WO2016184008A1 - 粉末冶金耐磨损耐腐蚀合金 - Google Patents

粉末冶金耐磨损耐腐蚀合金 Download PDF

Info

Publication number
WO2016184008A1
WO2016184008A1 PCT/CN2015/091274 CN2015091274W WO2016184008A1 WO 2016184008 A1 WO2016184008 A1 WO 2016184008A1 CN 2015091274 W CN2015091274 W CN 2015091274W WO 2016184008 A1 WO2016184008 A1 WO 2016184008A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant
carbide
powder metallurgy
corrosion
alloy
Prior art date
Application number
PCT/CN2015/091274
Other languages
English (en)
French (fr)
Inventor
李小明
吴立志
况春江
王学兵
孙宗林
方玉诚
Original Assignee
安泰科技股份有限公司
河冶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰科技股份有限公司, 河冶科技股份有限公司 filed Critical 安泰科技股份有限公司
Priority to US15/501,170 priority Critical patent/US20180179618A1/en
Publication of WO2016184008A1 publication Critical patent/WO2016184008A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the tool or component Under some special working conditions, the tool or component not only suffers from the direct contact of the hard abrasive particles in the moving parts or working medium, but also suffers from the corrosion of moisture, acid or other corrosive agents, such a typical working condition.
  • the plastic mechanical extrusion molding of the screw, screw head or screw sleeve and other components due to the addition of a large number of hard particles in the plastic, such as glass fiber, carbon fiber, etc., resulting in increased wear of these parts, on the other hand, corrosion in plastics sexual components chemically attack parts.
  • the tool steel used In order to provide long service life for components used in these special conditions, the tool steel used must have high wear resistance and corrosion resistance, and in order to withstand the stress loading and impact, the tool steel needs to have a certain hardness and toughness.
  • the wear resistance of the tool steel depends on the hardness of the matrix and the content, morphology and particle size distribution of the hard second phase present in the steel.
  • the hard second phase in steel includes M6C, M2C, M23C6, M7C3 and MX.
  • the microhardness of MX carbide is higher than other carbides, which can better protect the matrix during operation, thus reducing wear and tear.
  • the service life of the mold The service life of the mold.
  • the improvement of corrosion resistance of tool steel mainly depends on the solid solution of chromium in the matrix, and it is considered that at least 11% of chromium is dissolved in the matrix.
  • the toughness of the tool steel depends on the strength of the matrix and the distribution of the second phase. The presence of coarse carbides in the steel causes stress concentration, which reduces the toughness of the tool steel, resulting in fracture under low external force loading. In order to improve the toughness of the tool steel, Reducing the carbide content or refining the carbide particle size is an important means. In order to avoid plastic deformation during the use of tool steel, tool steel usually requires hardness of more than HRC60.
  • the main steps of powder metallurgy process for preparing tool steel include: atomization milling ⁇ powder consolidation forming.
  • the molten steel is rapidly cooled into In the powder, the alloying elements in the molten steel are less than segregation and completely solidified.
  • the microstructure of the powder is fine and uniform after consolidation, and the performance of the cast-forged alloy is greatly improved.
  • powder metallurgy Preparation can be done to meet the requirements.
  • the preparation of tool steel by powder metallurgy process has been reported, but the design of some steel components is not reasonable enough, and the organization and performance need to be further improved.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. Accordingly, it is an object of the present invention to provide a powder metallurgy wear and corrosion resistant alloy having excellent properties.
  • an embodiment of the present invention provides a powder metallurgy wear-resistant corrosion-resistant alloy, wherein the chemical composition of the powder metallurgy wear-resistant tool steel comprises: C: 2.36%-3.30%, W: 0.1.
  • the carbide composition of the powder metallurgy wear-resistant corrosion-resistant alloy is MX carbide and M 7 C 3 carbide, of which MX The carbide is a NaCl-type face-centered cubic lattice structure, and the M element includes V and Nb, and the X element includes C and N.
  • a powder metallurgy wear-resistant and corrosion-resistant alloy according to an embodiment of the present invention is prepared by a powder metallurgy process by designing an alloy composition to obtain an alloy having excellent wear and corrosion resistance.
  • the alloying elements such as alloys V, Nb, C, and N of the present invention form MX carbide type (V, Nb) (C, N), and under the condition of rapid cooling and solidification of molten steel, the added Nb and N participate in the formation of MX carbide, and improve Carbide nucleation rate and refinement of MX carbide particles increase alloy toughness.
  • the chemical composition of the powder metallurgy wear-resistant corrosion-resistant alloy comprises, by mass percentage: C: 2.40% - 3.18%, W: 0.1% - 0.8%, Mo: ⁇ 1.8%, Cr: 13.0%-18.0%, V: 6.2%-12.5%, Nb: 1.0%-2.0%, Co: 0.1%-0.4%, Si: ⁇ 0.8%, Mn: 0.2%-0.8%, N:0.05%-0.30 %, O content does not exceed 0.008%, the balance is iron and impurities.
  • the MX carbide has a volume fraction of from 12% to 20%.
  • At least 80% of the MX carbides have a size of no more than 1.3 [mu]m by volume percent.
  • the maximum dimension of the MX carbide does not exceed 5 [mu]m.
  • the M 7 C 3 carbide is a Cr-rich carbide.
  • the volume fraction of the M 7 C 3 carbide is from 12% to 19%.
  • the M 7 C 3 carbide has a maximum dimension of no more than 10 ⁇ m.
  • the M 7 C 3 carbide is a hexagonal lattice structure.
  • Embodiments of the present invention provide a powder metallurgy wear and corrosion resistant alloy having excellent properties.
  • the chemical composition of the powder metallurgy wear-resistant and corrosion-resistant alloy according to the embodiment of the present invention includes: C: 2.36% - 3.30%, W: 0.1% - 1.0%, Mo: ⁇ 1.8%, Cr: 12.6%.
  • the carbide composition of powder metallurgy wear-resistant and corrosion-resistant alloy is MX carbide and M 7 C 3 carbide, wherein MX type carbide is NaCl-type face-centered cubic lattice structure, MX carbide
  • MX type carbide is NaCl-type face-centered cubic lattice structure, MX carbide
  • the main elements of M are composed of V and Nb, and the main elements of X are composed of C and N.
  • the embodiment of the present invention is prepared by a powder metallurgy process by designing an alloy composition to obtain an alloy having excellent wear and corrosion resistance.
  • the C element is partially dissolved in the matrix to increase the strength of the matrix.
  • the C element is one of the constituent elements of the carbide, and the content should not be less than 2.36%, so as to ensure that the alloying element can fully participate in the carbide precipitation, and the maximum content of C does not exceed 3.30%.
  • the toughness is reduced. In the range of C content of 2.36%-3.30%, the maximum wear resistance and the toughness can be obtained.
  • Nb The action of Nb is similar to that of V, and participates in the formation of MX carbide.
  • the alloy Nb is solid-dissolved in MX carbide, which increases the number of nucleation during precipitation of MX carbide, promotes precipitation and refinement of MX carbide, and improves wear resistance.
  • the upper limit of the Nb addition content is to avoid precipitation of Nb-rich MX carbide; the embodiment of the present invention controls the content of Nb in the range of 0.5% to 2.1%.
  • Co is mainly dissolved in the matrix, promotes carbide precipitation, and refines the carbide particle size.
  • the Co content in the alloy of the embodiment of the present invention ranges from 0.1% to 0.5%.
  • Si does not participate in carbide formation and is used as a deoxidizer and a matrix strengthening element. Too much Si reduces the toughness of the matrix, so the Si content range is limited to Si ⁇ 1.0%.
  • the volume fraction of M 7 C 3 carbides is 12% -19%.
  • the powder metallurgy wear-resistant and corrosion-resistant alloy of the present invention can be prepared by the following method, which comprises the following steps:
  • the alloy of the invention is prepared by a powder metallurgy process, and the process adopts various effective protection means to prevent the steel liquid and the powder from being contaminated, and the oxygen content increment is ⁇ 30 ppm, which provides a guarantee for finally obtaining a high performance alloy.
  • This embodiment relates to a group of powder metallurgy wear and corrosion resistant alloys, the chemical composition of which is shown in Table 1.1:
  • the alloy steel liquid of the invention is loaded into a molten steel ladle, and the steel liquid loading weight is 1.5-8 tons;
  • the graphite electrode is used to heat the protective slag covered by the upper surface of the molten steel in the ladle, and the vent hole at the bottom of the ladle is filled with argon or nitrogen to agitate the molten steel in the ladle.
  • the molten steel liquid guide is opened.
  • the atomization and milling process continues to compensate the heating of the tundish, so that the superheat of the molten steel is maintained at 100 ° C -150 ° C;
  • the molten steel is broken into droplets under the action of inert gas, and is rapidly cooled to metal powder, which is settled to the bottom of the atomization chamber by flight, and enters the powder storage tank through the bottom of the atomization chamber; After the metal powder in the powder storage tank is cooled to room temperature, it is sieved by a protective screening device; the inside of the chamber of the protection screening device is provided with a positive pressure inert protective gas, and the inside of the powder storage tank Protecting atmosphere with a positive pressure inert gas;
  • N.A in the above table indicates that it has not been analyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种粉末冶金耐磨损耐腐蚀合金,其化学组分按质量百分比计包括:C:2.36%-3.30%,W:0.1%-1.0%,Mo:≤1.8%,Cr:12.6%-18.0%,V:6.0%-12.5%,Nb:0.5%-2.1%,Co:0.1%-0.5%,Si:≤1.0%,Mn:0.2%-1.0%,N:0.05%-0.35%,余量为铁和杂质。所述粉末冶金耐磨损耐腐蚀合金的碳化物组成为MX碳化物和M 7C 3碳化物,其中MX碳化物为NaCl型面心立方结构,且M元素包括V和Nb,X元素包括C和N。

Description

粉末冶金耐磨损耐腐蚀合金 技术领域
本发明涉及一种工模具钢类合金,尤其涉及一种粉末冶金耐磨损耐腐蚀合金。
背景技术
在一些特殊工况条件下,工具或零部件不仅经受运动部件或工作介质中硬的研磨颗粒直接接触引起磨损,还经受潮湿、酸或其它腐蚀剂的腐蚀作用,这样一种典型的工况如用于塑料机械挤注塑成形的螺杆、螺杆头或螺杆套筒等零部件,一方面由于塑料中添加大量硬质颗粒,如玻璃纤维、碳纤维等,导致这些零部件磨损加剧,另一方面塑料中腐蚀性成分对零部件产生化学腐蚀。为了使应用于这些特殊工况的零部件具备长的使用寿命,所使用工具钢必须具有高的耐磨性能和耐蚀性能,另外为了承受工作应力加载和冲击,工具钢需具备一定的硬度和韧性。工具钢的耐磨性能取决于基体硬度以及钢中存在的硬质第二相的含量、形态以及粒度分布。钢中的硬质第二相包括M6C、M2C、M23C6、M7C3以及MX等,MX碳化物的显微硬度高于其它碳化物,作业过程中能够更好地保护基体,从而减少磨损发生,提高工模具的使用寿命。工具钢耐蚀性能的提高主要依赖于铬元素在基体中的固溶,认为至少11%的铬固溶于基体是必要的。工具钢的韧性取决于基体强度以及第二相的分布状态,钢中粗大碳化物的存在引起应力集中,使工具钢韧性降低,导致在较低的外力加载下发生断裂,为了提高工具钢韧性,减少碳化物含量或细化碳化物粒度是重要的手段。工具钢使用过程中为了避免塑性变形发生,工具钢通常要求硬度达到HRC60以上。
目前工具钢主要采用传统的铸锻工艺制备,采用铸锻工艺制备工具钢受到工艺过程钢液缓慢冷却凝固特点的限制,合金成分在凝固过程中容易发生偏析,形成粗大的碳化物组织,即使经过后续锻轧处理,这种不良组织仍然会对合金性能带来不良影响,导致铸锻工具钢 性能上包括强度、韧性、耐磨性能、可磨削性能等处于偏低水平,难以满足高端加工制造对材料使用性能及寿命稳定性的要求。采用粉末冶金工艺制备工具钢解决了合金元素偏析的问题,粉末冶金工艺制备工具钢的主要步骤包括:雾化制粉→粉末固结成形,在上述雾化制粉环节,钢液被快速冷却成粉末,钢液中合金元素来不及偏析即完全凝固,粉末固结成材后组织细小均匀,相比铸锻合金性能有大幅度提升,目前对于一些性能要求极高的高合金工具钢只有采用粉末冶金工艺进行制备才能满足要求。采用粉末冶金工艺制备工具钢已有报道,但部分钢种成分设计不够合理,组织及性能有待进一步提高。
发明内容
本发明旨在至少从一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提供一种具有优异性能的粉末冶金耐磨损耐腐蚀合金。
为实现上述目的,本发明实施例提供一种粉末冶金耐磨损耐腐蚀合金,所述粉末冶金耐磨工具钢的化学组分按质量百分比计包括:C:2.36%-3.30%,W:0.1%-1.0%,Mo:≤1.8%,Cr:12.6%-18.0%,V:6.0%-12.5%,Nb:0.5%-2.1%,Co:0.1%-0.5%,Si:≤1.0%,Mn:0.2%-1.0%,N:0.05%-0.35%,余量为铁和杂质;所述粉末冶金耐磨损耐腐蚀合金的碳化物组成为MX碳化物和M7C3碳化物,其中MX碳化物为NaCl型面心立方点阵结构,且M元素包括V和Nb,X元素包括C和N。
根据本发明实施例的粉末冶金耐磨损耐腐蚀合金,通过合金成分的设计,采用粉末冶金工艺制备,以获得一种具有优异耐磨损耐腐蚀性能的合金。本发明合金V、Nb、C、N等合金元素形成MX碳化物类型为(V、Nb)(C、N),钢液快速冷却凝固条件下,添加的Nb和N参与MX碳化物形成,提高碳化物形核率和细化MX碳化物颗粒,使合金韧性提高。
在一些实施例中,所述杂质包括O,O含量不超过0.01%。
在一些实施例中,所述粉末冶金耐磨损耐腐蚀合金的化学组分按质量百分比计包括:C:2.40%-3.18%,W:0.1%-0.8%,Mo:≤1.8%,Cr:13.0%-18.0%,V:6.2%-12.5%,Nb:1.0%-2.0%,Co:0.1%-0.4%,Si:≤0.8%,Mn:0.2%-0.8%,N:0.05%-0.30%,O含量不超过0.008%,余量为铁和杂质。
在一些实施例中,所述杂质包括S,S含量不超过0.1%。
在一些实施例中,所述杂质包括P,P含量不超过0.03%。
在一些实施例中,所述MX碳化物的体积分数为12%-20%。
在一些实施例中,按体积百分比计,至少80%的所述MX碳化物的尺寸不超过1.3μm。
在一些实施例中,所述MX碳化物的最大尺寸不超过5μm。
在一些实施例中,所述M7C3碳化物为富Cr碳化物。
在一些实施例中,所述M7C3碳化物的体积分数为12%-19%。
在一些实施例中,按体积百分比计,至少80%的所述M7C3碳化物的尺寸不超过5μm。
在一些实施例中,所述M7C3碳化物的最大尺寸不超过10μm。
在一些实施例中,所述M7C3碳化物为六方点阵结构。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明实施例提供一种具有优异性能的粉末冶金耐磨损耐腐蚀合金。根据本发明实施例的粉末冶金耐磨损耐腐蚀合金的化学组分按质量百分比计包括:C:2.36%-3.30%,W:0.1%-1.0%,Mo:≤1.8%,Cr:12.6%-18.0%,V:6.0%-12.5%,Nb:0.5%-2.1%,Co:0.1%-0.5%,Si:≤1.0%,Mn:0.2%-1.0%,N:0.05%-0.35%,余量为铁和杂质;粉末冶金耐磨损耐腐蚀 合金的碳化物组成为MX碳化物和M7C3碳化物,其中MX类型碳化物为NaCl型面心立方点阵结构,MX碳化物中M主要元素组成为V和Nb,X主要元素组成为C和N。
本发明实施例通过合金成分的设计,采用粉末冶金工艺制备,以获得一种具有优异耐磨损耐腐蚀性能的合金。
C元素部分固溶于基体,提高基体强度,同时,C元素是碳化物的组成元素之一,含量不能小于2.36%,以保证合金元素能够充分参与碳化物析出,C的最大含量不超过3.30%,避免过多的C固溶于基体导致韧性下降,在C含量2.36%-3.30%范围内,能够获得最大耐磨性能以及强韧性的配合。
W、Mo固溶于基体,提高基体淬透性,本发明W含量范围是0.1%-1.0%,Mo的含量范围是Mo≤1.8%。
Cr一方面固溶于基体,提高耐蚀性能及淬透性,另一方面Cr以M7C3碳化物形式析出,考虑到Cr固溶于基体以及以碳化物形式析出之间存在的平衡,本发明实施例中Cr含量为12.6%-18.0%。
V主要用于形成MX型碳化物,提高合金的耐磨性能,V含量控制范围为6.0%-12.5%。
Nb的作用与V类似,参与形成MX碳化物,本发明实施例合金Nb固溶于MX碳化物,提高MX碳化物析出时的形核数量,促进MX碳化物析出和细化,提高耐磨性能;Nb添加含量上限在于避免富Nb的MX碳化物析出;本发明实施例控制Nb的含量范围为0.5%-2.1%。
Co主要固溶于基体,促进碳化物析出,细化碳化物颗粒度,本发明实施例合金中Co含量的范围为0.1%-0.5%。
Si不参与碳化物形成,作为一种脱氧剂和基体强化元素来使用,Si过多会使基体的韧性下降,因此Si含量范围限定为Si≤1.0%。
Mn作为脱氧剂加入,可以固硫减少热脆性,另外锰增加淬透性,本发明实施例Mn含量范围为0.2%-1.0%。
N参与形成MX碳化物,快速冷却条件下,N促进MX碳化物形核析出,同时不会导致MX碳化物过分长大,有利于提高耐磨性能,N同时促进钢的耐蚀性能提高,限定N含量范围为0.05%-0.35%。
本发明实施例合金V、Nb、C、N等合金元素形成MX碳化物类型为(V、Nb)(C、N),钢液快速冷却凝固条件下,添加的Nb和N参与MX碳化物形成,提高碳化物形核率和细化MX碳化物颗粒,使合金韧性提高。
在一些实施例中,杂质包括O,O≤0.01%。
O过高导致合金韧性下降,本发明实施例合金中控制O含量≤0.01%,以确保钢的优良性能。
在一些实施例中,粉末冶金耐磨损耐腐蚀合金的化学组分按质量百分比计包括:C:2.40%-3.18%,W:0.1%-0.8%,Mo:≤1.8%,Cr:13.0%-18.0%,V:6.2%-12.5%,Nb:1.0%-2.0%,Co:0.1%-0.4%,Si:≤0.8%,Mn:0.2%-0.8%,N:0.05%-0.30%,O≤0.008%,余量为铁和杂质。
为了达到更好的综合性能,本发明实施例粉末冶金耐磨损耐腐蚀合金中的各化学组分应控制在要求范围之内。
在一些实施例中,MX碳化物的体积分数为12%-20%。
在一些实施例中,至少80%体积百分比的MX碳化物尺寸不超过1.3μm,最大MX碳化物尺寸不超过5μm。
在一些实施例中,M7C3碳化物为复杂六方点阵结构,M7C3碳化物中M主要元素组成为Cr。
在一些实施例中,M7C3碳化物的体积分数为12%-19%。
在一些实施例中,至少80%体积百分比的M7C3碳化物的尺寸不超过5μm,最大M7C3碳化物尺寸不超过10μm。
本发明的粉末冶金耐磨损耐腐蚀合金,可以采用如下方法制备,该方法包括以下步骤:
a、按上述化学组成要求制备合金钢液并转移至钢包;
b、通电加热钢包内钢液上表面覆盖的保护渣,维持钢液的过热度;在钢包底部通入惰性气体对钢液进行搅拌;
c、将钢液通过钢包底部的导流管以稳定流量流入预加热的中间包,待钢液进入中间包埋没导流管下端面时对钢液上表面施加保护渣;
d、对中间包进行持续补偿加热,维持钢液的过热度;
e、钢液从中间包进入雾化室后采用惰性气体进行雾化制粉,得到的金属粉末沉降至雾化室底部,后进入具有保护气氛的储粉罐体,通过保护筛分装置对金属粉末进行筛分后再进入储粉罐体储装;
f、在惰性气体保护下,将储粉罐体内的金属粉末转移至热等静压包套,待金属粉末振动装填紧实后对热等静压包套进行抽真空脱气处理,对其端部进行封焊处理,随后进行热等静压处理使金属粉末完全致密固结,完成粉末冶金工艺。
上述的粉末冶金工艺包括非真空熔炼雾化制粉和热等静压环节,过程采用全流程保护,以控制氧含量及碳化物形态,优化合金性能。钢包的保护渣具备隔绝空气以及导电加热功能;钢包底部通过透气孔通入惰性气体,使钢包内不同位置钢液温度均衡,同时加速有害夹杂的上浮去除;钢包底部的导流管一方面对钢液起到导流作用,减少钢液流转过程产生紊流,避免卷渣及防止夹杂进入下一环节,另一方面导流管保护钢液避免暴露于空气,防止钢液氧含量上升;中间包的保护渣防止流经中间包的钢液直接与空气接触,减少钢液氧含量的升高;钢液进入中间包前对中间包预加热,防止钢液进入中间包时局部凝结或导致第二相提前析出;储粉罐内部具有气氛保护和强制降温冷却功能;粉末保护筛分装置对粉末筛分过程起到保护作用同时防止粉末飘扬;储粉罐体与热等静压包套密闭连接,热等静压包套在装粉前通入惰性气体排出空气,以控制氧含量。
综上所述,采用本发明的技术方案,获得的粉末冶金耐磨损耐腐蚀合金具备优异的综合性能,尤其是具备高的耐磨性能和耐蚀性能,适合在具有磨损及腐蚀工况场合使用。本发明实施例的合金由于特定的化学组成和粉末冶金的快速冷却凝固工艺,形成的MX碳化物的类型为(V、Nb)(C、N),使析出的MX碳化物更加细小且分布均匀,在碳化物含量较高的情况,有利于获得高的韧性和可磨削性能,热处理后能够获得HRC60以上的硬度,可以满足不同类型的应用需求,用途广泛。本发明合金采用粉末冶金工艺制备,过程采取多种有效的保护手段防止钢液及粉末受到污染,氧含量增量≤30ppm,为最终获得高性能合金提供保障。
为使本领域技术人员清楚地理解本发明,下面给出根据本发明方案的几个具体实施例。
实施例一
本实施例涉及一组粉末冶金耐磨损耐腐蚀合金,其化学组分如表1.1所示:
表1.1实施例一粉末冶金耐磨损耐腐蚀合金的化学组分表
Figure PCTCN2015091274-appb-000001
采用如下制备步骤:
将本发明合金钢液装入熔炼钢包中,钢液装载重量为1.5-8吨;
b、采用石墨电极对钢包内钢液上表面覆盖的保护渣通电加热,钢包底部透气孔通入氩气或氮气搅拌钢包中钢液,钢液过热度达到100℃-150℃时打开钢液导流管;
c、将钢液通过钢包底部的导流管流入预加热至800℃-1200℃的中间包,控制导流管入口大小,使钢液流量为10kg/min-50kg/min,钢液进入中间包后埋没钢液导流管下端面时施加保护渣;
d、雾化制粉过程对中间包持续补偿加热,使钢液过热度维持在100℃-150℃;
e、钢液通过中间包底部开口漏眼进入雾化室,开启雾化气体喷嘴阀门,采用氮气作为雾化气体进行雾化制粉,氮气纯度≥99.999%,氧含量≤2ppm,气体压力为1.0MPa-5.0MPa;钢液在惰性气体冲击作用下被破碎成液滴,同时快速冷却为金属粉末,飞行沉降至雾化室底部,通过雾化室底部进入储粉罐体;雾化制粉结束后待储粉罐体内金属粉末冷却到室温,通过保护筛分装置进行筛分;保护筛分装置腔体内部通有正压惰性保护气体,储粉罐内部 为正压惰性气体保护气氛;
f、将储粉罐体内金属粉末装填至热等静压包套,先对热等静压包套内通入惰性气体排除空气,随后密闭连接热等静压包套和储粉罐体,装填过程实施振动操作,增加金属粉末的装填密度;完成后对热等静压包套进行抽真空脱气处理,抽真空过程热等静压包套加热保温在200℃-600℃,脱气至0.01Pa后继续加热保温≥2h,随后对包套端部进行封焊处理,最后对包套进行热等静压处理,热等静压温度为1100℃-1160℃,在≥100MPa压力下保持时间≥1h后金属粉末完全致密固结,随炉冷却。
根据需要对本发明合金进一步锻造变形得到一定形状尺寸,采用不同热处理制度得到不同性能,所使用的热处理包括退火、淬火和回火。所述退火处理涉及到将锻件加热到860℃-900℃,保温时间2小时,随后以≤15℃/小时的速度冷至530℃,然后炉冷或静止空气空冷至50℃以下;淬火处理涉及将退火后的锻件在815℃-845℃温度预热,温度均匀后放入1000℃-1200℃的温度下保温15-40分钟,随后淬火至530℃-550℃,然后空冷至50℃以下;回火处理涉及将淬火后的锻件加热到540-670℃的温度并保温1.5-2小时,随后空冷至50℃以下,如此重复2到3次。
获得的实施例1.1-1.4的粉末冶金耐磨损耐腐蚀合金,制备工艺过程合金氧含量增量≤30ppm,热变形后得到相对密度为100%的完全致密合金,将其制成Φ50mm的棒材。
实施例二
本实施例涉及实施例一的粉末冶金耐磨损耐腐蚀合金的碳化物含量及粒度、热处理硬度、耐磨性能、耐蚀性能的验证,其中碳化物含量及粒度基于扫描电镜获取组织图像进行分析,热处理硬度、耐磨性能分别参考GB/T 230.1、GB/T 12444-2006进行测试,耐蚀性能采用5%HNO3+1%HCl腐蚀性溶液室温浸泡测试。
将实施例1.1、1.2的粉末冶金耐磨损耐腐蚀合金与购买的铸锻工具钢(合金A)和粉末冶金工具钢(合金B)进行对比分析,其结果如下:
表2.1:实施例1.1、1.2与合金A、B的成分组成对比
Figure PCTCN2015091274-appb-000002
上表中N.A表示未分析。
实施例1.1、1.2的粉末冶金耐磨损耐腐蚀合金,制备前氧含量为50-60ppm,制备后氧含量为60-80ppm,制备过程氧含量增量≤30ppm。
表2.2:实施例1.1、1.2与合金A、B的碳化物含量及粒度对比
Figure PCTCN2015091274-appb-000003
上表中碳化物粒度为至少80Vol%碳化物的尺寸。
对本发明的粉末冶金耐磨损耐腐蚀合金碳化物进行分析,碳化物组成为MX碳化物及M7C3碳化物,其中MX碳化物类型为(V、Nb)(C、N),主要成分组成为V、Nb、C、N以及少量Fe、Cr等合金元素。M7C3碳化物为富Cr型碳化物。由表2.2可看出,本发明 合金MX碳化物非常细小,至少80Vol%MX碳化物尺寸≤1.3μm,进一步测量统计MX碳化物尺寸,最大MX碳化物不超过5μm,由于MX碳化物具有高的硬度,使本发明合金具备优异的可磨削性能,同时有利于韧性提高;MX碳化物的体积分数为12%-20%,使本发明合金具备优异的耐磨性能。本发明合金中M7C3碳化物达到12%-19%,至少80Vol%M7C3碳化物尺寸≤5μm,最大M7C3碳化物尺寸不超过10μm,M7C3碳化物粒度相比MX碳化物偏大,但仍然细小于铸锻工艺制备合金A中M7C3碳化物粒度。对比合金B采用粉末冶金工艺制备,碳化物粒度非常细小,大部分MX碳化物为0.5-1.5μm,MX碳化物体积分数为3%-6%。
表2.3:实施例1.1、1.2与合金A、B的热处理硬度、耐磨性能对比
Figure PCTCN2015091274-appb-000004
由表2.3可以看出,经过合适的热处理,本发明合金硬度达到HRC60以上,能够满足本发明合金应用领域需求,耐磨性能对比结果表明本发明合金具有最好的耐磨性能。
采用5%HNO3+1%HCl溶液在室温条件下对本发明实施例的合金进行浸泡腐蚀,选用具有高Cr合金组成的合金A作为耐蚀性能对比,两者耐蚀性能对比结果如表2.4所示。
表2.4:实施例1.1、1.2与合金A的耐蚀性能对比
Figure PCTCN2015091274-appb-000005
Figure PCTCN2015091274-appb-000006
由表2.4的对比数据可以看出,本发明合金表现出更优异的耐蚀性能。
需要说明的是,根据不同的应用场合对耐磨性能及耐蚀性能的需求,应选择合适的热处理制度,即相同淬火条件下,采用较低的回火制度时,较多Cr元素固溶于基体,能够获得较高耐蚀性能,采用较高的回火制度时,较多Cr合金元素以碳化物形式析出,耐蚀性能将降低同时耐磨性能将升高,总体而言,在一个宽的热处理范围内,本发明合金能够同时具备优异的耐磨及耐蚀性能,从而满足具有磨损及腐蚀工况场合的应用。
综上所述,本发明的粉末冶金耐磨损耐腐蚀合金具备优异的综合性能,尤其是具备高的耐磨性能同时具备高的耐蚀性能,适合在具有磨损及腐蚀工况场合使用。由于本发明合金特定的化学组成以及采用粉末冶金工艺进行制备,在碳化物含量较高的情况下碳化物颗粒仍然能够保持细小且分布均匀,有利于获得高的韧性和可磨削性能,热处理后能够获得HRC60以上硬度,能够满足不同类型的应用需求,用途广泛,如可应用于螺杆、螺杆套、螺杆头、止退环等挤注塑料机械零部件,食品加工,医疗手术器械,工业剪切刀片,耐磨耐蚀零部件等等。本发明的粉末冶金制备工艺采取多种有效的保护手段防止钢液及粉末在制备过程受到污染,氧含量增量≤30ppm,为最终获得高性能合金提供保障。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任 一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种粉末冶金耐磨损耐腐蚀合金,其特征在于,所述粉末冶金耐磨工具钢的化学组分按质量百分比计包括:C:2.36%-3.30%,W:0.1%-1.0%,Mo:≤1.8%,Cr:12.6%-18.0%,V:6.0%-12.5%,Nb:0.5%-2.1%,Co:0.1%-0.5%,Si:≤1.0%,Mn:0.2%-1.0%,N:0.05%-0.35%,余量为铁和杂质;所述粉末冶金耐磨损耐腐蚀合金的碳化物组成为MX碳化物和M7C3碳化物,其中MX碳化物为NaCl型面心立方点阵结构,且M元素包括V和Nb,X元素包括C和N。
  2. 根据权利要求1所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述杂质包括O,O含量不超过0.01%。
  3. 根据权利要求1或2所述的粉末冶金耐磨损耐腐蚀合金,其特征在于,所述粉末冶金耐磨损耐腐蚀合金的化学组分按质量百分比计包括:C:2.40%-3.18%,W:0.1%-0.8%,Mo:≤1.8%,Cr:13.0%-18.0%,V:6.2%-12.5%,Nb:1.0%-2.0%,Co:0.1%-0.4%,Si:≤0.8%,Mn:0.2%-0.8%,N:0.05%-0.30%,O含量不超过0.008%,余量为铁和杂质。
  4. 根据权利要求1-3任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述杂质包括S,S含量不超过0.1%。
  5. 根据权利要求1-4任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述杂质包括P,P含量不超过0.03%。
  6. 根据权利要求1-5任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述MX碳化物的体积分数为12%-20%。
  7. 根据权利要求1-6任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:按体积百分比计,至少80%的所述MX碳化物的尺寸不超过1.3μm。
  8. 根据权利要求7所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述MX碳化物的最大尺寸不超过5μm。
  9. 根据权利要求1-8任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述M7C3碳化物为富Cr碳化物。
  10. 根据权利要求1-9任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述M7C3碳化物的体积分数为12%-19%。
  11. 根据权利要求1-10任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:按体积百分比计,至少80%的所述M7C3碳化物的尺寸不超过5μm。
  12. 根据权利要求11所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述M7C3碳 化物的最大尺寸不超过10μm。
  13. 根据权利要求1-12任一项所述的粉末冶金耐磨损耐腐蚀合金,其特征在于:所述M7C3碳化物为六方点阵结构。
PCT/CN2015/091274 2015-05-15 2015-09-30 粉末冶金耐磨损耐腐蚀合金 WO2016184008A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/501,170 US20180179618A1 (en) 2015-05-15 2015-09-30 Powder metallurgy wear and corrosion resistance alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510248007.X 2015-05-15
CN201510248007.XA CN104878298B (zh) 2015-05-15 2015-05-15 粉末冶金耐磨损耐腐蚀合金

Publications (1)

Publication Number Publication Date
WO2016184008A1 true WO2016184008A1 (zh) 2016-11-24

Family

ID=53945967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091274 WO2016184008A1 (zh) 2015-05-15 2015-09-30 粉末冶金耐磨损耐腐蚀合金

Country Status (3)

Country Link
US (1) US20180179618A1 (zh)
CN (1) CN104878298B (zh)
WO (1) WO2016184008A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878298B (zh) * 2015-05-15 2017-05-03 安泰科技股份有限公司 粉末冶金耐磨损耐腐蚀合金
CN109266970B (zh) * 2018-11-28 2020-11-10 攀钢集团攀枝花钢铁研究院有限公司 高氮高铬塑料模具钢及其冶炼和热处理方法
CN111283204A (zh) * 2020-02-18 2020-06-16 北京科技大学 一种铬钼钒型速滑冰刀材料的制备方法
CN114318131B (zh) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 耐磨合金
CN115156538B (zh) * 2022-06-06 2023-11-03 河北五维航电科技股份有限公司 一种短道速滑冰刀材料的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3666289A (en) * 1988-06-21 1990-01-25 Bohler Gmbh Application of an iron-base alloy for powder metallurgical production of parts with high corrosion resistance high resistance to wear as well as high strength and resistance to pressure, in particular in the processing of plastics
JPH07166300A (ja) * 1993-12-13 1995-06-27 Kubota Corp 高速度鋼系粉末合金
JPH0971848A (ja) * 1995-09-01 1997-03-18 Kubota Corp 耐食性にすぐれた高速度鋼系粉末合金
CN101487103A (zh) * 2009-02-20 2009-07-22 安泰科技股份有限公司 钒铌复合合金化冷作模具钢及其制备方法
CN104878298A (zh) * 2015-05-15 2015-09-02 安泰科技股份有限公司 粉末冶金耐磨损耐腐蚀合金

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281006A (en) * 1975-12-29 1977-07-07 Kobe Steel Ltd High speed steel made from powder containing nitrogen
JPS5297320A (en) * 1976-02-12 1977-08-16 Kobe Steel Ltd Nitrogen-containing high speed steel produced with powder metallurgy
AT410448B (de) * 2001-04-11 2003-04-25 Boehler Edelstahl Kaltarbeitsstahllegierung zur pulvermetallurgischen herstellung von teilen
SE0200429D0 (sv) * 2002-02-15 2002-02-15 Uddeholm Tooling Ab Stållegering och verktyg tillverkat av stållegeringen
US20060065327A1 (en) * 2003-02-07 2006-03-30 Advance Steel Technology Fine-grained martensitic stainless steel and method thereof
US7288157B2 (en) * 2005-05-09 2007-10-30 Crucible Materials Corp. Corrosion and wear resistant alloy
US20060249230A1 (en) * 2005-05-09 2006-11-09 Crucible Materials Corp. Corrosion and wear resistant alloy
SE529041C2 (sv) * 2005-08-18 2007-04-17 Erasteel Kloster Ab Användning av ett pulvermetallurgiskt tillverkat stål
SE528991C2 (sv) * 2005-08-24 2007-04-03 Uddeholm Tooling Ab Ställegering och verktyg eller komponenter tillverkat av stållegeringen
SE533988C2 (sv) * 2008-10-16 2011-03-22 Uddeholms Ab Stålmaterial och förfarande för framställning därav
SE533991C2 (sv) * 2008-11-06 2011-03-22 Uddeholms Ab Förfarande för tillverkning av en kompoundprodukt med ett område med slitstark beläggning, en sådan kompoundprodukt och användningen av ett stålmaterial för åstadkommande av beläggningen
US9994942B2 (en) * 2012-08-21 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel material
CN103194685B (zh) * 2013-04-02 2015-09-30 安泰科技股份有限公司 粉末冶金高耐磨高韧性冷作模具钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3666289A (en) * 1988-06-21 1990-01-25 Bohler Gmbh Application of an iron-base alloy for powder metallurgical production of parts with high corrosion resistance high resistance to wear as well as high strength and resistance to pressure, in particular in the processing of plastics
JPH07166300A (ja) * 1993-12-13 1995-06-27 Kubota Corp 高速度鋼系粉末合金
JPH0971848A (ja) * 1995-09-01 1997-03-18 Kubota Corp 耐食性にすぐれた高速度鋼系粉末合金
CN101487103A (zh) * 2009-02-20 2009-07-22 安泰科技股份有限公司 钒铌复合合金化冷作模具钢及其制备方法
CN104878298A (zh) * 2015-05-15 2015-09-02 安泰科技股份有限公司 粉末冶金耐磨损耐腐蚀合金

Also Published As

Publication number Publication date
CN104878298B (zh) 2017-05-03
CN104878298A (zh) 2015-09-02
US20180179618A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016184009A1 (zh) 粉末冶金耐磨工具钢
CN108517473B (zh) 基于slm工艺用高强度不锈钢粉末及其制备方法
WO2016184008A1 (zh) 粉末冶金耐磨损耐腐蚀合金
JP4975916B2 (ja) 高靭性高強度フェライト鋼とその製法
CN108315599A (zh) 一种高钴镍基高温合金及其制备方法
SE0850040A1 (sv) Stålmaterial och förfarande för framställning därav
CN112941406B (zh) 一种刀剪用不锈钢
CN104878299B (zh) 粉末冶金耐磨耐蚀工具钢
CN113621899B (zh) 一种不锈钢基复合材料及其制备方法与应用
CN104874802B (zh) 粉末冶金耐磨损耐腐蚀合金棒材
WO2019189531A1 (ja) Cr-Ni系合金、Cr-Ni系合金でなる急冷凝固成形体、合金粉末、粉末冶金成形体、鋳造成形体、Cr-Ni系合金の製造方法およびCr-Ni系合金を用いた機械設備、配管部材
CN104878303B (zh) 耐磨损耐腐蚀合金
CN107267778B (zh) 一种炼镁还原罐及其制作方法
CN104889400B (zh) 粉末冶金耐磨耐蚀合金管材
TW202020185A (zh) 高氮低鎳沃斯田鐵不銹鋼合金及其製造方法
Narahari Prasad et al. Stainless steel-a versatile engineering material for critical applications
CN104894482B (zh) 喷射成形工具钢
RU2446223C1 (ru) Жаропрочный хромоникелевый сплав с аустенитной структурой
CN110430954B (zh) 粉末和hip的制品及其制造
CN112375957B (zh) 一种镍铁基耐蚀合金及其制备方法
CN110144447B (zh) 一种高强度抗腐蚀油套管钢材及其制备工艺
CN104894481B (zh) 喷射成形耐磨损耐腐蚀合金
CN117165867A (zh) 粉末冶金耐磨耐蚀双强化相沉淀硬化高速钢
EP4019654A1 (en) Low density medium alloyed steels with aluminium and manganese
CN117165836A (zh) 粉末冶金耐腐蚀沉淀硬化高速钢

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15501170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892386

Country of ref document: EP

Kind code of ref document: A1