WO2016185518A1 - 原子間力顕微鏡の情報取得方法 - Google Patents

原子間力顕微鏡の情報取得方法 Download PDF

Info

Publication number
WO2016185518A1
WO2016185518A1 PCT/JP2015/064050 JP2015064050W WO2016185518A1 WO 2016185518 A1 WO2016185518 A1 WO 2016185518A1 JP 2015064050 W JP2015064050 W JP 2015064050W WO 2016185518 A1 WO2016185518 A1 WO 2016185518A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
information
interaction
information acquisition
atomic force
Prior art date
Application number
PCT/JP2015/064050
Other languages
English (en)
French (fr)
Inventor
酒井 信明
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to DE112015006479.6T priority Critical patent/DE112015006479T5/de
Priority to PCT/JP2015/064050 priority patent/WO2016185518A1/ja
Priority to JP2017518631A priority patent/JP6554539B2/ja
Publication of WO2016185518A1 publication Critical patent/WO2016185518A1/ja
Priority to US15/813,272 priority patent/US20180074092A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/02Coarse scanning or positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices

Definitions

  • the present invention relates to a scanning probe microscope, and more particularly to an atomic force microscope used for observation of a biological sample.
  • a scanning probe microscope is a scanning microscope that mechanically scans a mechanical probe to obtain information on a sample surface, and includes a scanning tunneling microscope (STM), an atomic force microscope (AFM), and a scanning type. It is a general term for a magnetic force microscope (MFM), a scanning capacitance microscope (SCaM), a scanning near-field light microscope (SNOM), and the like.
  • the scanning probe microscope can perform raster scanning of the mechanical probe and the sample in the XY directions relatively, obtain desired surface information of the sample via the mechanical probe, and display the mapping on the display.
  • the atomic force microscope hereinafter referred to as AFM
  • AFM atomic force microscope
  • a scanner that scans relative to the sample is provided. Then, a mechanical interaction is generated between the mechanical probe and the sample, and information on the sample is obtained based on the deformation of the cantilever generated by the mechanical interaction.
  • the interrelationship between the cell surface and the inside of the cell is also important information.
  • the conventional AFM for in-vivo moving image observation can acquire the cell surface and the cell interior independently, no attempt has been made to acquire such information in association with each other.
  • a probe provided at a free end of a cantilever is brought into contact with a sample and a mechanical interaction is generated between them, and the cantilever and the sample are relatively raster-scanned along the XY plane.
  • the present invention is directed to an information acquisition method for an atomic force microscope that acquires sample information.
  • the method includes a first interaction generating step for generating a first interaction having a first size between the probe and the sample, and the first interaction between the probe and the sample.
  • a first information acquisition step for acquiring first information of the sample when an interaction occurs; and a second interaction having a second size is generated between the probe and the sample.
  • the first magnitude of the first interaction and the second magnitude of the second interaction are different from each other.
  • the first interaction generation step, the first information acquisition step, the second interaction generation step, and the second information acquisition step are performed in the same scanning region.
  • FIG. 1 shows a configuration of an atomic force microscope that can be commonly used in the embodiment.
  • FIG. 2 shows the raster scan movement of the cantilever relative to the sample.
  • FIG. 3 shows an X scan signal and a Y scan signal for performing the raster scan shown in FIG.
  • FIG. 4 is a flowchart of the information acquisition method of the atomic force microscope according to the first embodiment.
  • FIG. 5 shows the X scan signal, the Y scan signal, the first information of the sample displayed on the sample information display, and the second information of the sample in the information acquisition method of the first embodiment.
  • FIG. 6 shows a cell as a sample.
  • FIG. 7 shows an example in which the region F of the cell in FIG. 6 is observed with a reduced interaction.
  • FIG. 8 shows an example in which the region F of the cell in FIG. 6 is observed with an increased interaction.
  • FIG. 9 shows an example of an observation image displayed on the sample information display by the information acquisition method of the first embodiment.
  • FIG. 10A shows the forward path of one scan line of the raster scan of the cantilever with respect to the sample.
  • FIG. 10B highlights the return path of one scan line of the cantilever raster scan relative to the sample.
  • FIG. 11A shows an X scan signal and a Y scan signal for performing raster scan, and shows an X scan signal portion corresponding to the forward path highlighted in FIG. 10A.
  • FIG. 11B shows the X scanning signal and the Y scanning signal for performing raster scanning, and shows the portion of the X scanning signal corresponding to the return path highlighted in FIG.
  • FIG. 12 is a flowchart of an atomic force microscope information acquisition method according to the second embodiment.
  • FIG. 13 shows the X scan signal, the Y scan signal, the first information of the sample displayed on the sample information display, and the second information of the sample in the information acquisition method of the second embodiment.
  • FIG. 14 is a flowchart of an information acquisition method for an atomic force microscope according to a modification of the second embodiment.
  • FIG. 15 shows the X scan signal, the Y scan signal, the first information of the sample displayed on the sample information display, and the second information of the sample in the information acquisition method of the modification of the second embodiment.
  • FIG. 16 is a flowchart of an information acquisition method for an atomic force microscope according to the third embodiment.
  • FIG. 17 shows the X scan signal, the Y scan signal, the first information of the sample displayed on the sample information display, and the second information of the sample in the information acquisition method of the third embodiment.
  • FIG. 18 is a flowchart of an information acquisition method for an atomic force microscope according to the fourth embodiment.
  • FIG. 19 shows an example of an observation image displayed on the sample information display by the information acquisition method of the fourth embodiment.
  • FIG. 20 is a flowchart of an atomic force microscope information acquisition method according to the fifth embodiment.
  • FIG. 21 is a flowchart of an information acquisition method for an atomic force microscope according to the sixth embodiment.
  • FIG. 1 shows the configuration of an atomic force microscope.
  • the atomic force microscope has a cantilever 102 having a probe 101 at the free end.
  • the cantilever 102 is arranged so that the probe 101 faces the sample 103.
  • This cantilever 102 is held by a holder 104.
  • a piezoelectric element 105 is provided on the holder 104.
  • the piezoelectric element 105 operates as a vibrator that vibrates the cantilever 102 via the holder 104.
  • the piezoelectric element 105 vibrates the cantilever 102 based on the vibration signal output from the controller 110.
  • This excitation signal includes an AC component for causing the cantilever 102 to vibrate near its mechanical resonance frequency.
  • An optical lever sensor 106 for optically detecting the displacement of the cantilever 102 is disposed on the cantilever 102.
  • the optical lever sensor 106 outputs a vibration state signal of the cantilever 102. This vibration state signal is supplied to the controller 110.
  • the sample 103 is held on the Z scanner 107 via a sample table (not shown), and the Z scanner 107 is arranged on the XY scanner 108.
  • the XY scanner 108 includes an X scanner 108a and a Y scanner 108b.
  • the sample 103 is in a liquid cell (not shown).
  • the sample 103 is, for example, a living cell in a liquid.
  • the Z scanner 107 scans the sample 103 along the Z direction with respect to the cantilever 102.
  • the Z scanner 107 is controlled by the controller 110 and expands and contracts along the Z direction based on the Z scanning signal output from the controller 110, thereby causing the sample 103 to scan the cantilever 102 along the Z direction.
  • This Z scanning signal is a signal for controlling the Z scanner 107 so as to keep, for example, the amplitude value of the vibration state signal of the cantilever 102 constant, and the Z scanning signal follows the Z direction of the cantilever 102 and the sample 103.
  • the relative distance is controlled. That is, the controller 110 can control the magnitude of the dynamic interaction between the probe 101 and the sample 103.
  • the XY scanner 108 performs raster scanning of the sample 103 along the XY plane with respect to the cantilever 102.
  • the X scanner 108a and the Y scanner 108b constituting the XY scanner 108 are controlled by the controller 110 and displaced along the X direction and the Y direction based on the X scanning signal and the Y scanning signal output from the controller 110, respectively. Thereby, the sample 103 is raster-scanned along the XY plane with respect to the cantilever 102.
  • FIG. 2 shows the relative raster scanning movement of the cantilever 102 with respect to the sample 103.
  • This raster scanning movement is a conventional one.
  • the scanning line direction (the direction in which the scanning speed is high) of raster scanning is the X direction.
  • FIG. 3 shows an X scanning signal and a Y scanning signal for performing the raster scanning shown in FIG.
  • the controller 110 generates and acquires image data for mapping sample information based on the X scan signal, the Y scan signal, and the Z scan signal, and supplies the image data to the sample information display 111.
  • the sample information display 111 is a monitor, for example, and displays image data acquired by the controller 110, that is, sample information.
  • An input unit 112 is connected to the controller 110.
  • the input unit 112 installs, for example, a program that causes the controller 110 to execute an information acquisition method of each embodiment described later in the controller 110 that controls the atomic force microscope, specifies an observation region, starts observation, and observes. This is for issuing a command such as termination to the controller 110.
  • FIG. 4 is a flowchart of the information acquisition method of the atomic force microscope according to the first embodiment.
  • FIG. 5 shows the X scan signal, the Y scan signal, the first information of the sample 103 displayed on the sample information display 111, and the second information of the sample 103 in the information acquisition method of the first embodiment. .
  • the information acquisition method of the present embodiment is a method of alternately acquiring the first information of the sample 103 and the second information of the sample 103 for each scan line of one raster scan.
  • step S101 observation (acquisition of sample information) is started.
  • An excitation signal is output from the controller 110 and supplied to the piezoelectric element 105 that operates as a vibrator.
  • the piezoelectric element 105 vibrates the cantilever 102 in the vicinity of the mechanical resonance frequency based on the excitation signal.
  • the optical lever sensor 106 disposed on the upper part of the cantilever 102 detects the vibration state of the cantilever 102 and supplies a vibration state signal to the controller 110.
  • the controller 110 generates a Z scanning signal based on the vibration state signal, and controls the relative distance along the Z direction between the sample 103 and the cantilever 102 by expanding and contracting the Z scanner 107.
  • step S102 the controller 110 outputs an X scanning signal and a Y scanning signal.
  • the XY scanner 108 receives the X scanning signal and the Y scanning signal, and starts raster scanning along the XY plane of the sample 103 with respect to the cantilever 102.
  • step S103 the controller 110 determines whether the current raster scan scanning line (scanning line based on the X scanning signal) is an odd number or an even number.
  • the current raster scan scanning line scanning line based on the X scanning signal
  • the controller 110 adjusts the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S104.
  • a dynamic interaction between the probe 101 and the sample 103 is adjusted, and a first interaction having a first magnitude is generated between the probe 101 and the sample 103.
  • the controller 110 increases the relative distance along the Z direction between the cantilever 102 and the sample 103 to reduce the mechanical interaction between the probe 101 and the sample 103, and has a first size having a first size. Is caused between the probe 101 and the sample 103.
  • step S105 the controller 110, based on the X scan signal, the Y scan signal, and the Z scan signal, image data for one scan line for mapping the first information of the sample 103, that is, the sample for one scan line.
  • First information 103 is generated and acquired.
  • the first information of the sample 103 is information on the sample when a small interaction occurs between the probe 101 and the sample 103, for example, information on the surface of the sample.
  • step S106 the sample information display unit 111 scans the image data for one scanning line acquired by the controller 110, that is, the first information of the sample 103 for one scanning line in the area A shown in FIG. Display lines.
  • the scanning line is odd-numbered, that is, when the X scanning signal is in the section A shown in FIG. 5, the sample information display 111 sends the first information of the sample 103 to the area A shown in FIG. indicate.
  • step S103 if the scanning line is an even number, for example, the second, the controller 110 reduces the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S107.
  • the dynamic interaction between the probe 101 and the sample 103 is increased, and a second interaction having a second size is generated between the probe 101 and the sample 103.
  • the second magnitude of the second interaction is greater than the first magnitude of the first interaction.
  • step S108 the controller 110, based on the X scan signal, the Y scan signal, and the Z scan signal, image data for one scan line for mapping the second information of the sample 103, that is, the sample for one scan line.
  • the second information 103 is generated and acquired.
  • the second information of the sample 103 is sample information when a large interaction occurs between the probe 101 and the sample 103, for example, information inside the sample.
  • step S109 the sample information display unit 111 scans the image data for one scanning line acquired by the controller 110, that is, the second information of the sample 103 for one scanning line in the region B shown in FIG. Display lines.
  • the scanning line is even-numbered, that is, when the X scanning signal is in the section B shown in FIG. 5, the sample information display 111 sends the second information of the sample 103 to the region B shown in FIG. indicate.
  • step S110 the controller 110 determines whether one raster scan has been completed. If the result of determination in step S110 is that one raster scan has not been completed, the process returns to step S103, and steps S103 to S110 are repeated until one raster scan is completed. As a result, the first information of the sample 103 displayed in the area A of FIG. 5 and the second information of the sample 103 displayed in the area B of FIG. 5 are alternately updated and displayed at equal time intervals.
  • step S111 the controller 110 determines whether to end observation, in other words, whether to perform the next raster scan, that is, to perform observation again (to acquire the sample information again).
  • step S111 If the result of determination in step S111 is to perform observation again, the process returns to step S102.
  • step S111 If the observation is ended as a result of the determination in step S111, the observation is ended in step S112.
  • information on two types of samples whose magnitude of the dynamic interaction between the probe 101 and the sample 103 is large is measured for each scan line, in other words, for one scan line. Acquired alternately at equal time intervals corresponding to scanning. This can be regarded as acquiring information of two types of samples almost simultaneously. Therefore, it becomes possible to obtain information on their mutual relationship.
  • sample 103 is the cell shown in FIG.
  • region F in FIG. 6 is observed by AFM.
  • FIG. 7 shows an example in which the cell region F in FIG. 6 is observed with a reduced interaction.
  • the interaction is small, the cell membrane surface information of the cell can be obtained. Therefore, depending on the cell type, a smooth cell surface shape with almost no unevenness as shown in FIG. 7 can be obtained.
  • This information is displayed in region A of the sample information display 111.
  • FIG. 8 shows an example in which the region F of the cell in FIG. 6 is observed with an increased interaction.
  • the interaction is large, information on the inside of the cell (organelle) can be obtained.
  • FIG. 8 shows, for example, an image of a cytoskeleton (actin filament). This information is displayed in region B of the sample information display 111.
  • FIG. 9 shows an example of an observation image displayed on the sample information display by the information acquisition method of the present embodiment.
  • the interaction is small in the region A and the region B of the sample information display 111, respectively.
  • the state where the display of all the lines of the second information of the sample 103 when the interaction with the first information of the sample 103 is large is shown.
  • cell surface information and internal information can be acquired almost simultaneously, and as a result, it is possible to obtain information on their correlation.
  • FIG. 10A and FIG. 10B show the raster scanning movement of the cantilever with respect to the sample, and the forward and backward paths of one scanning line of the raster scanning are highlighted.
  • 11A and 11B show the X scanning signal and the Y scanning signal for performing the raster scanning, and the X scanning signals corresponding to the forward path and the backward path highlighted in FIGS. 10A and 10B, respectively. The part is highlighted.
  • the forward path of scanning in raster scanning is in the + X direction as shown in FIG. 10A, and the X scanning signal corresponding thereto is a portion that rises to the right as shown in FIG. 11A.
  • the scanning return path in the raster scanning is in the ⁇ X direction as shown in FIG. 10B, and the X scanning signal corresponding to the backward path is a lower right portion as shown in FIG. 11B.
  • FIG. 12 is a flowchart of an atomic force microscope information acquisition method according to the second embodiment.
  • FIG. 13 shows the X scan signal, the Y scan signal, the first information of the sample 103 displayed on the sample information display, and the second information of the sample 103 in the information acquisition method of the second embodiment.
  • the first information of the sample 103 and the second information of the sample 103 are alternately obtained in units of one round trip in the X direction.
  • the first information of the sample 103 and the second information of the sample 103 are obtained alternately by using one half of one reciprocal scan in the X direction, that is, the forward or return path as a unit.
  • step S201 observation (sample information acquisition) is started. Details of step S201 are the same as step S101 of the first embodiment, and details thereof are omitted.
  • step S202 the controller 110 outputs an X scanning signal and a Y scanning signal.
  • the XY scanner 108 receives the X scanning signal and the Y scanning signal, and starts raster scanning along the XY plane of the sample 103 with respect to the cantilever 102.
  • step S203 the controller 110 determines whether the current raster scan scanning line (scanning line based on the X scanning signal) is the forward path or the backward path.
  • the current raster scan scanning line scanning line based on the X scanning signal
  • one scanning line corresponds to one of the forward path and the backward path in the X direction.
  • the controller 110 adjusts the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S204, and between the probe 101 and the sample 103.
  • the first interaction having the first magnitude is generated between the probe 101 and the sample 103.
  • the controller 110 increases the relative distance along the Z direction between the cantilever 102 and the sample 103 to reduce the mechanical interaction between the probe 101 and the sample 103, and has a first size having a first size. Is caused between the probe 101 and the sample 103.
  • step S205 the controller 110, based on the X scan signal, the Y scan signal, and the Z scan signal, image data for one forward path for mapping the first information of the sample 103, that is, the sample 103 for one forward path. Generate and obtain first information.
  • the first information of the sample 103 is information on the sample when a small interaction occurs between the probe 101 and the sample 103, for example, information on the surface of the sample.
  • step S206 the sample information display 111 displays the image data for one outbound path acquired by the controller 110, that is, the first information of the sample 103 for one outbound path in the area A shown in FIG. To do.
  • the scanning line is the forward path, that is, when the X scanning signal is in the section A shown in FIG. 13
  • the sample information display 111 displays the first information of the sample 103 in the area A shown in FIG. To do.
  • step S203 determines whether the current scanning line is the return path. If the result of the determination in step S203 is that the current scanning line is the return path, the controller 110 reduces the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S207 to reduce the distance between the probe 101 and the sample 103. And a second interaction having a second size is generated between the probe 101 and the sample 103.
  • the second magnitude of the second interaction is greater than the first magnitude of the first interaction.
  • step S208 the controller 110, based on the X scanning signal, the Y scanning signal, and the Z scanning signal, image data for one return path for mapping the second information of the sample 103, that is, the sample 103 for one return path. Generate and obtain second information.
  • the second information of the sample 103 is sample information when a large interaction occurs between the probe 101 and the sample 103, for example, information inside the sample.
  • step S209 the sample information display 111 displays the image data for one return path acquired by the controller 110, that is, the second information of the sample 103 for one return path in the area B shown in FIG. To do.
  • the scanning line is the return path, that is, when the X scanning signal is in the section B shown in FIG. 13
  • the sample information display 111 displays the second information of the sample 103 in the region B shown in FIG. To do.
  • step S210 the controller 110 determines whether or not one raster scan has been completed. If the result of determination in step S210 is that one raster scan has not been completed, the process returns to step S203, and steps S203 to S210 are repeated until one raster scan is completed.
  • step S211 the controller 110 determines whether to end observation, in other words, whether to perform observation again.
  • step S211 If the result of determination in step S211 is to perform observation again, the process returns to step S202.
  • step S212 If the observation is terminated as a result of the determination in step S211, the observation is terminated in step S212.
  • the first information of the sample 103 when the small interaction is generated and the second information of the sample 103 when the large interaction are generated are respectively sent to the forward path of the raster scanning.
  • On the return path in other words, it is acquired alternately at equal time intervals. This can be regarded as acquiring information of two types of samples almost simultaneously. Therefore, it becomes possible to obtain information on their mutual relationship.
  • cell surface information and internal information can be acquired almost simultaneously, and as a result, it is possible to obtain information on their correlation.
  • FIG. 14 is a flowchart of an information acquisition method for an atomic force microscope according to a modification of the second embodiment.
  • FIG. 15 shows the X scan signal, the Y scan signal, the first information of the sample 103 displayed on the sample information display, and the second information of the sample 103 in the information acquisition method of the modification of the second embodiment. ing.
  • the sample information is acquired alternately only in the raster scan forward path. That is, the sample information is alternately obtained in the odd-numbered and even-numbered outbound paths of raster scanning.
  • step S203 in the flowchart shown in FIG. 12 is replaced with steps S203A and S203B as shown in FIG.
  • step S201 observation (sample information acquisition) is started.
  • step S202 the controller 110 outputs an X scanning signal and a Y scanning signal.
  • the XY scanner 108 receives the X scanning signal and the Y scanning signal, and starts raster scanning along the XY plane of the sample 103 with respect to the cantilever 102.
  • step S203A the controller 110 determines whether the current raster scanning scanning line (scanning line based on the X scanning signal) is the forward path or the backward path.
  • the current raster scanning scanning line scanning line based on the X scanning signal
  • one scanning line corresponds to one of the forward path and the backward path in the X direction.
  • step S203A If the result of determination in step S203A is that the current scan line is a return path, the process returns to step S203A again.
  • step S203B the controller 110 determines whether the current outbound path is an odd number or an even number.
  • step S203B if the current scan line is an odd number, the controller 110 increases the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S204 and increases the relative distance between the probe 101 and the sample 103.
  • a first interaction having a first size is generated between the probe 101 and the sample 103.
  • step S205 the controller 110, based on the X scan signal, the Y scan signal, and the Z scan signal, image data for one forward path for mapping the first information of the sample 103, that is, the sample 103 for one forward path. Generate and obtain first information.
  • the first information of the sample 103 is information on the sample when a small interaction occurs between the probe 101 and the sample 103, for example, information on the surface of the sample.
  • step S206 the sample information display 111 displays the image data for one forward path acquired by the controller 110, that is, the first information of the sample 103 for one forward path in the area A shown in FIG. To do.
  • the scan line is an odd-numbered outbound path, that is, when the X scan signal is in the section A shown in FIG. 15, the sample information display 111 displays the first information of the sample 103 in the area shown in FIG. A is displayed.
  • step S203B if the current scanning line is an even-numbered forward path, the controller 110 reduces the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S207, and the probe 101 and the sample.
  • the mechanical interaction between the probes 103 and the sample 103 is generated by increasing the dynamic interaction between the probes 103 and the second interaction having the second magnitude.
  • the second magnitude of the second interaction is greater than the first magnitude of the first interaction.
  • step S208 the controller 110, based on the X scanning signal, the Y scanning signal, and the Z scanning signal, image data for one path for mapping the second information of the sample 103, that is, the sample 103 for one path. Generate and obtain second information.
  • the second information of the sample 103 is sample information when a large interaction occurs between the probe 101 and the sample 103, for example, information inside the sample.
  • step S209 the sample information display unit 111 displays the image data for one forward path acquired by the controller 110, that is, the second information of the sample 103 for one forward path in the area B shown in FIG. To do.
  • the scanning line is an even-numbered forward path, that is, when the X scanning signal is in the section B shown in FIG. 15, the sample information display 111 displays the second information of the sample 103 in the area shown in FIG. B is displayed.
  • step S210 the controller 110 determines whether or not one raster scan has been completed. If the result of determination in step S210 is that one raster scan has not been completed, the process returns to step S203A, and steps S203A, S203B, and steps S204 to S210 are repeated until one raster scan is completed.
  • step S211 the controller 110 determines whether to end observation, in other words, whether to perform observation again.
  • step S211 If the result of determination in step S211 is to perform observation again, the process returns to step S202.
  • step S212 If the observation is terminated as a result of the determination in step S211, the observation is terminated in step S212.
  • the first information of the sample 103 when the small interaction is generated and the second information of the sample 103 when the large interaction is generated are used as the forward path of the raster scanning. Get alternately only in. This can be regarded as acquiring information of two types of samples almost simultaneously. Therefore, it becomes possible to obtain information on their mutual relationship.
  • FIG. 16 is a flowchart of an information acquisition method for an atomic force microscope according to the third embodiment.
  • FIG. 17 shows the X scan signal, the Y scan signal, the first information of the sample 103 displayed on the sample information display, and the second information of the sample 103 in the information acquisition method of the third embodiment.
  • the information acquisition method of the present embodiment performs raster scanning alternately at least once with respect to the observation region, that is, first raster scanning and second raster scanning are alternately performed, and the first raster scanning is performed.
  • the first information of the sample 103 is acquired during the second raster scan
  • the second information of the sample 103 is acquired during the second raster scan that is the second raster scan.
  • step S301 observation (acquisition of sample information) is started. Details of step S301 are the same as step S101 of the first embodiment, and details thereof are omitted.
  • step S302 the controller 110 outputs an X scanning signal and a Y scanning signal.
  • the XY scanner 108 receives the X scanning signal and the Y scanning signal, and starts raster scanning along the XY plane of the sample 103 with respect to the cantilever 102.
  • step S303 the controller 110 determines whether or not the current raster scan is the first raster scan.
  • step S303 If it is determined in step S303 that the current raster scan is the first raster scan, the controller 110 increases the relative distance along the Z direction between the cantilever 102 and the sample 103 in step S304. The mechanical interaction between the sample 103 is reduced, and a first interaction having a first size is generated between the probe 101 and the sample 103.
  • step S305 the controller 110 generates and acquires image data for mapping the first information of the sample 103 based on the X scanning signal, the Y scanning signal, and the Z scanning signal.
  • the first information of the sample 103 is information on the sample when a small interaction occurs between the probe 101 and the sample 103, for example, information on the surface of the sample.
  • the first raster scanning includes step S304 and step S305.
  • step S306 the sample information display 111 displays the image data for one raster scan acquired by the controller 110, that is, the first information of the sample 103 in the area A shown in FIG.
  • the sample information display 111 displays the first information of the sample 103 in the area A shown in FIG.
  • step S307 the controller 110 reduces the relative distance along the Z direction between the cantilever 102 and the sample 103 and the probe 101 and the sample.
  • the mechanical interaction between the probes 103 and the sample 103 is generated by increasing the dynamic interaction between the probes 103 and the second interaction having the second magnitude.
  • the second magnitude of the second interaction is greater than the first magnitude of the first interaction.
  • step S308 the controller 110 generates and acquires image data for mapping the second information of the sample 103 based on the X scanning signal, the Y scanning signal, and the Z scanning signal.
  • the second information of the sample 103 is sample information when a large interaction occurs between the probe 101 and the sample 103, for example, information inside the sample.
  • the second raster scan includes step S307 and step S308.
  • step S309 the sample information display unit 111 displays the image data for one raster scan acquired by the controller 110, that is, the second information of the sample 103 in the region B shown in FIG.
  • the sample information display 111 displays the second information of the sample 103 in the area B shown in FIG.
  • step S310 the controller 110 determines whether the second raster scan has been completed.
  • step S310 If it is determined in step S310 that the second raster scan has not been completed, the process returns to step S302, and steps S302 to S310 are repeated until the second raster scan is completed.
  • step S310 when the second raster scan is completed, the controller 110 determines in step S311 whether to end observation, in other words, whether to perform observation again.
  • step S311 If the result of determination in step S311 is to perform observation again, the process returns to step S302.
  • step S311 If the observation is terminated as a result of the determination in step S311, the observation is terminated in step S312.
  • the first raster scan and the second raster scan are alternately performed at least once.
  • the first information of the sample 103 when the small interaction is generated and the second information of the sample 103 when the large interaction are generated are alternately changed in time corresponding to one raster scan. It is possible to obtain at least once at equal intervals. This can be regarded as acquiring information of two types of samples almost simultaneously when the scanning speed is sufficiently high. Therefore, it becomes possible to obtain information on their mutual relationship.
  • cell surface information and internal information can be acquired almost simultaneously, and as a result, information on their correlation can be obtained.
  • FIG. 18 is a flowchart of the information acquisition method of the fourth embodiment.
  • FIG. 19 shows an example of an observation image displayed on the sample information display by the information acquisition method of the fourth embodiment.
  • the information acquisition method of this embodiment is similar to the information acquisition method of the first embodiment.
  • the information acquisition method of the present embodiment includes the steps of the sample 103 between step S110 and step S111 in addition to the steps of the information acquisition method of the first embodiment.
  • Step S401 that calculates and displays one piece of information and second piece information of the sample 103 is included.
  • the controller 110 calculates the first information of the sample 103 when the interaction displayed in each of the region A and the region B is small and the second information of the sample 103 when the interaction is large.
  • the third information 103 is acquired.
  • the sample information display 111 displays the third information of the sample 103 acquired by the controller 110 in the area C shown in FIG.
  • the calculation for acquiring the third information of the sample 103 may be, for example, synthesis or addition, but is not limited to this, and it is desirable that the calculation is properly used according to information to be obtained such as subtraction or division.
  • the first information and the second information of the sample 103 are combined.
  • the third information of the sample 103 is displayed in the area C.
  • cell surface information and internal information can be acquired almost simultaneously, and further, the positional relationship between the surface and the inside can be clarified by synthesizing them. This makes it possible to obtain more detailed information on the interrelation between the surface and the interior.
  • FIG. 20 is a flowchart of the information acquisition method of the fifth embodiment.
  • the information acquisition method of this embodiment is similar to the information acquisition method of the second embodiment.
  • the information acquisition method of the present embodiment includes the steps of the sample 103 between step S210 and step S211 in addition to the steps of the information acquisition method of the second embodiment.
  • Step S501 for calculating and displaying one information and the second information of the sample 103 is included.
  • the controller 110 calculates the first information of the sample 103 when the interaction displayed in each of the regions A and B is small and the second information of the sample 103 when the interaction is large, thereby performing the sample.
  • the third information 103 is acquired.
  • the sample information display 111 displays the third information of the sample 103 acquired by the controller 110.
  • the calculation for acquiring the third information of the sample 103 may be, for example, synthesis or addition, but is not limited to this, and it is desirable that the calculation is properly used according to information to be obtained such as subtraction or division.
  • cell surface information and internal information can be acquired almost simultaneously, and further, the positional relationship between the surface and the inside can be clarified by synthesizing them. This makes it possible to obtain more detailed information on the interrelation between the surface and the interior.
  • FIG. 21 is a flowchart of the information acquisition method of the sixth embodiment.
  • the information acquisition method of this embodiment is similar to the information acquisition method of the third embodiment.
  • the information acquisition method of the present embodiment includes the steps of the sample 103 between step S310 and step S311. Step S601 for calculating and displaying one piece of information and the second piece of information of the sample 103 is included.
  • step S601 the controller 110 calculates the first information of the sample 103 having a small interaction and the second information of the sample 103 having a large interaction displayed in the areas A and B, respectively, and calculates a third sample. Get information.
  • the sample information display 111 displays the third information of the sample 103 acquired by the controller 110.
  • the calculation for acquiring the third information of the sample 103 may be, for example, synthesis or addition, but is not limited to this, and it is desirable that the calculation is properly used according to information to be obtained such as subtraction or division.
  • cell surface information and internal information can be acquired almost simultaneously, and further, the positional relationship between the surface and the inside can be clarified by synthesizing them. This makes it possible to obtain more detailed information on the interrelation between the surface and the interior.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

原子間力顕微鏡の情報取得方法は、カンチレバーの自由端に設けられた探針と試料の間に力学的な相互作用を生じさせながらカンチレバーと試料を相対的にラスター走査させるあいだ、探針と試料の間に第一の大きさを有する第一の相互作用を生じさせる第一の相互作用生成工程と、探針と試料の間に第一の相互作用が生じているときの試料の第一の情報を取得する第一の情報取得工程と、探針と試料の間に第二の大きさを有する第二の相互作用を生じさせる第二の相互作用生成工程と、探針と試料の間に第二の相互作用が生じているときの試料の第二の情報を取得する第二の情報取得工程とを有している。第一の相互作用の第一の大きさと第二の相互作用の第二の大きさは互いに異なっている。第一の相互作用生成工程と第一の情報取得工程と第二の相互作用生成工程と第二の情報取得工程は同一走査領域において行われる。

Description

原子間力顕微鏡の情報取得方法
 本発明は、走査型プローブ顕微鏡、特に生物試料の観察に用いられる原子間力顕微鏡に関する。
 走査型プローブ顕微鏡(SPM)は機械的探針を機械的に走査して試料表面の情報を得る走査型顕微鏡であって、走査型トンネリング顕微鏡(STM)、原子間力顕微鏡(AFM)、走査型磁気力顕微鏡(MFM)、走査型電気容量顕微鏡(SCaM)、走査型近接場光顕微鏡(SNOM)などの総称である。
 走査型プローブ顕微鏡は、機械的探針と試料とを相対的にXY方向にラスター走査し、試料の所望とする表面情報を機械的探針を介して得てディスプレイ上にマッピング表示することができる。なかでも原子間力顕微鏡(以下、AFMと呼ぶ)は、最も広く使用されている装置であり、機械的探針をその自由端に持つカンチレバー、カンチレバーの変位を検出する光学式変位センサ、カンチレバーと試料とを相対的に走査するスキャナを備えている。そして、機械的探針と試料の間に力学的な相互作用を生じさせ、その力学的な相互作用によって生じるカンチレバーの変形に基づいて試料の情報を得る。
 近年、液体中の生きた生物試料の動く様子が観察可能な生体動画観察用AFMが注目を集めている。この生体動画観察用AFMにおいては液体中の生きた細胞の観察も可能である。最近では、細胞表面の情報と、細胞内部にある細胞小器官の情報、例えばアクチンフィラメントやミトコンドリアの情報をそれぞれ単独に取得した事例が「Yoshida A, Sakai N, Uekusa Y, Deguchi K, Gilmore JL, Kumeta M, Ito S, Takeyasu K. (2015) "Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy", Genes Cells, 2015 Feb, 20(2):85-94」において発表されている。
 上記事例に示した細胞表面の情報や細胞内部にある細胞小器官の情報を取得する場合、細胞表面と細胞内部の相互関係も重要な情報になる。しかしながら、従来の生体動画観察用AFMにおいては、細胞表面と細胞内部をそれぞれ単独で取得できる可能性は示唆されているとしても、それらの情報を関連づけて取得しようと試みはなされていない。
 本発明は、カンチレバーの自由端に設けられた探針を試料と接触させ、それらの間に力学的な相互作用を生じさせながら、XY平面に沿ってカンチレバーと試料を相対的にラスター走査させて試料の情報を取得する原子間力顕微鏡の情報取得方法に向けられている。その方法は、前記探針と前記試料の間に第一の大きさを有する第一の相互作用を生じさせる第一の相互作用生成工程と、前記探針と前記試料の間に前記第一の相互作用が生じているときの前記試料の第一の情報を取得する第一の情報取得工程と、前記探針と前記試料の間に第二の大きさを有する第二の相互作用を生じさせる第二の相互作用生成工程と、前記探針と前記試料の間に前記第二の相互作用が生じているときの前記試料の第二の情報を取得する第二の情報取得工程とを有している。前記第一の相互作用の前記第一の大きさと前記第二の相互作用の前記第二の大きさは互いに異なっている。前記第一の相互作用生成工程と前記第一の情報取得工程と前記第二の相互作用生成工程と前記第二の情報取得工程は同一走査領域において行われる。
 この原子間力顕微鏡の情報取得方法においては、例えば細胞の表面情報と内部情報の相互関係の情報を得ることが可能になる。
図1は、実施形態において共通に使用され得る原子間力顕微鏡の構成を示している。 図2は、試料に対するカンチレバーの相対的なラスター走査の動きを示している。 図3は、図2に示されたラスター走査を行うためのX走査信号とY走査信号を示している。 図4は、第一実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。 図5は、第一実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料の第一の情報と試料の第二の情報を示している。 図6は、試料である細胞を示している。 図7は、図6の細胞の領域Fを、相互作用を小さくして観察した例を示している。 図8は、図6の細胞の領域Fを、相互作用を大きくして観察した例を示している。 図9は、第一実施形態の情報取得方法によって試料情報表示器に表示される観察画像の例を示している。 図10Aは、試料に対するカンチレバーのラスター走査の1走査ラインの往路を強調して示している。 図10Bは、試料に対するカンチレバーのラスター走査の1走査ラインの復路を強調して示している。 図11Aは、ラスター走査を行うためのX走査信号とY走査信号を示しており、図10Aに強調して示された往路に対応するX走査信号の部分を強調して示している。 図11Bは、ラスター走査を行うためのX走査信号とY走査信号を示しており、図10Bに強調して示された復路に対応するX走査信号の部分を強調して示している。 図12は、第二実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。 図13は、第二実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料の第一の情報と試料の第二の情報を示している。 図14は、第二実施形態の変形例による原子間力顕微鏡の情報取得方法のフローチャートである。 図15は、第二実施形態の変形例の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料の第一の情報と試料の第二の情報を示している。 図16は、第三実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。 図17は、第三実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料の第一の情報と試料の第二の情報を示している。 図18は、第四実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。 図19は、第四実施形態の情報取得方法によって試料情報表示器に表示される観察画像の例を示している。 図20は、第五実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。 図21は、第六実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。
 [原子間力顕微鏡]
 原子間力顕微鏡の情報取得方法の実施形態の説明に先立ち、実施形態において共通に使用され得る原子間力顕微鏡の構成について図1~図3を用いて説明する。図1は、原子間力顕微鏡の構成を示している。
 原子間力顕微鏡は、自由端に探針101をもつカンチレバー102を有している。カンチレバー102は、探針101が試料103と正対するように配置される。このカンチレバー102はホルダ104に保持される。
 ホルダ104上には圧電素子105が設けられている。圧電素子105は、ホルダ104を介してカンチレバー102を振動させる加振器として動作する。この圧電素子105は、コントローラ110から出力される加振信号に基づいてカンチレバー102を振動させる。この加振信号は、カンチレバー102をその機械的共振周波数近傍で振動させるための交流成分を含んでいる。
 カンチレバー102の上部には、カンチレバー102の変位を光学的に検出するための光てこセンサ106が配置されている。光てこセンサ106からは、カンチレバー102の振動状態信号が出力される。この振動状態信号は、コントローラ110に供給される。
 試料103は、Zスキャナ107上に図示しない試料台を介して保持されており、Zスキャナ107はXYスキャナ108上に配置されている。XYスキャナ108は、Xスキャナ108aとYスキャナ108bで構成されている。試料103は、図示しない液体セル中にある。この試料103は、例えば、液体中の生きた細胞である。
 Zスキャナ107は、試料103を、カンチレバー102に対してZ方向に沿って走査させるものである。Zスキャナ107は、コントローラ110により制御され、コントローラ110から出力されるZ走査信号に基づいてZ方向に沿って伸縮し、それによって試料103を、カンチレバー102に対してZ方向に沿って走査させる。このZ走査信号は、カンチレバー102の振動状態信号の例えば振幅値を一定に保つようZスキャナ107を制御するための信号であり、このZ走査信号によって、カンチレバー102と試料103のZ方向に沿った相対距離が制御される。すなわちコントローラ110によって、探針101と試料103の間の力学的な相互作用の大きさを制御し得る。
 XYスキャナ108は、試料103を、カンチレバー102に対してXY平面に沿ってラスター走査させるものである。XYスキャナ108を構成するXスキャナ108aとYスキャナ108bは、コントローラ110により制御され、コントローラ110から出力されるX走査信号とY走査信号に基づいて、それぞれX方向とY方向に沿って変位し、それによって試料103を、カンチレバー102に対してXY平面に沿ってラスター走査させる。
 図2は、試料103に対するカンチレバー102の相対的なラスター走査の動きを示している。このラスター走査の動きは従来の一般的なものである。図2において、ラスター走査の走査線方向(走査速度の速い方向)をX方向とする。
 図3は、図2に示されたラスター走査を行うためのX走査信号とY走査信号を示している。
 コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料の情報をマッピングするための画像データを生成し取得し、試料情報表示器111に供給する。
 試料情報表示器111は、例えばモニターであり、コントローラ110で取得された画像データ、すなわち試料情報を表示する。
 コントローラ110には、入力部112が接続されている。入力部112は、例えば、後述する各実施形態の情報取得方法をコントローラ110に実行させるプログラムを、原子間力顕微鏡を制御するコントローラ110にインストールしたり、観察領域を指定したり、観察開始や観察終了などの指令をコントローラ110に出したりするためのものである。
 [第一実施形態]
 次に、第一実施形態による原子間力顕微鏡の情報取得方法について図4と図5を用いて説明する。図4は、第一実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。また図5は、第一実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器111に表示される試料103の第一の情報と試料103の第二の情報を示している。
 本実施形態の情報取得方法は、1回のラスター走査の1走査ライン毎に試料103の第一の情報と試料103の第二の情報を交互に取得する手法である。
 ステップS101において、観察(試料の情報取得)を開始する。コントローラ110から加振信号が出力され、加振器として動作する圧電素子105に供給される。圧電素子105は、加振信号に基づいてカンチレバー102をその機械的共振周波数近傍で振動させる。カンチレバー102の上部に配置された光てこセンサ106は、カンチレバー102の振動状態を検出し、振動状態信号をコントローラ110に供給する。コントローラ110は、振動状態信号に基づいてZ走査信号を生成し、Zスキャナ107を伸縮動作させて試料103とカンチレバー102のZ方向に沿った相対距離を制御する。
 ステップS102において、コントローラ110は、X走査信号とY走査信号を出力する。XYスキャナ108は、X走査信号とY走査信号を受けて、試料103のカンチレバー102に対するXY平面に沿ったラスター走査を開始する。
 ステップS103において、コントローラ110は、今のラスター走査の走査ライン(X走査信号による走査ライン)が奇数番目であるか偶数番目であるかを判断する。ここでは、1走査ラインは、X方向に関する一往復に対応していると想定されている。
 ステップS103の判断の結果、走査ラインが奇数番目である場合、例えば1番目である場合、コントローラ110は、ステップS104において、カンチレバー102と試料103のZ方向に沿った相対距離を調節して探針101と試料103の間の力学的な相互作用を調節し、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。例えば、コントローラ110は、カンチレバー102と試料103のZ方向に沿った相対距離を大きくして探針101と試料103の間の力学的な相互作用を小さくし、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。
 ステップS105において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第一の情報をマッピングするための1走査ライン分の画像データ、すなわち1走査ライン分の試料103の第一の情報を生成し、取得する。試料103の第一の情報は、探針101と試料103の間に小さい相互作用が生じているときの試料の情報であり、例えば、試料の表面の情報である。
 ステップS106において、試料情報表示器111は、コントローラ110で取得された1走査ライン分の画像データ、すなわち1走査ライン分の試料103の第一の情報を、図5に示される領域Aに1走査ライン分表示する。走査ラインが奇数番目である場合、すなわちX走査信号が図5に示される区間Aにあるときは、試料情報表示器111は、試料103の第一の情報を、図5に示される領域Aに表示する。
 ステップS103の判断の結果、走査ラインが偶数番目である場合、例えば2番目である場合、コントローラ110は、ステップS107において、カンチレバー102と試料103のZ方向に沿った相対距離を小さくして探針101と試料103の間の力学的な相互作用を大きくし、第二の大きさを有する第二の相互作用を探針101と試料103の間に生じさせる。ここで、第二の相互作用の第二の大きさは、第一の相互作用の第一の大きさよりも大きい。
 ステップS108において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第二の情報をマッピングするための1走査ライン分の画像データ、すなわち1走査ライン分の試料103の第二の情報を生成し、取得する。試料103の第二の情報は、探針101と試料103の間に大きい相互作用が生じているときの試料情報であり、例えば、試料の内部の情報である。
 ステップS109において、試料情報表示器111は、コントローラ110で取得された1走査ライン分の画像データ、すなわち1走査ライン分の試料103の第二の情報を、図5に示される領域Bに1走査ライン分表示する。走査ラインが偶数番目である場合、すなわちX走査信号が図5に示される区間Bにあるときは、試料情報表示器111は、試料103の第二の情報を、図5に示される領域Bに表示する。
 ステップS106またはステップS109の後、ステップS110において、コントローラ110は、ラスター走査の1回分が終了したかどうかを判断する。ステップS110の判断の結果、ラスター走査の1回分が終了していない場合、ステップS103に戻り、ラスター走査の1回分が終了するまで、ステップS103~ステップS110を繰り返す。その結果、図5の領域Aに表示される試料103の第一の情報と図5の領域Bに表示される試料103の第二の情報は、時間的等間隔で交互に更新表示される。
 ラスター走査の1回分が終了した時点で、図5に示される領域Aと領域Bに対する、相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報の全走査ライン分の表示が完了する。
 コントローラ110は、ステップS111において、観察を終了するか、言い換えれば、次のラスター走査を行うか、すなわちもう一度観察を行うか(もう一度試料の情報取得を行うか)を判断する。
 ステップS111の判断の結果、もう一度観察を行う場合は、ステップS102に戻る。
 ステップS111の判断の結果、観察を終了する場合は、ステップS112において、観察を終了する。
 本実施形態の情報取得方法は、探針101と試料103の間の力学的な相互作用の大きさが大小の2種類の試料の情報を、1走査ライン毎に、言い換えれば、1走査ラインの走査に相当する時間的等間隔で交互に取得する。これは、2種類の試料の情報をほぼ同時に取得するとみなせる。従って、それらの相互関係の情報を得ることが可能になる。
 具体例を以下に示す。試料103が、図6に示される細胞であるとする。そして図6の領域FをAFM観察するとする。
 図7は、図6の細胞の領域Fを、相互作用を小さくして観察した例を示している。相互作用が小さい場合は、細胞の細胞膜表面情報を得ることができるため、細胞種によっては図7のように凹凸のほとんどない、滑らかな細胞表面形状が得られる。この情報は、試料情報表示器111の領域Aに表示される。
 図8は、図6の細胞の領域Fを、相互作用を大きくして観察した例を示している。相互作用が大きい場合は、細胞の細胞内部(細胞小器官)の情報を得ることができる。図8は、例えば細胞骨格(アクチンフィラメント)が画像化されたものである。この情報は、試料情報表示器111の領域Bに表示される。
 図9は、本実施形態の情報取得方法によって試料情報表示器に表示される観察画像の例を示しており、試料情報表示器111の領域Aと領域Bに、それぞれ、相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報の全ライン分の表示が完了した状態を示している。
 このように、本実施形態の情報取得方法によれば、細胞の表面情報と内部情報をほぼ同時に取得でき、その結果、それらの相互関係の情報を得ることが可能になる。
 [第二実施形態]
 第二実施形態による原子間力顕微鏡の情報取得方法の説明に先立ち、ラスター走査の走査ラインの往路と復路について図10Aと図10Bと図11Aと図11Bを用いて説明する。
 図10Aと図10Bは、試料に対するカンチレバーのラスター走査の動きを示しており、それぞれ、ラスター走査の1走査ラインの往路と復路を強調して示している。また、図11Aと図11Bは、ラスター走査を行うためのX走査信号とY走査信号を示しており、それぞれ、図10Aと図10Bに強調して示された往路と復路に対応するX走査信号の部分を強調して示している。
 ラスター走査における走査の往路は、図10Aに示されるように+X方向であり、またそれに対応するX走査信号は、図11Aに示されるように右上がり部分となる。
 またラスター走査における走査の復路は、図10Bに示されるように-X方向であり、またそれに対応するX走査信号は、図11Bに示されるように右下がり部分となる。
 次に、第二実施形態による原子間力顕微鏡の情報取得方法について図12と図13を用いて説明する。図12は、第二実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。また図13は、第二実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料103の第一の情報と試料103の第二の情報を示している。
 第一実施形態と第二実施形態を比較すると、第一実施形態では、X方向の走査の一往復を単位として試料103の第一の情報と試料103の第二の情報を交互に取得するのに対して、第二実施形態では、X方向の走査の一往復の半分すなわち往路または復路を単位として試料103の第一の情報と試料103の第二の情報を交互に取得する取得する。
 ステップS201において、観察(試料の情報取得)を開始する。ステップS201の詳細は、第一実施形態のステップS101と同様であり、その詳細は省略する。
 ステップS202において、コントローラ110は、X走査信号とY走査信号を出力する。XYスキャナ108は、X走査信号とY走査信号を受けて、試料103のカンチレバー102に対するXY平面に沿ったラスター走査を開始する。
 ステップS203において、コントローラ110は、今のラスター走査の走査ライン(X走査信号による走査ライン)が往路であるか復路であるかを判断する。ここでは、1走査ラインは、X方向に関する往路または復路の一方に対応していると想定されている。
 ステップS203の判断の結果、今の走査ラインが往路である場合、コントローラ110は、ステップS204において、カンチレバー102と試料103のZ方向に沿った相対距離を調節して探針101と試料103の間の力学的な相互作用を調節し、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。例えば、コントローラ110は、カンチレバー102と試料103のZ方向に沿った相対距離を大きくして探針101と試料103の間の力学的な相互作用を小さくし、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。
 ステップS205において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第一の情報をマッピングするための1往路分の画像データ、すなわち1往路分の試料103の第一の情報を生成し、取得する。試料103の第一の情報は、探針101と試料103の間に小さい相互作用が生じているときの試料の情報であり、例えば、試料の表面の情報である。
 ステップS206において、試料情報表示器111は、コントローラ110で取得された1往路分の画像データ、すなわち1往路分の試料103の第一の情報を、図13に示される領域Aに1往路分表示する。走査ラインが往路である場合、すなわちX走査信号が図13に示される区間Aにあるときは、試料情報表示器111は、試料103の第一の情報を、図13に示される領域Aに表示する。
 ステップS203の判断の結果、今の走査ラインが復路である場合、コントローラ110は、ステップS207において、カンチレバー102と試料103のZ方向に沿った相対距離を小さくして探針101と試料103の間の力学的な相互作用を大きくし、第二の大きさを有する第二の相互作用を探針101と試料103の間に生じさせる。ここで、第二の相互作用の第二の大きさは、第一の相互作用の第一の大きさよりも大きい。
 ステップS208において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第二の情報をマッピングするための1復路分の画像データ、すなわち1復路分の試料103の第二の情報を生成し、取得する。試料103の第二の情報は、探針101と試料103の間に大きい相互作用が生じているときの試料情報であり、例えば、試料の内部の情報である。
 ステップS209において、試料情報表示器111は、コントローラ110で取得された1復路分の画像データ、すなわち1復路分の試料103の第二の情報を、図13に示される領域Bに1復路分表示する。走査ラインが復路である場合、すなわちX走査信号が図13に示される区間Bにあるときは、試料情報表示器111は、試料103の第二の情報を、図13に示される領域Bに表示する。
 ステップS206またはステップS209の後、ステップS210において、コントローラ110は、ラスター走査の1回分が終了したかどうかを判断する。ステップS210の判断の結果、ラスター走査の1回分が終了していない場合、ステップS203に戻り、ステップS203~ステップS210をラスター走査が1回分終了するまで繰り返す。
 ラスター走査の1回分が終了した時点で、図13に示される領域Aと領域Bに対する、相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報の全走査ライン分の表示が完了する。
 コントローラ110は、ステップS211において、観察を終了するか、言い換えれば、もう一度観察を行うかを判断する。
 ステップS211の判断の結果、もう一度観察を行う場合は、ステップS202に戻る。
 ステップS211の判断の結果、観察を終了する場合は、ステップS212において、観察を終了する。
 本実施形態の情報取得方法は、小さい相互作用が生じているときの試料103の第一の情報と大きい相互作用が生じているときの試料103の第二の情報を、それぞれ、ラスター走査の往路と復路において、言い換えれば時間的等間隔で交互に取得する。これは、2種類の試料の情報をほぼ同時に取得するとみなせる。従って、それらの相互関係の情報を得ることが可能になる。
 本実施形態においても、細胞の表面情報と内部情報をほぼ同時に取得でき、その結果、それらの相互関係の情報を得ることが可能になる。
 〔変形例〕
 次に、第二実施形態の変形例による原子間力顕微鏡の情報取得方法について図14と図15を用いて説明する。図14は、第二実施形態の変形例による原子間力顕微鏡の情報取得方法のフローチャートである。また図15は、第二実施形態の変形例の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料103の第一の情報と試料103の第二の情報を示している。図14において、図12と同一の参照符号で示されたステップは同様のステップを示しており、続く説明ではその詳細は省略する。
 本変形例の情報取得方法では、ラスター走査の往路と復路において試料の情報を交互に取得する代わりに、ラスター走査の往路においてのみ試料の情報を交互に取得する。すなわち、ラスター走査の奇数番目の往路と偶数番目の往路において試料の情報を交互に取得する。
 本変形例の情報取得方法は、図12に示されたフローチャートのステップS203が、図14に示されるように、ステップS203AとS203Bに置き換えられたものとなっている。
 ステップS201において、観察(試料の情報取得)を開始する。
 ステップS202において、コントローラ110は、X走査信号とY走査信号を出力する。XYスキャナ108は、X走査信号とY走査信号を受けて、試料103のカンチレバー102に対するXY平面に沿ったラスター走査を開始する。
 ステップS203Aにおいて、コントローラ110は、今のラスター走査の走査ライン(X走査信号による走査ライン)が往路であるか復路であるかを判断する。ここでは、1走査ラインは、X方向に関する往路または復路の一方に対応していると想定されている。
 ステップS203Aの判断の結果、今の走査ラインが復路である場合、再びステップS203Aに戻る。
 ステップS203Aの判断の結果、今の走査ラインが往路である場合、ステップS203Bにおいて、コントローラ110は、今の往路が奇数番目であるか偶数番目であるかを判断する。
 ステップS203Bの判断の結果、今の走査ラインが奇数番目である場合、コントローラ110は、ステップS204において、カンチレバー102と試料103のZ方向に沿った相対距離を大きくして探針101と試料103の間の力学的な相互作用を小さくし、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。
 ステップS205において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第一の情報をマッピングするための1往路分の画像データ、すなわち1往路分の試料103の第一の情報を生成し、取得する。試料103の第一の情報は、探針101と試料103の間に小さい相互作用が生じているときの試料の情報であり、例えば、試料の表面の情報である。
 ステップS206において、試料情報表示器111は、コントローラ110で取得された1往路分の画像データ、すなわち1往路分の試料103の第一の情報を、図15に示される領域Aに1往路分表示する。走査ラインが奇数番目の往路である場合、すなわちX走査信号が図15に示される区間Aにあるときは、試料情報表示器111は、試料103の第一の情報を、図15に示される領域Aに表示する。
 ステップS203Bの判断の結果、今の走査ラインが偶数番目の往路である場合、コントローラ110は、ステップS207において、カンチレバー102と試料103のZ方向に沿った相対距離を小さくして探針101と試料103の間の力学的な相互作用を大きくし、第二の大きさを有する第二の相互作用を探針101と試料103の間に生じさせる。ここで、第二の相互作用の第二の大きさは、第一の相互作用の第一の大きさよりも大きい。
 ステップS208において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第二の情報をマッピングするための1往路分の画像データ、すなわち1往路分の試料103の第二の情報を生成し、取得する。試料103の第二の情報は、探針101と試料103の間に大きい相互作用が生じているときの試料情報であり、例えば、試料の内部の情報である。
 ステップS209において、試料情報表示器111は、コントローラ110で取得された1往路分の画像データ、すなわち1往路分の試料103の第二の情報を、図15に示される領域Bに1往路分表示する。走査ラインが偶数番目の往路である場合、すなわちX走査信号が図15に示される区間Bにあるときは、試料情報表示器111は、試料103の第二の情報を、図15に示される領域Bに表示する。
 ステップS206またはステップS209の後、ステップS210において、コントローラ110は、ラスター走査の1回分が終了したかどうかを判断する。ステップS210の判断の結果、ラスター走査の1回分が終了していない場合、ステップS203Aに戻り、ステップS203AとステップS203BとステップS204~ステップS210をラスター走査が1回分終了するまで繰り返す。
 ラスター走査の1回分が終了した時点で、図15に示される領域Aと領域Bに対する、相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報の全走査ライン分の表示が完了する。
 コントローラ110は、ステップS211において、観察を終了するか、言い換えれば、もう一度観察を行うかを判断する。
 ステップS211の判断の結果、もう一度観察を行う場合は、ステップS202に戻る。
 ステップS211の判断の結果、観察を終了する場合は、ステップS212において、観察を終了する。
 本実施形態の変形例の情報取得方法は、小さい相互作用が生じているときの試料103の第一の情報と大きい相互作用が生じているときの試料103の第二の情報をラスター走査の往路においてのみ交互に取得する。これは、2種類の試料の情報をほぼ同時に取得するとみなせる。従って、それらの相互関係の情報を得ることが可能になる。
 ここでは、ラスター走査の往路においてのみ試料の情報を交互に取得する例をあげたが、ラスター走査の復路においてのみ試料の情報を交互に取得するように変更しても同様の効果が得られる。
 [第三実施形態]
 第三実施形態による原子間力顕微鏡の情報取得方法について図16と図17を用いて説明する。図16は、第三実施形態による原子間力顕微鏡の情報取得方法のフローチャートである。また図17は、第三実施形態の情報取得方法におけるX走査信号とY走査信号と試料情報表示器に表示される試料103の第一の情報と試料103の第二の情報を示している。
 本実施形態の情報取得方法は、観察領域に対して交互に少なくとも1回ずつラスター走査を行い、すなわち第一のラスター走査と第二のラスター走査を交互に行い、第一のラスター走査である1回目のラスター走査の最中に試料103の第一の情報を取得し、第二のラスター走査である2回目のラスター走査の最中に試料103の第二の情報を取得する手法である。
 ステップS301において、観察(試料の情報取得)を開始する。ステップS301の詳細は、第一実施形態のステップS101と同様であり、その詳細は省略する。
 ステップS302において、コントローラ110は、X走査信号とY走査信号を出力する。XYスキャナ108は、X走査信号とY走査信号を受けて、試料103のカンチレバー102に対するXY平面に沿ったラスター走査を開始する。
 ステップS303において、コントローラ110は、今のラスター走査が1回目のラスター走査であるかどうかを判断する。
 ステップS303の判断の結果、今のラスター走査が1回目のラスター走査である場合、コントローラ110は、ステップS304において、カンチレバー102と試料103のZ方向に沿った相対距離を大きくして探針101と試料103の間の力学的な相互作用を小さくし、第一の大きさを有する第一の相互作用を探針101と試料103の間に生じさせる。
 ステップS305において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第一の情報をマッピングするための画像データを生成し、取得する。試料103の第一の情報は、探針101と試料103の間に小さい相互作用が生じているときの試料の情報であり、例えば、試料の表面の情報である。ここで、第一のラスター走査は、ステップS304、ステップS305を含んでいる。
 ステップS306において、試料情報表示器111は、コントローラ110で取得されたラスター走査1回分の画像データすなわち試料103の第一の情報を、図17に示される領域Aに表示する。Y走査信号が図17に示される区間Aにあるときは、試料情報表示器111は、試料103の第一の情報を、図17に示される領域Aに表示する。
 ステップS303の判断の結果、今のラスター走査が1回目のラスター走査でない場合、コントローラ110は、ステップS307において、カンチレバー102と試料103のZ方向に沿った相対距離を小さくして探針101と試料103の間の力学的な相互作用を大きくし、第二の大きさを有する第二の相互作用を探針101と試料103の間に生じさせる。ここで、第二の相互作用の第二の大きさは、第一の相互作用の第一の大きさよりも大きい。
 ステップS308において、コントローラ110は、X走査信号とY走査信号とZ走査信号に基づいて、試料103の第二の情報をマッピングするための画像データを生成し、取得する。試料103の第二の情報は、探針101と試料103の間に大きい相互作用が生じているときの試料情報であり、例えば、試料の内部の情報である。ここで、第二のラスター走査は、ステップS307、ステップS308を含んでいる。
 ステップS309において、試料情報表示器111は、コントローラ110で取得されたラスター走査1回分の画像データすなわち試料103の第二の情報を、図17に示される領域Bに表示する。X走査信号が図17に示される区間Bにあるときは、試料情報表示器111は、試料103の第二の情報を、図17に示される領域Bに表示する。
 ステップS306またはステップS309の後、ステップS310において、コントローラ110は、2回目のラスター走査が終了したか判断する。
 ステップS310の判断の結果、2回目のラスター走査が終了していない場合、ステップS302に戻り、2回目のラスター走査が終了するまで、ステップS302~ステップS310を繰り返す。
 2回目のラスター走査が終了した時点で、図17に示される領域Aと領域Bに対する、相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報の表示が完了する。
 ステップS310の判断の結果、2回目のラスター走査が終了した場合、コントローラ110は、ステップS311において、観察を終了するか、言い換えれば、もう一度観察を行うかを判断する。
 ステップS311の判断の結果、もう一度観察を行う場合は、ステップS302に戻る。
 ステップS311の判断の結果、観察を終了する場合は、ステップS312において、観察を終了する。
 本実施形態の情報取得方法は、第一のラスター走査と第二のラスター走査を、交互に少なくとも1回ずつ行う。それによって、小さい相互作用が生じているときの試料103の第一の情報と大きい相互作用が生じているときの試料103の第二の情報を、交互に、ラスター走査1回分に相当する時間的等間隔で、少なくとも1回ずつ取得し得る。これは、走査速度が十分に速い場合、2種類の試料の情報をほぼ同時に取得しているとみなせる。従って、それらの相互関係の情報を得ることが可能になる。
 そして本実施形態においても、細胞の表面情報と内部情報をほぼ同時に取得でき、その結果、それらの相互関係の情報を得ることが可能になる。
 [第四実施形態]
 本実施形態の情報取得方法について図18と図19を用いて説明する。図18は、第四実施形態の情報取得方法のフローチャートである。また図19は、第四実施形態の情報取得方法によって試料情報表示器に表示される観察画像の例を示している。
 本実施形態の情報取得方法は、第一実施形態の情報取得方法に似ている。図4と図18を比較して分かるように、本実施形態の情報取得方法は、第一実施形態の情報取得方法の諸ステップに加えて、ステップS110とステップS111の間に、試料103の第一の情報と試料103の第二の情報を演算して表示するステップS401を有している。ステップS401において、コントローラ110は、領域Aと領域Bにそれぞれ表示された相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報を演算して試料103の第三の情報を取得する。また、試料情報表示器111は、コントローラ110で取得された試料103の第三の情報を、図19に示される領域Cに表示する。試料103の第三の情報を取得する演算は、例えば合成すなわち加算であってよいが、これに限らず、減算や除算など、得たい情報によって使い分けられることが望ましい。
 図19は、試料情報表示器111の領域Aの試料103の第一の情報と領域Bの試料103の第二の情報に加えて、試料103の第一の情報と第二の情報が合成された試料103の第三の情報が領域Cに表示された様子を示している。
 このように、本実施形態においては、細胞の表面情報と内部情報をほぼ同時に取得でき、さらにそれらを合成することにより表面と内部の位置関係も明確にできる。これにより、表面と内部の相互関係の情報をより詳しく得ることが可能になる。
 [第五実施形態]
 第五実施形態の情報取得方法について図20を用いて説明する。図20は、第五実施形態の情報取得方法のフローチャートである。本実施形態の情報取得方法は、第二実施形態の情報取得方法に似ている。図12と図20を比較して分かるように、本実施形態の情報取得方法は、第二実施形態の情報取得方法の諸ステップに加えて、ステップS210とステップS211の間に、試料103の第一の情報と試料103の第二の情報を演算して表示するステップS501を有している。ステップS501において、コントローラ110は、領域Aと領域Bにそれぞれ表示された相互作用が小さいときの試料103の第一の情報と相互作用が大きいときの試料103の第二の情報を演算して試料103の第三の情報を取得する。また、試料情報表示器111は、コントローラ110で取得された試料103の第三の情報を表示する。試料103の第三の情報を取得する演算は、例えば合成すなわち加算であってよいが、これに限らず、減算や除算など、得たい情報によって使い分けられることが望ましい。
 このように、本実施形態においては、細胞の表面情報と内部情報をほぼ同時に取得でき、さらにそれらを合成することにより表面と内部の位置関係も明確にできる。これにより、表面と内部の相互関係の情報をより詳しく得ることが可能になる。
 [第六実施形態]
 第六実施形態の情報取得方法について図21を用いて説明する。図21は、第六実施形態の情報取得方法のフローチャートである。本実施形態の情報取得方法は、第三実施形態の情報取得方法に似ている。図16と図21を比較して分かるように、本実施形態の情報取得方法は、第三実施形態の情報取得方法の諸ステップに加えて、ステップS310とステップS311の間に、試料103の第一の情報と試料103の第二の情報を演算して表示するステップS601を有している。ステップS601において、コントローラ110は、Aの領域とBの領域にそれぞれ表示した相互作用が小さい試料103の第一の情報と相互作用が大きい試料103の第二の情報を演算して第三の試料情報を取得する。また、試料情報表示器111は、コントローラ110で取得された試料103の第三の情報を表示する。試料103の第三の情報を取得する演算は、例えば合成すなわち加算であってよいが、これに限らず、減算や除算など、得たい情報によって使い分けられることが望ましい。
 このように、本実施形態においては、細胞の表面情報と内部情報をほぼ同時に取得でき、さらにそれらを合成することにより表面と内部の位置関係も明確にできる。これにより、表面と内部の相互関係の情報をより詳しく得ることが可能になる。

Claims (11)

  1.  カンチレバーの自由端に設けられた探針を試料と接触させ、それらの間に力学的な相互作用を生じさせながら、XY平面に沿って前記カンチレバーと前記試料を相対的にラスター走査させて前記試料の情報を取得する原子間力顕微鏡の情報取得方法であって、
     前記探針と前記試料の間に第一の大きさを有する第一の相互作用を生じさせる第一の相互作用生成工程と、
     前記探針と前記試料の間に前記第一の相互作用が生じているときの前記試料の第一の情報を取得する第一の情報取得工程と、
     前記探針と前記試料の間に、前記第一の大きさと異なる第二の大きさを有する第二の相互作用を生じさせる第二の相互作用生成工程と、
     前記探針と前記試料の間に前記第二の相互作用が生じているときの前記試料の第二の情報を取得する第二の情報取得工程と、を有し、
     前記第一の相互作用生成工程および前記第一の情報取得工程と、前記第二の相互作用生成工程および前記第二の情報取得工程は同一走査領域において行われる、原子間力顕微鏡の情報取得方法。
  2.  前記第一の相互作用生成工程および前記第一の情報取得工程と、前記第二の相互作用生成工程および前記第二の情報取得工程は、前記ラスター走査の走査ライン毎に交互に繰り返される、請求項1記載の原子間力顕微鏡の情報取得方法。
  3.  前記ラスター走査の走査ラインは、走査の往路と復路の少なくとも一方である、請求項2記載の原子間力顕微鏡の情報取得方法。
  4.  前記第一の相互作用生成工程と前記第一の情報取得工程とを含む第一のラスター走査工程と、
     前記第二の相互作用生成工程と前記第二の情報取得工程とを含む第二のラスター走査工程と、を備え、
     前記第一のラスター走査工程と前記第二のラスター走査工程は、交互に少なくとも1回ずつ行われる、請求項1記載の原子間力顕微鏡の情報取得方法。
  5.  前記試料の第一の情報と前記試料の第二の情報を、時間的等間隔で交互にそれぞれ更新表示する第一の情報表示工程と第二の情報表示工程を有している、請求項1~4のいずれかひとつに記載の原子間力顕微鏡の情報取得方法。
  6.  前記第二の相互作用の前記第二の大きさは前記第一の相互作用の前記第一の大きさよりも大きく、
     前記試料は、細胞であり、
     前記試料の第一の情報は、前記細胞の表面の情報であり、
     前記試料の第二の情報は、前記細胞の内部の情報である、請求項1~5のいずれかひとつに記載の原子間力顕微鏡の情報取得方法。
  7.  前記試料の第一の情報と前記試料の第二の情報を演算することにより前記試料の第三の情報を生成する情報生成工程をさらに有している、請求項1~6のいずれかひとつに記載の原子間力顕微鏡の情報取得方法。
  8.  前記演算は合成演算である、請求項7に記載の原子間力顕微鏡の情報取得方法。
  9.  前記試料の第三の情報を表示する第三の情報表示工程をさらに有している、請求項7または8に記載の原子間力顕微鏡の情報取得方法。
  10.  請求項1~9のいずれかひとつに記載の原子間力顕微鏡の情報取得方法を原子間力顕微鏡に実行させるプログラム。
  11.  請求項10に記載のプログラムがコントローラにインストールされた原子間力顕微鏡。
PCT/JP2015/064050 2015-05-15 2015-05-15 原子間力顕微鏡の情報取得方法 WO2016185518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015006479.6T DE112015006479T5 (de) 2015-05-15 2015-05-15 Informationserfassungsverfahren im Rasterkraftmikroskop
PCT/JP2015/064050 WO2016185518A1 (ja) 2015-05-15 2015-05-15 原子間力顕微鏡の情報取得方法
JP2017518631A JP6554539B2 (ja) 2015-05-15 2015-05-15 原子間力顕微鏡の情報取得方法
US15/813,272 US20180074092A1 (en) 2015-05-15 2017-11-15 Information acquiring method in atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064050 WO2016185518A1 (ja) 2015-05-15 2015-05-15 原子間力顕微鏡の情報取得方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/813,272 Continuation US20180074092A1 (en) 2015-05-15 2017-11-15 Information acquiring method in atomic force microscope

Publications (1)

Publication Number Publication Date
WO2016185518A1 true WO2016185518A1 (ja) 2016-11-24

Family

ID=57319561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064050 WO2016185518A1 (ja) 2015-05-15 2015-05-15 原子間力顕微鏡の情報取得方法

Country Status (4)

Country Link
US (1) US20180074092A1 (ja)
JP (1) JP6554539B2 (ja)
DE (1) DE112015006479T5 (ja)
WO (1) WO2016185518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054731A1 (ja) * 2020-09-08 2022-03-17 国立研究開発法人物質・材料研究機構 走査カンチレバー法に基づくがん細胞診断方法、被験細胞の弾性特性分布を解析する装置、及び被験細胞の弾性特性分布解析をコンピュータに実行させるプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148400A (ja) * 1992-11-12 1994-05-27 Nikon Corp 表面凹凸像とx線透過像の観察装置及び観察方法
JPH06213910A (ja) * 1992-11-30 1994-08-05 Digital Instr Inc 形状を除く表面のパラメータを正確に測定し、または形状に関連した仕事を行うための方法および相互作用装置
JPH1144698A (ja) * 1997-07-29 1999-02-16 Seiko Instr Inc 3次元走査プローブ顕微鏡
JP2000329675A (ja) * 1999-03-15 2000-11-30 Jeol Ltd 走査型プローブ顕微鏡
WO2013051094A1 (ja) * 2011-10-03 2013-04-11 株式会社日立製作所 走査プローブ顕微鏡
JP5223832B2 (ja) * 2009-09-28 2013-06-26 富士通株式会社 内部構造測定方法及び内部構造測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1644937A1 (en) * 2003-07-15 2006-04-12 University Of Bristol Probe for an atomic force microscope
US7647848B2 (en) * 2005-11-29 2010-01-19 Drexel University Integrated system for simultaneous inspection and manipulation
JPWO2017006435A1 (ja) * 2015-07-07 2018-04-05 オリンパス株式会社 原子間力顕微鏡およびその制御方法
DE112015006610T5 (de) * 2015-07-07 2018-03-08 Olympus Corporation Rasterkraftmikroskop und Steuerverfahren dafür

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148400A (ja) * 1992-11-12 1994-05-27 Nikon Corp 表面凹凸像とx線透過像の観察装置及び観察方法
JPH06213910A (ja) * 1992-11-30 1994-08-05 Digital Instr Inc 形状を除く表面のパラメータを正確に測定し、または形状に関連した仕事を行うための方法および相互作用装置
JPH1144698A (ja) * 1997-07-29 1999-02-16 Seiko Instr Inc 3次元走査プローブ顕微鏡
JP2000329675A (ja) * 1999-03-15 2000-11-30 Jeol Ltd 走査型プローブ顕微鏡
JP5223832B2 (ja) * 2009-09-28 2013-06-26 富士通株式会社 内部構造測定方法及び内部構造測定装置
WO2013051094A1 (ja) * 2011-10-03 2013-04-11 株式会社日立製作所 走査プローブ顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054731A1 (ja) * 2020-09-08 2022-03-17 国立研究開発法人物質・材料研究機構 走査カンチレバー法に基づくがん細胞診断方法、被験細胞の弾性特性分布を解析する装置、及び被験細胞の弾性特性分布解析をコンピュータに実行させるプログラム

Also Published As

Publication number Publication date
JP6554539B2 (ja) 2019-07-31
DE112015006479T5 (de) 2018-01-04
JPWO2016185518A1 (ja) 2018-03-01
US20180074092A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
Schitter et al. Scanning probe microscopy at video-rate
US9709598B2 (en) Scanning ion conductance microscopy using surface roughness for probe movement
US20120030845A1 (en) Scanning probe microscope
JP2007205856A (ja) 走査型プローブ装置
WO2010089601A1 (en) Control system for a scanning probe microscope
JPWO2008087852A1 (ja) 原子間力顕微鏡及び原子間力顕微鏡を用いた相互作用力測定方法
WO2016185518A1 (ja) 原子間力顕微鏡の情報取得方法
Schitter Advanced mechanical design and control methods for atomic force microscopy in real-time
JPWO2007072621A1 (ja) 走査型プローブ顕微鏡
WO2012033131A1 (ja) 走査型プローブ顕微鏡を用いた表面加工装置
JP4739121B2 (ja) 走査型プローブ顕微鏡
WO2017006436A1 (ja) 原子間力顕微鏡およびその制御方法
WO2017145381A1 (ja) 倒立型光学顕微鏡と原子間力顕微鏡を有する複合型顕微鏡による観察方法、観察方法を実行するプログラム及び複合型顕微鏡
CN110082566B (zh) 扫描探针显微镜
KR20160049148A (ko) 토포그래피 신호 및 옵션 신호 획득 방법, 장치 및 이를 구비하는 원자 현미경
WO2017006435A1 (ja) 原子間力顕微鏡およびその制御方法
JP7281841B2 (ja) 走査プローブ顕微鏡
CN118019987A (zh) 扫描探针显微镜和程序
JPH0972925A (ja) 走査型顕微鏡
JP4111837B2 (ja) 走査プローブ顕微鏡の像表示方法および走査プローブ顕微鏡
CN110178038B (zh) 扫描仪及扫描型探针显微镜
JP2000275159A (ja) 走査型プローブ顕微鏡の画像表示方法
JP2024520387A (ja) クリープ補正を備えるafmイメージング
JP2022134649A (ja) 走査型プローブ顕微鏡、情報処理装置、およびプログラム
JP4050873B2 (ja) 探針走査制御方法および走査形プローブ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518631

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006479

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892519

Country of ref document: EP

Kind code of ref document: A1