WO2016182053A1 - 運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物 - Google Patents

運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物 Download PDF

Info

Publication number
WO2016182053A1
WO2016182053A1 PCT/JP2016/064257 JP2016064257W WO2016182053A1 WO 2016182053 A1 WO2016182053 A1 WO 2016182053A1 JP 2016064257 W JP2016064257 W JP 2016064257W WO 2016182053 A1 WO2016182053 A1 WO 2016182053A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart rate
exercise
casein
during exercise
suppressing
Prior art date
Application number
PCT/JP2016/064257
Other languages
English (en)
French (fr)
Inventor
秀俊 宮▲崎▼
浩司 大木
Original Assignee
アサヒカルピスウェルネス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒカルピスウェルネス株式会社 filed Critical アサヒカルピスウェルネス株式会社
Priority to JP2017518001A priority Critical patent/JP6910583B2/ja
Priority to CN201680027195.6A priority patent/CN107517585A/zh
Priority to US15/573,226 priority patent/US10583165B2/en
Publication of WO2016182053A1 publication Critical patent/WO2016182053A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/012Hydrolysed proteins; Derivatives thereof from animals
    • A61K38/018Hydrolysed proteins; Derivatives thereof from animals from milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention relates to a method for suppressing an increase in heart rate that suppresses an increase in heart rate associated with exercise during exercise such as walking, jogging, running, marathon, swimming, cycling, aerobics, tennis, soccer, skiing, and skating. . Furthermore, it is related with the heart rate rise suppression composition used for this heart rate rise suppression method.
  • the difficulty associated with an increase in heart rate during exercise which is caused by not having worked on exercise for a long time, is also considered as one factor.
  • the heart rate increases greatly even with a light exercise load, and thus a feeling of avoidance for exercise may be fostered.
  • regular efforts to exercise intensity beyond their current circulatory function can be considered due to the obligation to digest the practice menu.
  • the heart rate during exercise also has an effect, and if the increase in heart rate during exercise can be suppressed, it is expected that the exercise intensity will be relatively reduced even with the same practice menu. it can.
  • Patent Document 1 discloses a fermented food material fermented with lactic acid bacteria having a heart rate lowering characteristic of a mammal, and use of the fermented food material-containing composition.
  • the fermented food material of Patent Document 1 is intended to reduce the “heart rate at rest” for the purpose of treating these pathological conditions for mammals having pathological conditions such as angina pectoris, hypertension, and arteriosclerosis. Is.
  • Patent Document 2 discloses a heart rate variability adjusting agent containing hesperidins, which are flavonoids contained in citrus fruits, for the purpose of improving a mental or emotional state, and a heart rate variability adjusting method using the heart rate variability adjusting agent Is disclosed.
  • the invention disclosed in Patent Document 2 is also a technique related to heart rate variability adjustment at rest.
  • the object of the present invention is to contribute to the improvement of exercise habits and enjoyment during exercise for general athletes and their spare groups, and further to prevent failure by reducing the physical load of athletes. It is to provide a method for suppressing heart rate increase during exercise.
  • Another object of the present invention is to contribute to the improvement of exercise habits and enjoyment during exercise for general athletes and their spare groups, and further to prevent failure by reducing the physical load of athletes.
  • An object of the present invention is to provide a composition for suppressing an increase in heart rate during exercise for oral administration, which is used in the above-described suppression method.
  • Still another object of the present invention is to contribute to the improvement of exercise habits and enjoyment during exercise for general athletes and their spare groups, and furthermore, prevention of failure by reducing the physical load of athletes
  • the present inventors administered a specific casein hydrolyzate or a component thereof to a subject (exercise person) before exercise, during exercise, or both. As a result, a method for suppressing an increase in heart rate during exercise was developed, and the present invention was completed.
  • a casein hydrolyzate obtained by hydrolyzing animal milk casein and having an average chain length including free amino acids and peptides of 2.1 or less as the number of amino acid residues, or the hydrolyzate Provided is a method for suppressing an increase in heart rate during exercise, wherein the composition containing the free amino acid and peptide mixture contained is orally administered before exercise, during exercise, or both.
  • the casein hydrolyzate is a degradation product obtained by enzymatic degradation of animal milk casein with an enzyme derived from Aspergillus.
  • a casein hydrolyzate obtained by hydrolyzing animal milk casein having an average chain length including free amino acids and peptides of 2.1 or less as the number of amino acid residues, or the hydrolyzate There is provided a composition for suppressing heart rate increase during exercise for oral administration, comprising the free amino acid and peptide mixture contained therein as an active ingredient, and used for the above-described method for suppressing heart rate increase during exercise. Furthermore, it is preferable that the composition for suppressing an increase in heart rate contains a biodegradable peptide consisting of a dipeptide having a Xaa Pro sequence and a tripeptide having a Xaa Pro Pro sequence in a specific ratio.
  • a casein hydrolyzate obtained by hydrolyzing animal milk casein and having an average chain length including free amino acids and peptides of 2.1 or less as the number of amino acid residues, or contained in the hydrolyzate
  • a composition for oral administration containing a free amino acid and peptide mixture as an active ingredient for suppressing heart rate elevation during exercise.
  • the method for suppressing the increase in heart rate during exercise according to the present invention can suppress an increase in heart rate during exercise by administering a specific casein hydrolyzate or a component thereof, and therefore exercises for general exercisers and their spare groups. Can contribute to the improvement of habituation and enjoyment during exercise. Furthermore, during training of athletes, it is possible to contribute to prevention of failure by reducing physical load during competition.
  • the method for suppressing the increase in heart rate during exercise of the present invention is a casein hydrolyzate obtained by hydrolyzing animal milk casein, wherein the average chain length including free amino acids and peptides is 2.1 or less as the number of amino acid residues, or
  • This is a method in which a composition containing a free amino acid and a peptide mixture contained in the hydrolyzate is orally administered before the start of exercise, during exercise, or both.
  • the heart rate rise inhibitory composition of this invention is a composition containing the free amino acid and peptide mixture contained in the said casein hydrolyzate or this hydrolyzate.
  • the casein hydrolyzate used in the present invention is obtained by hydrolyzing animal milk casein with the number of amino acid residues as the average chain length within a specific range.
  • the casein hydrolyzate contains a free amino acid and peptide mixture, preferably 80% by weight or more, more preferably 80 to 90% by weight, based on the total amount of casein hydrolysate.
  • the peptide contains a dipeptide having a Xaa Pro sequence and a persistent biodegradable peptide consisting of a tripeptide having a Xaa Pro Pro sequence in a specific ratio.
  • the peptide may be a peptide salt.
  • the average chain length refers to the ratio of the total number of moles of free amino acids and peptides produced when hydrolyzing the same weight of animal milk casein to the number of moles of total amino acids of caseinate hydrolyzate.
  • Caseinate hydrolyzate is a product obtained by degrading casein protein into amino acids.
  • OPA o-phthalaldehyde
  • the in vivo difficult-to-decompose peptides are dipeptide Xaa Pro and tripeptide Xaa Pro Pro which have high degradation resistance to in vivo peptidases when absorbed from the intestinal tract of the living body and have Pro at the carboxy terminus. Means.
  • the average chain length of the degradation product obtained by hydrolyzing animal milk casein is 2.1 or less, preferably 1.1 to 2.1, particularly preferably 1.3 to 2, as the number of amino acid residues. .1.
  • the average chain length exceeds 2.1, the ratio of desired dipeptides and tripeptides, and further free amino acids is decreased, the bioabsorbability, and further the content ratio of in vivo degradable peptides is decreased, The desired effect may not be obtained.
  • the content ratio of the dipeptide having the Xaa Pro sequence contained in the casein hydrolyzate is usually 5% by weight or more, preferably 5 to 25% by weight, based on the total amount of free amino acids and peptides in the decomposed product. If the content is less than 5% by weight, the desired action may be reduced.
  • the content ratio of the tripeptide having the Xaa Pro Pro sequence contained in the casein hydrolyzate is usually 1% by weight or more, preferably 1 to 5% by weight based on the total amount of free amino acids and peptides in the decomposed product. is there. If the content is less than 1% by weight, the desired action may be reduced.
  • Xaa of a dipeptide having a Xaa Pro sequence and a tripeptide having a Xaa Pro Pro sequence may be any amino acid.
  • dipeptides having the Xaa Pro sequence include Ile Pro, Glu Pro, Arg Pro, Gln Pro, Met Pro, Tyr Pro, and tripeptides having the Xaa Pro Pro sequence include Ser Pro Pro, Val Pro Pro. , Ile Pro Pro, and Phe Pro Pro.
  • the casein hydrolyzate is preferably a casein hydrolyzate containing at least one or all of the exemplified dipeptides and tripeptides.
  • the casein hydrolyzate contains free amino acids in addition to peptides, and the content of free amino acids is usually 35 to 50% by weight, preferably 40 to 45% by weight, based on the total of free amino acids and peptides in the decomposed products. It is. In addition to the free amino acids and peptides, the casein hydrolyzate contains about 10 to 20% by weight of lipids, ash, carbohydrates, dietary fiber, water, etc., which are usually contained in, for example, commercially available animal milk casein. Alternatively, some or all of the appropriate components may be removed as necessary.
  • casein hydrolyzate for example, using an enzyme group in which the average chain length of the casein hydrolyzate can be degraded to 2.1 or less as the number of amino acid residues, It can be obtained by a method of hydrolysis to 2.1 or lower.
  • Animal milk casein is a protein that has been confirmed to be safe for use in foods containing a large amount of Pro, and examples thereof include casein such as milk, horse milk, goat milk, and sheep milk, and milk casein can be particularly preferably used. .
  • the concentration of casein when hydrolyzing animal milk casein is not particularly limited, but is preferably 3 to 19% by weight in order to efficiently produce the hydrolyzate.
  • the enzyme group may be an enzyme group in which the average chain length of the casein degradation product is appropriately selected and combined with an enzyme capable of degrading to 2.1 or less as the number of amino acid residues.
  • the enzyme group (X) containing a peptidase that can cleave the Pro Xaa sequence at the carboxy terminus of Pro Xaa is preferred.
  • the enzyme group (X) preferably contains a serine type protease having serine at the active center or a metal protease having a metal at the active center.
  • metalloproteases include neutral protease I, neutral protease II, leucine aminopeptidase, and the like, and the inclusion of at least one of these efficiently converts the desired hydrolyzate in a short time, and further 1 This is preferable in that it can be obtained by a step reaction.
  • the peptidase that can cleave the Pro Xaa sequence is preferably an enzyme having an isoelectric point in the acidic range.
  • Examples of the enzyme group or the enzyme group (X) include an enzyme group derived from Aspergillus oryzae such as Aspergillus oryzae.
  • Such an enzyme group includes an enzyme group obtained by culturing cells in an appropriate medium and extracting the produced enzyme with water, and in particular, the isoelectric point of the enzyme group derived from Aspergillus oryzae has an acidic region.
  • the enzyme group which shows is preferably mentioned.
  • As an enzyme group derived from Aspergillus oryzae commercially available products can be used.
  • Sumiteam FP, LP or MP (registered trademark, manufactured by Shin Nippon Chemical Co., Ltd.), Ummamizyme (registered trademark, Amano Enzyme ( Co., Ltd.), Sternzyme B11024, PROHIDROXY AMPL (trade name, manufactured by Higuchi Shokai Co., Ltd.), Orientase ONS (registered trademark, manufactured by Hankyu Bioindustry Co., Ltd.), Denateam AP (registered trademark, manufactured by Nagase Biochemical Co., Ltd.)
  • the use of Sumiteam FP (registered trademark, manufactured by Shin Nippon Chemical Co., Ltd.) is preferable.
  • the optimum conditions are usually set, but the conditions such as the amount of enzyme used and the reaction time are set in the enzyme groups used so that the casein hydrolyzate can be obtained. It can be changed as appropriate.
  • the amount of the enzyme group added when hydrolyzing the animal milk casein is, for example, an enzyme group / animal milk casein in an aqueous solution in which the animal milk casein is dissolved in a weight ratio of 1/1000 or more, preferably 1/1000 to 1 / 10, particularly preferably in an amount of 1/100 to 1/10, more preferably 1/40 to 1/10.
  • the reaction conditions can be appropriately selected depending on the enzyme group so that the desired casein hydrolyzate can be obtained.
  • the reaction temperature is 25 to 60 ° C., preferably 45 to 55 ° C.
  • the pH can be 3 to 10, preferably 5 to 9, particularly preferably 5 to 8.
  • the enzyme reaction time can be 2 to 48 hours, preferably 7 to 15 hours.
  • the end of the enzyme reaction can be performed by inactivating the enzyme.
  • the enzyme can be inactivated at 60 to 110 ° C. to stop the reaction. After stopping the enzyme reaction, it is preferable to remove the precipitate by centrifugation or various filter treatments as necessary. Further, by cooling to 5 ° C. to 10 ° C. after stopping the enzyme reaction, more precipitate can be generated.
  • a peptide having bitterness or odor can be removed from the obtained hydrolyzate.
  • the removal of such bitter components and odor components can be performed using activated carbon or a hydrophobic resin.
  • it can be carried out by adding 1 to 20% by weight of activated carbon to the amount of casein used in the obtained hydrolyzate and reacting for 1 to 10 hours.
  • the used activated carbon can be removed by a known method such as centrifugation or membrane treatment.
  • the obtained reaction liquid containing a casein hydrolyzate can be added to a liquid product as it is to form a beverage, for example, a soft drink or a functional drink.
  • the reaction solution is concentrated and then dried to form a powder, which is used as a raw material component for preparing various forms of oral administration compositions.
  • Such powders may contain various auxiliary additives in order to improve nutritional balance, flavor, and the like. Examples include various carbohydrates, lipids, vitamins, minerals, sweeteners, fragrances, pigments, and texture improvers.
  • the active ingredient has an average chain length of 2.1 or less as the number of amino acid residues as described above.
  • the amount of free amino acid and peptide in the casein hydrolyzate is preferably 80% by weight or more as described above.
  • the dose of the composition for suppressing the increase in heart rate during exercise is, for example, 0.04 to 100 g (0.8 to 2000 mg) as the above active ingredient per exercise (unit exercise) in the case of a human body weight of 50 kg. / Kg body weight), preferably about 0.2 to 20 g (4 to 400 mg / kg body weight), more preferably about 0.3 to 4 g (6 to 80 mg / kg body weight).
  • the dose per unit weight may be the same for dwarfs and adults.
  • the timing of administration is before the start of exercise, during exercise, or at both times, and it is preferable in view of the effect that it is administered at least before the start of exercise. Alternatively, administration may be continued after the end of exercise.
  • the product form of the heart rate elevation inhibiting composition of the present invention is not particularly limited as long as it contains the above active ingredients, and may be in the form of a solid or powdered food or a beverage. Furthermore, forms such as functional foods, functional beverages and supplements may be used.
  • the foods and beverages include liquid foods, jellies, cookies, biscuits, and chocolates, as well as various fruit juice beverages, lactic acid bacteria beverages, sports beverages, and carbonated beverages.
  • other ingredients used for food-drinks for example, additives such as sugars, proteins, lipids, vitamins, minerals, flavors, or mixtures thereof may be added. it can.
  • a tablet, a pill, a hard capsule, a soft capsule, a microcapsule, a powder, a granule, a liquid agent etc. are mentioned, for example.
  • Formulation can be carried out, for example, as necessary, using carriers, adjuvants, excipients, excipients, preservatives, stabilizers, binders, pH adjusters, buffers, thickeners, Using a gelling agent, preservative, lubricant, antioxidant, etc., it can be produced in a unit dosage form required for generally accepted formulation practice.
  • excipients used in tableting include lactose, sucrose, D-mannitol, D-sorbitol, starch, pregelatinized starch, dextrin, crystalline cellulose, low-substituted hydroxypropylcellulose, sodium carboxymethylcellulose, Arabic Examples include rubber, pullulan, light anhydrous silicic acid, synthetic aluminum silicate, magnesium aluminate metasilicate, and the like.
  • the lubricant include sugar esters such as sucrose fatty acid ester and glycerin fatty acid ester, hardened oil such as calcium stearate, magnesium stearate, stearic acid, stearyl alcohol, powdered vegetable oil and fat, wax such as honey beeswax. , Talc, silicic acid, silicon and the like.
  • the method for suppressing heart rate increase during exercise of the present invention during exercise that is, by administering the composition for suppressing heart rate increase of the present invention used in the method for suppressing before or during exercise, or both
  • the increase in heart rate during exercise can be suppressed, and the possibility of avoiding the various inconveniences described above can be expected.
  • the method for suppressing the increase in heart rate and the composition for suppressing the increase in heart rate may be simply referred to as the suppression method of the present invention and the composition of the present invention.
  • movement start it is preferable to administer within 3 hours before the exercise start, and it is more preferable to administer from 1 hour before immediately before, especially 45 minutes before 15 minutes before.
  • administration may be continued after the end of exercise.
  • the types of exercise and competition of the present invention are as described above, but the load on the body, that is, the exercise load, can be expressed by the exercise intensity described below.
  • the exercise intensity in the present invention is determined by the following equation (1) in accordance with the Carbonnen method.
  • Exercise intensity (%) [(Exercise heart rate-Resting heart rate) / (Maximum heart rate-Resting heart rate)] x 100 (1)
  • the maximum heart rate in equation (1) varies from person to person, and its measurement is difficult and impractical, so the estimated maximum heart rate shown in equation (2) below is substituted. That is, the maximum heart rate in equation (1) refers to the estimated maximum heart rate in equation (2).
  • the maximum heart rate of each individual may be accurately measured, and the exercise intensity may be obtained using the maximum heart rate.
  • Estimated maximum heart rate 220-age (2)
  • the above exercise intensity is 0%, indicating a resting state, 20% Less than is extremely mild, 20 to 39% is mild, 40 to 59% is moderate, 60 to 84% is strength, 85% or more is extreme strength, and 100% is maximum.
  • less than 40% represents a light exercise
  • 40% to less than 80% represents a slightly tighter to very tight exercise
  • 80% or more represents an exercise close to the limit.
  • the heart rate during exercise may vary greatly depending on the type of exercise, the average value for a certain time during the exercise is used as the heart rate during exercise in Equation (1). Similarly, for the resting heart rate, an average value for a certain period of time before resting before exercise is used.
  • the degree of suppression of heart rate increase during exercise by the suppression method of the present invention and the composition of the present invention varies depending on the type of exercise and the amount of exercise, and also on the individual subject. Compared to the case where the suppression method is not performed, the heart rate during exercise can be reduced at a rate exceeding at least 0%.
  • the reason why the load on the body due to exercise is evaluated by the exercise intensity is that the load varies depending on the individual. That is, even if the amount of exercise is the same, the load on the body varies greatly depending on the age, sex, presence / absence of exercise habits, general or competitive exerciser, and so on. For example, even for an athletic athlete, even if the exercise intensity is “very light”, the exercise intensity may be “intensity” or “extreme intensity” for an elderly person who does not have exercise habits.
  • the exercise intensity exceeds 0%
  • the exercise time is not particularly limited. For example, in the case of a short-distance run such as a 50m run, the exercise time is several seconds, and in the case of a general runner running a full marathon, the exercise time may be 5 to 8 hours.
  • the exercise time is not particularly concerned, and the suppression method of the present invention is applied to an exercise intensity exceeding 0%. And the composition can be applied.
  • exercise time exceeds 30 minutes, even if it is a case where the composition of this invention is administered before the exercise
  • the implementation of the suppression method of the present invention and the administration of the composition of the present invention are preferably performed according to instructions or instructions from a director, a coach or a professional trainer. This is because the situation of the athlete can be judged by observing calmly.
  • general athletes if they belong to various public sports clubs, general sports clubs, or gymnasiums, etc., they should be administered according to the instructions and instructions of coaches, trainers, instructors, etc. Is preferred. After all, it is because it can judge by observing the situation of a general exerciser calmly.
  • composition of the present invention when information such as a manual regarding the administration method of the composition of the present invention is attached, it may be ingested at the discretion of general athletes and individual athletes according to the information. Further, it may be taken at the discretion of each individual according to information from the Internet such as an e-mail transmitted by the right holder of the present invention or a person authorized by the right holder, or a homepage provided. Furthermore, the composition of the present invention may be ingested or the suppression method of the present invention may be implemented based on the individual judgment of each individual.
  • casein hydrolyzate obtained by hydrolyzing animal milk casein and having an average chain length including free amino acids and peptides of 2.1 or less as the number of amino acid residues used in the examples will be described.
  • casein hydrolyzate it means the casein hydrolyzate produced in the production examples described below.
  • FIG. 1 shows a schematic production flow of casein hydrolyzate.
  • milk-derived casein sodium caseinate, manufactured by NZMP Japan
  • a 1N sodium hydroxide manufactured by Wako Pure Chemical Industries
  • the substrate solution was prepared by adjusting the pH to 7.0 and adjusting the temperature to 20 ° C.
  • the substrate solution was sterilized by heating at 95 ° C. for 10 minutes.
  • the substrate solution after sterilization is derived from Aspergillus oryzae and contains commercially available enzymes (registered trademark “Sumiteam FP”, Shin Nippon Chemical Co., Ltd.) containing at least metalloprotease, serine protease, neutral protease I, neutral protease II and leucine aminopeptidase. Kogyo Co., Ltd.) was added so that the enzyme / casein weight ratio would be 1/25, and the mixture was reacted at 50 ° C. for 11 hours. Subsequently, the enzyme was deactivated by heating at 95 ° C. for 10 minutes to obtain a casein hydrolyzate solution.
  • enzymes registered trademark “Sumiteam FP”, Shin Nippon Chemical Co., Ltd.
  • the precipitate and the supernatant are separated by centrifugation (centrifugation conditions; 3000 rpm, 20 minutes), and the supernatant from which the precipitate has been removed is heated at 95 ° C. for 10 minutes. By sterilizing.
  • the supernatant liquid after sterilization was dried by spray drying or freeze drying to obtain a powder of casein hydrolyzate.
  • the components contained in the obtained casein hydrolyzate were analyzed. Protein was measured by the Kjeldahl method, and amino acids were measured by an amino acid analyzer. In addition, the amount obtained by subtracting amino acids from the protein amount was defined as the peptide amount. Furthermore, the lipid was measured by an acid decomposition method, the ash was measured by a direct ashing method, and the moisture was measured by a normal pressure heating drying method. In addition, the remainder which subtracted each component from 100% was made into the amount of carbohydrates. As a result, 38.5% by weight of amino acids, 43.8% by weight of peptides, 5.8% by weight of water, less than 0.1% by weight of lipids, 4.1% by weight of ash and 7.8% by weight of carbohydrates %Met.
  • Average chain length of free amino acid and peptide in casein hydrolyzate The average chain length of free amino acid and peptide contained in the casein hydrolyzate obtained in 1 above reacts with the free amino acid contained therein and the amino group of the peptide. The number of moles was measured with an OPA reagent, and the ratio was compared with the number of moles of caseinate hydrolyzate measured in the same manner. 40 mg of o-phthalaldehyde (special reagent for fluorescence analysis, manufactured by Nacalai Tesque) was dissolved in 1 mL of methanol, and 100 ⁇ L of ⁇ -mercaptoethanol was added.
  • the amount of amino acid in the casein hydrolyzate is 38.5% by weight, and the amount of peptide is 43.8% by weight. Therefore, the content ratio of the dipeptide having the Xaa Pro sequence contained in the casein hydrolyzate is The content was 10.2% by weight based on the total amount of free amino acids and peptides in the degradation product. The content ratio of the tripeptide having the Xaa Pro Pro sequence was 2.0% by weight with respect to the total amount of free amino acids and peptides in the degradation product.
  • Example 1 An exercise test by a placebo-controlled double-blind crossover test was performed under the conditions shown below, and the effect of suppressing the increase in heart rate during exercise was measured.
  • Heart rate increase inhibiting composition Casein hydrolyzate powder produced by the method according to the above-mentioned “1. Production example of casein hydrolyzate” is tableted together with an excipient and a lubricant, and tablet (tablet) Was prepared.
  • the tablet has a weight of 0.35 g, and the content of casein hydrolyzate in the tablet is 25 to 30% by weight.
  • Test method 1 30 tablets before the start of exercise, 4 tablets (1.4 g) were administered to the subject, and heart rate measurement was started by electrocardiogram measurement. Stay calm between tablet administration and exercise start. 2) Exercise [2] above was performed 30 minutes after tablet administration. Continue to measure heart rate by electrocardiogram during exercise. 3) Rest for 30 minutes after exercise and finish the test. 4) From the measurement result of the heart rate, the exercise intensity of each subject is calculated from the above formulas (1) and (2).
  • Table 2 shows the resting heart rate, the exercising heart rate, and the exercise intensity of 14 subjects before the start of exercising.
  • the average value represents the average value of the heart rate of 14 subjects at rest for 30 minutes
  • the standard deviation represents the standard deviation of the average heart rate at rest of 14 subjects.
  • the average value indicates the average value of the heart rate during 30 minutes of exercise for 14 subjects
  • the standard deviation indicates the standard deviation of the average heart rate during exercise of 14 subjects.
  • the exercise intensity in Table 2 the average value represents the average value of the exercise intensity of 14 subjects obtained from the average heart rate at rest and exercise, and the standard deviation represents the standard deviation of the exercise intensity of 14 subjects. .
  • FIG. 2 The heart rate at each elapsed time in FIG. 2 represents an average value for every 14 minutes of 14 subjects.
  • the exercise [2] is started from an elapsed time of 30 minutes.
  • Comparative Example 1 Instead of the tablet of Example 1 containing casein hydrolyzate powder, Example 1 except that a tablet containing 25-30 wt% sodium caseinate as a placebo and prepared in the same manner as Example 1 was administered. The test was conducted in the same manner. All 14 subjects were the same person. The test of Comparative Example 1 was performed on a different day from the test of Example 1. The results are shown in Table 2 and FIG. Each average value and each standard deviation in Table 2 were determined in the same manner as in Example 1. Moreover, the heart rate in each elapsed time in FIG. 2 shows the average value for every 14 minutes of 14 test subjects like Example 1. FIG.
  • Example 1 the heart rate during exercise decreased by about 3.7 times / min during the entire exercise time compared to Comparative Example 1, and the heart rate during exercise increased. Inhibition was statistically significant (P ⁇ 0.05).
  • the exercise intensity decreases by about 4.2% (decrease rate of 13.8%), and a reduction in the load on the body can be expected. It was.
  • the average heart rate at rest for 30 minutes from tablet administration to the start of exercise was not different between Example 1 and Comparative Example 1, indicating that the effect of the present application was different from the effect at rest.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Physiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又はこの加水分解物に含まれる遊離アミノ酸及びペプチド混合物を含有する組成物を、運動開始前、運動中、又はその両時に経口投与する方法が提供される。また、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を有効成分として含有する、上記方法に使用する経口投与用の組成物が提供される。さらにこの経口投与用組成物の、運動時の心拍数上昇抑制への使用が提供される。

Description

運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物
 本発明は、ウォーキング、ジョギング、ランニング、マラソン、水泳、サイクリング、エアロビクス、テニス、サッカー、スキー、及びスケート、等の運動時において、運動負荷に伴う心拍数の上昇を抑制する心拍数上昇抑制方法に関する。さらに、該心拍数上昇抑制方法に使用する心拍数上昇抑制組成物に関する。
 現在、健康増進や生活習慣病の予防や改善のために、ウォーキング、ジョギング等の運動に習慣的に取り組む人が増えてきている。さらに、現時点では特に運動を習慣化していなくても、習慣化したい、習慣化すべきである、と考えている潜在的運動訴求者(運動者予備群)も非常に多い。しかしながら、運動負荷時における循環器系の活発化に伴う身体的負荷、いわゆる「苦しさ」ゆえに、あるいは疲労の蓄積等のために、運動の習慣化に挫折する人も多い。
 また、いわゆるアスリートにおいては、日々、効率的、効果的なトレーニング方法の開発及び改善に取り組んでいる。しかし一方で、競技能力向上への強迫観念等によるオーバーワークや疲労蓄積を我慢してのトレーニングの継続に起因する「故障」が大きな問題となっている。
 本明細書において以降、アスリートではない前者のような目的で、あるいは趣味的に運動に取り組む人を一般運動者、後者のアスリートを競技運動者と称することとする。
 一般運動者予備群の運動の習慣化における挫折では、長い間運動に取り組んでこなかったことを原因とする、運動時の心拍数の上昇に伴う苦しさも一つの要因と考えられる。特に、長期間運動習慣から遠ざかっていた中高年においては、軽度の運動負荷であっても心拍数の上昇が大きく、それゆえ運動に対する忌避感が醸成されることも考えられる。
 また競技運動者のオーバーワーク等においては、練習メニューの消化に対する義務感から、現状の自身の循環機能を超えた運動強度への常態的な取り組みが考えられる。この運動強度の詳細については後述するが、運動時の心拍数も影響しており、運動時の心拍数上昇を抑制できれば、同じ練習メニューであっても相対的に運動強度を低下させることが期待できる。
 しかしながら、これまでは、このような観点からの運動時の心拍数上昇抑制方法については報告がない。
 特許文献1は、哺乳動物の心拍数低下特性を有する乳酸菌発酵させた発酵食品原料、及び当該発酵食品原料含有組成物の使用が開示されている。しかしながら、特許文献1の発酵食品原料は、狭心症、高血圧、及び動脈硬化等の病態を有する哺乳動物に対し、これらの病態治療を目的として、「安静時の心拍数」を低下させるためのものである。
 特許文献2は、精神又は情緒的な状態の改善を目的とした、柑橘類に含まれるフラボノイドであるヘスペリジン類を含有してなる心拍変動調整剤、及び該心拍変動調整剤を使用する心拍変動調整方法を開示している。しかし、特許文献2に開示の発明も、安静時における心拍変動調整に係る技術である。
特表2008-511593号公報 特開2010-59097号公報
 上記のように、病態治療や精神的、情緒的安定のために安静時の心拍数を低下させたり、心拍変動を調整したりする技術は報告されている。しかし、一般運動者及びその予備群、並びに競技運動者を対象とした、運動時の心拍数上昇抑制方法及び該抑制方法に使用する心拍数上昇抑制組成物については知られていない。
 そこで本発明の課題は、一般運動者及びその予備群ための、運動の習慣化や運動時の楽しさの向上に資する、さらには、競技運動者の身体的負荷の低減による故障の予防を視野に入れた、運動時の心拍数上昇抑制方法を提供することにある。
 本発明の別の課題は、一般運動者及びその予備群ための、運動の習慣化や運動時の楽しさの向上に資する、さらには、競技運動者の身体的負荷の低減による故障の予防を視野に入れた、上記の抑制方法に使用する経口投与用の運動時の心拍数上昇抑制組成物を提供することにある。
 本発明のさらに別の課題は、一般運動者及びその予備群ための、運動の習慣化や運動時の楽しさの向上に資する、さらには、競技運動者の身体的負荷の低減による故障の予防を視野に入れた、心拍数上昇抑制のための上記組成物の使用を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定のカゼイン加水分解物又はその含有成分を、被験者(運動者)に対して運動前、運動時又はその両時に投与することにより、運動時の心拍数上昇を抑制する方法を開発し、本発明を完成するに至った。
 すなわち、本発明によれば、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を含有する組成物を、運動開始前、運動中、又はその両時に経口投与する、運動時の心拍数上昇抑制方法が提供される。
 好ましくは、前記カゼイン加水分解物は、獣乳カゼインを麹菌由来の酵素により酵素分解して得られる分解物である。
 また、本発明によれば、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を有効成分として含有する、上記の運動時の心拍数上昇抑制方法に使用する、経口投与用の運動時の心拍数上昇抑制組成物が提供される。
 さらに、該心拍数上昇抑制組成物は、Xaa Pro配列を有するジペプチド及びXaa Pro Pro配列を有するトリペプチドからなる生体内難分解性ペプチドを特定割合で含むことが好ましい。
 さらに本発明によれば、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を有効成分として含有する経口投与用組成物の、運動時の心拍数上昇抑制への使用が提供される。
 本発明の運動時の心拍数上昇抑制方法は、特定のカゼイン加水分解物又はその含有成分を投与することにより運動時の心拍数上昇を抑制できるので、一般運動者及びその予備群に対して運動の習慣化や運動時の楽しさの向上に寄与することができる。さらに、競技運動者のトレーニング中、競技中の身体的負荷の低減による故障の予防にも寄与することができる。
実施例のカゼイン加水分解物の概略製造フロー図である。 実施例1及び比較例1の運動試験における心拍数の変動を示すグラフである。
 以下、本発明を更に詳細に説明する。
 本発明の運動時の心拍数上昇抑制方法は、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を含有する組成物を、運動開始前、運動中、又はその両時に経口投与する方法である。また、本発明の心拍数上昇抑制組成物は、上記カゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を含有する組成物である。
 本発明に用いられるカゼイン加水分解物は、獣乳カゼインをアミノ酸残基数として平均鎖長が特定範囲になるように加水分解して得られる。該カゼイン加水分解物は、遊離アミノ酸及びペプチド混合物を、好ましくはカゼイン加水分解物全量に対して80重量%以上、より好ましくは80~90重量%含む。特に、該ペプチドが、Xaa Pro配列を有するジペプチド及びXaa Pro Pro配列を有するトリペプチドからなる生体内難分解性ペプチドを特定割合で含むことが好ましい。ただし、ペプチドはペプチド塩としても良い。
 ここで、平均鎖長とは、カゼイン酸加水分解物の総アミノ酸のモル数に対する、同重量の獣乳カゼインを加水分解した際に生産される遊離アミノ酸及びペプチドの合計モル数の比で示すことができる。カゼイン酸加水分解物とは、カゼインタンパク質をアミノ酸にまで分解したものである。
 該平均鎖長は、例えば、アミノ基に反応して発色するOPA(o-フタルアルデヒド)試薬を用いたOPA法により、加水分解物中のモル濃度を評価し、平均鎖長=(カゼイン酸加水分解物中のモル数)/(カゼイン加水分解物中のモル数)として求めることができる。
 また、前記生体内難分解性ペプチドとは、生体の腸管から吸収された際に、生体内ペプチダーゼ群に対して分解抵抗性が高い、カルボキシ末端にProを有するジペプチドXaa Pro及びトリペプチドXaa Pro Proを意味する。
 本発明において、獣乳カゼインを加水分解して得られる分解物の平均鎖長は、アミノ酸残基数として2.1以下、好ましくは1.1~2.1、特に好ましくは1.3~2.1である。該平均鎖長が2.1を超える場合には、所望のジペプチド及びトリペプチド、更には遊離アミノ酸の割合が低下し、生体吸収性、更には生体内難分解性ペプチドの含有割合が低下し、所望の効果が得られ難い恐れがある。
 前記カゼイン加水分解物中に含まれるXaa Pro配列を有するジペプチドの含有割合は、分解物中の遊離アミノ酸及びペプチドの合計量に対して通常5重量%以上、好ましくは5~25重量%である。該含有割合が5重量%未満の場合には、所望の作用が低下する恐れがある。
 前記カゼイン加水分解物中に含まれるXaa Pro Pro配列を有するトリペプチドの含有割合は、分解物中の遊離アミノ酸及びペプチドの合計量に対して通常1重量%以上、好ましくは1~5重量%である。該含有割合が1重量%未満の場合には、所望の作用が低下する恐れがある。
 前記カゼイン加水分解物中のペプチドにおいて、Xaa Pro配列を有するジペプチド及びXaa Pro Pro配列を有するトリペプチドのXaaは、任意のアミノ酸であって良い。例えば、Xaa Pro配列を有するジペプチドとしては、Ile Pro、Glu Pro、Arg Pro、Gln Pro、Met Pro、Tyr Proが挙げられ、Xaa Pro Pro配列を有するトリペプチドとしては、Ser Pro Pro、Val Pro Pro、Ile Pro Pro、Phe Pro Proが挙げられる。カゼイン加水分解物としては、前記例示したジペプチド及びトリペプチドの少なくとも1種もしくは全部を含むカゼイン加水分解物が好ましく挙げられる。
 前記カゼイン加水分解物は、ペプチド以外に遊離アミノ酸を含むが、遊離アミノ酸の含有割合は、分解物中の遊離アミノ酸及びペプチドの合計に対して通常35~50重量%、好ましくは40~45重量%である。
 前記カゼイン加水分解物には、前記遊離アミノ酸及びペプチドの他に、例えば市販の獣乳カゼイン等に通常含まれる、脂質、灰分、炭水化物、食物繊維、水分等が10~20重量%程度含まれていても良く、また、必要に応じてこれらのうちの適当な成分の一部若しくは全部を除去しても良い。
 前記カゼイン加水分解物を製造するには、例えば、カゼイン加水分解物の平均鎖長がアミノ酸残基数として2.1以下に分解しうる酵素群を用いて、獣乳カゼインを、該平均鎖長2.1以下に加水分解する方法により得ることができる。
 獣乳カゼインは、Proを多く含む食品等に用いられる安全性が確認されたタンパク質であり、例えば、牛乳、馬乳、山羊乳、羊乳等のカゼインが挙げられ、特に牛乳カゼインが好ましく使用できる。
 獣乳カゼインを加水分解する際のカゼイン濃度は、特に限定されないが、前記加水分解物を効率良く生産するために、3~19重量%が好ましい。
 前記酵素群としては、カゼイン分解物の平均鎖長がアミノ酸残基数として2.1以下に分解しうる酵素を適宜選択して組合せた酵素群であれば良く、例えば、Xaa Pro Xaa又はXaa Pro Pro Xaaのカルボキシ末端のPro Xaa配列が切断可能なペプチダーゼを含む酵素群(X)が好ましく挙げられる。
 酵素群(X)は、活性中心にセリンを持つ、セリンタイプのプロテアーゼ、もしくは活性中心に金属を持つ金属プロテアーゼを含むことが好ましい。金属プロテアーゼとしては、中性プロテアーゼI、中性プロテアーゼII及びロイシンアミノペプチダーゼ等が挙げられ、これらの少なくとも1種を含むことが、所望の加水分解物を効率良く、且つ短時間で、さらには1段階反応で得ることができる点で好ましい。また前記Pro Xaa配列が切断可能なペプチダーゼとしては、等電点が酸性域を示す酵素であることが好ましい。
 前記酵素群又は酵素群(X)としては、例えば、アスペルギルス・オリゼー(Aspergillus  oryzae)等の麹菌由来の酵素群が挙げられる。このような酵素群は、適当な培地で菌体を培養し、生産される酵素を水抽出した酵素群等が挙げられ、特に、アスペルギルス・オリゼー由来の酵素群のうちの等電点が酸性域を示す酵素群が好ましく挙げられる。
 アスペルギルス・オリゼー由来の酵素群としては、市販品を利用することができ、例えば、スミチームFP、LP又はMP(以上、登録商標、新日本化学(株)製)、ウマミザイム(登録商標、天野エンザイム(株)製)、Sternzyme B11024、PROHIDROXY AMPL(以上、商品名、株式会社樋口商会製)、オリエンターゼONS(登録商標、阪急バイオインダストリー(株)製)、デナチームAP(登録商標、ナガセ生化学社製)が挙げられ、特に、スミチームFP(登録商標、新日本化学(株)製)の使用が好ましい。
 これら市販の酵素群を用いる場合には、通常、至適条件が設定されているが、前記カゼイン加水分解物が得られるように条件、例えば、使用酵素量や反応時間等を、用いる酵素群に応じて適宜変更して行なうことができる。
 前記獣乳カゼインを加水分解する際の酵素群の添加量は、例えば、獣乳カゼインを溶解した水溶液に、酵素群/獣乳カゼインが重量比で1/1000以上、好ましくは1/1000~1/10、特に好ましくは1/100~1/10、更に好ましくは1/40~1/10の割合となるような量である。
 反応条件は、酵素群に応じて目的のカゼイン加水分解物が得られるように適宜選択できる。例えば、反応温度は、25~60℃、好ましくは45~55℃であり、pHは、3~10、好ましくは5~9、特に好ましくは5~8とすることができる。また、酵素反応時間は、2~48時間、好ましくは7~15時間とすることができる。
 酵素反応の終了は、酵素を失活させることにより行なうことができ、通常、60~110℃で酵素を失活させ、反応を停止させることができる。
 酵素反応停止後、必要に応じて沈澱物を、遠心分離除去や各種フィルター処理により除去することが好ましい。さらに、酵素反応停止後に5℃~10℃に冷却することで、より多くの沈殿物を生じさせることができる。
 また、必要に応じて、得られる加水分解物から苦味や臭味を有するペプチドを除去することもできる。このような苦味成分や臭味成分の除去は、活性炭又は疎水性樹脂を用いて行なうことができる。例えば、得られた加水分解物中に、使用したカゼイン量に対して活性炭を1~20重量%添加し、1~10時間反応させることにより実施できる。使用した活性炭の除去は、遠心分離や膜処理操作等の公知の方法により行なうことができる。
 得られるカゼイン加水分解物を含む反応液は、そのまま液体製品に添加して飲料、例えば、清涼飲料及び機能性飲料などの形態とすることができる。また、上記カゼイン加水分解物の汎用性を高めるために、上記反応液を濃縮後、乾燥し粉末の形態とすることで、各種形態の経口投与用組成物を調製するための原料成分とすることができる。
 このような粉末には、栄養的バランスや風味等を改善するために、各種補助添加剤を含有させることもできる。例えば、各種炭水化物、脂質、ビタミン類、ミネラル類、甘味料、香料、色素、テクスチュア改善剤が挙げられる。
 本発明の運動時の心拍数上昇抑制方法、及び該抑制方法に用いる心拍数上昇抑制組成物において、その有効成分は、上記説明した様に、平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物である。また、カゼイン加水分解物中の遊離アミノ酸及びペプチドの量は、上記した様に80重量%以上が好ましい。
 本発明において、運動時の心拍数上昇抑制組成物の投与量は、例えば体重50kgのヒトの場合、運動1回(単位運動)当たり、上記有効成分として0.04~100g(0.8~2000mg/kg体重)、好ましくは0.2~20g(4~400mg/kg体重)、さらに好ましくは0.3~4g(6~80mg/kg体重)程度が好ましい。当該単位体重当たりの投与量は小人、大人とも同様であって良い。
 投与のタイミングとしては、運動開始前、運動中、又はその両時であり、少なくとも運動開始前に投与することが効果の点で好ましい。また、運動終了後に継続して投与してもよい。
 本発明の心拍数上昇抑制組成物の製品形態としては、上記有効成分を含有している限り特に制限はなく、固形若しくは粉末食品形態、又は飲料形態のいずれでもよい。さらには、機能性食品、機能性飲料及びサプリメントのような形態であってもよい。
 上記食品及び飲料の例としては、流動食、ゼリー、クッキー、ビスケット、及びチョコレート、並びに各種果汁飲料、乳酸菌飲料、スポーツ飲料、及び炭酸飲料等を例示することができる。また、これらの飲食品形態においては、必要に応じて、飲食品に用いる他の成分、例えば、糖類、タンパク質、脂質、ビタミン、ミネラル、フレーバー、又はこれらの混合物等の添加物を添加することもできる。
 さらに、機能性食品、機能性飲料及びサプリメントとして投与する場合の形態としては、例えば、錠剤、丸剤、硬カプセル剤、軟カプセル剤、マイクロカプセル、散剤、顆粒剤、液剤等が挙げられる。
 製剤化は、例えば、適宜必要に応じて、使用が許容される担体、アジュバント、賦形剤、補形剤、防腐剤、安定化剤、結合剤、pH調節剤、緩衝剤、増粘剤、ゲル化剤、保存剤、滑沢剤、抗酸化剤等を用い、一般に認められた製剤実施に要求される単位用量形態で製造することができる。
 錠剤化等で使用される賦形剤としては、例えば、乳糖、白糖、D-マンニトール、D-ソルビトール、デンプン、α化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウム、等が挙げられる。また、滑沢剤としては、例えば、ショ糖脂肪酸エステルやグリセリン脂肪酸エステルなどのシュガーエステル類、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸、ステアリルアルコール、粉末植物油脂などの硬化油、サラシミツロウなどのロウ類、タルク、ケイ酸、ケイ素、等が挙げられる。
 次に、本発明にいう運動及び競技について説明する。本発明が対象とする運動及び競技には特に制限はないが、例えば、ウォーキング、ジョギング、ランニング、マラソン、水泳、エアロビクス、ボート、野球、テニス、卓球、サッカー、バスケットボール、バレーボール、ダンス、アーチェリー、サイクリング、自転車レース、スキー、スケート、スケートボード、トレッキング、登山、ダイビング、スカイダイビング等が挙げられる。さらには、実施中の体への負荷が高強度の運動競技に匹敵し、局面によっては心拍数が最大心拍数近くまで上昇することがあるオートバイレースや自動車レースなども例示できる。
 これらの運動や競技中において、一般運動者の場合、例えば心拍数上昇による疲労感や苦痛感の上昇によって運動に対する忌避感を覚える恐れがある。また、競技運動者の場合は、無理の蓄積による故障の恐れだけでなく、競技中の疲労の蓄積による反射神経の低下や判断力の低下の懸念があり、競技中の怪我につながる恐れも考えられる。
 本発明の運動時の心拍数上昇抑制方法を運動時に実施する、すなわち、該抑制方法に用いる本発明の心拍数上昇抑制組成物を、運動開始前、運動中、又はその両時に投与することにより、運動時の心拍数の上昇を抑制することができ、上記の各種の不都合を回避できる可能性が期待できる。以後、当該心拍数上昇抑制方法及び心拍数上昇抑制組成物を、単に本発明の抑制方法及び本発明の組成物と称する場合がある。
 なお、運動開始前に投与する場合、運動開始前3時間以内に投与することが好ましく、1時間前から直前、特に45分前から15分前に投与することがより好ましい。また、前記投与に加えて、運動終了後に継続して投与してもよい。
 本発明の運動・競技の種類は上記例示の通りであるが、身体にかかる負荷、つまり運動負荷については、次に説明する運動強度で表すことができる。本発明における運動強度はカルボーネン法に準拠して、次の式(1)により求めるものとする。
 運動強度(%)=[(運動時心拍数-安静時心拍数)÷(最大心拍数-安静時心拍数)]×100   (1)
 なお、式(1)の最大心拍数は、個々人によって異なり、またその測定は困難で実用的ではないため、次の式(2)で示す推定最大心拍数で代用することとする。すなわち、式(1)の最大心拍数は、式(2)の推定最大心拍数を指すものとする。ただし、各個人の最大心拍数を正確に測定し、当該最大心拍数を用いて運動強度を求めてもよい。
 推定最大心拍数=220-年齢   (2)
 「山本哲史、山崎元、運動処方の最近の考え方、慶應義塾大学スポーツ医学研究センター紀要、p33-39、1999年」によれば、上記の運動強度は、0%で安静状態を表し、20%未満で極軽度、20~39%で軽度、40~59%で中等度、60~84%で強度、85%以上で極強度をそれぞれ表し、100%で最大となる。換言すれば、40%未満は軽めの運動を、40%以上80%未満はややきつめの運動から非常にきつめの運動を、80%以上は限界に近い運動を表す。
 なお、運動の種類によっては、運動時の心拍数が大きく変動する場合があるが、式(1)における運動時心拍数は、当該運動時における一定時間の平均値を用いるものとする。また、安静時心拍数も同様に、運動前安静時の一定時間の平均値を用いるものとする。
 また、本発明の抑制方法及び本発明の組成物による運動時の心拍数上昇抑制の程度は、運動種及び運動量、さらには、対象となる個々人によっても異なるので一概には特定できないが、本発明の抑制方法を実施しない場合と比較して、少なくとも0%を超える割合で運動時の心拍数を低下させることができる。
 運動による身体への負荷を運動強度で評価する理由は、当該負荷は個々人によって異なるからである。すなわち、同じ運動量であっても、年齢、性別、運動習慣の有無、一般運動者か競技運動者か、等々の違いによって、身体への負荷が大きく異なる。例えば、競技運動者にとっては運動強度が「極軽度」の運動量であっても、運動習慣のない高齢者の場合、運動強度が「強度」や「極強度」となることもあり得る。
 本発明の組成物を投与して本発明の抑制方法を実施する場合の運動強度としては、特に制限がなく、0%を超える運動強度であればよい。心拍数上昇抑制効果の実感の点で、運動強度が0%超で、60%以下の運動時に本発明の方法を適用することが好ましく、20~40%の運動時に本発明の方法を適用することがより好ましい。
 また、運動強度が0%を超えるものであれば、その運動時間は特に制限が無い。例えば、50m走のような短距離走の場合は運動時間が数秒であり、一般市民ランナーがフルマラソンを行う場合は、運動時間が5~8時間に及ぶこともあり得る。このような短距離走や長距離走も本発明の対象とする運動であるので、上記したように、運動時間は特に関係なく、運動強度が0%を超えるものに対して本発明の抑制方法及び組成物を適用できる。
 なお、運動時間が30分を超える場合には、運動開始前に本発明の組成物を投与した場合であっても、運動中にも投与することができる。
 本発明の抑制方法の実施及び本発明の組成物の投与は、競技運動者の場合、監督、コーチあるいは専門トレーナー等の指導や指示によることが好ましい。競技運動者の状況を冷静に観察して判断できるからである。
 また、一般運動者において、各種の公的スポーツクラブ、又は一般スポーツクラブ若しくはスポーツジム等に所属している場合は、当該クラブやジムの、コーチ、トレーナーあるいはインストラクター等の指導や指示によって投与することが好ましい。やはり、一般運動者の状況を冷静に観察して判断できるからである。
 あるいは、本発明の組成物の投与方法に関するマニュアル等の情報が添付されている場合は、該情報に従って一般運動者及び競技運動者個々人の判断で摂取してもよい。また、本発明の権利者又は権利者から許可された者によって発信されるe-メール、又は提供されるホームページ等のインターネットからの情報に従って個々人の判断で摂取してもよい。さらには、各個々人の独自の判断によって本発明の組成物を摂取したり、本発明の抑制方法を実施したりしてもよい。
 以下本発明を実施例により説明するが、本発明はこれらに限定されない。
 まず、実施例に使用する、獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物の製造例を説明する。なお、以後特に断らない限り、カゼイン加水分解物と称した場合は、以下に説明する製造例で製造したカゼイン加水分解物を指すものとする。
1.カゼイン加水分解物の製造例
 図1にカゼイン加水分解物の概略製造フローを示す。
 牛乳由来カゼイン(カゼインナトリウム、日本NZMP社製)4.5gを約80℃に調整した蒸留水100gに加えて充分に撹拌した後、1N水酸化ナトリウム(和光純薬社製)溶液を添加してpH7.0とし、また温度を20℃に調整して基質溶液を調製した。該基質溶液を95℃で10分間加熱することにより殺菌した。
 殺菌後の基質溶液に、アスペルギルス・オリゼー由来であり、少なくとも金属プロテアーゼ、セリンプロテアーゼ、中性プロテアーゼI、中性プロテアーゼII及びロイシンアミノペプチダーゼを含む市販の酵素(登録商標「スミチームFP」、新日本化学工業社製)を、酵素/カゼインの重量比が1/25となるように添加して、50℃で11時間反応させた。続いて、95℃で10分間加熱することにより酵素を失活させ、カゼイン加水分解物溶液を得た。カゼイン加水分解物溶液を5℃まで冷却した後、析出物と上澄み液を遠心分離(遠心分離条件;3000rpm、20分間)により分離し、該析出物を除去した上澄み液を95℃で10分間加熱することにより殺菌した。殺菌後の上澄み液を、スプレードライ又は凍結乾燥にて乾燥することにより、カゼイン加水分解物の粉末を得た。
 得られたカゼイン加水分解物中の含有成分の分析を行なった。タンパク質はケルダール法で測定し、アミノ酸についてはアミノ酸分析装置にて測定した。また、該タンパク質量からアミノ酸を引いた量をペプチド量とした。更に、脂質は酸分解法で、灰分は直接灰化法で、水分は常圧加熱乾燥法でそれぞれ測定した。尚、100%から各成分を引いた残りを炭水化物量とした。その結果、アミノ酸は38.5重量%、ペプチドは43.8重量%、水分は5.8重量%、脂質は0.1重量%未満、灰分は4.1重量%及び炭水化物は7.8重量%であった。
2.カゼイン加水分解物中の遊離アミノ酸及びペプチドの平均鎖長
 上記1で得られたカゼイン加水分解物に含まれる遊離アミノ酸及びペプチドの平均鎖長は、それに含まれる遊離アミノ酸及びペプチドのアミノ基に反応するOPA試薬でモル数を測定し、同様に測定したカゼイン酸加水分解物のモル数との比で評価した。
 メタノール1mLにo-フタルアルデヒド(蛍光分析用特級試薬、ナカライテスク社製)40mgを溶解させ、β-メルカプトエタノール100μLを加えた。予め調製しておいた100mMの四ホウ酸ナトリウム溶液25mLに、20%ドデシル硫酸ナトリウム2.5mLを加えたものを用いて、上記溶解したo-フタルアルデヒドを25mLに希釈し、更に蒸留水で50mLとすることでOPA試薬を調製した。
 上記1で得たカゼイン加水分解物粉末を、適当な溶媒に適当な濃度で溶解し、15000rpmで10分間遠心分離を行い、上清50μLを分取した。続いて、上記OPA試薬を1mL加え、よく撹拌し、室温で5分間放置した後、吸光光度計(商品名Ubest-35、日本分光(株)製)で340nmの吸収を測定した。
 検量線は1%のカゼイン酸加水分解物を調製し、適切に希釈したものを用いて同様に測定した結果から、吸光度とモル濃度の関係を求めた。そして、平均鎖長は以下の式に従って計算した。その結果、平均鎖長は2.1であった。
平均鎖長=(1%カゼイン酸加水分解物のモル濃度)/(1%カゼイン加水分解物のモル濃度)
3.カゼイン加水分解物中のペプチドの定量
 上記1で得られたカゼイン加水分解物中のジペプチド及びトリペプチドの量を、各種の化学合成標準ペプチドを用いて常法に従って求めた。結果を表1に示す。なお、各ペプチドの量はカゼイン加水分解物1g中のmg数で表した。
Figure JPOXMLDOC01-appb-T000001
 上記した通り、カゼイン加水分解物中のアミノ酸量は38.5重量%、ペプチド量は43.8重量%であるので、カゼイン加水分解物中に含まれるXaa Pro配列を有するジペプチドの含有割合は、分解物中の遊離アミノ酸及びペプチドの合計量に対して10.2重量%であった。また、Xaa Pro Pro配列を有するトリペプチドの含有割合は、分解物中の遊離アミノ酸及びペプチドの合計量に対して2.0重量%であった。
実施例1
 以下に示す条件にて、プラセボ対照二重盲検クロスオーバー試験による運動試験を実施し、運動時の心拍数上昇抑制効果を測定した。
[1]被験者
 運動習慣のない40歳から74歳の健常男性14名(平均年齢53.1歳)。
[2]運動種及び運動量
 トレッドミルを用いた下り勾配(-5°)での時速5kmの歩行運動を30分間。
[3]心拍数上昇抑制組成物
 上記「1.カゼイン加水分解物の製造例」に準じる方法により製造したカゼイン加水分解物粉末を、賦形剤、滑沢剤と共に打錠し、タブレット(錠剤)を調製した。該タブレット1錠の重量は0.35gであり、タブレット中のカゼイン加水分解物含有量は、25~30重量%である。
[4]試験方法
1)運動開始30分前に、タブレット4錠(1.4g)を被験者に投与し、心電図測定により心拍数の測定を開始。タブレット投与から運動開始までの間は安静を維持。
2)タブレット投与から30分後に上記[2]の運動を実施。運動中、心電図測定により心拍数の測定を継続。
3)運動後30分間安静にし、試験を終了。
4)心拍数の測定結果から、各被験者の運動強度を上記式(1)及び(2)から算出。
 被験者14名の運動開始前の安静時心拍数、運動時心拍数及び運動強度を表2に示す。表2中の安静時平均心拍数において、平均値は被験者14名の安静時30分間の心拍数の平均値を、標準偏差は被験者14名の安静時平均心拍数の標準偏差を示す。
 表2中の運動時平均心拍数において、平均値は被験者14名の運動時30分間の心拍数の平均値を、標準偏差は被験者14名の運動時平均心拍数の標準偏差を示す。
 表2中の運動強度において、平均値は上記の安静時及び運動時の平均心拍数より求めた被験者14名の運動強度の平均値を、標準偏差は被験者14名の運動強度の標準偏差を示す。
 また、試験中の心拍数の変動を図2に示す。図2中の各経過時間における心拍数は、被験者14名の5分間ごとの平均値を示す。図2において、経過時間30分から上記[2]の運動を開始している。
比較例1
 カゼイン加水分解物粉末を含む実施例1のタブレットの代わりに、プラセボとしてカゼインナトリウムを25~30重量%含み、実施例1と同様の方法で調製したタブレットを投与すること以外は、実施例1と同様にして試験を実施した。また、被験者14名は全て同一人とした。なお、比較例1の試験は、実施例1の試験とは別の日に実施した。
 結果を表2及び図2に示す。表2中の各平均値、及び各標準偏差は実施例1と同様にして求めた。また、図2中の各経過時間における心拍数は、実施例1と同様、被験者14名の5分間ごとの平均値を示す。
Figure JPOXMLDOC01-appb-T000002
 表2及び図2に示すように、実施例1は比較例1と比較して運動時の心拍数が、全運動時間において約3.7回/分低下しており、運動時の心拍数上昇抑制が統計学的有意に認められた(P<0.05)。また、表2に示すように、心拍数上昇抑制効果により、同一運動量であっても運動強度が約4.2%低下し(低下率13.8%)、身体への負荷の低減が期待できた。
 一方、タブレット投与から運動開始までの30分間の安静時平均心拍数は、実施例1と比較例1で差が認められず、本願の効果は安静時の効果とは異なることが示された。

Claims (6)

  1.  獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を含有する組成物を、運動開始前、運動中、又はその両時に経口投与する、運動時の心拍数上昇抑制方法。
  2.  前記カゼイン加水分解物が、獣乳カゼインを麹菌由来の酵素により酵素分解して得られる、
     請求項1に記載の運動時の心拍数上昇抑制方法。
  3.  前記カゼイン加水分解物、又は前記遊離アミノ酸及びペプチド混合物の経口投与量が、1回当たり0.8~2000mg/kg体重である、
     請求項1又は2に記載の運動時の心拍数上昇抑制方法。
  4.  前記組成物の経口投与が、単位運動時当たり少なくとも1回である、
     請求項1~3のいずれか一項に記載の運動時の心拍数上昇抑制方法。
  5.  獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を有効成分として含有する、請求項1~4のいずれかに記載の運動時の心拍数上昇抑制方法に使用する、
     経口投与用の運動時の心拍数上昇抑制組成物。
  6.  獣乳カゼインを加水分解して得られる、遊離アミノ酸及びペプチドを含む平均鎖長がアミノ酸残基数として2.1以下のカゼイン加水分解物、又は該加水分解物に含まれる遊離アミノ酸及びペプチド混合物を有効成分として含有する経口投与用組成物の、運動時の心拍数上昇抑制への使用。
PCT/JP2016/064257 2015-05-13 2016-05-13 運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物 WO2016182053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017518001A JP6910583B2 (ja) 2015-05-13 2016-05-13 運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物
CN201680027195.6A CN107517585A (zh) 2015-05-13 2016-05-13 抑制运动时的心率上升的方法和抑制心率上升的组合物
US15/573,226 US10583165B2 (en) 2015-05-13 2016-05-13 Method for suppressing increase in heart rate during exercise, and composition for suppressing increase in heart rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098204 2015-05-13
JP2015098204 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016182053A1 true WO2016182053A1 (ja) 2016-11-17

Family

ID=57249218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064257 WO2016182053A1 (ja) 2015-05-13 2016-05-13 運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物

Country Status (4)

Country Link
US (1) US10583165B2 (ja)
JP (1) JP6910583B2 (ja)
CN (1) CN107517585A (ja)
WO (1) WO2016182053A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091014A1 (ja) 2018-11-02 2020-05-07 株式会社古川リサーチオフィス 心拍数低下剤
JP2020099514A (ja) * 2018-12-21 2020-07-02 株式会社frapport 電動トレーニングシステム及び方法、プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167052A (ja) * 1988-06-17 1990-06-27 Kanebo Ltd 経口摂食組成物
JP2007204406A (ja) * 2006-01-31 2007-08-16 Japan Tobacco Inc 体温制御剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466529A1 (en) * 2003-04-07 2004-10-13 Chr. Hansen A/S Composition with heart rate reducing properties
US7883697B1 (en) 2004-09-03 2011-02-08 Chr-Hansen A/S Fermented milk or vegetable proteins comprising receptor ligand and uses thereof
EP1992354B1 (en) * 2006-02-09 2014-04-09 Calpis Co., Ltd. Rheumatoid arthritis-preventive agent for oral intake
JP2010059097A (ja) 2008-09-04 2010-03-18 Ezaki Glico Co Ltd ヘスペリジン類を含有してなる心拍変動調整剤
TW201039839A (en) * 2009-03-27 2010-11-16 Calpis Co Ltd Composition for regulating antonomic nervous activity and method for regulating autonomic nervous

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167052A (ja) * 1988-06-17 1990-06-27 Kanebo Ltd 経口摂食組成物
JP2007204406A (ja) * 2006-01-31 2007-08-16 Japan Tobacco Inc 体温制御剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MIYAZAKI H. ET AL.: "Milk casein hydrolysate lowered heart rate during downhill walking exercise and muscle damage after that in middle-aged to elderly men.", THE JAPANESE SOCIETY OF NUTRITION AND FOOD SCIENCE TAIKAI KOEN YOSHISHU, 12TH ASIAN CONGRESS OF NUTRITION, 14 May 2015 (2015-05-14), pages 1 - 8, XP055328593 *
NAKAMURA H. ET AL.: "Influences of Casein Hydrolysate Ingestion on Cerebral Activity, Autonomic Nerve Activity, and Anxiety.", J. PHYSIOL. ANTHROPOL., vol. 29, no. 3, 2010, pages 103 - 108, XP055328588 *
STAN E. YA. ET AL.: "Isolation amino acid composition and biological effect of peptide bioregulator from bovine kappa casein.", BYULLETEN' EKSPERIMENTAL'NOI BIOLOGII I MEDITSINY, vol. 102, no. 12, 1986, pages 652 - 655, ISSN: 0365-9615 *
STAN E. YA. ET AL.: "On heterogeneity and physiological activity of bovine kappa-casein proteolysis products.", VOPROSY PITANIYA, vol. 1, 1988, pages 39 - 43, ISSN: 0042-8833 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091014A1 (ja) 2018-11-02 2020-05-07 株式会社古川リサーチオフィス 心拍数低下剤
JP2020099514A (ja) * 2018-12-21 2020-07-02 株式会社frapport 電動トレーニングシステム及び方法、プログラム

Also Published As

Publication number Publication date
US20180085419A1 (en) 2018-03-29
US10583165B2 (en) 2020-03-10
CN107517585A (zh) 2017-12-26
JP6910583B2 (ja) 2021-07-28
JPWO2016182053A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
US7740878B2 (en) Use of betaine to enhance exercise performance
CN108142952A (zh) 一种改善疲劳、提高免疫作用的复合肽粉
JP7108521B2 (ja) 体内bdnf量増加促進用組成物
WO2002089786A1 (fr) Compositions destinees a ameliorer la concentration mentale
JP2006273850A (ja) 血中乳酸値上昇抑制組成物及びそれを含有する飲食品
JP6910583B2 (ja) 運動時の心拍数上昇抑制方法及び心拍数上昇抑制組成物
JP4955861B2 (ja) 精神集中向上用組成物
JP5224680B2 (ja) 抗疲労剤
JPH04278061A (ja) 栄養食品
JP6942113B2 (ja) アミノ酸含有組成物
JP2006193435A (ja) 疲労改善剤
US11291649B2 (en) Ammonia metabolism promoter
JP2008088101A (ja) 抗疲労剤
JP7162917B2 (ja) 心拍数低下剤
JP6025538B2 (ja) 分岐鎖アミノ酸の劣化臭抑制剤及び劣化臭抑制方法
US9211297B2 (en) Exercise performance-increasing nutritional supplement and related methods and compositions
KR20130119424A (ko) 스파란터스 인디커스로부터 유래된 성분
KR102517807B1 (ko) 신체 에너지 활성 드링크 분말 조성물 및 이를 포함하는 신체 에너지 활성 드링크 분말
US11850217B2 (en) Athletic performance enhancement composition using menthol
JP2014114244A (ja) 抗疲労剤組成物
UA143083U (uk) Функціональна композиція для збагачення харчових продуктів спеціального дієтичного споживання (для спортсменів)
JP2020150826A (ja) 経口組成物
JP2020176100A (ja) 運動誘発性筋損傷を抑制するための組成物
JP2011063547A (ja) 無酸素性運動向上剤及び無酸素性運動向上用の食品
JP2017012191A (ja) 分岐鎖アミノ酸の劣化臭抑制剤及び劣化臭抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518001

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792777

Country of ref document: EP

Kind code of ref document: A1