面20に3つのセンサ素子、すなわち、X軸用の第1せん断力検出素子6、Y軸用の第2せん断力検出素子7、Z軸用の圧力検出素子8が形成されている。第1せん断力検出素子6は、センサチップ2の表面20に平行でかつ第1の方向(X方向)の力を検出し、第2せん断力検出素子7は、センサチップ2の表面20に平行でかつ第1の方向に対して垂直の第2の方向(Y方向)の力を検出し、圧力検出素子8は、センサチップ2の表面(XY平面)に対して垂直の第3の方向(Z方向)の力を検出する。本実施形態ではセンサチップ2はシリコンチップを主体として製作されたMEMSチップである。
第1せん断力検出素子6は、センサチップ表面20と略面一に形成され、センサチップ表面20に平行する第1の方向の力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有し、第1の方向の力による梁の変形によって抵抗層に加わる応力による抵抗率の変化を用いて第1の方向の力を検出する。図6に示すように、本実施形態では、第1せん断力検出素子6は、第2の方向に延びる2本の平行な梁60、61を備えている。
第2せん断力検出素子7は、センサチップ表面20と略面一に形成され、センサチップ表面20に平行する第2の方向の力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有し、第2の方向の力による梁の変形によって抵抗層に加わる応力による抵抗率の変化を用いて第2の方向の力を検出する。図6に示すように、本実施形態では、第2せん断力検出素子7は、第1の方向に延びる2本の平行な梁70、71を備えている。
圧力検出素子8は、センサチップ表面20と略面一に形成され、センサチップ表面20に対して垂直の力を検出するように、所定部位にピエゾ抵抗層を備えた梁を有し、垂直方向の力による梁の変形によって抵抗層に加わる応力による抵抗率の変化を用いて垂直方向の力を検出する。図6に示すように、本実施形態では、圧力検出素子8は、第1の方向に延びる2本の平行な梁80、81を備えている。
第1せん断力検出素子6、第2せん断力検出素子7、圧力検出素子8が形成されたセンサチップ2は、MEMSチップであり、センサチップ2の面積は、基板1の表面の面積よりも小さい。センサチップ2のサイズは、限定されないものの、1つの実施形態では、2×2×0.3mmであり、せん断力検出素子6、7の梁60、61、70、71は、厚さ20μm、長さ200±5μm、幅15±0.5μmであり、圧力検出素子8の梁は、厚さ20μm、長さ250±5μm、幅50±0.5μmである。圧力検出素子8の梁80、81の幅は、せん断力検出素子6、7の梁60、61、70、71よりも幅広となっている。
MEMSセンサチップ2と基板1上の検出回路間の配線は10~50μm径の金もしくはアルミの微細ワイヤ(ボンディングワイヤ)で接続されている。ボンディングワイヤを覆うようにワイヤ保護材3を設けることで、センサ製造時に部材や工具との物理的接触によるボンディングワイヤの破断を防止している。本実施形態では、ワイヤ保護材3は半導体封止用のエポキシ樹脂(線膨張係数が低く、熱膨張のストレスが小さい)から形成されている。本発明に係る触覚センサは、基本的に常温で製造されるので、「反応硬化型の硬質樹脂」全般が適用し得る。ワイヤ保護材3の材料の具体例としてはD硬度40°以上の硬化型エポキシ樹脂や硬化型ウレタン樹脂を用いることができる。
本実施形態では、弾性体4は、円形状の上面と、円形状の下面と、側面(周面)と、からなる円柱状の柔軟要素である。なお、弾性体4の形状は、円柱状のものに限定されるものではなく、立方体、直方体、不定形等の任意の形状を取り得る。弾性体4の下面の面積は、センサチップ表面20の面積よりも小さい。弾性体4の材料は、外力が作用すること弾性変形し、外力除去後に弾性回復するする柔軟性・弾性を備えた弾性材料であればよく、ゴム(エラストマー)やゲル(非常に低硬度のゴム)に分類される材料は全て適用し得る。本実施形態では、材料特性(低圧縮永久歪み、幅広い温度特性)を考慮して、シリコーンゴムを用いている。
本実施形態では、外装体5は、円形状の上壁50と、側壁(周壁)51と、からなる蓋体である。なお、外装体5の形状は、このものに限定されず、例えば、上壁の形状は、方形、多角形、不定形等の任意の形状を取り得る。外装体5は、柔軟素材よりも硬質の材料から形成されている硬質外装体である。外装体5の材料としては、PEEK、PES、PC、PC/ABS、ナイロン6、ナイロン66、ナイロン11、PPS、PBT、PET等のエンジニアリングプラスチックが例示される。また、コスト面で樹脂が望ましいが、金属(アルミ、SUSなど)から外装体5を形成してもよい。
弾性体4の下面、上面は、接着層40、41を介して、センサチップ表面20、外装体5の上壁50の下面に、それぞれ接着されている。接着層40、41は弾性接着剤から形成された弾性接着層である。本実施形態では、接着層40、41を形成する接着剤としては、シリル基末端ポリマー系接着剤/シリコーン系接着剤を用いており、硬化後に得られた接着層40、41は弾性を備えた弾性接着層である。本実施形態では、弾性体4はゴム硬度(ショア)A70°であり、弾性接着剤はおよそA50°程度である。良好な感度を得るためには、硬化後の接着層が弾性を備えていることが有利であるが(接着層に柔軟性が無いと外力が梁に伝わり難いと考えられる)、弾性体4の接着に用いる接着剤は、初期は液状で、後に硬化するタイプの樹脂材料であればよく、瞬間接着剤(硬化すると硬く、脆い)の使用を排除するものではない。1つの態様では、弾性体4の下面とセンサチップ表面20との間の接着層40をシリコーン系接着剤から形成し、弾性体4の上面と外装体5の上壁50の下面との間の接着層41をシリル基末端ポリマー系接着剤から形成する。シリコーン系接着剤は、好ましくは、室温ないし常温で硬化するRTV(Room Temperature Vulcanizing)シリコーンであれば、縮合反応型でも付加反応型でもよい。本出願人の実験によると、シリコーン系接着剤は、センサ動作初期時の出力電圧の安定性に優れることが判った。
図2Aに示すように、外装体5は、上壁50の下面が弾性体4の上面に当接した状態で、側壁51の下端と基板1との間に隙間Gが形成されている。この隙間Gは、弾性体4の構造的な硬さ及び性能(センサ感度、耐久性、計測できる荷重レンジ)に影響を与える。本実施形態では、隙間Gは、100~300μmの寸法で設計されている。本実施形態では、外装体5の側壁51の下端が接着層52を介して基板1上に接着されており、隙間Gは接着層42によって閉塞されている。
接着層52は弾性接着層であり、本実施形態では、弾性接着層を形成する接着剤としては、シリル基末端ポリマー系接着剤/シリコーン系接着剤を用いているが、これには限定されず、接着剤(反応硬化型樹脂の内、接着力が強いもの)に限らず、反応硬化型樹脂全般が適用できる。
[B]センサ素子の構成
センサチップ2の表面20に形成された第1せん断力検出素子6を構成する一対の梁60、61、第2せん断力検出素子7を構成する一対の梁70、71、圧力検出素子8を構成する一対の梁80、81は、いずれも可撓性を備えており、弾性体4(外装体5を介して)に作用した力に応じて弾性体4と共に変形する。各梁はピエゾ抵抗層を備えており、梁の変形によって抵抗層に加わる応力による抵抗率の変化を用いて梁の変形量、加えられた力を検出する。ピエゾ抵抗層は、外力による梁の側方や下方への膨出変形に伴って伸張又は圧縮変形する表面に形成されている。
センサチップ2の表面20において、梁60、61の下方領域には凹部62が形成されており、梁60、61は、凹部62を跨ぐように両端が支持された両持ち梁である。梁60、61の上面は、センサチップ2の表面20と面一である。一対の梁60、61は、側面にピエゾ抵抗層が対称状に形成された側面ドープト梁である。より具体的には、図7に示すように、梁60、61の対向する側面にピエゾ抵抗層600、610が形成されている。なお、互いに離間する側の側面にピエゾ抵抗層を形成してもよい(特許文献1参照)。すなわち、梁60、61の長さに対して直交するような力が作用した時に、各側面が伸長、圧縮されて、抵抗値がそれぞれの伸縮に応じて正負逆方向に増減するような位置にピエゾ抵抗層が形成されている。梁60、61の間に弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的にあるいは全体的に入り込んで硬化していてもよい。また、凹部62に弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的に入り込んで硬化していてもよい。
図7に示すように、梁60、61は、主体となるSi層601、611と、Si層601、611の側部に対称状に形成されたピエゾ抵抗層600、610と、Si層601、611の長さ方向両側部位の表面に形成した導電層(Au層)602、612と、を備え、梁60、61の回りのセンサチップ2の表面は導電層(Au層)を備え、その下にピエゾ抵抗層201が形成され、その下にSi層202が形成され、その下にSiO層203が形成され、その下にSi層204が形成されている。
センサチップ2の表面20において、梁70、71の下方領域には凹部72が形成されている。梁70、71は、凹部72を跨ぐように両端が支持された両持ち梁である。梁70、71の上面は、センサチップ2の表面20と面一である。一対の梁70、71は、側面にピエゾ抵抗層が対称状に形成された側面ドープト梁である。梁70、71の長さに対して直交するような力が作用した時に、各側面が伸長、圧縮されて、抵抗値がそれぞれの伸縮に応じて正負逆方向に増減するような位置にピエゾ抵抗層が形成されている。梁70、71の具体的な構成については、梁60、61についての説明を援用することができる。梁70、71の間には、弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的にあるいは全体的に入り込んで硬化していてもよい。また、凹部72に弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的に入り込んで硬化していてもよい。
センサチップ2の表面において、梁80、81の下方領域には凹部82が形成されている。一対の梁80、81は、表面にピエゾ抵抗層が形成された表面ドープト梁である。より具体的には、図8、図9に示すように、梁80の長さ方向中央部位の表面にピエゾ抵抗層800が形成され、梁81の長さ方向中央部位を除く両側部位の表面にピエゾ抵抗層810が形成されている。すなわち、圧力(Z方向の力)が加えられた場合に、抵抗値が正負逆方向に変化するような位置にピエゾ抵抗層が形成されている。弾性体4に圧力が作用すると、梁80の中央部に形成されているピエゾ抵抗層800が圧縮変形し、抵抗値は上昇し、梁81の両端側に形成されているピエゾ抵抗層810は伸長変形し、抵抗値が減少し、結果として、Z(圧力方向用梁)の電圧変化が2倍となる。梁80、81の間に弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的にあるいは全体的に入り込んで硬化していてもよい。また、凹部82に弾性体4とセンサチップ表面20とを接着する弾性接着層40を形成する弾性接着剤が部分的に入り込んで硬化していてもよいが、この場合であっても、従来の製造法(インサート成形)に比べて、梁80、81の下方空間に樹脂が稠密に充填されることはない。
図8に示すように、梁80、81は、主体となるSi層801、811と、Si層801、811の表面の所定部位に非対称状に形成されたピエゾ抵抗層800、810と、Si層801、811の表面にピエゾ抵抗層800、810に隣接して形成した導電層(Au層)812(他方は図示せず)と、を備え、梁80、81の回りのセンサチップ2の表面は導電層(Au層)を備え、その下にピエゾ抵抗層201が形成され、その下にSi層202が形成され、その下にSiO層203が形成され、その下にSi層204が形成されている。
[C]多軸触覚センサの測定原理
上述のように形成された多軸触覚センサにおいて、せん断力検出素子の1対の梁に対して、梁の長さ方向に対して垂直方向のせん断力を弾性体4に加えると、弾性体4の変形に倣って、2本の梁は長さ方向中央部位が膨出するように変形する。このとき対になった梁の対称な側面にピエゾ抵抗層が形成されているので、それぞれの側面が伸長及び圧縮されて、抵抗値がそれぞれの伸縮にあわせ正負逆方向に増減する。その抵抗値変化をブリッジ回路により計測し、せん断力を検出する。また、圧力検出素子の1対の梁には、垂直方向の圧力を加えた場合、抵抗値が正負逆方向に変化する位置にピエゾ抵抗層が形成されているので、同様の原理で圧力を検出することができる。以下、より具体的に説明する。
図9に示すように、センサチップ2の表面20にはAu膜から形成された8個の端子部(電極パッド)T、1V、X、Gx、Y、Gy、Z、Gzが形成されており、各端子間に7個の抵抗が存在する。8個の端子部の電圧が、7個の抵抗の変化によって変動する。
 端子部の接続は以下の7通り、
  (1)1V-X、(2)X-Gx、
  (3)1V-Y、(4)Y-Gy、
  (5)1V-Z、(6)Z-Gz、
  (7)T-Gx、となり、
 (1)(2)、(3)(4)、(5)(6)がブリッジ回路のペアとなる。
 (7)T-Gx端子間の抵抗はシリコーンウェハのベースに直接形成されており、外力が加わっても抵抗が変化しない。よって温度に対する抵抗値変化のみを検出できるため、T-Gx端子間の電圧をモニタすることで、温度による信号の変化をキャンセルできる。
上記のように構成された多軸触覚センサの動作について、図10に示すように、弾性体4にX方向のせん断力が生じた場合について説明する。弾性体4に何ら外力が生じていない場合、第1せん断力検出素子6の梁60、61、第2せん断力検出素子7の梁70、71、圧力検出素子8の梁80、81は、平面視直線状、側面視水平状の形状を保持している。弾性体4にX方向のせん断力が作用すると、X方向に対して直交状に延びる第1せん断力検出素子6の梁60、61は、長さ方向中央部位が膨出するように変形する。梁60の長さ方向中央部位は、ピエゾ抵抗層600が形成された表面が伸張する方向に曲がり、梁61の長さ方向中央部位は、ピエゾ抵抗層610が形成された表面が圧縮する方向に曲がる。梁60、61の抵抗値がそれぞれの伸縮にあわせて正負逆方向に増減するので、その抵抗値変化をブリッジ回路により計測し、せん断力を計測することができる(図11のPad1、Pad2、Pad3、及び、図12参照)。なお、弾性体4にX方向のせん断力が作用した場合に、第2せん断力検出素子7の梁70、71、圧力検出素子8の梁80、81の出力電圧は変化しない。
同様に、弾性体4にY方向のせん断力が作用した場合には、Y方向に対して直交状に延びる第2せん断力検出素子7の梁70、71は、長さ方向中央部位が膨出するように変形し、その抵抗値変化をブリッジ回路により計測し、せん断力を計測する。
弾性体4にZ方向の圧力が作用した場合には、全ての梁60、61、70、71、80、81は長さ方向中央部位が下方に撓むように変形するが、圧力検出素子8の梁80、81は、梁に形成されている抵抗層が伸張あるいは圧縮することにより抵抗が変化し、同様の原理によって、その抵抗値変化をブリッジ回路により計測し、圧力を計測する。なお、弾性体4にZ方向の圧力が作用した場合に、第1せん断力検出素子6の梁60、61、第2せん断力検出素子7の梁70、71の出力電圧は変化しない。
[D]多軸触覚センサの製造法
このような多軸触覚センサは、検出信号の出力回路が形成された基板1と、センサチップ2と、上面と、側面と、センサチップ表面20の面積と略同じ、あるいは、それよりも小面積である下面と、を備えた弾性体4と、弾性体4よりも硬質の材料から形成され、弾性体4の上面よりも大面積である上壁50と、側壁51と、からなる外装体5と、を用意して、接着剤(好適には弾性接着剤)を用いて組立てることができる。
より具体的には、多軸触覚センサは、基板1上にセンサチップ2を設ける工程、センサチップ2と基板2をワイヤボンディングする工程、ボンディングワイヤを覆うようにワイヤ保護材3を設ける工程、弾性体4を、その下面を接着剤によってセンサチップ表面20のワイヤ保護材3の内側領域に接着することで、センサチップ2上に設ける工程、によって製造することができる。1つの態様では、弾性体4の下面とセンサチップ表面20とをシリコーン系接着剤を用いて接着し、弾性体4の上面と外装体5の上壁50の下面とをシリル基末端ポリマー系接着剤を用いて接着する。
MEMSセンサチップ2は、SOIウェハを基材として、公知の手段(トレンチ形成、梁形成等のためのエッチング、熱拡散やイオン注入等の各種ドーピング手法、金属膜蒸着等)によって製造することができ、具体的な製造方法については、特許文献1、非特許文献1に記載されており、詳細はこれらの文献を参照することができる。センサチップ2における抵抗層の形成については、イオン注入を用いることが有利である。
1 基板
2 センサチップ
20 センサチップ表面
3 ワイヤ保護材
4 弾性体
40 接着層
41 接着層
5 外装体
50 上壁
51 側壁
52 接着層
6 第1せん断力検出素子
60 梁
61 梁
7 第2せん断力検出素子
70 梁
71 梁
8 圧力検出素子
80 梁
81 梁

Claims (18)

  1.  基板と、
     前記基板上に設けたセンサチップと、
     センサチップ表面と略面一に形成され、センサチップ表面に平行する力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有する少なくとも1つのせん断力検出素子と、
     センサチップ表面と略面一に形成され、センサチップ表面に対して垂直の力を検出するように、所定部位にピエゾ抵抗層を備えた梁を有する圧力検出素子と、
     上面と、側面と、前記センサチップ表面の面積と略同じ、あるいは、それよりも小面積である下面と、を備えた弾性体であって、前記下面が、前記せん断力検出素子及び前記圧力検出素子を覆うように前記センサチップ表面上に接着されている、弾性体と、
     前記弾性体よりも硬質の材料から形成され、前記センサチップ及び前記弾性体を覆う外装体であって、当該外装体に加えられた力が前記弾性体に伝達可能な態様で設けられている、外装体と、
     からなる多軸触覚センサ。
  2.  前記弾性体は、接着剤により形成された接着層を介して前記センサチップ表面に接着されている、請求項1に記載の多軸触覚センサ。
  3.  前記接着剤は弾性接着剤であり、前記接着層は弾性接着層である、請求項2に記載の多軸触覚センサ。
  4.  前記弾性体は、硬化した弾性接着剤から形成されている、請求項1に記載の多軸触覚センサ。
  5.  前記外装体は、前記弾性体の上面よりも大面積である上壁と、側壁と、からなり、
     前記上壁の下面が前記弾性体の上面に当接した状態で、前記側壁の下端と前記基板との間に隙間が形成されている、
     請求項1~4いずれか1項に記載の多軸触覚センサ。
  6.  前記外装体の前記側壁の下端が接着層を介して前記基板上に接着されており、前記隙間は前記接着層によって閉塞されている、
     請求項5に記載の多軸触覚センサ。
  7.  前記上壁の下面と前記弾性体の上面は、接着層を介して接着されている、請求項5、6いずれか1項に記載の多軸触覚センサ。
  8.  前記接着層は、弾性接着層である、請求項6、7いずれか1項に記載の多軸触覚センサ。
  9.  前記外装体の側壁の内面と前記弾性体の側面は離間している、請求項1~8いずれか1項に記載の多軸触覚センサ。
  10.  前記センサチップと前記基板の検出回路を接続するボンディングワイヤと、
     前記ボンディングワイヤを被覆するようにセンサチップ端部と基板に亘って設けたワイヤ保護材と、
     を備え、
     前記弾性体の下面は、前記センサチップ表面上で前記ワイヤ保護材の内側に位置して接着されている、
     請求項1~9いずれか1項に記載の多軸触覚センサ。
  11.  前記せん断力検出素子の梁は、側面にピエゾ抵抗層が形成されている、請求項1~10いずれか1項に記載の多軸触覚センサ。
  12.  前記せん断力検出素子は平行状の2本の両持ち梁を有し、2本の両持ち梁の側面には対称状にピエゾ抵抗層が形成されている、請求項11に記載の多軸触覚センサ。
  13.  前記せん断力検出素子は、センサチップ表面に平行な第1の方向の力を検出するように所定方向に延びる梁を備えた第1せん断力検出素子と、
     センサチップ表面に平行な第2の方向の力を検出するように所定方向に延びる梁を備えた第2せん断力検出素子と、
     を含む、
     請求項1~12いずれか1項に記載の多軸触覚センサ。
  14.  前記圧力検出素子の梁は、表面にピエゾ抵抗層が形成されている、請求項1~13いずれか1項に記載の多軸触覚センサ。
  15.  前記圧力検出素子は平行状の2本の両持ち梁を有し、2本の両持ち梁の表面には非対称状にピエゾ抵抗層が形成されている、請求項14に記載の多軸触覚センサ。
  16.  基板と、
     センサチップと、
     上壁と、側壁と、からなる外装体と、
     を用意し、
     前記センサチップには、
     センサチップ表面と略面一に形成され、センサチップ表面に平行する力を検出するように、所定方向に延びると共に所定部位にピエゾ抵抗層を備えた梁を有する少なくとも1つのせん断力検出素子と、
     センサチップ表面と略面一に形成され、センサチップ表面に対して垂直の力を検出するように、所定部位にピエゾ抵抗層を備えた梁を備えた圧力検出素子と、
     が形成されており、
     前記基板上に前記センサチップを設ける工程と、
     前記センサチップ表面を覆うように、上面と、側面と、前記センサチップ表面の面積と略同じ、あるいは、それよりも小面積である下面と、を備える弾性体を、その下面が前記センサチップ表面に接着した状態でセンサチップ上に設ける工程と、
     前記外装体は前記弾性体よりも硬質であり、当該外装体に加えられた力が前記弾性体に伝達されるような態様で前記弾性体に被せる工程と、
     からなる、多軸触覚センサの製造方法。
  17.  前記弾性体は予め用意されており、接着剤を介してセンサチップ表面に接着される、請求項16に記載の製造方法。
  18.  前記上壁の下面が前記弾性体の上面に当接した状態で、前記側壁の下端と前記基板との間に隙間が形成されており、
     前記外装体の前記側壁の下端が接着層を介して前記基板上に接着され、前記隙間は前記接着層によって閉塞される、
     請求項16、17いずれか1項に記載の製造方法。
PCT/JP2016/061052 2015-05-18 2016-04-05 多軸触覚センサ及び多軸触覚センサの製造法 WO2016185813A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100955A JP2016217804A (ja) 2015-05-18 2015-05-18 多軸触覚センサ及び多軸触覚センサの製造法
JP2015-100955 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016185813A1 true WO2016185813A1 (ja) 2016-11-24

Family

ID=57319978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061052 WO2016185813A1 (ja) 2015-05-18 2016-04-05 多軸触覚センサ及び多軸触覚センサの製造法

Country Status (2)

Country Link
JP (1) JP2016217804A (ja)
WO (1) WO2016185813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167668A (zh) * 2018-11-26 2021-07-23 国立大学法人东京大学 多轴触觉传感器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129586A (ja) * 2016-01-21 2017-07-27 国立大学法人 東京大学 センサ、測定装置、及び歩行ロボット
ITUA20163990A1 (it) * 2016-05-31 2017-12-01 St Microelectronics Srl Dispositivo sensore di carico miniaturizzato con ridotta sensibilita' a stress termo-meccanico di incapsulamento, in particolare sensore di forza e di pressione
US11851319B2 (en) * 2018-09-20 2023-12-26 Stmicroelectronics S.R.L. High-range semiconductor load sensor device
JP2023108438A (ja) * 2022-01-25 2023-08-04 ミネベアミツミ株式会社 センサモジュール、及び力覚センサ装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329328A (ja) * 1991-05-02 1992-11-18 Fuji Electric Co Ltd 接触圧力センサおよびその測定方法
US20080083962A1 (en) * 2006-05-24 2008-04-10 Vladimir Vaganov Force input control device and method of fabrication
JP2012007984A (ja) * 2010-06-24 2012-01-12 New Japan Radio Co Ltd ピエゾ抵抗素子内蔵センサチップの製造方法及びそのセンサチップ
JP2012035337A (ja) * 2010-08-03 2012-02-23 Dainippon Printing Co Ltd Memsデバイス及びその製造方法
JP2013002942A (ja) * 2011-06-16 2013-01-07 Honda Motor Co Ltd 力覚センサチップ
JP2013040869A (ja) * 2011-08-18 2013-02-28 Oga Inc 力検出装置
JP2013068503A (ja) * 2011-09-22 2013-04-18 Univ Of Tokyo 触覚センサ及び多軸触覚センサ
US20140007705A1 (en) * 2012-07-05 2014-01-09 Nextinput, Inc. Microelectromechanical load sensor and methods of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329328A (ja) * 1991-05-02 1992-11-18 Fuji Electric Co Ltd 接触圧力センサおよびその測定方法
US20080083962A1 (en) * 2006-05-24 2008-04-10 Vladimir Vaganov Force input control device and method of fabrication
JP2012007984A (ja) * 2010-06-24 2012-01-12 New Japan Radio Co Ltd ピエゾ抵抗素子内蔵センサチップの製造方法及びそのセンサチップ
JP2012035337A (ja) * 2010-08-03 2012-02-23 Dainippon Printing Co Ltd Memsデバイス及びその製造方法
JP2013002942A (ja) * 2011-06-16 2013-01-07 Honda Motor Co Ltd 力覚センサチップ
JP2013040869A (ja) * 2011-08-18 2013-02-28 Oga Inc 力検出装置
JP2013068503A (ja) * 2011-09-22 2013-04-18 Univ Of Tokyo 触覚センサ及び多軸触覚センサ
US20140007705A1 (en) * 2012-07-05 2014-01-09 Nextinput, Inc. Microelectromechanical load sensor and methods of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167668A (zh) * 2018-11-26 2021-07-23 国立大学法人东京大学 多轴触觉传感器
CN113167668B (zh) * 2018-11-26 2023-12-26 国立大学法人东京大学 多轴触觉传感器

Also Published As

Publication number Publication date
JP2016217804A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2016185813A1 (ja) 多軸触覚センサ及び多軸触覚センサの製造法
US10775248B2 (en) MEMS strain gauge sensor and manufacturing method
US8569092B2 (en) Method for fabricating a microelectromechanical sensor with a piezoresistive type readout
US7998777B1 (en) Method for fabricating a sensor
US10466119B2 (en) Ruggedized wafer level MEMS force sensor with a tolerance trench
CA2777309C (en) Device for measuring environmental forces and method of fabricating the same
CN109470385B (zh) 多轴力传感器、制造多轴力传感器的方法以及用于操作多轴力传感器的方法
Tsouti et al. Modeling and development of a flexible carbon black-based capacitive strain sensor
Amarasinghe et al. Design and fabrication of a miniaturized six-degree-of-freedom piezoresistive accelerometer
KR100499970B1 (ko) 가속도 센서
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
US20160209344A1 (en) Complex sensor and method of manufacturing the same
JP7396731B2 (ja) 多軸触覚センサ
WO2019079420A1 (en) SHIFT TEMPERATURE COEFFICIENT COMPENSATION FOR FORCE SENSOR AND STRAIN GAUGE
US20170001857A1 (en) Sensor element and method of manufacturing the same
JP5051039B2 (ja) 圧力センサ
Suja et al. Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement
KR101573367B1 (ko) 압저항형 세라믹 압력센서
JP5292600B2 (ja) 加速度センサ
JP4089961B2 (ja) 加速度センサ
CN109425460B (zh) 用于高压的具有薄膜的微机电换能器、其制造方法和包括微机电换能器的系统
JP2006294892A (ja) 一軸半導体加速度センサ
JP2006153516A (ja) 加速度センサ
JP5547054B2 (ja) 静電容量型加速度センサ
JP2006153518A (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796207

Country of ref document: EP

Kind code of ref document: A1