WO2016181841A1 - 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 - Google Patents

圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 Download PDF

Info

Publication number
WO2016181841A1
WO2016181841A1 PCT/JP2016/063198 JP2016063198W WO2016181841A1 WO 2016181841 A1 WO2016181841 A1 WO 2016181841A1 JP 2016063198 W JP2016063198 W JP 2016063198W WO 2016181841 A1 WO2016181841 A1 WO 2016181841A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
compressed air
temperature
tank
Prior art date
Application number
PCT/JP2016/063198
Other languages
English (en)
French (fr)
Inventor
正樹 松隈
浩樹 猿田
佳直美 坂本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP16792566.8A priority Critical patent/EP3296545A4/en
Priority to CN201680026506.7A priority patent/CN107532511B/zh
Priority to US15/571,672 priority patent/US10655505B2/en
Publication of WO2016181841A1 publication Critical patent/WO2016181841A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/006Systems for storing electric energy in the form of pneumatic energy, e.g. compressed air energy storage [CAES]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a compressed air storage power generation apparatus and a compressed air storage power generation method.
  • the power generation output fluctuates greatly due to the influence of sunshine on the day. For example, power generation cannot be performed at night, and power generation output greatly decreases on rainy or cloudy days. In addition, in the case of a sunshine situation from dawn to sunset or a sunshine situation such as sunny and cloudy, the power output greatly fluctuates during the day.
  • the power generation output fluctuates greatly due to changes in wind direction and wind power on the day.
  • power generation fluctuations in a short cycle can be smoothed by adding the power generation output of each wind turbine. Is inevitable.
  • a typical technique for smoothing or leveling such fluctuating unstable power generation output is a storage battery that stores electricity when surplus generated power is generated and supplements electricity when power is insufficient. It is called compressed air storage (CAES) that stores air pressure converted into electricity instead of electricity when surplus generated power is generated, and reconverts it into electricity with an air turbine generator when necessary.
  • CAES compressed air storage
  • Technology is known.
  • smoothing the fluctuations of a relatively short period is called smoothing
  • smoothing the fluctuations of a relatively long period is called leveling.
  • both are collectively expressed as smoothing. .
  • Patent Documents 1 to 3 Representative conventional techniques using the CAES technique are disclosed in Patent Documents 1 to 3. In any of Patent Documents 1 to 3, energy storage efficiency is enhanced by recovering heat generated in the compression process by the compressor.
  • JP 2012-97737 A Special table 2013-512410 gazette Special table 2013-536357 gazette
  • any of the conventional techniques there is no disclosure about changing the amount of absorbed power by changing the power for driving the compressor when the power to be absorbed by the compressor changes frequently. Furthermore, there is no disclosure of any means for preventing the heat recovery temperature from fluctuating due to changes in the operating state of the compressor.
  • CAES power generators it is very important to minimize energy loss in the charging process and discharging process (to increase charge / discharge efficiency). Therefore, various parameters such as temperature conditions related to heat recovery are usually set to optimum values so that the charge / discharge efficiency of the entire system can be maximized.
  • the compressor can be operated with a stable discharge pressure and discharge temperature.
  • the power to be absorbed fluctuates greatly, such as the smoothing of the power generation output by renewable energy, the discharge pressure, the discharge temperature, etc. will change. For this reason, operation with a fixed parameter cannot be kept, and charging / discharging efficiency of the entire system is lowered.
  • the present invention provides a compressed air storage power generation apparatus and a compressed air storage power generation method capable of maintaining a high charge / discharge efficiency when the compressed air storage power generation apparatus is used for smoothing renewable energy in which the power to be absorbed fluctuates. Is an issue.
  • an electric motor driven by fluctuating input power a compressor mechanically connected to the electric motor to compress air, fluidly connected to the compressor, and the compressor
  • An accumulator tank that stores air compressed by the above, an expander that is fluidly connected to the accumulator tank and driven by compressed air supplied from the accumulator tank, and a power generation mechanically connected to the expander
  • a first heat exchanger for exchanging heat between the air and the heat medium compressed by the compressor and the heat medium, and heating the heat medium; fluidly connected to the first heat exchanger;
  • the second heat exchanger and the first heat exchanger The first flow rate adjusting means for adjusting the amount of the heat medium and the first heat flow adjusting means to maintain the heat medium stored in the heat medium tank at a predetermined first temperature.
  • a compressed air storage power generation device including a control device
  • the heat medium stored in the heat medium tank by the first flow rate adjusting means is maintained at a predetermined first temperature, thereby smoothing the renewable energy in which the electric power to be absorbed fluctuates.
  • the charge / discharge efficiency can be maintained high.
  • the amount of power absorbed by the compressor changes, the amount of heat of the compressed air discharged from the compressor changes. For example, when the discharge pressure and the discharge temperature are made constant and the power absorption amount of the compressor is increased, the flow rate of the compressed air to be discharged increases. Therefore, if the flow rate of the heat medium exchanged with the first heat exchanger is constant, the temperature of the heat medium flowing into the heat medium tank rises.
  • the temperature becomes higher than the set heat storage temperature set so as to maximize the charge / discharge efficiency of the entire system, and the charge / discharge efficiency decreases.
  • the heat medium temperature falls below the set heat storage temperature, and in this case also, the charge / discharge efficiency is lowered.
  • the control device uses the first flow rate adjusting means to maintain the heat medium flowing into the first heat exchanger at the first temperature based on a change in the amount of electric power to be driven by the electric motor. It is preferable to control the flow rate of the heat medium flowing into the first heat exchanger.
  • the heat medium can be stored in the heat medium tank at the set heat storage temperature (first temperature) set so as to maximize the charge / discharge efficiency of the entire system, the charge / discharge efficiency of the entire system is increased. be able to.
  • the temperature of the heat medium flowing out from the first heat exchanger changes, but by controlling according to the change in the amount of power to be absorbed by the compressor, Since an appropriate heat medium flow rate can be set in advance before the temperature changes, the charge / discharge efficiency can be further improved.
  • control device is configured so that the amount of the heat medium supplied to the second heat exchanger by the second flow rate adjusting means so as to maintain the compressed air supplied to the expander at a predetermined second temperature. Is preferably adjusted.
  • the expander can generate power at the set power generation temperature (second temperature) set to maximize the charge / discharge efficiency of the entire system on the power supply side in addition to the power absorption side. Further, the charge / discharge rate efficiency can be improved.
  • the controller is configured to control the second flow rate adjusting means to maintain the compressed air flowing into the expander at the second temperature based on a change in the amount of power to be generated by the generator. It is preferable to control the flow rate of the heat medium flowing into the heat exchanger.
  • a heat medium return tank that is fluidly connected to the first heat exchanger and the second heat exchanger and stores the heat medium cooled by the second heat exchanger, and the first heat exchange from the heat medium return tank It is preferable to further include a heat medium cooler for reducing the temperature of the heat medium supplied to the chamber to a predetermined third temperature.
  • the heat medium tank further includes a remaining amount sensor for measuring the amount of the stored heat medium, and a third flow rate adjusting means for adjusting the amount of the heat medium supplied to the heat medium tank.
  • the control device supplies the heat medium tank to the heat medium tank by the third flow rate adjusting means when the amount of heat medium that can be stored in the heat medium tank becomes a predetermined value or less based on the measurement value of the remaining amount sensor. It is preferable to reduce the amount of the heat medium to be produced and raise the temperature of the heat medium to be stored.
  • the temperature of the heat medium flowing into the heat medium tank is raised from a preset heat storage temperature in a predetermined steady state, and the flow rate of the heat medium flowing into the heat medium tank is lowered, so that the heat medium tank becomes full. Can be extended. Furthermore, since the temperature of the heat medium in the heat medium tank can be raised, the overall charge / discharge efficiency is reduced, but heat can be stored even under conditions where heat cannot be stored originally, so at least the discharge efficiency can be improved.
  • the third flow rate adjusting means may be the same as the first or second flow rate adjusting means.
  • an electric motor is driven by fluctuating input electric power, air is compressed by a compressor mechanically connected to the electric motor, and compressed air supplied from the compressor is stored in an accumulator tank.
  • driving the expander with compressed air supplied from the pressure accumulating tank generating power with a generator mechanically connected to the expander, and compressed air compressed with the compressor in a first heat exchanger
  • Heat exchange with the heat medium raises the temperature of the heat medium, stores the heat medium heated by the first heat exchanger in the heat medium tank, and heat supplied from the heat medium tank in the second heat exchanger
  • the heat medium stored in the heat medium tank is a predetermined amount.
  • the first flow rate is adjusted to maintain the first temperature. Adjusting the amount of the heating medium supplied to said first heat exchanger by means provides compressed air storage power generation method.
  • the first flow rate adjustment is performed so that the heat medium flowing into the first heat exchanger is maintained at the first temperature based on a change in the amount of electric power to be driven by the electric motor. It is preferable to adjust the flow rate of the heat medium flowing into the first heat exchanger by means.
  • the second flow rate adjusting means maintains the compressed air flowing into the expander at a second temperature based on a change in the amount of power to be generated by the generator. 2 It is preferable to adjust the flow rate of the heat medium flowing into the heat exchanger.
  • the amount of the heat medium stored in the heat medium tank is measured by a remaining amount sensor, and the amount of the heat medium supplied to the heat medium tank is adjusted by a third flow rate adjusting means.
  • the amount of the heat medium that can be stored in the heat medium tank becomes less than a predetermined value based on the measurement value of the remaining amount sensor, the heat medium supplied to the heat medium tank by the third flow rate adjusting means It is preferable to reduce the amount and increase the temperature of the heat medium to be stored.
  • the compressed air storage power generator is used to smooth the renewable energy in which the electric power to be absorbed fluctuates by maintaining the heat medium stored in the heat medium tank at the predetermined temperature by the first flow rate adjusting means.
  • the charge and discharge efficiency can be maintained high.
  • CAES compressed air storage
  • FIG. 1 is a schematic configuration diagram of a compressed air energy storage (CAES) power generator 2.
  • the CAES power generation device 2 of the present embodiment smoothes output fluctuations to the power system 4 that is a demand destination when generating power using renewable energy, and matches the fluctuations in power demand in the power system 4. Output power.
  • the CAES power generator 2 smoothes the power supplied from a power plant 6 made of renewable energy such as a wind power plant or a solar power plant via a power transmission / reception facility 8 composed of a transformer, etc. Power is output to system 4.
  • the CAES power generator 2 includes an air path and a heat medium path.
  • the air path is mainly provided with a compressor 10, an accumulator tank 12, and an expander 14, which are fluidly connected by an air pipe 16, and air flows through the inside (see FIG. 1).
  • the heat medium path is mainly provided with a first heat exchanger 18, a heat medium tank 20, and a second heat exchanger 22, which are fluidly connected by a heat medium pipe 24, A heating medium flows through (see a solid line in FIG. 1).
  • the air path will be described with reference to FIG.
  • the air sucked through the intake filter 26 is compressed by the compressor 10 and stored in the pressure accumulation tank 12.
  • the compressed air stored in the pressure accumulating tank 12 is supplied to the expander 14 and used for power generation by the generator 28.
  • the compressor 10 is a screw type and includes a motor (electric motor) 30.
  • the motor 30 is mechanically connected to the compressor 10.
  • the electric power (input electric power) generated at the power plant 6 is supplied to the motor 30 via the converter 32 and the inverter 34, and the motor 30 is driven by this electric power to operate the compressor 10.
  • the discharge port 10 b of the compressor 10 is fluidly connected to the pressure accumulation tank 12 through the air pipe 16.
  • the compressor 10 When driven by the motor 30, the compressor 10 sucks air from the suction port 10 a, compresses it, discharges it from the discharge port 10 b, and pumps compressed air to the pressure accumulation tank 12.
  • the compressor 10 is a screw type in this embodiment, but may be a turbo type or a scroll type. Moreover, although the number of the compressors 10 is one in this embodiment, you may install several in parallel.
  • the pressure accumulating tank 12 stores the compressed air fed from the compressor 10. Therefore, energy can be stored in the pressure accumulation tank 12 as compressed air.
  • the accumulator tank 12 is fluidly connected to the expander 14 through the air pipe 16. Therefore, the compressed air stored in the pressure accumulation tank 12 is supplied to the expander 14.
  • the storage pressure and storage capacity of the compressed air are determined by the amount of electric power stored in the pressure storage tank 12. However, since the capacity is generally large, it is difficult to insulate from the outside air from the viewpoint of cost. Therefore, the storage temperature of the compressed air is set to be the same as or slightly higher or lower than the atmospheric temperature in order to avoid heat loss due to atmospheric release.
  • a pressure sensor 13 is installed in the pressure accumulation tank 12 so that the pressure of the compressed air inside can be measured.
  • the expander 14 is a screw type and includes a generator 28.
  • the generator 28 is mechanically connected to the expander 14.
  • the expander 14 supplied with the compressed air from the suction port 14a is operated by the supplied compressed air and drives the generator 28.
  • the generator 28 is electrically connected to the external power system 4 (see the one-dot chain line in FIG. 1), and the generated power is supplied to the power system 4 at the demand destination via the converter 36 and the inverter 38.
  • the air expanded by the expander 14 is discharged to the outside through the exhaust silencer 40 from the discharge port 14b.
  • the expander 14 is a screw type in this embodiment, but may be a turbo type or a scroll type. In the present embodiment, the number of expanders 14 is one, but a plurality of expanders may be installed in parallel.
  • the heat medium path In the heat medium path, the heat generated in the compressor 10 in the first heat exchanger 18 is recovered in the heat medium. Then, the heat recovery heat medium is stored in the heat medium tank 20, and heat is returned to the compressed air before being expanded by the expander 14 in the second heat exchanger 22. The heat medium cooled by the heat exchange in the second heat exchanger 22 is supplied to the heat medium return tank 42. Then, the heat medium is supplied again from the heat medium return tank 42 to the first heat exchanger 18, and the heat medium is thus circulated.
  • the kind of the heat medium is not particularly limited, and for example, mineral oil or glycol-based heat medium can be used, and the use temperature is about 150 ° C. to 240 ° C.
  • the first heat exchanger 18 is provided in the air pipe 16 between the compressor 10 and the pressure accumulation tank 12. Therefore, heat is exchanged between the compressed air in the air pipe 16 and the heat medium in the heat medium pipe 24, and the compression heat generated by the compression by the compressor 10 is recovered in the heat medium. That is, in the first heat exchanger 18, the temperature of the compressed air decreases and the temperature of the heat medium increases.
  • the heat medium whose temperature has been raised here is supplied to the heat medium tank 20 through the heat medium pipe 24.
  • the heat medium pipe 24 from the first heat exchanger 18 to the heat medium tank 20 is provided with a temperature sensor 44a and a heat medium for measuring the temperature of the heat medium heated by the first heat exchanger 18 and heated.
  • a first pump (first flow rate adjusting means) 46 for flowing is provided.
  • the type of the first pump 46 is not limited, and any type may be used as long as the heat medium flows. Further, the arrangement of the first pump 46 may be upstream rather than downstream of the first heat exchanger 18.
  • the first pump 46 is driven by a control device 48a, which will be described later, and adjusts the flow rate of the heat medium that exchanges heat with the first heat exchanger 18. In addition to adjusting the heat medium flow rate by the first pump 46, the flow rate may be adjusted by using a constant flow rate pump (not shown) and a flow rate adjusting valve.
  • the charge / discharge efficiency of the CAES power generator 2 can be maintained high.
  • first temperature a predetermined set heat storage temperature
  • the heat amount of the compressed air discharged from the compressor 10 changes.
  • the flow rate of the compressed air to be discharged increases. Therefore, when the flow rate of the heat medium exchanged by the first heat exchanger 18 is constant, the temperature of the heat medium flowing into the heat medium tank 20 increases.
  • the heat medium tank 20 is a steel tank whose periphery is covered with a heat insulating material insulated from the atmosphere.
  • the heat medium tank 20 stores the heat medium heated by the first heat exchanger 18.
  • the heat medium tank 20 is provided with a remaining amount sensor 50a to detect the amount of heat medium stored.
  • the remaining amount sensor 50a may be a liquid level sensor.
  • a flow rate sensor that detects the flow rate of the heat medium in the heat medium pipe is not installed in the heat medium tank 20 directly, and the amount of heat medium in the heat medium tank 20 is determined from the integrated value of the inflow and outflow. You may decide.
  • the heat medium tank 20 is further provided with a temperature sensor 44b, and the temperature of the internal heat medium can be measured.
  • the heat medium stored in the heat medium tank 20 is supplied to the second heat exchanger 22 through the heat medium pipe 24.
  • the heat medium pipe 24 from the heat medium tank 20 to the second heat exchanger 22 is provided with a second pump (second flow rate adjusting means) 52 for causing the heat medium to flow.
  • the type of the second pump 52 is not limited and may be any type.
  • the arrangement of the second pump 52 may be on the downstream side of the second heat exchanger 22 instead of the upstream side.
  • the second pump 52 is driven by a control device 48b, which will be described later, and adjusts the flow rate of the heat medium that exchanges heat with the second heat exchanger 22.
  • the flow rate may be adjusted by using a constant flow rate pump and a flow rate adjusting valve.
  • the expander can generate power at a set power generation temperature (second temperature), which will be described later, on the power generation side in addition to the set heat storage temperature on the power absorption side.
  • second temperature a set power generation temperature
  • the second heat exchanger 22 is provided in the air pipe 16 between the pressure accumulation tank 12 and the expander 14. Therefore, heat is exchanged between the compressed air supplied from the pressure accumulation tank 12 to the expander 14 and the heat medium in the heat medium pipe 24, and the compressed air is heated before expansion by the expander 14. That is, in the 2nd heat exchanger 22, the temperature of compressed air rises and the temperature of a heat medium falls.
  • the air pipe extending from the second heat exchanger 22 to the suction port 14a of the expander 14 is provided with a temperature sensor 44c for measuring the temperature of the internal compressed air. Further, the heat medium cooled by the second heat exchanger 22 is supplied to the heat medium return tank 42 through the heat medium pipe 24.
  • the heat medium return tank 42 stores the heat medium cooled by the heat exchange in the second heat exchanger 22. Therefore, the temperature of the heat medium in the heat medium return tank 42 is usually lower than that of the heat medium in the heat medium tank 20. Similar to the heat medium tank 20, the heat medium return tank 42 is provided with a remaining amount sensor 50 b and a temperature sensor 44 d. The heat medium stored in the heat medium return tank 42 is supplied to the first heat exchanger 18 through the heat medium pipe 24.
  • a heat medium cooler 54 is provided in the heat medium pipe 24 extending from the heat medium return tank 42 to the first heat exchanger 18.
  • the heat medium cooler 54 of this embodiment is a heat exchanger, and exchanges heat between the heat medium in the heat medium pipe 24 extending from the heat medium return tank 42 to the first heat exchanger 18 and the cooling water. The temperature of the heating medium is lowered.
  • the temperature of the heat medium flowing into the first heat exchanger 18 by the heat medium cooler 54 can be maintained at a predetermined temperature (third temperature), so heat exchange in the first heat exchanger 18 can be stably performed. It is possible to improve the charge / discharge efficiency.
  • the heat medium path of the CAES power generator 2 is configured.
  • the CAES power generator 2 includes control devices 48a and 48b.
  • the control devices 48a and 48b are constructed by hardware including a sequencer and software installed therein.
  • the control device 48a is electrically connected to at least the motor 30, the first pump 46, and the power plant 6 (see the one-dot chain line in FIG. 1).
  • the control device 48b is electrically connected to at least the generator 28, the second pump 52, and the power system 4 (see the one-dot chain line in FIG. 1). Therefore, these operations are controlled by the control devices 48a and 48b.
  • the pressure sensor 13, the temperature sensors 44a to 44d, and the remaining amount sensors 50a and 50b output measured values to the control devices 48a and 48b.
  • control devices 48a and 48b control the CAES power generation device 2 based on these measured values.
  • the control devices 48a and 48b are separately provided as a control device 48a that controls a function related to compression and a control device 48b that controls a function related to expansion, but one control device that controls both functions. May be provided.
  • the control devices 48a and 48b perform three types of control methods for the first pump 46 and the second pump 52. Any of the following three control methods may be used.
  • the heating medium temperature Tot flowing out from the first heat exchanger 18 and the compressed air temperature Tes supplied to the expander 14 are made constant.
  • the first pump 46 and the second pump 52 are controlled.
  • the first flow rate adjusting means of the present invention includes the first pump 46 and the temperature sensor 44a
  • the second flow rate adjusting means of the present invention includes the second pump 52 and the temperature sensor 44c.
  • the control device 48 a increases the rotation speed of the first pump 46 and is supplied to the first heat exchanger 18. The heat medium flow rate is increased and the heat medium temperature Tot is decreased.
  • the control device 48b reduces the rotation speed of the second pump 52 and supplies the second heat exchanger 22 with the flow rate of the heat medium. And the compressed air temperature Tes is reduced.
  • the reverse operation is performed. In this way, the set heat storage temperature and the set power generation temperature are maintained.
  • the set heat storage temperature is a target temperature of the heat medium temperature Tot flowing out from the first heat exchanger 18, and at this time, the charge / discharge efficiency of the entire system can be maximized.
  • the set power generation temperature is a target temperature of the compressed air temperature Tes supplied to the expander 14, and at this time, the charge / discharge efficiency of the entire system can be maximized.
  • the first flow rate adjusting means of the present invention includes the first pump 46
  • the second flow rate adjusting means of the present invention includes the second pump 52.
  • the control device 48a increases the rotation speed of the first pump 46, increases the flow rate of the heat medium supplied to the first heat exchanger 18, and decreases the heat medium temperature Tot.
  • the control device 48b increases the rotational speed of the second pump 52, increases the flow rate of the heat medium supplied to the second heat exchanger 22, and increases the compressed air temperature Tes.
  • the reverse operation is performed. In this way, the set heat storage temperature and the set power generation temperature are maintained.
  • the temperature sensors 44a and 44c are unnecessary.
  • the temperature sensors 44a and 44c may be installed and the first and second control methods may be used in combination.
  • the heat medium temperature Tot flowing out from the first heat exchanger 18 and the compressed air temperature Tes supplied to the expander 14 are made constant.
  • the first pump 46 and the second pump 52 are controlled.
  • the first flow rate adjusting means of the present invention includes the first pump 46
  • the second flow rate adjusting means of the present invention includes the second pump 52.
  • the absorbed power command value Lc is the amount of power to be driven (absorbed) by the motor 30 and is determined based on the required charge amount from the power plant 6.
  • the generated power command value Lg is the amount of power to be generated by the generator 28, and is determined based on the required power generation amount (demand power) from the power system 4 at the demand destination. These may be determined based on a predicted value of input power or a predicted value of demand power. These predicted values may be determined based on statistical data such as weather / meteorological conditions of the day, past weather conditions, and temporal fluctuations in power demand. Further, in order to suppress the power fluctuation at the system connection point, it may be determined to cancel the change based on the change in the electric energy such as the voltage, current, and frequency at the system connection point.
  • the control device 48a receives the absorbed power command value Lc and generates a rotation speed command to the compressor 10.
  • This rotational speed command can be calculated based on the internal discharge pressure of the compressor 10, the discharge pressure at the discharge port, the suction temperature, the discharge temperature, and the like.
  • a conversion table calculated in advance may be used, or may be calculated inside the control device 48a.
  • the control device 48b receives the generated power command value Lg and generates a rotation speed command for the expander 14.
  • This rotational speed command can be calculated from the internal discharge pressure of the expander 14, the discharge pressure at the discharge port, the suction temperature, the discharge temperature, and the like.
  • a conversion table calculated in advance may be used, or may be calculated inside the control device 48b. Based on these command values Lc and Lg, the rotational speeds of the motor 30 and the generator 28 are determined, and based on these rotational speeds, the first pump 46 and the second pump 52 are controlled in the same manner as in the second control method.
  • the heat medium can be stored in the heat medium tank 20 at a constant set heat storage temperature set so that the charge / discharge efficiency of the entire system can be maximized by the absorbed power command value Lc, the charge / discharge efficiency of the entire system can be increased. Can be increased. Further, there is a considerable time delay until the temperature of the heat medium flowing out from the first heat exchanger 18 changes, but by controlling according to the change in the amount of electric power to be absorbed by the compressor 10, Before the temperature of the medium changes, the flow rate of the heating medium can be made appropriate in advance, and the charge / discharge efficiency can be further improved.
  • the generated power command value Lg can supply compressed air to the expander 14 at a constant set power generation temperature set so as to maximize the charge / discharge efficiency of the entire system, the charge / discharge efficiency of the entire system is increased. be able to.
  • the compressed air can be controlled by controlling the amount of power to be generated by the generator 28. Before the temperature changes, the flow rate of the heating medium can be set to an appropriate value in advance, and the charge / discharge efficiency can be further improved.
  • the set heat storage temperature (first temperature) is the temperature of the heat medium suitable for storing in the heat medium tank 20, and is set to 170 ° C. in the first embodiment described above.
  • the set power generation temperature (second temperature) is the temperature of compressed air suitable for generating power with the expander 14, and is set to 170 ° C. in the first embodiment. These temperatures may be fixed values or may be variable values that change according to other conditions.
  • FIG. 2 is a graph showing an example of a charge command and a discharge command.
  • the horizontal axis represents time, and the vertical axis represents the absorbed power command value or the power generation command value.
  • the plus side indicates a charge command, and the minus side indicates a discharge command.
  • the screw compressor 10 and the screw expander 14 are used, the amount of power to be absorbed (charged) or generated (discharged), and the rotation speed of the motor 30 of the compressor 10 and the generator 28 of the expander 14 are as follows. It changes almost proportionally. Similarly, the amount of compressed air discharged from the compressor 10 and the amount of compressed air used in the expander 14 also change substantially proportionally. Therefore, the vertical axis of the graph also corresponds to the number of rotations or the amount of compressed air.
  • control devices 48a and 48b adjust the heat medium temperature by adjusting the heat medium flow rate by the first pump 46 and the second pump 52, and set the heat medium stored in the heat medium tank 20 to the optimum set heat storage temperature.
  • the efficiency of the system is maintained by maintaining the compressed air supplied to the expander 14 at an optimal set power generation temperature.
  • Tti 50 ° C.
  • Table 1 The temperatures in state A are summarized as shown in Table 1 below.
  • the absorbed power command value Lc decreases as in the state B after changing from the state A
  • the rotational speed of the compressor 10 decreases, so the amount of air discharged from the compressor 10 decreases and Assuming that no control is performed, the amount of heat exchange decreases accordingly. Therefore, the temperature Tot of the heat medium flowing out from the first heat exchanger 18 decreases.
  • the heat medium temperature Tot flowing out from the first heat exchanger 18 is about 110 ° C.
  • the absorbed power command value Lc changes from the state B to the state C, it is necessary to increase the rotational speed of the compressor 10 more than in the state A. Accordingly, the amount of compressed air supplied to the first heat exchanger 18 increases more than in the state A, and the amount of heat recovered by the first heat exchanger 18 to the heat medium increases.
  • the heat medium temperature Tot flowing out from the first heat exchanger 18 is about 190 ° C.
  • the rotation speed of the first pump 46 is increased to increase the circulation flow rate of the heat medium, and the first heat exchange
  • the heating medium temperature Tot flowing out of the vessel 18 is kept constant at 170 ° C.
  • the heat storage medium temperature Tot flowing out from the first heat exchanger 18 is kept constant at 170 ° C., and the set heat storage temperature set so as to maximize the charge / discharge efficiency of the entire system. Is realized.
  • the operation of the charging-related device is stopped or the operation of the discharging-related device is started for a minute fluctuation removal (whisker removal).
  • the rotational speed of the expander 14 decreases, so that the amount of compressed air consumed from the pressure accumulating tank 12 decreases, and the corresponding amount increases. 2
  • the flow rate of the compressed air supplied to the heat exchanger 22 decreases. Accordingly, if it is assumed that no control is performed on the flow rate of the heat medium, the compressed air temperature Tes supplied to the expander 14 increases. In the state E, for example, the compressed air temperature Tes supplied to the expander 14 is about 180 ° C.
  • state E in order to maintain the power generation efficiency, it is necessary to keep the compressed air temperature Tes supplied to the expander 14 constant.
  • the rotational speed of the expander 14 increases, so that the amount of compressed air consumed from the pressure accumulating tank 12 increases, and the second heat exchange correspondingly increases.
  • the flow rate of the compressed air supplied to the vessel 22 increases. Therefore, the compressed air temperature Tes supplied to the expander 14 decreases. In the state F, for example, the compressed air temperature Tes supplied to the expander 14 is about 130 ° C.
  • state F in order to maintain the power generation efficiency, it is necessary to keep the compressed air temperature Tes supplied to the expander 14 constant.
  • the flow rate of the heat medium supplied to the second heat exchanger 22 may be increased. Therefore, the control device 48b increases the number of rotations of the second pump 52 to increase the circulating flow rate of the heat medium, and keeps the compressed air temperature Tes supplied to the expander 14 constant.
  • the compressed air temperature Tes supplied to the expander 14 is kept constant at 160 ° C., and the set power generation temperature set so as to maximize the charge / discharge efficiency of the entire system is realized. To do.
  • the charge / discharge efficiency of the entire system can be maximized by maintaining the optimum set heat storage temperature and set power generation temperature.
  • the CAES power generator 2 of the present embodiment also performs control according to the amount of heat medium stored in the heat medium tank 20. For example, when it is detected by the remaining amount sensor 50b that the amount of heat medium stored in the heat medium tank 20 has reached 90% of the total capacity of the heat medium tank 20, if the remaining 10% is further stored, heat cannot be stored any more.
  • the heat medium to be stored in the heat medium tank 20 may be introduced into a heat tank discharge spare tank (not shown) that is not insulated. Instead of this, even if the heat medium is cooled by using the heat medium cooler 54 or the like, or the heat medium in the heat medium tank 20 is used by discharging with a constant power even though the discharge command is not received. Good.
  • the compressed air may be stored in the pressure accumulating tank 12 without exchanging heat with the first heat exchanger 18 or may be discharged to the atmosphere so that the heat medium is not supplied to the heat medium tank 20.
  • the amount of heat to be collected is wasted or the charge / discharge efficiency is greatly reduced.
  • the third flow rate adjusting means of the present invention is used to execute this temperature adjustment.
  • the third flow rate adjusting means of the present invention includes at least a first pump 46 and a remaining amount sensor 50a.
  • a third pump (not shown) may be provided.
  • a high-temperature heat medium tank (not shown) may be provided separately to store only the heat medium heated to 230 degrees.
  • the second heat exchanger 22 when the heat is exchanged with the heat medium at 230 ° C. and the power is generated by the generator 28, a larger amount of power generation can be output than when the heat is exchanged at 170 ° C. Further, by raising the temperature of the heat medium flowing into the heat medium tank 20 from a preset heat storage temperature in a predetermined steady state and decreasing the flow rate of the heat medium flowing into the heat medium tank 20, the heat medium tank 20 is filled. You can extend the time until it becomes tongue.
  • the temperature of the heat medium in the heat medium tank 20 can be raised, the overall charge / discharge efficiency is lowered, but heat can be stored even under conditions where heat cannot be stored originally, so at least the discharge efficiency can be improved. Therefore, it is effective to increase the heat medium temperature and decrease the heat medium circulation rate.
  • the heat medium when the temperature of the heat medium stored in the heat medium tank 20 is lowered, the heat medium may be heated to a predetermined temperature with a heater or the like not shown.
  • the heat medium stored in the heat medium return tank 42 may be supplied to the heat medium tank 20 and then heated by a heater or the like.
  • FIG. 3 shows a schematic diagram of the CAES power generator 2 of the second embodiment.
  • the CAES power generator 2 of the present embodiment has a configuration other than the portion related to the fact that a plurality of compressors 10, expanders 14, and heat medium tanks 20a and 20b are installed, and components are stored in containers 56a to 56c. 1 is substantially the same as the first embodiment. Therefore, the description of the same parts as those shown in FIG. 1 is omitted.
  • FIG. 3 is a schematic diagram, not all the components of the CAES power generator 2 are shown.
  • the CAES power generation device 2 of the present embodiment includes three compressors 10 and four expanders 14. Three compressors 10 are fluidly connected in parallel, and four expanders 14 are fluidly connected in parallel. Since the drive number of the compressor 10 and the expander 14 can be changed according to input power or demand power, wide and efficient smoothing is possible. Moreover, the compressor 10, the expander 14, and the pressure accumulation tank 12 are connected by the air piping 16, and the compressor 10, the expander 14, the heating medium tanks 20a and 20b, and the heating medium return tank 42 are the heating medium. They are connected by a pipe 24. The control devices 48a and 48b are housed together in the house 58.
  • the CAES power generation apparatus 2 of the present embodiment includes a high-temperature heat medium tank 20a and a low-temperature heat medium tank 20b, and the heat medium exchanged by the first heat exchanger 18 is stored for each temperature. Therefore, in the second heat exchanger 22, the heat exchange is performed at the heat medium temperature as required, so that the discharge efficiency is improved.
  • the containers 56a to 56c most of the components of the CAES power generator 2 are stored in the containers 56a to 56c.
  • the container 56a related to the compression function such as the compressor 10 and the first heat exchanger 18 (not shown)
  • the container 56b related to the expansion function such as the expander 14 and the second heat exchanger 22 (not shown)
  • the heating medium tank 20 and the like Three containers 56a to 56c are installed separately from the container 56c related to the heat storage function.
  • the heat medium cooler 54 is disposed outside the container 56c as a cooling tower.
  • the charge side and the discharge side each have a capacity of about 500 kW.
  • the charging / discharging unit By configuring the charging / discharging unit with the containers 56a to 56c, transportation and installation become easy, and the equipment capacity can be increased or decreased freely. For example, if these three containers 56a to 56c are installed as one set and six sets are installed, a 3 MW facility can be configured as a whole.
  • the “fluctuating input power” of the present invention is not limited to renewable energy, and may smooth or cut the demand power of factory equipment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

圧縮空気貯蔵発電装置2は、圧縮機10と、蓄圧タンク12と、膨張機14とを備える。圧縮機10は、再生可能エネルギーによりモータ30を駆動されて空気を圧縮する。蓄圧タンク12は、圧縮空気を貯蔵する。膨張機14は、圧縮空気によって駆動される。膨張機14には発電機28が機械的に接続されて発電する。また、装置2は、圧縮熱を回収する第1熱交換器18と、熱媒を貯蔵する熱媒タンク20と、圧縮空気を加熱する第2熱交換器22とを備える。また、装置2は、第1ポンプ46と、制御装置48aとを備える。第1ポンプ46は、第1熱交換器18に供給される熱媒の量を調整する。制御装置48aは、第1ポンプ46を制御し、熱媒タンク20に貯蔵される熱媒を所定の第1の温度に維持するように第1熱交換器18に供給される熱媒の量を調整する。これにより、充放電効率を高く維持できる圧縮空気貯蔵発電装置2を提供する。

Description

圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
 本発明は、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法に関する。
 太陽光発電や太陽熱発電などの太陽エネルギーを利用した発電においては、当日の日照状況に影響されて、その発電出力が大きく変動する。例えば、夜間には発電できないし、雨天や曇天の日には発電出力が大きく減少する。また、夜明けから日暮れまでの日照状況や、晴れのち曇りといった日照状況の場合、発電出力が一日のうちで大きく変動する。
 また、風車を用いた風力発電においては、当日の風向や風力の変化によって、その発電出力が大きく変動する。複数の風車をまとめたウインドファームのような発電設備においては、各風車の発電出力を加算することで、短周期の発電変動は平滑化することができるが、全体としてみてもその発電出力の変動は避けることができない。
 このような変動する不安定な発電出力を平滑化又は平準化する技術としては、余剰発電電力が生じた際に電気を蓄えておき電力不足時に電気を補う蓄電池がその代表的なものであるが、余剰発電電力が生じた際に電気の代わりに変換した空気圧力として蓄えておき、必要なときに空気タービン発電機等で電気に再変換する圧縮空気貯蔵(CAES:compressed air energy storage)と呼ばれる技術が知られている。一般に、比較的短周期の変動を均す場合を平滑化と呼び、比較的長周期の変動を均す場合を平準化と呼んでいるが、ここでは両者をまとめて平滑化と表すものとする。
 このCAESの技術を利用した代表的な従来技術が特許文献1から特許文献3に開示されている。特許文献1から特許文献3のいずれにおいても、圧縮機による圧縮工程で発生する熱を回収することで、エネルギー貯蔵効率を高めている。
特開2012-97737号公報 特表2013-512410号公報 特表2013-536357号公報
 しかし、いずれの従来技術においても、オフピーク時における不要電力(再生可能エネルギーによる発電電力のように大きな変動はしない)を用いて、地下洞窟等の大型の貯蔵空間に圧縮空気を貯蔵することを前提にするものである。従って、太陽光や風力等の再生可能エネルギーを用いた発電のように、変動する電力を平滑化することを目的とするものではない。
 さらに、いずれの従来技術においても、圧縮機で吸収すべき電力が頻繁に変化する場合に、圧縮機を駆動する動力を変動させて吸収電力量を変化させることについて開示がない。ましてや圧縮機の運転状態の変化によって熱回収温度が変動することを防止する手段については全く開示されていない。
 CAES発電装置においては、充電工程と放電工程におけるエネルギー損失をできるだけ小さくする(充放電効率を高くする)ことが非常に重要である。従って通常、システム全体の充放電効率を最大限高めることができるように、熱回収に係る温度条件等の各種パラメータを最適値に定めている。吸収すべき電力があまり変動しない場合は、安定した吐出圧力、吐出温度で圧縮機を運転することができる。しかし、再生可能エネルギーによる発電出力の平滑化のように、吸収すべき電力が大きく変動することを前提にする場合、吐出圧力、吐出温度などが変化することになる。このため、一定のパラメータでの運転をキープすることができず、システム全体の充放電効率が低下する。
 本発明は、吸収すべき電力が変動する再生可能エネルギーの平滑化に圧縮空気貯蔵発電装置を用いるに際して、その充放電効率を高く維持できる圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法を提供することを課題とする。
 本発明の第1の態様は、変動する入力電力により駆動される電動機と、前記電動機と機械的に接続され、空気を圧縮する圧縮機と、前記圧縮機と流体的に接続され、前記圧縮機により圧縮された空気を貯蔵する蓄圧タンクと、前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動される膨張機と、前記膨張機と機械的に接続された発電機と、前記圧縮機で圧縮された空気と熱媒とで熱交換し、熱媒を加熱するための第1熱交換器と、前記第1熱交換器と流体的に接続され、熱媒を貯蔵する熱媒タンクと、前記熱媒タンクと流体的に接続され、前記熱媒タンクから供給される熱媒と前記膨張機に供給される圧縮空気とで熱交換し、圧縮空気を加熱するための第2熱交換器と、前記第1熱交換器に供給される熱媒の量を調整するための第1流量調整手段と、前記熱媒タンクに貯蔵される熱媒を所定の第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器に供給される熱媒の量を調整する制御装置とを備える圧縮空気貯蔵発電装置を提供する。
 この構成により、第1流量調整手段によって熱媒タンクに貯蔵される熱媒を所定の第1の温度に維持することで、吸収すべき電力が変動する再生可能エネルギーの平滑化に圧縮空気貯蔵発電装置を用いるに際して、その充放電効率を高く維持できる。具体的な充放電効率低下要因として、圧縮機の電力吸収量が変化した場合、圧縮機から吐出される圧縮空気の熱量が変化する。例えば、吐出圧力と吐出温度を一定にし、圧縮機の電力吸収量を増加させた場合は、吐出される圧縮空気の流量が増大する。従って、仮に第1熱交換器で熱交換する熱媒の流量を一定とした場合、熱媒タンクに流入する熱媒温度が上昇する。この場合、システム全体の充放電効率を最大限高めることができるように設定された設定蓄熱温度より高い温度となって、充放電効率が低下する。一方、圧縮機の電力吸収量を減少させる場合、熱媒温度が設定蓄熱温度より下がり、この場合も充放電効率が低下する。
 前記制御装置は、前記電動機で駆動すべき電力量の変化に基づいて、前記第1熱交換器に流入する熱媒を前記第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器へ流入する熱媒の流量を制御することが好ましい。
 これにより、システム全体の充放電効率を最大限高めることができるように設定された設定蓄熱温度(第1の温度)で熱媒タンクに熱媒を貯蔵できるので、システム全体の充放電効率を高めることができる。また、第1熱交換器から流出する熱媒の温度に変化が出るまでには相当の時間遅れがあるが、圧縮機で吸収すべき電力量の変化に応じて制御することで、熱媒の温度に変化が出る前に予め適切な熱媒流量にすることができるので、充放電効率を一層向上できる。
 前記第2熱交換器に供給される熱媒の量を調整するための第2流量調整手段をさらに備えることが好ましい。また、前記制御装置は、前記膨張機に供給される圧縮空気を所定の第2の温度に維持するように、前記第2流量調整手段によって前記第2熱交換器に供給される熱媒の量を調整することが好ましい。
 これにより、電力吸収側に加えて電力供給側においても、システム全体の充放電効率を最大限高めることができるように設定された設定発電温度(第2の温度)で、膨張機が発電できるので、更に充放電率効率を向上できる。
 前記制御装置は、前記発電機で発電すべき電力量の変化に基づいて、前記膨張機に流入する圧縮空気を前記第2の温度に維持するように、前記第2流量調整手段によって前記第2熱交換器へ流入する熱媒の流量を制御することが好ましい。
 これにより、システム全体の充放電効率を最大限高めることができるように設定された設定発電温度で膨張機に圧縮空気を供給できるので、システム全体の充放電効率を高めることができる。また、膨張機に供給するための圧縮空気の温度に変化が出るまでには相当の時間遅れがあるが、発電機で発電すべき電力量の変化に応じて制御することで、圧縮空気の温度に変化が出る前に予め適切な熱媒流量にすることができ、充放電効率を一層向上できる。
 前記第1熱交換器及び前記第2熱交換器と流体的に接続され、前記第2熱交換器で降温した熱媒を貯蔵する熱媒戻りタンクと、熱媒戻りタンクから前記第1熱交換器に供給する熱媒の温度を所定の第3の温度に低下させるための熱媒冷却器とをさらに備えることが好ましい。
 これにより、熱媒冷却器によって第1熱交換器に流入する熱媒を所定の第3の温度に維持できるので、第1熱交換器における熱交換を安定的に行うことができ、充放電効率を向上できる。
 前記熱媒タンクは、貯蔵している熱媒の量を測定するための残量センサと、前記熱媒タンクに供給される熱媒の量を調整するための第3流量調整手段とをさらに備え、前記制御装置は、前記残量センサの測定値に基づいて前記熱媒タンクに貯蔵可能な熱媒量が所定値以下になった場合に、前記第3流量調整手段によって前記熱媒タンクに供給される熱媒の量を減少させ、貯蔵する熱媒の温度を上昇させることが好ましい。
 これにより、熱媒タンクに流入する熱媒の温度を予め定められた定常状態における設定蓄熱温度より上げ、熱媒タンクに流入する熱媒の流量を下げることで、熱媒タンクが満タンになるまでの時間を延長できる。さらに、熱媒タンクの熱媒の温度を上げることができるので、全体としての充放電効率は低下するが、本来蓄熱することができなくなる状況下でも蓄熱できるので、少なくとも放電効率を向上できる。ここで第3流量調整手段は、第1又は第2流量調整手段と同一であってもよい。
 本発明の第2の態様は、変動する入力電力により電動機を駆動し、前記電動機と機械的に接続された圧縮機により空気を圧縮し、前記圧縮機から供給される圧縮空気を蓄圧タンクに貯蔵し、前記蓄圧タンクから供給される圧縮空気により膨張機を駆動し、前記膨張機と機械的に接続された発電機により発電し、第1熱交換器において前記圧縮機で圧縮された圧縮空気と熱媒とで熱交換して熱媒を昇温し、前記第1熱交換器で昇温した熱媒を熱媒タンクに貯蔵し、第2熱交換器において前記熱媒タンクから供給される熱媒と前記蓄圧タンクから供給される圧縮空気とで熱交換して圧縮空気を昇温させて前記膨張機に供給する圧縮空気貯蔵発電方法において、前記熱媒タンクに貯蔵される熱媒を所定の第1の温度に維持するように、第1流量調整手段によって前記第1熱交換器に供給される熱媒の量を調整する、圧縮空気貯蔵発電方法を提供する。
 前記圧縮空気貯蔵発電方法では、前記電動機で駆動すべき電力量の変化に基づいて、前記第1熱交換器に流入する熱媒を前記第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器へ流入する熱媒の流量を調整することが好ましい。
 前記圧縮空気貯蔵発電方法では、前記発電機で発電すべき電力量の変化に基づいて、前記膨張機に流入する圧縮空気を第2の温度に維持するように、第2流量調整手段によって前記第2熱交換器へ流入する熱媒の流量を調整することが好ましい。
 前記圧縮空気貯蔵発電方法では、前記熱媒タンクに貯蔵している熱媒の量を残量センサにより測定し、前記熱媒タンクに供給される熱媒の量を第3流量調整手段により調整し、前記残量センサの測定値に基づいて前記熱媒タンクに貯蔵可能な熱媒量が所定値以下になった場合に、前記第3流量調整手段によって前記熱媒タンクに供給される熱媒の量を減少させ、貯蔵する熱媒の温度を上昇させることが好ましい。
 本発明によれば、第1流量調整手段によって熱媒タンクに貯蔵される熱媒を所定の温度に維持することで、吸収すべき電力が変動する再生可能エネルギーの平滑化に圧縮空気貯蔵発電装置を用いるに際して、その充放電効率を高く維持できる。
本発明の第1実施形態に係る圧縮空気貯蔵(CAES)発電装置の概略構成図。 充電指令と放電指令の一例を示すグラフ。 本発明の第2実施形態に係る圧縮空気貯蔵(CAES)発電装置の模式図。
 以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 図1は、圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、再生可能エネルギーを利用して発電する場合に、需要先である電力系統4への出力変動を平滑化するとともに、電力系統4における需要電力の変動に合わせた電力を出力する。CAES発電装置2は、風力発電所又は太陽光発電所などの再生可能エネルギーによる発電所6から、トランス等で構成される受送電設備8を介して供給された電力を平滑化し、需要先の電力系統4に電力を出力する。
 図1を参照して、CAES発電装置2の構成を説明する。
 CAES発電装置2は、空気経路と熱媒経路を備える。空気経路には、主に圧縮機10と、蓄圧タンク12と、膨張機14とが設けられており、これらが空気配管16により流体的に接続され、その内部には空気が流れている(図1の破線参照)。熱媒経路には、主に第1熱交換器18と、熱媒タンク20と、第2熱交換器22とが設けられており、これらが熱媒配管24により流体的に接続され、その内部には熱媒が流れている(図1の実線参照)。
 まず、図1を参照して空気経路について説明する。空気経路では、吸気フィルタ26を通じて吸い込まれた空気は、圧縮機10で圧縮され、蓄圧タンク12に貯蔵される。蓄圧タンク12に貯蔵された圧縮空気は膨張機14に供給され、発電機28の発電に使用される。
 圧縮機10は、スクリュ式であり、モータ(電動機)30を備える。モータ30は、圧縮機10に機械的に接続されている。発電所6で発電された電力(入力電力)はコンバータ32及びインバータ34を介してモータ30に供給され、この電力によりモータ30が駆動され、圧縮機10が作動する。圧縮機10の吐出口10bは、空気配管16を通じて蓄圧タンク12に流体的に接続されている。圧縮機10は、モータ30により駆動されると、吸込口10aより空気を吸引し、圧縮して吐出口10bより吐出し、蓄圧タンク12に圧縮空気を圧送する。圧縮機10は、本実施形態ではスクリュ式であるが、ターボ式やスクロール式であってもよい。また、本実施形態では圧縮機10の数は1台であるが、並列に複数台を設置してもよい。
 蓄圧タンク12は、圧縮機10から圧送された圧縮空気を貯蔵する。従って、蓄圧タンク12には、圧縮空気としてエネルギーを蓄積できる。蓄圧タンク12は、空気配管16を通じて、膨張機14に流体的に接続されている。従って、蓄圧タンク12で貯蔵された圧縮空気は、膨張機14に供給される。蓄圧タンク12は貯蔵する電力量によって、その圧縮空気の貯蔵圧力と貯蔵容量が定められる。ただし、一般的に大容量になるので、外気と断熱するのがコストの観点から困難である。従って、その圧縮空気の貯蔵温度は、大気放出による熱損失を避けるため大気温度と同程度、又は少し高めか低めに設定されている。蓄圧タンク12には圧力センサ13が設置されており、内部の圧縮空気の圧力を測定できる。
 膨張機14は、スクリュ式であり、発電機28を備える。発電機28は膨張機14と機械的に接続されている。吸込口14aから圧縮空気を供給された膨張機14は、供給された圧縮空気により作動し、発電機28を駆動する。発電機28は外部の電力系統4に電気的に接続されており(図1の一点鎖線参照)、発電した電力はコンバータ36及びインバータ38を介して需要先の電力系統4に供給される。また、膨張機14で膨張された空気は、吐出口14bから外部に排気サイレンサ40を介して排出される。膨張機14は、本実施形態ではスクリュ式であるが、ターボ式やスクロール式であってもよい。また、本実施形態では膨張機14の数は1台であるが、並列に複数台を設置してもよい。
 次に、図1を参照して熱媒経路について説明する。熱媒経路では、第1熱交換器18において圧縮機10で発生した熱を熱媒に回収している。そして、熱回収した熱媒を熱媒タンク20に貯蔵し、第2熱交換器22において膨張機14で膨張する前の圧縮空気に熱を戻している。第2熱交換器22において熱交換して降温した熱媒は熱媒戻りタンク42に供給される。そして、熱媒戻りタンク42から第1熱交換器18に再び熱媒が供給され、このように熱媒は循環している。ここで、熱媒の種類は特に限定されておらず、例えば鉱物油やグリコール系の熱媒を使用でき、その使用温度は150℃から240℃程度である。
 第1熱交換器18は、圧縮機10と蓄圧タンク12との間の空気配管16に設けられている。従って、この空気配管16内の圧縮空気と、熱媒配管24内の熱媒との間で熱交換し、圧縮機10による圧縮で発生した圧縮熱を熱媒に回収している。即ち、第1熱交換器18では、圧縮空気の温度は低下し、熱媒の温度は上昇する。ここで昇温した熱媒は、熱媒配管24を通じて熱媒タンク20に供給される。
 第1熱交換器18から熱媒タンク20までの熱媒配管24には、第1熱交換器18で熱交換して昇温した熱媒の温度を測定するための温度センサ44a及び熱媒を流動させるための第1ポンプ(第1流量調整手段)46が設けられている。第1ポンプ46の種類は限定されず、熱媒を流動させる限りどのような形式であってもよい。また、第1ポンプ46の配置は、第1熱交換器18の下流側ではなく上流側であってもよい。第1ポンプ46は、後述の制御装置48aにより駆動され、第1熱交換器18で熱交換する熱媒の流量を調整する。第1ポンプ46により熱媒流量を調整する他、図示しない流量一定のポンプと流量調整弁を使用して流量を調整してもよい。
 第1ポンプ46によって熱媒タンク20に貯蔵される熱媒を後述する所定の設定蓄熱温度(第1の温度)に維持することで、CAES発電装置2の充放電効率を高く維持できる。具体的な充放電効率低下要因として、圧縮機10の電力吸収量が変化した場合、圧縮機10から吐出される圧縮空気の熱量が変化する。例えば、吐出圧力と吐出温度を一定にし、圧縮機10の電力吸収量を増加させた場合は、吐出される圧縮空気の流量が増大する。従って、第1熱交換器18で熱交換する熱媒の流量を一定とした場合、熱媒タンク20に流入する熱媒温度が上昇する。この場合、後述の設定蓄熱温度より高い温度となって、充放電効率が低下する。一方、圧縮機10の電力吸収量を減少させる場合、熱媒温度が設定蓄熱温度より下がり、この場合も充放電効率が低下する。これを防止するため、第1ポンプ46を制御し、熱媒流量を調整することで充放電効率を高く維持する。第1ポンプ46の具体的な制御については後述する。
 熱媒タンク20は、大気と断熱された断熱材で周囲が覆われた鋼製タンクである。熱媒タンク20には、第1熱交換器18で昇温した熱媒が貯蔵される。熱媒タンク20には、残量センサ50aが設置され、貯蔵されている熱媒量を検出できる。例えば、残量センサ50aは液面センサであってもよい。また、熱媒タンク20に残量センサを直接設置せず、熱媒配管内の熱媒流量を検出する流量センサを設け、その流入と流出の積算値から熱媒タンク20内の熱媒量を決定してもよい。熱媒タンク20には、温度センサ44bがさらに設けられており、内部の熱媒の温度を測定できる。熱媒タンク20に貯蔵された熱媒は、熱媒配管24を通じて第2熱交換器22に供給される。
 熱媒タンク20から第2熱交換器22までの熱媒配管24には、熱媒を流動させるための第2ポンプ(第2流量調整手段)52が設けられている。第2ポンプ52の種類は限定されず、どのような形式であってもよい。また、第2ポンプ52の配置は、第2熱交換器22の上流側ではなく下流側であってもよい。第2ポンプ52は、後述の制御装置48bにより駆動され、第2熱交換器22で熱交換する熱媒の流量を調整する。第2ポンプ52により熱媒流量を調整する他、流量一定のポンプと流量調整弁を使用して流量を調整してもよい。
 第2流量調整手段により、電力吸収側の設定蓄熱温度に加えて、電力発電側においても後述の設定発電温度(第2の温度)で膨張機が発電できるのでさらに充放電率効率を向上できる。
 第2熱交換器22は、蓄圧タンク12と膨張機14との間の空気配管16に設けられている。従って、蓄圧タンク12から膨張機14に供給される圧縮空気と、熱媒配管24内の熱媒との間で熱交換し、膨張機14による膨張の前に圧縮空気を加熱している。即ち、第2熱交換器22では、圧縮空気の温度は上昇し、熱媒の温度は低下する。第2熱交換器22から膨張機14の吸込口14aに延びる空気配管には内部の圧縮空気の温度を測定するための温度センサ44cが設けられている。また、第2熱交換器22で降温した熱媒は、熱媒配管24を通じて熱媒戻りタンク42に供給される。
 熱媒戻りタンク42は、第2熱交換器22で熱交換して降温した熱媒を貯蔵する。従って、熱媒戻りタンク42内の熱媒は、通常、熱媒タンク20内の熱媒よりも温度が低い。熱媒戻りタンク42には、熱媒タンク20と同様に残量センサ50b及び温度センサ44dが設けられている。熱媒戻りタンク42に貯蔵されている熱媒は、熱媒配管24を通じて第1熱交換器18に供給される。
 熱媒戻りタンク42から第1熱交換器18に延びる熱媒配管24には、熱媒冷却器54が設けられている。本実施形態の熱媒冷却器54は熱交換器であり、熱媒戻りタンク42から第1熱交換器18に延びる熱媒配管24内の熱媒と、冷却水との間で熱交換して熱媒の温度を低下させている。
 これにより、熱媒冷却器54によって第1熱交換器18に流入する熱媒の温度を所定の温度(第3の温度)に維持できるので、第1熱交換器18における熱交換を安定的に行うことができ、充放電効率を向上できる。
 以上により、CAES発電装置2の熱媒経路は構成されている。
 また、CAES発電装置2は、制御装置48a,48bを備える。制御装置48a,48bは、シーケンサ等を含むハードウェアと、それに実装されたソフトウェアにより構築されている。制御装置48aは、少なくともモータ30と、第1ポンプ46と、発電所6とに電気的に接続されている(図1の一点鎖線参照)。制御装置48bは、少なくとも発電機28と、第2ポンプ52と、電力系統4とに電気的に接続されている(図1の一点鎖線参照)。従って、これらの動作は制御装置48a,48bによって制御されている。圧力センサ13、温度センサ44a~44d、及び残量センサ50a,50bは、制御装置48a,48bに測定値を出力する。制御装置48a,48bは、これらの測定値に基づいてCAES発電装置2を制御する。本実施形態では制御装置48a,48bは、圧縮に関する機能を制御する制御装置48aと、膨張に関する機能を制御する制御装置48bとに分けて設けられているが、両機能を制御する1つの制御装置が設けられていてもよい。
 制御装置48a,48bは、第1ポンプ46及び第2ポンプ52について3種類の制御方法を行う。以下の3種類の制御方法についてはいずれを使用してもよい。
 第1に、温度センサ44a,44cの測定値に基づいて、第1熱交換器18から流出する熱媒温度Tot及び膨張機14に供給される圧縮空気温度Tesをそれぞれ一定にするように、第1ポンプ46及び第2ポンプ52を制御する。この場合、本発明の第1流量調整手段には第1ポンプ46及び温度センサ44aが含まれ、本発明の第2流量調整手段には第2ポンプ52及び温度センサ44cが含まれる。
 具体的には、制御装置48aは、温度センサ44aの測定した熱媒温度Totが設定蓄熱温度よりも高い場合、第1ポンプ46の回転数を増加し、第1熱交換器18に供給される熱媒流量を増加し、熱媒温度Totを低下させる。また、制御装置48bは、温度センサ44cの測定した圧縮空気温度Tesが設定発電温度よりも高い場合、第2ポンプ52の回転数を減少し、第2熱交換器22に供給される熱媒流量を減少し、圧縮空気温度Tesを低下させる。熱媒温度Totが設定蓄熱温度よりも低い場合、及び、圧縮空気温度Tesが設定発電温度よりも低い場合、上記の逆の動作を行う。このように設定蓄熱温度及び設定発電温度を維持する。
 設定蓄熱温度とは、第1熱交換器18から流出する熱媒温度Totの目標温度であり、このときシステム全体の充放電効率を最大限高めることができる。また、設定発電温度とは、膨張機14に供給される圧縮空気温度Tesの目標温度であり、このときシステム全体の充放電効率を最大限高めることができる。
 第2に、モータ30及び発電機28の回転数に基づいて、第1熱交換器18から流出する熱媒温度Tot及び膨張機14に供給される圧縮空気温度Tesを一定にするように、第1ポンプ46及び第2ポンプ52を制御する。この場合、本発明の第1流量調整手段には第1ポンプ46が含まれ、本発明の第2流量調整手段には第2ポンプ52が含まれる。
 具体的には、モータ30の回転数が所定の値よりも増加すると、圧縮機10から吐出される圧縮空気量が増大し、第1熱交換器18から流出する熱媒温度Totが上昇する。従って、制御装置48aは、第1ポンプ46の回転数を増加し、第1熱交換器18に供給される熱媒流量を増加し、熱媒温度Totを低下させる。また、発電機28の回転数が所定の値よりも増加すると、膨張機14で使用する圧縮空気量が増大し、膨張機14に供給される圧縮空気温度Tesが減少する。従って、制御装置48bは、第2ポンプ52の回転数を増加し、第2熱交換器22に供給される熱媒流量を増加し、圧縮空気温度Tesを増加させる。モータ30の回転数及び発電機28の回転数が所定の値よりも減少した場合、上記の逆の動作を行う。このように設定蓄熱温度及び設定発電温度を維持する。この場合、モータ30及び発電機28の回転数から熱媒温度Tot及び圧縮空気温度Tesを推定して第1ポンプ46及び第2ポンプ52を制御するため、温度センサ44a,44cは不要である。ただし、温度センサ44a,44cを設置して、第1と第2の制御方法を併用してもよい。
 第3に、吸収電力指令値Lc及び発電電力指令値Lgに基づいて、第1熱交換器18から流出する熱媒温度Tot及び膨張機14に供給される圧縮空気温度Tesを一定にするように、第1ポンプ46及び第2ポンプ52を制御する。この場合、本発明の第1流量調整手段には第1ポンプ46が含まれ、本発明の第2流量調整手段には第2ポンプ52が含まれる。
 吸収電力指令値Lcは、モータ30で駆動(吸収)すべき電力量であり、発電所6からの要求充電量に基づいて決定される。発電電力指令値Lgは、発電機28で発電すべき電力量であり、需要先の電力系統4からの要求発電量(需要電力)に基づいて決定される。これらは、入力電力の予測値や、需要電力の予測値に基づいて定めてもよい。これらの予測値は、当日の天候・気象条件、過去の気象条件、及び需要電力の時間的変動などの統計的データに基づいて定めてもよい。また、系統接続点における電力変動を抑制するために、系統接続点における電圧、電流、周波数などの電力量の変化をベースに、その変化を打ち消すように定めてもよい。
 具体的には、制御装置48aは、吸収電力指令値Lcを受けて、圧縮機10に対して回転数指令を発生させる。この回転数指令は、圧縮機10の内部吐出圧力、吐出ポートにおける吐出圧力、吸込温度、吐出温度などによって演算できる。この演算に際しては、予め演算した変換テーブルを用いてもよいし、制御装置48a内部で演算してもよい。制御装置48bは、発電電力指令値Lgを受けて、膨張機14に対して回転数指令を発生させる。この回転数指令は、膨張機14の内部吐出圧力、吐出ポートにおける吐出圧力、吸込温度、吐出温度などによって演算できる。この演算に際しては、予め演算した変換テーブルを用いてもよいし、制御装置48b内部で演算してもよい。これらの指令値Lc,Lgに基づいてモータ30及び発電機28の回転数が決定され、これらの回転数に基づいて第1ポンプ46及び第2ポンプ52が第2の制御方法と同様に制御される。
 吸収電力指令値Lcにより、システム全体の充放電効率を最大限高めることができるように設定された一定の設定蓄熱温度で熱媒タンク20に熱媒を貯蔵できるので、システム全体の充放電効率を高めることができる。また、第1熱交換器18から流出する熱媒の温度に変化が出るまでには相当の時間遅れがあるが、圧縮機10で吸収すべき電力量の変化に応じて制御することで、熱媒の温度に変化が出る前に予め適切な熱媒流量にすることができ、充放電効率を一層向上できる。
 発電電力指令値Lgにより、システム全体の充放電効率を最大限高めることができるように設定された一定の設定発電温度で膨張機14に圧縮空気を供給できるので、システム全体の充放電効率を高めることができる。また、膨張機14に供給するための圧縮空気の温度に変化が出るまでには相当の時間遅れがあるが、発電機28で発電すべき電力量の変化に応じて制御することで、圧縮空気の温度に変化が出る前に予め適切な熱媒流量にすることができ、充放電効率を一層向上できる。
 ここで、設定蓄熱温度(第1の温度)とは、熱媒タンク20に貯蔵するのに適した熱媒の温度であり、上述の第1実施形態では170℃に設定してある。一方、設定発電温度(第2の温度)とは、膨張機14で発電するのに適した圧縮空気の温度であり、上述の第1実施形態では170℃に設定してある。これらの温度については、固定値としてもよいし、他の条件に応じて変化する可変値としてもよい。
 図2は、充電指令と放電指令の一例を示すグラフである。横軸は時間、縦軸は吸収電力指令値又は発電電指令値を表す。プラス側が充電指令を示し、マイナス側が放電指令を示している。スクリュ式圧縮機10及びスクリュ式膨張機14を用いた場合、吸収(充電)又は発電(放電)すべき電力量と、圧縮機10のモータ30及び膨張機14の発電機28の回転数は、ほぼ比例して変化する。また、同様に、圧縮機10から吐出される圧縮空気量及び膨張機14で使用する圧縮空気量もこれにほぼ比例して変化する。従って、グラフの縦軸は、これらの回転数又は圧縮空気量にも対応する。
 図2を参照して、時間と共に吸収又は発電すべき電力の変動に対する制御について具体例を説明する。図2のような電力の変動に伴い、モータ30(圧縮機10)及び発電機28(膨張機14)の回転数は変化する。上述のように、この回転数の変化により、第1熱交換器18及び第2熱交換器22で熱交換する熱媒の温度も変化する。従って、制御装置48a,48bは、第1ポンプ46及び第2ポンプ52により熱媒流量を調整して熱媒温度を調整し、熱媒タンク20に貯蔵される熱媒を最適な設定蓄熱温度に、膨張機14に供給される圧縮空気を最適な設定発電温度に維持することでシステムの効率を維持する。
 状態Aでは、空気温度は、例えば、圧縮機10の吸気温度Tcs=20℃(常温)、圧縮機10から吐出される圧縮空気温度Tcd=180℃、及び蓄圧タンク12に供給される圧縮空気温度Tti=50℃である。状態Aの熱媒温度は、例えば、第1熱交換器18に流入する熱媒温度Toc=40℃、及び第1熱交換器18から流出する熱媒温度Tot=170℃である。従って、熱媒タンク20には170℃の熱媒が供給される。状態Aの各温度をまとめると以下の表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 状態Aから変化して状態Bのように吸収電力指令値Lcが低下したとき、圧縮機10の回転数が低下するので、圧縮機10から吐出される空気量が減少し、熱媒流量を何も制御しないと仮定すると、その分だけ熱交換量が減少する。従って、第1熱交換器18から流出する熱媒の温度Totは低下する。状態Bにおいて、例えば、第1熱交換器18から流出する熱媒温度Totは110℃程度になる。
 熱媒タンク20内に170℃で貯蔵されていた熱媒にTot=110℃の熱媒が混入すると、熱媒タンク20内の熱媒温度が例えば130℃程度に低下する。この温度で第2熱交換器22において圧縮空気を加熱した場合、発電効率が低下する。従って、第1熱交換器18から流出する熱媒温度Tot=170℃の一定に維持することが必要である。そのためには第1熱交換器18に供給される熱媒流量を減少させればよい。よって、制御装置48aは、第1ポンプ46により第1熱交換器18に供給される熱媒流量を減少させ、第1熱交換器18から流出する熱媒温度Tot=170℃の一定に維持する。
 次いで、吸収電力指令値Lcが状態Bから状態Cに変化したとき、圧縮機10の回転数を状態Aのとき以上に増加させる必要がある。従って、第1熱交換器18に供給される圧縮空気量が状態Aのとき以上に増加し、第1熱交換器18で熱媒に熱回収する熱量が増加する。状態Cにおいて、例えば、第1熱交換器18から流出する熱媒温度Totは190℃程度になる。
 状態Cのように第1熱交換器18から流出する熱媒温度Totが170℃から上昇するとき、第1ポンプ46の回転数を増加させて熱媒の循環流量を増加させ、第1熱交換器18から流出する熱媒温度Tot=170℃の一定に維持する。このように充電過程では、第1熱交換器18から流出する熱媒温度Totを170℃の一定に維持し、システム全体の充放電効率を最大限高めることができるように設定された設定蓄熱温度を実現する。
 さらに、充電指令から放電指令に切り替わって状態Dとなったとき、充電関係の機器の動作を停止又は微小な変動除去(ヒゲ取り)分だけ動作させ、放電関係の機器の動作を開始する。
 状態Dでは、空気温度は、例えば、蓄圧タンク12から吐出される圧縮空気温度Tto=50℃、膨張機14に供給される圧縮空気温度Tes=160℃、及び膨張機14から吐出される空気温度Ted=50℃である。ここで、蓄圧タンク12から吐出される圧縮空気温度Ttoは、長時間放置しておらず、蓄圧タンク12内の圧縮空気温度が低下していないときを想定している。状態Dの熱媒温度は、例えば、第2熱交換器22に流入する熱媒温度Toe=170℃、及び第2熱交換器22から流出する熱媒温度Tori=60℃である。従って熱媒戻りタンク42には60℃の熱媒が供給される。その後、熱媒は、熱媒戻りタンク42から第1熱交換器18に供給される際、熱媒冷却器54により40℃程度にまで冷却される。状態Dの各温度をまとめると以下の表2のようになる。
Figure JPOXMLDOC01-appb-T000002
 状態Dから変化して状態Eのように発電電力指令値Lgが変化したとき、膨張機14の回転数が低下するので、蓄圧タンク12からの圧縮空気の消費量が減少し、その分だけ第2熱交換器22に供給される圧縮空気の流量が減少する。従って、熱媒流量を何も制御しないと仮定すると、膨張機14に供給される圧縮空気温度Tesは上昇する。状態Eにおいて、例えば、膨張機14に供給される圧縮空気温度Tesは180℃程度になる。
 状態Eにおいて、発電効率を維持するためには、膨張機14に供給される圧縮空気温度Tesを一定に維持することが必要である。そのためには、第2熱交換器22に供給される熱媒流量を減少させればよい。よって、制御装置48bは、第2ポンプ52の回転数を減少させて第2熱交換器22に供給される熱媒流量を減少させ、膨張機14に供給される圧縮空気温度Tes=160℃の一定に維持する。
 次いで、発電電力指令値Lgが状態Eから状態Fに変化したとき、膨張機14の回転数が増加するので、蓄圧タンク12からの圧縮空気の消費量が増加し、その分だけ第2熱交換器22に供給される圧縮空気の流量が増加する。従って、膨張機14に供給される圧縮空気温度Tesは低下する。状態Fにおいて、例えば、膨張機14に供給される圧縮空気温度Tesは130℃程度になる。
 状態Fにおいて、発電効率を維持するためには、膨張機14に供給される圧縮空気温度Tesを一定に維持することが必要である。このためには、第2熱交換器22に供給される熱媒流量を増加させればよい。よって、制御装置48bは、第2ポンプ52の回転数を増加させて熱媒の循環流量を増加させ、膨張機14に供給される圧縮空気温度Tesを一定に維持する。このように放電過程では、膨張機14に供給される圧縮空気温度Tesを160℃の一定に維持し、システム全体の充放電効率を最大限高めることができるように設定された設定発電温度を実現する。
 以上のように、最適な設定蓄熱温度及び設定発電温度を維持することでシステム全体の充放電効率を最大限高めることができる。
 また、本実施形態のCAES発電装置2は、熱媒タンク20内の熱媒貯蔵量に応じた制御も行っている。例えば残量センサ50bにより熱媒タンク20内の熱媒貯蔵量が熱媒タンク20の全容量の90%に達したと検出した場合、残り10%をさらに貯蔵するとそれ以上蓄熱できない。この場合、熱媒タンク20に貯蔵すべき熱媒を、図示しない断熱されていない熱媒放出用の予備タンクに導入してもよい。これに代えて、熱媒冷却器54等を用いて熱媒を冷却したり、放電指令を受けていないのに一定電力で放電したりして熱媒タンク20内の熱媒を使用してもよい。また、圧縮空気を第1熱交換器18で熱交換することなく蓄圧タンク12に貯蔵したり、大気放出したりして、熱媒を熱媒タンク20に供給しないようにしてもよい。いずれにしろ回収すべき熱量が無駄になったり、充放電効率が大幅に低下したりして好ましくないが、熱媒タンク20が満タンとなりそれ以上蓄熱できなくなる場合を回避できる。
 また、例えば熱媒タンク20内の熱媒貯蔵量が熱媒タンク20の全容量の90%に達した場合、大幅に充放電効率が低下しないように、第1ポンプ46を調整して循環する熱媒量を減少させ、Tot=170℃を230℃程度に上げることが好ましい。ここで、この温度調整の実行には、本発明の第3流量調整手段を使用する。本発明の第3流量調整手段には、少なくとも第1ポンプ46と、残量センサ50aとが含まれる。これに代えて、熱媒量の調整には第1ポンプ46を使用する以外に、新たに図示しない第3ポンプを設けてもよい。また、図示されていない高温用熱媒タンクを別途設けて、230度に加熱された熱媒のみを貯蔵するようにしてもよい。
 これにより、充放電効率は相応量低下するが、熱損失して大幅に効率が低下することはない。また、第2熱交換器22において、230℃の熱媒で熱交換して発電機28で発電する方が、170℃で熱交換するより大きな発電量を出力できる。さらに、熱媒タンク20に流入する熱媒の温度を予め定められた定常状態における設定蓄熱温度より上げ、熱媒タンク20に流入する熱媒の流量を減少させることで、熱媒タンク20が満タンになるまでの時間を延長できる。また、熱媒タンク20の熱媒の温度を上昇できるので、全体としての充放電効率は低下するが、本来蓄熱できなくなる状況下でも蓄熱できるので、少なくとも放電効率を向上できる。従って、熱媒温度を上昇させて熱媒循環量を低下させることは有効である。
 また、熱媒タンク20に貯蔵されている熱媒の温度が低下した場合、図示されていないヒータ等で所定の温度まで熱媒を加熱してもよい。熱媒タンク20に貯蔵されている熱媒の量が低下した場合は、熱媒戻りタンク42に貯蔵されている熱媒を熱媒タンク20に供給した上でヒータ等によって加熱してもよい。
(第2実施形態)
 図3は、第2実施形態のCAES発電装置2の模式図を示している。本実施形態のCAES発電装置2は、圧縮機10、膨張機14、及び熱媒タンク20a,20bが複数設置され、コンテナ56a~56cに構成要素が収納されていることに関する部分以外の構成は図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については説明を省略する。また、図3は模式図のため、必ずしもCAES発電装置2の構成要素が全て図示されているわけではない。
 図3を参照して、本実施形態のCAES発電装置2は、圧縮機10を3台、及び膨張機14を4台備える。3台の圧縮機10は並列に流体的に接続され、4台の膨張機14も並列に流体的に接続されている。入力電力や需要電力に応じて圧縮機10及び膨張機14の駆動台数を変更できるため、幅広く効率的な平滑化が可能である。また、圧縮機10、膨張機14、及び蓄圧タンク12は、空気配管16によって連結されており、圧縮機10、膨張機14、及び熱媒タンク20a,20b、熱媒戻りタンク42は、熱媒配管24によって連結されている。制御装置48a,48bは、両者まとめてハウス58の中に収納されている。
 本実施形態のCAES発電装置2は、高温熱媒タンク20aと、低温熱媒タンク20bとを備え、第1熱交換器18で熱交換した熱媒が温度別に貯蔵されている。従って、第2熱交換器22において、必要に応じた熱媒温度で熱交換するため、放電効率を向上している。
 本実施形態では、CAES発電装置2のほとんどの構成要素は、コンテナ56a~56cに収納されている。特に、圧縮機10及び図示しない第1熱交換器18等の圧縮機能に関するコンテナ56aと、膨張機14及び図示しない第2熱交換器22等の膨張機能に関するコンテナ56bと、熱媒タンク20等の蓄熱機能に関するコンテナ56cとを分けて、3つのコンテナ56a~56cが設置されている。このようにコンテナ56a~56cに収納することにより、CAES発電装置2の設置の際の工事費を大幅に抑えることができる。この実施形態の場合、熱媒冷却器54をクーリングタワーとしてコンテナ56cの外部に配置している。
 また、図3の例では、充電側と放電側が各々500kW程度の容量を持たせたものである。コンテナ56a~56cで充放電ユニットを構成することで、運搬及び設置が容易となり、自由に設備容量を増減することもできる。例えば、これらの3つのコンテナ56a~56cを1セットにして6セット設置すれば、全体として3MWの設備を構成できる。
 第1及び第2実施形態を通じて、本発明の「変動する入力電力」は再生可能エネルギーに限定されることなく、工場設備の需要電力を平滑化したりピークカットをしたりするものであってもよい。
  2 圧縮空気貯蔵発電装置(CAES発電装置)
  4 電力系統
  6 発電所
  8 受送電設備
  10 圧縮機
  10a 吸込口
  10b 吐出口
  12 蓄圧タンク
  13 圧力センサ
  14 膨張機
  14a 吸込口
  14b 吐出口
  16 空気配管
  18 第1熱交換器
  20 熱媒タンク
  22 第2熱交換器
  24 熱媒配管
  26 吸気フィルタ
  28 発電機
  30 モータ(電動機)
  32,36 コンバータ
  34,38 インバータ
  40 排気サイレンサ
  42 熱媒戻りタンク
  44a 温度センサ(第1流量調整手段)
  44b,44d 温度センサ
  44c 温度センサ(第2流量調整手段)
  46 第1ポンプ(第1流量調整手段)(第3流量調整手段)
  48a,48b 制御装置
  50a,50b 残量センサ
  52 第2ポンプ(第2流量調整手段)
  54 熱媒冷却器
  56a,56b,56c コンテナ
  58 ハウス

Claims (11)

  1.  変動する入力電力により駆動される電動機と、
     前記電動機と機械的に接続され、空気を圧縮する圧縮機と、
     前記圧縮機と流体的に接続され、前記圧縮機により圧縮された空気を貯蔵する蓄圧タンクと、
     前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動される膨張機と、
     前記膨張機と機械的に接続されて発電する発電機と、
     前記圧縮機で圧縮された空気と熱媒とで熱交換し、熱媒を加熱するための第1熱交換器と、
     前記第1熱交換器と流体的に接続され、熱媒を貯蔵する熱媒タンクと、
     前記熱媒タンクと流体的に接続され、前記熱媒タンクから供給される熱媒と前記膨張機に供給される圧縮空気とで熱交換し、圧縮空気を加熱するための第2熱交換器と、
     前記第1熱交換器に供給される熱媒の量を調整するための第1流量調整手段と、
     前記熱媒タンクに貯蔵される熱媒を所定の第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器に供給される熱媒の量を調整する制御装置と
     を備える圧縮空気貯蔵発電装置。
  2.  前記制御装置は、前記電動機で駆動すべき電力量の変化に基づいて、前記第1熱交換器に流入する熱媒を前記第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器へ流入する熱媒の流量を制御する、請求項1に記載の圧縮空気貯蔵発電装置。
  3.  前記第2熱交換器に供給される熱媒の量を調整するための第2流量調整手段をさらに備える、請求項1又は請求項2に記載の圧縮空気貯蔵発電装置。
  4.  前記制御装置は、前記膨張機に供給される圧縮空気を所定の第2の温度に維持するように、前記第2流量調整手段によって前記第2熱交換器に供給される熱媒の量を調整する、請求項3に記載の圧縮空気貯蔵発電装置。
  5.  前記制御装置は、前記発電機で発電すべき電力量の変化に基づいて、前記膨張機に流入する圧縮空気を前記第2の温度に維持するように、前記第2流量調整手段によって前記第2熱交換器へ流入する熱媒の流量を制御する、請求項4に記載の圧縮空気貯蔵発電装置。
  6.  前記第1熱交換器及び前記第2熱交換器と流体的に接続され、前記第2熱交換器で降温した熱媒を貯蔵する熱媒戻りタンクと、
     熱媒戻りタンクから前記第1熱交換器に供給する熱媒の温度を所定の第3の温度に低下させるための熱媒冷却器と
     をさらに備える、請求項1または請求項2に記載の圧縮空気貯蔵発電装置。
  7.  前記熱媒タンクは、貯蔵している熱媒の量を測定するための残量センサと、
     前記熱媒タンクに供給される熱媒の量を調整するための第3流量調整手段と
     をさらに備え、
     前記制御装置は、前記残量センサの測定値に基づいて前記熱媒タンクに貯蔵可能な熱媒量が所定値以下になった場合に、前記第3流量調整手段によって前記熱媒タンクに供給される熱媒の量を減少させ、貯蔵する熱媒の温度を上昇させる、請求項1または請求項2に記載の圧縮空気貯蔵発電装置。
  8.  変動する入力電力により電動機を駆動し、
     前記電動機と機械的に接続された圧縮機により空気を圧縮し、
     前記圧縮機から供給される圧縮空気を蓄圧タンクに貯蔵し、
     前記蓄圧タンクから供給される圧縮空気により膨張機を駆動し、
     前記膨張機と機械的に接続された発電機により発電し、
     第1熱交換器において前記圧縮機で圧縮された圧縮空気と熱媒とで熱交換して熱媒を昇温し、
     前記第1熱交換器で昇温した熱媒を熱媒タンクに貯蔵し、
     第2熱交換器において前記熱媒タンクから供給される熱媒と前記蓄圧タンクから供給される圧縮空気とで熱交換して圧縮空気を昇温させて前記膨張機に供給する圧縮空気貯蔵発電方法において、
     前記熱媒タンクに貯蔵される熱媒を所定の第1の温度に維持するように、第1流量調整手段によって前記第1熱交換器に供給される熱媒の量を調整する、圧縮空気貯蔵発電方法。
  9.  前記電動機で駆動すべき電力量の変化に基づいて、前記第1熱交換器に流入する熱媒を前記第1の温度に維持するように、前記第1流量調整手段によって前記第1熱交換器へ流入する熱媒の流量を調整する、請求項8に記載の圧縮空気貯蔵発電方法。
  10.  前記発電機で発電すべき電力量の変化に基づいて、前記膨張機に流入する圧縮空気を第2の温度に維持するように、第2流量調整手段によって前記第2熱交換器へ流入する熱媒の流量を調整する、請求項8又は請求項9に記載の圧縮空気貯蔵発電方法。
  11.  前記熱媒タンクに貯蔵している熱媒の量を残量センサにより測定し、
     前記熱媒タンクに供給される熱媒の量を第3流量調整手段により調整し、
     前記残量センサの測定値に基づいて前記熱媒タンクに貯蔵可能な熱媒量が所定値以下になった場合に、前記第3流量調整手段によって前記熱媒タンクに供給される熱媒の量を減少させ、貯蔵する熱媒の温度を上昇させる、請求項8または請求項9に記載の圧縮空気貯蔵発電方法。
PCT/JP2016/063198 2015-05-08 2016-04-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 WO2016181841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16792566.8A EP3296545A4 (en) 2015-05-08 2016-04-27 Compressed air energy storage and power generation device and compressed air energy storage and power generation method
CN201680026506.7A CN107532511B (zh) 2015-05-08 2016-04-27 压缩空气储藏发电装置以及压缩空气储藏发电方法
US15/571,672 US10655505B2 (en) 2015-05-08 2016-04-27 Compressed air energy storage and power generation device and compressed air energy storage and power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095390 2015-05-08
JP2015095390A JP6373794B2 (ja) 2015-05-08 2015-05-08 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Publications (1)

Publication Number Publication Date
WO2016181841A1 true WO2016181841A1 (ja) 2016-11-17

Family

ID=57248862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063198 WO2016181841A1 (ja) 2015-05-08 2016-04-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Country Status (5)

Country Link
US (1) US10655505B2 (ja)
EP (1) EP3296545A4 (ja)
JP (1) JP6373794B2 (ja)
CN (1) CN107532511B (ja)
WO (1) WO2016181841A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727541A (zh) * 2018-02-23 2020-09-29 株式会社神户制钢所 压缩空气储存发电装置
EP3613966A4 (en) * 2017-04-21 2021-01-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ELECTRICITY GENERATING DEVICE WITH COMPRESSED AIR ACCUMULATOR
EP3604767A4 (en) * 2017-03-29 2021-01-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ELECTRICITY GENERATING DEVICE WITH COMPRESSED AIR ACCUMULATOR

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160028999A (ko) 2013-03-04 2016-03-14 에코진 파워 시스템스, 엘엘씨 큰 네트 파워 초임계 이산화탄소 회로를 구비한 열 엔진 시스템
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN205559070U (zh) * 2016-03-04 2016-09-07 王力丰 以压缩空气为施力源的系统及飞机
JP6930844B2 (ja) * 2017-03-29 2021-09-01 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
JP6705770B2 (ja) * 2017-04-21 2020-06-03 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
JP6826962B2 (ja) * 2017-07-25 2021-02-10 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6793616B2 (ja) * 2017-09-27 2020-12-02 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6796577B2 (ja) * 2017-12-28 2020-12-09 株式会社神戸製鋼所 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
JP6910969B2 (ja) * 2018-01-09 2021-07-28 株式会社神戸製鋼所 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
JP7181690B2 (ja) * 2018-01-12 2022-12-01 株式会社神戸製鋼所 冷熱発電装置
CA3173945A1 (en) 2018-03-20 2019-09-20 Steffes Corporation Flow-based energy management
EP3584414A1 (de) * 2018-06-19 2019-12-25 Siemens Aktiengesellschaft Vorrichtung und verfahren zur bereitstellung von wärme, kälte und/oder elektrischer energie
US10883388B2 (en) * 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
JP6652621B1 (ja) * 2018-10-23 2020-02-26 株式会社神戸製鋼所 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
JP7022677B2 (ja) * 2018-12-14 2022-02-18 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
CN110849023B (zh) * 2019-11-01 2021-02-02 西安交通大学 一种压缩空气与热化学耦合储能的冷热电联产系统及方法
CN111173579A (zh) * 2020-03-02 2020-05-19 贵州电网有限责任公司 一种电加热装置为负载的膨胀发电实验系统和方法
CN111396162B (zh) * 2020-04-20 2024-05-07 贵州电网有限责任公司 一种高效率的先进压缩空气储能系统及方法
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
JP2024500375A (ja) 2020-12-09 2024-01-09 スーパークリティカル ストレージ カンパニー,インコーポレイティド 3貯蔵器式電気的熱エネルギー貯蔵システム
CN114382560A (zh) * 2021-12-03 2022-04-22 中国建筑科学研究院有限公司 一种光伏发电与压缩空气储能耦合的热电联产系统
US11870253B2 (en) 2021-12-03 2024-01-09 Power8 Tech Inc. Energy storage systems and methods using heterogeneous pressure media and interactive actuation module
US20230213149A1 (en) * 2021-12-31 2023-07-06 Kepler Energy Systems, Inc. Power Shift System to Store and Distribute Energy
CN115164449B (zh) * 2022-07-19 2023-07-07 西安热工研究院有限公司 压缩空气耦合浅层地热蓄能系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238367A (ja) * 1997-02-24 1998-09-08 Hitachi Ltd エネルギ貯蔵型ガスタービン発電システム
JP2012097736A (ja) * 2010-10-29 2012-05-24 Nuovo Pignone Spa 先進的断熱圧縮空気エネルギー貯蔵システムの吸気冷却及び水分除去装置並びに方法
JP2014098366A (ja) * 2012-11-15 2014-05-29 Mitsui Eng & Shipbuild Co Ltd 蓄熱発電装置及びその制御方法
JP2015037364A (ja) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 太陽熱エネルギー発電装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507776A (ja) * 2006-10-23 2010-03-11 エム. エニス,ベン 淡水化プロセスによる圧縮空気エネルギー及び/又は冷却水を用いる熱エネルギー貯蔵システム
US8261552B2 (en) * 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
CN101289963A (zh) * 2007-04-18 2008-10-22 中国科学院工程热物理研究所 压缩空气储能系统
JP4922110B2 (ja) * 2007-09-11 2012-04-25 株式会社神戸製鋼所 発電装置
WO2010125568A2 (en) * 2009-04-28 2010-11-04 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US20110127004A1 (en) 2009-11-30 2011-06-02 Freund Sebastian W Regenerative thermal energy storage apparatus for an adiabatic compressed air energy storage system
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
US8739522B2 (en) 2010-10-29 2014-06-03 Nuovo Pignone S.P.A. Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems
GB2493726A (en) * 2011-08-16 2013-02-20 Alstom Technology Ltd Adiabatic compressed air energy storage system
US20130192216A1 (en) * 2011-09-20 2013-08-01 Light Sail Energy Inc. Compressed gas energy storage system using turbine
EP2574756B1 (de) * 2011-09-30 2020-06-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betrieb eines adiabatischen Druckluftspeicherkraftwerks und adiabatisches Druckluftspeicherkraftwerk
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238367A (ja) * 1997-02-24 1998-09-08 Hitachi Ltd エネルギ貯蔵型ガスタービン発電システム
JP2012097736A (ja) * 2010-10-29 2012-05-24 Nuovo Pignone Spa 先進的断熱圧縮空気エネルギー貯蔵システムの吸気冷却及び水分除去装置並びに方法
JP2014098366A (ja) * 2012-11-15 2014-05-29 Mitsui Eng & Shipbuild Co Ltd 蓄熱発電装置及びその制御方法
JP2015037364A (ja) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 太陽熱エネルギー発電装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604767A4 (en) * 2017-03-29 2021-01-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ELECTRICITY GENERATING DEVICE WITH COMPRESSED AIR ACCUMULATOR
US10954852B2 (en) 2017-03-29 2021-03-23 Kobe Steel, Ltd. Compressed air energy storage power generation device
EP3613966A4 (en) * 2017-04-21 2021-01-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ELECTRICITY GENERATING DEVICE WITH COMPRESSED AIR ACCUMULATOR
CN111727541A (zh) * 2018-02-23 2020-09-29 株式会社神户制钢所 压缩空气储存发电装置
EP3758190A4 (en) * 2018-02-23 2021-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) COMPRESSED AIR ENERGY STORAGE AND ENERGY PRODUCTION DEVICE

Also Published As

Publication number Publication date
JP6373794B2 (ja) 2018-08-15
US10655505B2 (en) 2020-05-19
US20190170026A1 (en) 2019-06-06
EP3296545A1 (en) 2018-03-21
CN107532511A (zh) 2018-01-02
CN107532511B (zh) 2019-08-20
JP2016211416A (ja) 2016-12-15
EP3296545A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6373794B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6343587B2 (ja) 圧縮空気貯蔵発電方法及び圧縮空気貯蔵発電装置
JP6510876B2 (ja) 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置
US10352310B2 (en) Compressed air storage and power generation device and compressed air storage and power generation method
US10746097B2 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
EP3372804B1 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
JP2019173608A (ja) 圧縮空気貯蔵発電方法
US11952922B2 (en) Operation of a thermal energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE