WO2016185724A1 - リッツ線、リッツ線コイル、及びリッツ線の製造方法 - Google Patents

リッツ線、リッツ線コイル、及びリッツ線の製造方法 Download PDF

Info

Publication number
WO2016185724A1
WO2016185724A1 PCT/JP2016/002453 JP2016002453W WO2016185724A1 WO 2016185724 A1 WO2016185724 A1 WO 2016185724A1 JP 2016002453 W JP2016002453 W JP 2016002453W WO 2016185724 A1 WO2016185724 A1 WO 2016185724A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
litz wire
strands
bundles
litz
Prior art date
Application number
PCT/JP2016/002453
Other languages
English (en)
French (fr)
Inventor
志朗 長谷川
大根田 進
香月 史朗
裕人 野崎
聖 三浦
市川 昌宏
克司 近藤
森 正裕
秀樹 松本
達也 飯島
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Publication of WO2016185724A1 publication Critical patent/WO2016185724A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Definitions

  • the present invention relates to a litz wire, a litz wire coil, and a litz wire manufacturing method suitable for a high frequency non-contact power feeding coil used in a frequency band of 150 kHz or less in an electromagnetic induction type non-contact power feeding system.
  • the non-contact power supply system includes a power supply side coil (primary coil) to which electric power is supplied from an AC power source, and a power reception side coil that is disposed to face the power supply side coil and is magnetically coupled to the power supply side coil.
  • the power feeding side coil is arranged outside the vehicle (floor surface), and the power receiving side coil is arranged inside the vehicle.
  • a planar coil formed by winding an enameled wire (a wire with a conductor covered with an insulating film) spirally on the same plane is applied.
  • the planar coil is manufactured, for example, by fixing one end of the wire to the winding frame and rotating the winding frame while applying an appropriate tension to the wire.
  • Patent Document 1 discloses a high-frequency power supply coil to which a litz wire obtained by twisting a plurality of large-diameter strands and a plurality of small-diameter strands in a spiral shape is applied.
  • the skin depth d is given by the following formula (1).
  • Equation (1) at 200 kHz or less, assuming that the skin depth is a radius, it is considered that the AC resistance due to the skin effect can be reduced by setting the wire diameter to 0.4 mm or less.
  • the AC resistance of the litz wire coil cannot be sufficiently reduced only by selecting the litz wire diameter in consideration of the skin effect.
  • An object of the present invention is to provide a litz wire, a litz wire coil, and a method for manufacturing a litz wire that can reduce the AC resistance of a high frequency non-contact power feeding coil used in a frequency band of 50 to 150 kHz.
  • a litz wire according to the present invention is a litz wire for a high frequency non-contact power feeding coil used in a frequency band of 50 to 150 kHz,
  • a plurality of primary stranded wires formed by twisting a plurality of strands are twisted into a plurality of bundles to form a secondary stranded wire, and further, a plurality of bundles of the secondary stranded wires are twisted together,
  • the cross-section has an evenly divided structure with a plurality of bundles of secondary stranded wires, The distance between the strands in each divided region is 3 to 15 ⁇ m.
  • the litz wire coil according to the present invention is formed by winding the litz wire in a spiral shape with a predetermined number of turns on the same plane.
  • the litz wire manufacturing method includes a first step of twisting a plurality of strands, A second step of arranging and twisting a plurality of bundles of primary strands obtained in the first step on the same circumference; and A third step of arranging and twisting a plurality of bundles of secondary stranded wires obtained in the second step on the same circumference, and The reduction ratio in the third step is larger than the reduction ratio in the second step.
  • the AC resistance of the high frequency non-contact power feeding coil used in the frequency band of 50 to 150 kHz can be reduced, and stable high electrical characteristics can be realized.
  • FIG. 1 is a diagram illustrating a litz wire coil according to an embodiment.
  • a litz wire coil 1 shown in FIG. 1 is used as a power feeding side coil or a power receiving side coil of a non-contact power feeding system for EV.
  • the litz wire coil 1 is suitable when used in a frequency band of 150 kHz or less.
  • the litz wire coil 1 is an annular planar coil formed by winding a litz wire 11 in a spiral shape on the same plane by a predetermined number of turns.
  • the litz wire coil 1 has end portions 11a and 11b drawn from the outermost peripheral side and the innermost peripheral side.
  • a terminal fitting (not shown) is connected to the end portions 11a and 11b by, for example, soldering.
  • the litz wire coil 1 preferably has a coil inner diameter D in of 150 to 250 mm, a coil outer diameter D out of 350 to 600 mm, and a winding number of 5 to 50 turns. As a result, the electrical characteristics can be stabilized, which is suitable for use as a non-contact power feeding system for EVs.
  • the dimensions (coil inner diameter D in , coil outer diameter D out , number of turns) of the litz wire coil 1 are appropriately designed so that desired transmission efficiency is realized in the non-contact power feeding system.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the litz wire 11.
  • FIG. 2A shows a state after the secondary stranded wire 111 is twisted
  • FIG. 2B shows a state before the secondary stranded wire 111 is twisted.
  • the litz wire 11 is formed by twisting a plurality of enamel wires (element wires) obtained by baking an insulating film on a conductor.
  • the conductor of the enameled wire is preferably copper or a copper alloy, and aluminum, an aluminum alloy, a clad material of copper and aluminum, or the like can also be applied.
  • the end portions 11a and 11b of the litz wire 11 are terminal fittings such as polyurethane, polyvinyl formal, polyurethane nylon, polyester, polyester nylon, polyesterimide, polyamideimide, polyesterimide / polyamideimide, polyimide, etc.
  • a resin material that melts with high-temperature solder when soldering (not shown) is suitable.
  • the litz wire 11 (parent stranded wire) is a secondary stranded wire 111 (child stranded wire) obtained by uniformly twisting a plurality of primary stranded wires 112 (grand stranded wires) formed by twisting a plurality of strands 113, Further, it is a composite stranded wire formed by twisting a plurality of secondary stranded wires 111 evenly.
  • the cross-section of the litz wire 11 has an equally divided structure with a plurality of bundles of secondary stranded wires 111.
  • “Equally divided structure” means that the cross section is divided into equal fan shapes (including the case where the inner side is an arc) with the number of twisted wires (including strands and stranded wires, secondary stranded wires 111 in FIG. 2A). Except when the center material is arranged. In addition, what is necessary is just to recognize that the shape by the outer shape line of the twisted wire is a fan shape, and it does not need to be divided
  • N integer of 3 or more
  • the distance between the strands in each divided region is 3 to 15 ⁇ m.
  • “Distance between strands in a segmented area” means the distance between adjacent strands (distance between insulating coatings) for each strand in the segmented area, and the average of these measured values. is there. Actually, several (for example, three) strands are extracted for each divided region, and the distance between these strands is measured and the average distance is measured in the divided region. It can be the distance between the strands.
  • adjacent means a positional relationship in which, when a common outer tangent is drawn for two strands, no other strand is included in the area surrounded by the common outer tangent and the outer shape of the strand. To do. That is, in FIG. 3, the strands A to G are adjacent to the strand X, but the strands H to N are not adjacent.
  • FIG. 4 is a diagram showing the AC resistance of an assembly line in which about 500 strands are assembled in different structures.
  • the strand diameter is 0.1 mm, and the sample length is 2 m.
  • “ ⁇ ” indicates a parallel assembly wire (no twisting) in which 500 strands are collectively gathered
  • indicates a primary strand (sub strand) in which 72 strands are twisted together.
  • “ ⁇ ” is a primary twisted wire (sub-strand wire) in which 20 strands are twisted together to form a secondary twisted wire (child twisted wire). The result about the composite litz wire twisted 5 bundles is shown.
  • bundles x 72 litz wires are arranged with a bundle of child strands in the center and 6 bundles of child strands arranged around them.
  • 5 bundles x 5 bundles x 20 litz wires have a 5-bundle equally divided structure.
  • FIG. 4 shows that even if the strand diameter is the same, the AC resistance is different if the twisted structure is different. That is, a low AC resistance cannot be obtained only by selecting the wire diameter, and the twisted structure is one factor for reducing the AC resistance.
  • a litz wire obtained by twisting a plurality of strands can reduce the AC resistance as compared to a parallel assembly wire without twisting.
  • 7 bundles x 72 litz wires are arranged in the center of a bundle of child strands, and 6 bundles of child strands are arranged around them and twisted together, which is advantageous in that the twisted structure is stable.
  • the AC resistance due to the proximity effect is increased, which is disadvantageous in a high frequency band of 80 kHz or higher.
  • the litz wire (6 bundles ⁇ 84) having the 6-bundle equally divided structure in which the child strands are not arranged at the center is not broken.
  • a practical low resistance can be obtained in the high frequency band. That is, in order to reduce AC resistance, it is preferable to have an equally divided structure.
  • the twisted structure of the litz wire 11 has a three-stage twisted structure, and the primary twisted wire 112 and the secondary twisted wire 111 are both equally divided and twisted to 6 bundles or less. Further, from the viewpoint of forming a stable split structure, the number of bundles of secondary stranded wires 111 is preferably equal to or greater than the number of bundles of primary stranded wires 112.
  • FIG. 5 is a diagram showing the AC resistance of a litz wire obtained by twisting secondary stranded wires with different diameter reduction ratios.
  • the strand diameter is 0.1 mm
  • the twisted structure is 6 bundles ⁇ 6 bundles ⁇ 14, and the sample length is 2 m.
  • the diameter reduction rate when twisting a primary strand wire is 15%.
  • the “diameter reduction ratio” means that when the cross-sectional area of the litz wire after twisting is S1 (see FIG. 2A) and the cross-sectional area of the litz wire before twisting is S2 (see FIG. 2B), (S2 ⁇ S1) / S2 ⁇ 100 [%].
  • the diameter reduction rate is controlled by the tension at the time of twisting. The larger the tension at the time of twisting, the smaller the gap at the center and the larger the diameter reduction ratio.
  • FIG. 2 although shown about the diameter reduction rate when twisting a secondary strand wire, the diameter reduction rate when twisting a primary strand wire is the same.
  • “ ⁇ ” and “ ⁇ ” are litz wires when the reduction ratio is less than 20%, “ ⁇ ” is litz wire when the reduction ratio is 20%, and “ ⁇ ” is the reduction ratio.
  • the result about the litz wire in the case of 30% is shown.
  • the litz wire ( ⁇ mark and ⁇ mark) having a diameter reduction rate of less than 20% was loosened as a whole and the uniformly divided structure was broken.
  • the litz wire ( ⁇ mark) with a diameter reduction rate of 20% and the litz wire ( ⁇ mark) with a diameter reduction rate of 20% maintained an equally divided structure.
  • the distance between the strands in each of the equally divided regions was 3 to 15 ⁇ m.
  • the AC resistance can be reduced when the distance between the strands in each divided region is 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the diameter reduction ratio when the secondary stranded wire 111 is twisted is set to 20% to 30%, so that the distance between the strands in the equally divided structure and the divided region can be reduced.
  • the desired range (3 to 15 ⁇ m) can be obtained, and the AC resistance can be reduced.
  • the diameter reduction rate when twisting the primary stranded wire 112 should just maintain a twisted structure to such an extent that the secondary stranded wire 111 is not loosened. Therefore, from the diameter reduction rate when twisting the secondary stranded wire 111 together Can be small. For example, when the diameter reduction ratio when twisting the secondary stranded wire 111 is set to 20 to 30%, the diameter reduction ratio when twisting the primary stranded wire is set to 10 to 20%.
  • FIG. 6 is a diagram showing the AC resistance of a litz wire coil manufactured using litz wires having different wire diameters.
  • the outer diameter of the litz wire coil is 40 cm, the inner diameter is 20 cm, and the number of turns is 32. Further, the number of litz wires constituting the litz wire coil is the same.
  • “ ⁇ ” is a litz wire having a strand diameter of 0.18 mm
  • “ ⁇ ” is a litz wire having a strand diameter of 0.16 mm
  • is a litz wire having a strand diameter of 0.14 mm
  • “" Indicates the result for a litz wire coil using a litz wire having a strand diameter of 0.10 mm.
  • FIG. 6 shows that when the wire diameter exceeds 0.15 mm, a sudden increase in resistance is observed even at 100 kHz or less.
  • the wire diameter is less than 0.05 mm, the mechanical strength is too low to make it difficult to handle, and it is difficult to connect to the terminal fitting.
  • the wire cost increases significantly as the wire diameter decreases. From this, it is preferable that the strand diameter of the litz wire 11 is 0.05 mm or more and 0.15 mm or less.
  • FIG. 7 is a diagram showing the AC resistance of assembly wires with different numbers of strands (batch parallel assembly wires without twisting).
  • the strand diameter is 0.1 mm and the sample length is 45 cm.
  • “ ⁇ ” is an assembly line with 500 strands
  • “ ⁇ ” is an assembly line with 300 strands
  • “ ⁇ ” is an assembly line with 100 strands
  • “ ⁇ ” is The result about the assembly line with 30 strands is shown.
  • the AC resistance of the collective line is shown as a ratio to the DC resistance (AC resistance / DC resistance).
  • FIG. 7 is a result about a parallel assembly wire, it may be considered that the same result is obtained for a litz wire. From FIG. 7, when used at 150 kHz or less, when the number of strands bundled is 300 or more, the AC resistance is significantly increased due to the proximity effect, and the resistance becomes higher as practicality is lost. When the range where the AC resistance / DC resistance at 150 kHz or less is 2 or less is considered as a practical allowable range, the number of twisted primary stranded wires 112 of the litz wire 11 is preferably 180 or less, more preferably 100 or less. Note that the number of twisted primary stranded wires 112 is actually 10 or more.
  • the litz wire 11 is formed by twisting a plurality of primary stranded wires 112 (grand stranded wires) formed by twisting a plurality of strands 113 into a secondary stranded wire 111 (child stranded wire). It has a configuration in which a plurality of stranded wires 111 are twisted together. Further, the cross section of the litz wire 11 has an equally divided structure by a plurality of bundles of secondary stranded wires 111, and the distance between the strands in each divided region is 3 to 15 ⁇ m.
  • the litz wire 11 the AC resistance due to the skin effect and the proximity effect can be effectively reduced while ensuring the desired mechanical strength. Therefore, it is extremely suitable as a litz wire for a coil used in a frequency band of 50 to 150 kHz in an electromagnetic induction type non-contact power feeding system. Moreover, since the litz wire coil 1 to which the litz wire 11 is applied has stable and high electrical characteristics, it is suitable as a use for a non-contact power feeding system.
  • Such a litz wire 11 can be manufactured by the following steps. That is, the manufacturing method of the litz wire 11 includes a first step of twisting a plurality of strands 113 and a second step of arranging and twisting a plurality of bundles of primary strands 112 obtained in the first step on the same circumference. And a third step in which a plurality of bundles of secondary stranded wires 111 obtained in the second step are arranged on the same circumference and twisted together, and the diameter reduction rate in the third step is the diameter reduction in the second step. It is set larger than the rate.
  • Example 1 In Example 1, three bundles of primary stranded wires formed by twisting 56 strands are uniformly twisted to form a secondary stranded wire, and five bundles of this secondary stranded wire are evenly twisted to produce a litz wire. (Total number of wires 840). The strand diameter was 0.1 mm, the diameter reduction rate when twisting the primary stranded wire was 20%, and the diameter reduction rate when twisting the secondary stranded wire was 30%. The distance between the strands in the litz wire according to Example 1 was 5 ⁇ m.
  • Example 2 In Example 2, six bundles of primary stranded wires formed by twisting 14 strands are uniformly twisted to form a secondary stranded wire, and six bundles of this secondary stranded wire are twisted equally to produce a litz wire. (Total number of wires 504).
  • the strand diameter was 0.1 mm, the diameter reduction rate when twisting the primary stranded wire was 20%, and the diameter reduction rate when twisting the secondary stranded wire was 30%.
  • the distance between the strands in the litz wire according to Example 2 was 10 ⁇ m.
  • FIG. 8 is a diagram illustrating AC resistance of litz wires according to Examples 1 and 2 and a comparative example.
  • the sample length is 2 m.
  • the AC resistance of the Litz wire of Example 1 was substantially 50% of the AC resistance of the Litz wire of the comparative example, which was significantly reduced.
  • the rate of increase in resistance of the litz wire of Example 1 at 80 kHz is 26% based on the DC resistance (5.3 m ⁇ ), which can be said to be very small. Since the Litz wire of the comparative example does not have an equally divided structure, the AC resistance is considered to be high.
  • the resistance increase rate at 80 kHz of the litz wire of Example 2 is about 10% based on the DC resistance (9.0 m ⁇ ), which can be said to be very small as in Example 1.
  • the Litz wire of Example 2 has a smaller conductor cross-sectional area than the Litz wire of Example 1, so that the AC resistance is large, but the rate of increase in resistance with respect to frequency is smaller than that of the Litz wire of Example 1.
  • the comparative example with respect to Example 2 is not shown, it can be said that it is the same as the comparison result of Example 1 and a comparative example. That is, if the conductor cross-sectional area (number of strands) is the same, the AC resistance of the litz wire having the equally divided structure is smaller than the AC resistance of the litz wire not having the equally divided structure.

Abstract

リッツ線、リッツ線コイル及びリッツ線の製造方法を提供する。リッツ線は、50~150kHzの周波数帯で使用される高周波非接触給電コイル用のリッツ線であって、複数本の素線を撚り合わせてなる一次撚り線を複数束撚り合わせて二次撚り線とし、さらに二次撚り線を複数束撚り合わせた構成を有する。リッツ線の断面は複数束の二次撚り線による均等分割構造を有し、それぞれの分割領域における素線間距離はいずれも3~15μmである。

Description

リッツ線、リッツ線コイル、及びリッツ線の製造方法
 本発明は、電磁誘導型の非接触給電システムにおいて150kHz以下の周波数帯で使用される高周波非接触給電コイルに好適なリッツ線、リッツ線コイル、及びリッツ線の製造方法に関する。
 近年、電気自動車(EV:Electric Vehicle)の充電方法の一つとして、コイルを用いた電磁誘導方式の非接触給電が検討されている。非接触給電システムは、交流電源から電力が供給される給電側コイル(一次コイル)と、給電側コイルに対向して配置され、給電側コイルと磁気的に結合する受電側コイルとを備える。EV用の非接触給電システムにおいては、給電側コイルが車外(床面)に配置され、受電側コイルが車内に配置される。
 給電側コイル及び受電側コイルには、例えばエナメル線(導体を絶縁皮膜で被覆した線材)を同一平面上で渦巻き状に巻線してなる平面コイルが適用される。平面コイルは、例えば、線材の一端側を巻枠に固定し、線材に適当な張力を付加しながら巻枠を回転させることにより製造される。単心のエナメル線をコイル用の線材として適用する場合、インダクタンス等の電気特性のばらつきは小さく、実用範囲内で量産することが可能である。
 また、EV用の非接触給電システムのように、高周波の大電流を流して大電力を伝送する必要がある場合は、複数本のエナメル線(素線)を撚り合わせたリッツ線を巻線してなるリッツ線コイルが用いられる(例えば特許文献1)。リッツ線を用いることで、高周波特有の表皮効果や近接効果による交流抵抗を低減することができる。特許文献1には、複数の大径素線及び複数の小径素線をスパイラル状に撚り合わせたリッツ線を適用した高周波給電用コイルが開示されている。
特開2014-56764号公報
 一般的に、リッツ線は、使用周波数における表皮深さ(電流が流れる表面からの浸透深さ)を参考にして、適切な素線径を選定することが推奨されている。表皮深さdは、下式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 式(1)より、200kHz以下では、表皮深さを半径と見立てれば、素線径を0.4mm以下とすることで、表皮効果による交流抵抗を低減することができると考えられる。しかしながら、実際には、素線径が0.14mmを超えるリッツ線を用いたリッツ線コイルにおいて、100kHz以下でも急激な抵抗上昇が観測された(図6参照)。このように、表皮効果を考慮してリッツ線の素線径を選定するだけでは、リッツ線コイルの交流抵抗を十分に低減することはできない。
 本発明の目的は、50~150kHzの周波数帯で使用される高周波非接触給電用コイルの交流抵抗を低減できるリッツ線、リッツ線コイル、及びリッツ線の製造方法を提供することである。
 本発明に係るリッツ線は、50~150kHzの周波数帯で使用される高周波非接触給電コイル用のリッツ線であって、
 複数本の素線を撚り合わせてなる一次撚り線を複数束撚り合わせて二次撚り線とし、さらに前記二次撚り線を複数束撚り合わせた構成を有し、
 断面が前記複数束の二次撚り線による均等分割構造を有し、
 それぞれの分割領域における素線間距離がいずれも3~15μmであることを特徴とする。
 本発明に係るリッツ線コイルは、上記のリッツ線を、同一平面上に所定の巻数で渦巻き状に巻線してなることを特徴とする。
 本発明に係るリッツ線の製造方法は、複数本の素線を撚り合わせる第1工程と、
 前記第1工程で得られる複数束の一次撚り線を同一円周上に配置して撚り合わせる第2工程と、
 前記第2工程で得られる複数束の二次撚り線を同一円周上に配置して撚り合わせる第3工程と、を備え、
 前記第3工程における縮径率が前記第2工程における縮径率よりも大きいことを特徴とする。
 本発明によれば、50~150kHzの周波数帯で使用される高周波非接触給電用コイルの交流抵抗を低減することができ、安定した高い電気特性を実現することができる。
実施の形態に係るリッツ線コイルを示す図である。 実施の形態に係るリッツ線の詳細な構成を示す断面図である。 隣接する位置関係にある素線を示す図である。 約500本の素線を異なる構造で集合した集合線の交流抵抗を示す図である。 異なる縮径率で撚り合わせたリッツ線の交流抵抗を示す図である。 素線径の異なるリッツ線を用いて作製したリッツ線コイルの交流抵抗を示す図である。 素線数の異なる集合線の交流抵抗を示す図である。 実施例1、2及び比較例に係るリッツ線の交流抵抗を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、実施の形態に係るリッツ線コイルを示す図である。図1に示すリッツ線コイル1は、EV用の非接触給電システムの給電側コイル又は受電側コイルとして用いられるものである。リッツ線コイル1は、150kHz以下の周波数帯で使用される場合に好適である。
 リッツ線コイル1は、リッツ線11を同一平面上で渦巻き状に所定の巻数だけ巻線してなる円環状の平面コイルである。リッツ線コイル1は、最外周側と最内周側から引き出される端部11a、11bを有する。この端部11a、11bには、例えば半田付けにより端子金具(図示略)が接続される。
 リッツ線コイル1は、コイル内径Dinが150~250mm、コイル外径Doutが350~600mm、巻数が5~50ターンであることが好ましい。これにより、電気特性の安定化を図ることができるので、EV用の非接触給電システムの用途として好適である。リッツ線コイル1の寸法(コイル内径Din、コイル外径Dout、巻数)は、非接触給電システムにおいて所望の伝送効率が実現されるように適宜に設計される。
 図2は、リッツ線11の詳細な構成を示す断面図である。図2Aは二次撚り線111を撚り合わせた後の状態を示し、図2Bは二次撚り線111を撚り合わせる前の状態を示す。
 リッツ線11は、導体に絶縁被膜を焼き付けたエナメル線(素線)を、複数本撚り合わせたものである。エナメル線の導体は、銅又は銅合金であることが好ましく、アルミニウム、アルミニウム合金、又は銅とアルミニウムのクラッド材等を適用することもできる。また、エナメル線の絶縁皮膜には、ポリウレタン、ポリビニルホルマール、ポリウレタンナイロン、ポリエステル、ポリエステルナイロン、ポリエステルイミド、ポリアミドイミド、ポリエステルイミド/ポリアミドイミド、ポリイミド等、リッツ線11の端部11a、11bを端子金具(図示略)に半田付けする際に高温の半田により溶融する樹脂材料が好適である。
 リッツ線11(親撚り線)は、複数本の素線113を撚り合わせてなる一次撚り線112(孫撚り線)を複数束均等に撚り合わせて二次撚り線111(子撚り線)とし、さらに二次撚り線111を複数束均等に撚り合わせて構成される複合撚り線である。
 図2Aに示すように、リッツ線11の断面は、複数束の二次撚り線111よる均等分割構造を有する。「均等分割構造」とは、断面が、撚り合わせた線材(素線、撚り線を含む、図2Aでは二次撚り線111)の数で均等な扇形(内側が円弧の場合を含む)に分割されている構造であり、中心材が配置されている場合を除く。なお、撚り合わせた線材の外形線による形状が扇形になっていると認識できればよく、厳密に均等分割されていなくてもよい。例えば、N束均等分割構造(N:3以上の整数)のリッツ線は、N束の子撚り線を同一円周上に配置して、適当な張力を付与した状態で撚り合わせることにより作製される。
 また、リッツ線11の断面において、それぞれの分割領域における素線間距離は、いずれも3~15μmである。「分割領域における素線間距離」とは、分割領域内のそれぞれの素線について、隣接する素線との離間距離(絶縁被膜間の距離)を測定し、これらの測定値を平均したものである。現実的には、分割領域ごとに数本(例えば3本)の素線を抽出し、これらの素線について、隣接する素線との離間距離を測定し、平均したものを、当該分割領域における素線間距離とすることができる。なお、「隣接する」とは、2本の素線について共通外接線を引いたとき、共通外接線と素線外形で囲まれる領域に他の素線が全く含まれないような位置関係を意味する。つまり、図3において、素線Xに対して素線A~Gは隣接するが、素線H~Nは隣接しない。
 図4は、約500本の素線を異なる構造で集合した集合線の交流抵抗を示す図である。素線径は0.1mm、試料長は2mである。図4中、「×」は500本の素線を一括して集合した平行集合線(撚り合わせなし)、「■」は72本の素線を撚り合わせた一次撚り線(子撚り線)を7束撚り合わせた複合リッツ線、「●」は20本の素線を撚り合わせた一次撚り線(孫撚り線)を5束撚り合わせて二次撚り線(子撚り線)とし、さらにこれを5束撚り合わせた複合リッツ線についての結果を示す。
 7束×72本のリッツ線は、一束の子撚り線を中心に配置し、その周囲に6束の子撚り線を配置して撚り合わせたものである。5束×5束×20本のリッツ線は、5束均等分割構造を有するものである。
 図4より、素線径が同じであっても、撚り合わせ構造が異なると、交流抵抗も異なることが分かる。すなわち、素線径の選択だけでは、低い交流抵抗を得ることはできず、撚り合わせ構造も交流抵抗を低減するための一要因となる。例えば、図4より、複数の素線を撚り合わせたリッツ線は、撚り合わせのない平行集合線に比較して交流抵抗を低減することができる。
 また、7束×72本のリッツ線は、一束の子撚り線を中心に配置し、その周囲に6束の子撚り線を配置して撚り合わせるため、撚り構造が安定する点で有利であるが、近接効果による交流抵抗が高くなり、80kHz以上の高周波数帯ではかなり不利となる。一方、図4には示していないが、中心に子撚り線を配置しない6束均等分割構造を有するリッツ線(6束×84本)は、撚り構造が崩れないように注意する必要があるが、高周波数帯において実用的な低抵抗を得ることができる。つまり、交流抵抗を低減するためには、均等分割構造を有することが好ましい。
 さらには、5束×5束×20本のリッツ線において理想的な低抵抗が得られていることから、撚り構造を安定させるためには、孫撚り線を撚り合わせて子撚り線とする、すなわち子撚り線を細分化することが有効であるといえる。
 しかし、7束以上の子撚り線を撚り合わせる均等分割撚り線は、均等性を保持するのが難しく、形状を保持するためには中心材が必要となる。そのため、リッツ線の外径が大きくなり、リッツ線コイルの大型化を招く。したがって、リッツ線11の撚り合わせ構造は、三段階の撚り合わせ構造を有し、一次撚り線112、二次撚り線111ともに6束以下として均等分割撚りすることが好ましい。また、安定した分割構造を形成する観点から、二次撚り線111の束数は、一次撚り線112の束数以上であることが好ましい。
 図5は、異なる縮径率で二次撚り線を撚り合わせたリッツ線の交流抵抗を示す図である。素線径は0.1mm、撚り合わせ構造は6束×6束×14本、試料長は2mである。また、一次撚り線を撚り合わせるときの縮径率は15%である。
 ここで、「縮径率」は、撚り合わせ後のリッツ線の断面積をS1(図2A参照)、撚り合わせ前のリッツ線の断面積をS2(図2B参照)としたとき、(S2-S1)/S2×100[%]で表される。縮径率は、撚り合わせる際の張力によって制御される。撚り合わせるときの張力が大きい程、中心の空隙が小さくなり、縮径率は大きくなる。なお、図2では、二次撚り線を撚り合わせるときの縮径率について示しているが、一次撚り線を撚り合わせるときの縮径率も同様である。
 図5中、「×」、「■」は縮径率を20%未満とした場合のリッツ線、「▲」は縮径率を20%とした場合のリッツ線、「●」は縮径率を30%とした場合のリッツ線についての結果を示す。縮径率が20%未満のリッツ線(×印及び■印)は、全体的に緩んで均等分割構造が崩れた状態となっていた。これに対して、縮径率が20%のリッツ線(▲印)及び30%のリッツ線(●印)は、均等分割構造が保持されていた。また、縮径率が20%のリッツ線(▲印)及び30%のリッツ線(●印)では、均等分割されたそれぞれの分割領域における素線間距離がいずれも3~15μmであった。
 これより、リッツ線11の断面において、それぞれの分割領域における素線間距離がいずれも15μm以下、好ましくは10μm以下となっている場合に、交流抵抗を低減することができる。リッツ線11の製造方法の視点からいえば、二次撚り線111を撚り合わせるときの縮径率を20%~30%とすることにより、均等分割構造で、かつ分割領域における素線間距離を所望の範囲(3~15μm)とすることができ、交流抵抗を低減することができる。
 なお、一次撚り線112を撚り合わせるときの縮径率は、二次撚り線111がほぐれない程度に撚り構造が維持されればよいので、二次撚り線111を撚り合わせるときの縮径率よりも小さくてよい。例えば、二次撚り線111を撚り合わせるときの縮径率が20~30%に設定される場合、一次撚り線を撚り合わせるときの縮径率は10~20%に設定される。
 図6は、素線径の異なるリッツ線を用いて作製したリッツ線コイルの交流抵抗を示す図である。リッツ線コイルの外径は40cm、内径は20cm、巻数は32回である。また、リッツ線コイルを構成するリッツ線の素線数は同じである。図4中、「×」は素線径が0.18mmのリッツ線、「■」は素線径が0.16mmのリッツ線、「▲」は素線径が0.14mmのリッツ線、「●」は素線径が0.10mmのリッツ線を用いたリッツ線コイルについての結果を示す。
 図6より、素線径が0.15mmを超える場合、100kHz以下でも急激な抵抗上昇が見られる。一方、素線径が0.05mm未満の場合、機械的強度が低すぎて取り扱いが困難となり、端子金具への接続も困難となる。また、線径が細くなる程、素線コストが著しく増大する。これより、リッツ線11の素線径は、0.05mm以上0.15mm以下であることが好ましい。
 図7は、素線数の異なる集合線(撚り合わせのない一括平行集合線)の交流抵抗を示す図である。素線径は0.1mm、試料長は45cmである。図7中、「×」は素線数が500本の集合線、「■」は素線数が300本の集合線、「▲」は素線数が100本の集合線、「●」は素線数が30本の集合線についての結果を示す。なお、図7では、集合線の交流抵抗を、直流抵抗に対する比率(交流抵抗/直流抵抗)で示している。
 撚り合わせのない平行集合線の場合、近接効果が顕著に現れる。図7は、平行集合線材についての結果であるが、リッツ線についても同様の結果になると考えてよい。図7より、150kHz以下で使用する場合、一束の素線数が300本以上になると、近接効果による交流抵抗の増大が著しく、実用性がなくなるほど高抵抗になる。150kHz以下における交流抵抗/直流抵抗が2以下である範囲を実用的な許容範囲と考えると、リッツ線11の一次撚り線112の撚り合わせ数は、180本以下であることが好ましく、より好ましくは100本以下である。なお、一次撚り線112の撚り合わせ数は、現実的には10本以上とされる。
 このように、リッツ線11は、複数本の素線113を撚り合わせてなる一次撚り線112(孫撚り線)を複数束撚り合わせて二次撚り線111(子撚り線)とし、さらに二次撚り線111を複数束撚り合わせた構成を有する。また、リッツ線11の断面は、複数束の二次撚り線111による均等分割構造を有し、それぞれの分割領域における素線間距離はいずれも3~15μmである。
 リッツ線11によれば、所望の機械的強度確保しつつ、表皮効果と近接効果による交流抵抗を効果的に低減することができる。したがって、電磁誘導型の非接触給電システムにおいて50~150kHzの周波数帯で使用されるコイル用のリッツ線として極めて好適である。また、リッツ線11を適用したリッツ線コイル1は、安定した高い電気特性を有するので、非接触給電システムの用途として好適である。
 このようなリッツ線11は、以下の工程により製造することができる。すなわち、リッツ線11の製造方法は、複数本の素線113を撚り合わせる第1工程と、第1工程で得られる複数束の一次撚り線112を同一円周上に配置して撚り合わせる第2工程と、第2工程で得られる複数束の二次撚り線111を同一円周上に配置して撚り合わせる第3工程と、を備え、第3工程における縮径率は第2工程における縮径率よりも大きく設定される。
[実施例1]
 実施例1では、56本の素線を撚り合わせてなる一次撚り線を均等に3束撚り合わせて二次撚り線とし、さらにこの二次撚り線を5束均等に撚り合わせてリッツ線を作製した(総素線数840本)。素線径は0.1mmとし、一次撚り線を撚り合わせるときの縮径率は20%、二次撚り線を撚り合わせるときの縮径率は30%とした。実施例1に係るリッツ線における素線間距離は5μmであった。
[実施例2]
 実施例2では、14本の素線を撚り合わせてなる一次撚り線を均等に6束撚り合わせて二次撚り線とし、さらにこの二次撚り線を6束均等に撚り合わせてリッツ線を作製した(総素線数504本)。素線径は0.1mmとし、一次撚り線を撚り合わせるときの縮径率は20%、二次撚り線を撚り合わせるときの縮径率は30%とした。実施例2に係るリッツ線における素線間距離は10μmであった。
[比較例]
 比較例では、120本の素線を撚り合わせてなる一次撚り線を7束(中心1束、周囲6束)撚り合わせてリッツ線を作製した(総素線数840本)。素線径は0.1mmとし、撚り合わせるときの縮径率は0%とした。
[比較結果]
 図8は、実施例1、2及び比較例に係るリッツ線の交流抵抗を示す図である。試料長は2mである。図8に示すように、80kHzにおける交流抵抗で比較すると、実施例1のリッツ線の交流抵抗は、比較例のリッツ線の交流抵抗のほぼ50%であり、格段に低減された。また、実施例1のリッツ線の80kHzにおける抵抗上昇率は、直流抵抗(5.3mΩ)を基準とすると26%であり、非常に小さいといえる。比較例のリッツ線は、均等分割構造ではないため、交流抵抗は高くなったと考えられる。
 実施例2のリッツ線の80kHzにおける抵抗上昇率は、直流抵抗(9.0mΩ)を基準にすると約10%であり、実施例1と同様、非常に小さいといえる。実施例2のリッツ線は、実施例1のリッツ線よりも導体断面積が小さいので交流抵抗は大きいが、周波数に対する抵抗上昇率は実施例1のリッツ線よりも小さくなった。なお、実施例2に対する比較例については示していないが、実施例1と比較例の比較結果と同様のことがいえる。すなわち、導体断面積(素線数)が同じであれば、均等分割構造を有するリッツ線の交流抵抗は、均等分割構造を有しないリッツ線の交流抵抗よりも小さくなる。
 以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 2015年5月20日出願の特願2015-102984の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 1 リッツ線コイル
 11 リッツ線(親撚り線)
 111 二次撚り線(子撚り線)
 112 一次撚り線(孫撚り線)
 113 素線

Claims (6)

  1.  50~150kHzの周波数帯で使用される高周波非接触給電コイル用のリッツ線であって、
     複数本の素線を撚り合わせてなる一次撚り線を複数束撚り合わせて二次撚り線とし、さらに前記二次撚り線を複数束撚り合わせた構成を有し、
     断面が前記複数束の二次撚り線による均等分割構造を有し、
     それぞれの分割領域における素線間距離がいずれも3~15μmであることを特徴とするリッツ線。
  2.  前記素線の外径が0.05~0.15mmであり、
     前記一次撚り線に含まれる素線の本数が10~180本であり、
     前記一次撚り線及び前記二次撚り線の束数がそれぞれ3~6束であることを特徴とする請求項1に記載のリッツ線。
  3.  前記一次撚り線に含まれる素線の本数が10~100本であり、
     前記二次撚り線の束数が前記一次撚り線の束数以上であることを特徴とする請求項1又は2に記載のリッツ線。
  4.  請求項1から3のいずれか一項に記載のリッツ線を、同一平面上に所定の巻数で渦巻き状に巻線してなることを特徴とするリッツ線コイル。
  5.  複数本の素線を撚り合わせる第1工程と、
     前記第1の工程で得られる複数束の一次撚り線を同一円周上に配置して撚り合わせる第2工程と、
     前記第2工程で得られる複数束の二次撚り線を同一円周上に配置して撚り合わせる第3工程と、を備え、
     前記第3工程における縮径率が前記第2工程における縮径率よりも大きいことを特徴とするリッツ線の製造方法。
  6.  前記第2工程における縮径率が10~20%であり、
     前記第3工程における縮径率が20~30%であることを特徴とする請求項5に記載のリッツ線の製造方法。
PCT/JP2016/002453 2015-05-20 2016-05-19 リッツ線、リッツ線コイル、及びリッツ線の製造方法 WO2016185724A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-102984 2015-05-20
JP2015102984A JP2016219252A (ja) 2015-05-20 2015-05-20 リッツ線、リッツ線コイル、及びリッツ線の製造方法

Publications (1)

Publication Number Publication Date
WO2016185724A1 true WO2016185724A1 (ja) 2016-11-24

Family

ID=57319851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002453 WO2016185724A1 (ja) 2015-05-20 2016-05-19 リッツ線、リッツ線コイル、及びリッツ線の製造方法

Country Status (2)

Country Link
JP (1) JP2016219252A (ja)
WO (1) WO2016185724A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835043A (zh) * 2019-04-16 2020-10-27 致伸科技股份有限公司 无线充电装置及其发射端模块与发射端线圈

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660733A (ja) * 1992-08-10 1994-03-04 Riken Densen Kk リッツ線およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660733A (ja) * 1992-08-10 1994-03-04 Riken Densen Kk リッツ線およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI KASHIWAGI ET AL.: "Study of the Loss by the Proximity Effect of the Conductor in Contactless Power Supply Coils", RTRI REPORT, vol. 27, no. 7, July 2013 (2013-07-01), pages 29 - 34 *

Also Published As

Publication number Publication date
JP2016219252A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5629304B2 (ja) リッツ線コイル
EP2333788A2 (en) High frequency electric wire
JP2006156346A (ja) 複合撚線導体
WO2012049775A1 (ja) モータ用導線およびモータ用コイル
WO2010086944A1 (ja) 絶縁電線およびコイル
JP5294695B2 (ja) 電線およびコイル
WO2013136396A1 (ja) リッツ線コイルおよび加熱装置
JP5668097B2 (ja) 電線およびコイル
WO2016185724A1 (ja) リッツ線、リッツ線コイル、及びリッツ線の製造方法
JP2003086026A (ja) 高周波用積層平角エナメル電線およびその製造方法
WO2023103317A1 (zh) 电子元件及其高频绕组
KR101753189B1 (ko) 다단 조립형 변압기
JP2009193949A (ja) 超電導ケーブル用のフォーマと、その製造方法及び超電導ケーブル
JP2002358840A (ja) 高周波コイル用平編みリッツ線
JP2022140437A (ja) 電線
KR101684429B1 (ko) 충전기용 변압기
JP5159269B2 (ja) 複合電線およびコイル
JPH02242531A (ja) リッツ線
JP4491983B2 (ja) 誘導加熱コイル
JP3885541B2 (ja) 誘導加熱調理器
WO2012131934A1 (ja) 絶縁電線およびコイル
JPH0583933U (ja) 絶縁被覆集合線
WO2023276629A1 (ja) 方形断面多芯絶縁電線、及びその製造方法
JP7452347B2 (ja) ケーブル
JP5354918B2 (ja) 電線、リッツ線および巻線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796119

Country of ref document: EP

Kind code of ref document: A1