WO2016181840A1 - Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2016181840A1
WO2016181840A1 PCT/JP2016/063185 JP2016063185W WO2016181840A1 WO 2016181840 A1 WO2016181840 A1 WO 2016181840A1 JP 2016063185 W JP2016063185 W JP 2016063185W WO 2016181840 A1 WO2016181840 A1 WO 2016181840A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display element
meth
compound
Prior art date
Application number
PCT/JP2016/063185
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020177006334A priority Critical patent/KR20180003527A/en
Priority to JP2016531720A priority patent/JP6046866B1/en
Priority to CN201680003125.7A priority patent/CN106796376A/en
Publication of WO2016181840A1 publication Critical patent/WO2016181840A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to a sealing agent for a liquid crystal display element that has excellent light-shielding part curability, has excellent moisture resistance and adhesiveness even in a high-temperature and high-humidity environment, and can suppress the occurrence of display unevenness in a liquid crystal display element. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements.
  • Patent Document 1 and Patent Document 2 a method for manufacturing a liquid crystal display element such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from the conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a liquid crystal dropping method called a dripping method using such a photothermal combined curing type sealant has become the mainstream.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing.
  • heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency.
  • the present invention provides a sealing agent for a liquid crystal display element that has excellent light-shielding part curability, has excellent moisture resistance and adhesiveness even in a high-temperature and high-humidity environment, and can suppress the occurrence of display unevenness in a liquid crystal display element.
  • the purpose is to provide.
  • an object of this invention is to provide the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements.
  • the present invention is a liquid crystal display element sealing agent containing a curable resin and a thermal radical polymerization initiator, wherein the curable resin is a compound having two or more acryloyl groups in one molecule and one molecule. And a compound having two or more methacryloyl groups.
  • the curable resin is a compound having two or more acryloyl groups in one molecule and one molecule. And a compound having two or more methacryloyl groups.
  • the inventor of the present invention studied to suppress liquid crystal contamination caused by elution of the sealing agent in the middle of the liquid crystal by mixing a thermal radical polymerization initiator in the sealing agent and quickly curing the curable resin.
  • a thermal radical polymerization initiator if the light shielding design is severe, the crosslinking density of the light shielding part is not sufficient, resulting in insufficient moisture resistance and adhesion in a high temperature and high humidity environment, resulting in high temperature and high humidity.
  • display unevenness may occur in the liquid crystal display element after storage in an environment.
  • a sealing agent containing a thermal radical polymerization initiator has a compound having two or more acryloyl groups in one molecule as a curable resin and two or more methacryloyl groups in one molecule.
  • the glass transition temperature of the cured product can be made to be a specific temperature or more, it has excellent light-shielding part curability, and has excellent moisture resistance and adhesiveness even in a high temperature and high humidity environment.
  • display unevenness of the liquid crystal display element can be suppressed, and the present invention has been completed.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin contains a compound having two or more acryloyl groups in one molecule and a compound having two or more methacryloyl groups in one molecule.
  • the compound having two or more acryloyl groups in one molecule and the compound having two or more methacryloyl groups in one molecule are also referred to as a poly (meth) acrylic compound.
  • the “(meth) acryl” means acryl or methacryl.
  • (meth) acrylic acid ester compound obtained by making the compound which has a hydroxyl group react with (meth) acrylic acid, for example, making (meth) acrylic acid and an epoxy compound react.
  • the compound which has the above is mentioned.
  • the “(meth) acrylate” means acrylate or methacrylate
  • the “epoxy (meth) acrylate” means a compound obtained by reacting all epoxy groups in the epoxy compound with (meth) acrylic acid.
  • the above “(meth) acryloyl” means acryloyl or methacryloyl.
  • Examples of the bifunctional one of the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diene.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerol tri (meth) acrylate, propylene oxide-added glycerol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol pen
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include jER YL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-3
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.
  • the isocyanate compound is obtained by, for example, reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and an excess isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane.
  • Examples include epoxy (meth) acrylates such as epoxy (meth) acrylate.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U-
  • the poly (meth) acrylic compound preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing adverse effects on the liquid crystal.
  • the curable resin is a bisphenol A type epoxy (meth) acrylate, bisphenol E type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, or bisphenol S type epoxy (meth) as a poly (meth) acrylic compound. It is preferable to contain at least one selected from the group consisting of acrylates.
  • the minimum with the preferable ratio of the methacryloyl group with respect to the total amount of the acryloyl group and the methacryloyl group in the said whole curable resin is 5 mol%.
  • the ratio of the methacryloyl group is 5 mol% or more, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing display unevenness of the liquid crystal display elements after storage in a high temperature and high humidity environment.
  • a more preferable lower limit of the ratio of the methacryloyl group is 10 mol%.
  • the preferable upper limit of the ratio of the methacryloyl group is 80 mol%, and the more preferable upper limit is 70 mol%.
  • the preferable lower limit of the content of the compound having two or more acryloyl groups in one molecule in 100 parts by weight of the entire curable resin is 5 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the compound having two or more acryloyl groups in one molecule is within this range, the obtained sealing agent for liquid crystal display elements is stored in a high temperature and high humidity environment while maintaining excellent adhesiveness.
  • the resulting liquid crystal display element is more excellent in the effect of suppressing display unevenness.
  • the more preferable lower limit of the content of the compound having two or more acryloyl groups in one molecule is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
  • the preferable lower limit of the content of the compound having two or more methacryloyl groups in one molecule in 100 parts by weight of the entire curable resin is 1 part by weight, and the preferable upper limit is 75 parts by weight.
  • the obtained sealing agent for liquid crystal display elements is stored in a high temperature and high humidity environment while maintaining excellent adhesiveness.
  • the resulting liquid crystal display element is more excellent in the effect of suppressing display unevenness.
  • the more preferable lower limit of the content of the compound having two or more methacryloyl groups in one molecule is 5 parts by weight, the more preferable upper limit is 60 parts by weight, the still more preferable lower limit is 20 parts by weight, and the still more preferable upper limit is 50 parts by weight. .
  • the said curable resin may contain a monofunctional (meth) acryl compound in the range which does not inhibit the objective of this invention.
  • the said curable resin may contain an epoxy compound in the range which does not inhibit the objective of this invention for the purpose of improving the adhesiveness of the sealing compound for liquid crystal display elements obtained.
  • the epoxy compound include an epoxy compound that is a raw material for synthesizing the epoxy (meth) acrylate and a portion having one or more epoxy groups and one (meth) acryloyl group in one molecule (meta ) Acrylic modified epoxy resin and the like.
  • the said curable resin contains the partial (meth) acryl modified
  • the upper limit with the preferable ratio of the epoxy group with respect to the total amount of the acryloyl group in the whole said curable resin, a methacryloyl group, and an epoxy group is 50 mol%.
  • the ratio of the epoxy group is 50 mol% or less, liquid crystal contamination due to dissolution of the obtained sealing agent for liquid crystal display elements in the liquid crystal can be suppressed, and the obtained liquid crystal display element is superior in display performance. It becomes.
  • a more preferable upper limit of the ratio of the epoxy group is 20 mol%.
  • the curable resin contains a partial (meth) acryl-modified epoxy resin having one or more epoxy groups and one (meth) acryloyl group in one molecule, in 100 parts by weight of the curable resin as a whole.
  • the preferable lower limit of the content of the partial (meth) acryl-modified epoxy resin in is 3 parts by weight, and the preferable upper limit is 50 parts by weight.
  • the obtained sealing agent for liquid crystal display elements is excellent in adhesiveness and excellent in suppressing the occurrence of display unevenness in the obtained liquid crystal display elements. It will be a thing.
  • the minimum with more preferable content of the said partial (meth) acryl modified epoxy resin is 5 weight part, and a more preferable upper limit is 40 weight part.
  • the sealing agent for liquid crystal display elements of the present invention contains a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo initiator is an azo group, and generates a radical that can react with a radical polymerizable group such as a (meth) acryloyl group by heat, and has a number average molecular weight of 300 or more.
  • a radical polymerizable group such as a (meth) acryloyl group by heat
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • polymer azo initiator examples include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of azo compounds that are not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermal radical polymerization initiator is within this range, the liquid crystal display element sealant obtained is more excellent in thermosetting while suppressing liquid crystal contamination by the unreacted thermal radical polymerization initiator.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the content of the thermal radical polymerization initiator in the sealing agent for liquid crystal display elements of the present invention is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the thermal radical polymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting.
  • the content of the thermal radical polymerization initiator is 10 parts by weight or less, the viscosity of the obtained sealing agent for liquid crystal display elements does not become too high, and the coating properties and the like are excellent.
  • the minimum with more preferable content of the said thermal radical polymerization initiator is 0.15 weight part, and a more preferable upper limit is 8 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a photo radical polymerization initiator in addition to the thermal radical polymerization initiator.
  • a photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the like.
  • photo radical polymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • the content of the photo radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the photo radical polymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in photocurability.
  • the content of the radical photopolymerization initiator is 10 parts by weight or less, a large amount of unreacted radical photopolymerization initiator does not remain, and the resulting sealant for a liquid crystal display element has superior weather resistance.
  • the minimum with more preferable content of the said radical photopolymerization initiator is 0.2 weight part, and a more preferable upper limit is 8 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl-5-isopropylhydantoin), sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • Examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the content of the thermosetting agent is 1 part by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting.
  • the content of the thermosetting agent is 50 parts by weight or less, the viscosity of the obtained sealing agent does not become too high, and the coating property is excellent.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. Good.
  • Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, core shell acrylate Examples include organic fillers such as copolymer fine particles. These fillers may be used alone or in combination of two or more.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the filler is within this range, effects such as improvement in adhesiveness are further improved while suppressing deterioration of applicability and the like.
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • As said silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • silane coupling agents may be used alone or in combination of two or more.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing agents for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part.
  • a preferable upper limit is 20 weight part.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • a shading agent is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • a photocatalyst for the sealing agent for liquid crystal display elements of the present invention can be used by using a photo initiator capable of initiating the reaction with light having a wavelength (370 to 450 nm) at which the transmittance of titanium black is high. Curability can be further increased.
  • the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
  • the titanium black preferably has an optical density (OD value) per ⁇ m of 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better.
  • the OD value of the titanium black is not particularly limited, but is usually 5 or less.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has sufficient light-shielding properties, and therefore has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is 5 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in light-shielding properties.
  • the content of the light-shielding agent is 80 parts by weight or less, the obtained sealing agent for liquid crystal display elements is excellent in adhesion to the substrate, strength after curing, and drawing properties.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
  • a reactive diluent for adjusting the viscosity
  • a spacer such as polymer beads for adjusting the panel gap
  • 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and
  • cured material is 100 degreeC.
  • the glass transition temperature of the cured product is 100 ° C. or higher, the effect of suppressing display unevenness of the liquid crystal display element after storage in a high-temperature and high-humidity environment is excellent.
  • cured material is 110 degreeC.
  • the preferable upper limit of the glass transition temperature of the cured product is 130 ° C., and the more preferable upper limit is 120 ° C.
  • the “glass transition temperature” means a temperature at which a maximum due to micro-Brownian motion appears among the maximum of loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement. It can be measured by a conventionally known method using an apparatus or the like.
  • the cured product for measuring the glass transition temperature can be obtained by heating at 120 ° C. for 1 hour when the sealing agent for liquid crystal display elements is cured by heating, and 100 mW when cured by light irradiation. / Cm 2 of ultraviolet light for 30 seconds.
  • a vertical conduction material can be produced by blending conductive fine particles with the sealing agent for liquid crystal display elements of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • electroconductive fine particles what formed the conductive metal layer on the surface of a metal ball, resin microparticles
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • a method for producing the liquid crystal display element of the present invention a liquid crystal dropping method is preferably used.
  • the liquid crystal display element of the present invention is provided on one of two transparent substrates having electrodes such as an ITO thin film.
  • the method etc. which have the process of heating and hardening a sealing compound are mentioned.
  • sticker which is excellent in light-shielding part sclerosis
  • An agent can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements can be provided.
  • Examples 1 to 12 Comparative Examples 1 to 4
  • a planetary stirrer manufactured by Shinky Co., Ltd., “Awatori Netaro”
  • Sealants for liquid crystal display elements of Examples 1 to 12 and Comparative Examples 1 to 4 were obtained.
  • an adhesive test piece was obtained by irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp instead of heating at 120 ° C. for 1 hour. .
  • a tensile test (5 mm / sec) was performed by placing chucks on the upper and lower sides of the obtained adhesion test piece. Further, the adhesion test piece produced in the same manner was left in an environment of 121 ° C., 100% RH, 2 atm for 48 hours, and then subjected to a tensile test (5 mm / sec).
  • the resulting value obtained by dividing measured values (kgf) in the seal coating cross sectional area (cm 2) is " ⁇ " the case was 290kgf / cm 2 or more was 270 kgf / cm 2 or more 290kgf / cm of less than 2
  • the initial adhesiveness and the adhesiveness after the high-temperature and high-humidity test are indicated as “ ⁇ ”, “ ⁇ ” when 250 kgf / cm 2 or more and less than 270 kgf / cm 2 , and “X” when 250 kgf / cm 2 or less. evaluated.
  • the sealing agents for liquid crystal display elements obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were then heated at 120 ° C. for 1 hour to cure the sealing agent.
  • the sealing agent for liquid crystal display elements obtained in Comparative Example 4 instead of heating at 120 ° C. for 1 hour, the sealing agent was applied by irradiating 100 mW / cm 2 of ultraviolet rays from the substrate A side using a metal halide lamp for 30 seconds. Cured.
  • the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method with respect to the sealing agent located at a position 50 ⁇ m away from the boundary between the chromium deposition part and the non-deposition part of the substrate A to the chromium deposition part side.
  • the conversion rate of the (meth) acryloyl group in the sealant was determined by the following method.
  • the conversion ratio of the (meth) acryloyl group is calculated according to the following formula: A light-shielding portion where the conversion rate of the (meth) acryloyl group was 95% or more, “ ⁇ ”, 90% or more and less than 95% “ ⁇ ”, and less than 90% “ ⁇ ” The curability was evaluated.
  • the agent was cured to produce a liquid crystal display element.
  • the voltage drive of AC3.5V was carried out and it observed visually.
  • the display performance of the liquid crystal display element was evaluated with “ ⁇ ” when the image was present and “ ⁇ ” when the clear dark display unevenness spread not only to the periphery but also to the center.
  • sticker which is excellent in light-shielding part sclerosis
  • An agent can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention provides a sealant for a liquid crystal display element, the sealant having excellent curability in a light-shielding part, having excellent moisture resistance and adhesion even in an environment of high temperature and humidity, and being capable of suppressing unevenness of display in a liquid crystal display element. The purpose of the present invention is also to provide a vertical conduction material and a liquid crystal display element manufactured using the sealant for a liquid crystal display element. The present invention is a sealant for a liquid crystal display element, containing a curable resin and a thermal radical polymerization initiator, the curable resin containing a compound having two or more acryloyl groups in each molecule thereof, and a compound having two or more methacryloyl groups in each molecule thereof.

Description

液晶表示素子用シール剤、及び、上下導通材料、及び、液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、遮光部硬化性に優れ、高温高湿環境下においても優れた耐湿性及び接着性を有し、液晶表示素子の表示むらの発生を抑制することができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealing agent for a liquid crystal display element that has excellent light-shielding part curability, has excellent moisture resistance and adhesiveness even in a high-temperature and high-humidity environment, and can suppress the occurrence of display unevenness in a liquid crystal display element. . Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法は、タクトタイム短縮、使用液晶量の最適化といった観点から、従来の真空注入方式から、例えば、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が主流となっている。 In recent years, a method for manufacturing a liquid crystal display element such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from the conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dripping method using such a photothermal combined curing type sealant has become the mainstream.
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができる。 In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、「狭額縁設計」ともいう)。
しかしながら、滴下工法で狭額縁設計の液晶表示素子を製造すると、ブラックマトリックスによりシール部に光の当たらない箇所が存在するため、光硬化系のシール剤を用いた場合、充分に光照射されず硬化が進行しない部分が生じ、硬化途中のシール剤が溶出してしまい、液晶が汚染されることがあるという問題があった。
By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a technique for miniaturization, there is a narrow frame of the liquid crystal display unit, and for example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as “narrow frame design”).
However, when a liquid crystal display element with a narrow frame design is manufactured by the dropping method, there are places where the light does not hit the seal part due to the black matrix, so when using a photo-curing sealant, it is not sufficiently irradiated with light and cured. There is a problem that a portion where the liquid crystal does not proceed occurs, the sealing agent in the middle of curing is eluted, and the liquid crystal may be contaminated.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
本発明は、遮光部硬化性に優れ、高温高湿環境下においても優れた耐湿性及び接着性を有し、液晶表示素子の表示むらの発生を抑制することができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。 The present invention provides a sealing agent for a liquid crystal display element that has excellent light-shielding part curability, has excellent moisture resistance and adhesiveness even in a high-temperature and high-humidity environment, and can suppress the occurrence of display unevenness in a liquid crystal display element. The purpose is to provide. Moreover, an object of this invention is to provide the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements.
本発明は、硬化性樹脂と、熱ラジカル重合開始剤とを含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、1分子中にアクリロイル基を2つ以上有する化合物と1分子中にメタクリロイル基を2つ以上有する化合物とを含有する液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention is a liquid crystal display element sealing agent containing a curable resin and a thermal radical polymerization initiator, wherein the curable resin is a compound having two or more acryloyl groups in one molecule and one molecule. And a compound having two or more methacryloyl groups.
The present invention is described in detail below.
本発明者は、シール剤に熱ラジカル重合開始剤を配合して速やかに硬化性樹脂を硬化させることにより、硬化途中のシール剤が液晶に溶出することによる液晶汚染を抑制することを検討した。しかしながら、熱ラジカル重合開始剤を用いた場合でも、遮光設計が厳しい場合、遮光部の架橋密度が充分ではなく、高温高湿環境下における耐湿性や接着性が不充分となって、高温高湿環境下で保管した後の液晶表示素子に表示むらが発生することがあるという問題があった。
そこで本発明者は鋭意検討した結果、熱ラジカル重合開始剤を含有するシール剤において、硬化性樹脂として1分子中にアクリロイル基を2つ以上有する化合物と1分子中にメタクリロイル基を2つ以上有する化合物とを用いることにより、硬化物のガラス転移温度を特定の温度以上になるようにすることができ、遮光部硬化性に優れ、高温高湿環境下においても優れた耐湿性及び接着性を有し、液晶表示素子の表示むらの発生を抑制することができることを見出し、本発明を完成させるに至った。
The inventor of the present invention studied to suppress liquid crystal contamination caused by elution of the sealing agent in the middle of the liquid crystal by mixing a thermal radical polymerization initiator in the sealing agent and quickly curing the curable resin. However, even when a thermal radical polymerization initiator is used, if the light shielding design is severe, the crosslinking density of the light shielding part is not sufficient, resulting in insufficient moisture resistance and adhesion in a high temperature and high humidity environment, resulting in high temperature and high humidity. There has been a problem that display unevenness may occur in the liquid crystal display element after storage in an environment.
Thus, as a result of intensive studies, the present inventors have found that a sealing agent containing a thermal radical polymerization initiator has a compound having two or more acryloyl groups in one molecule as a curable resin and two or more methacryloyl groups in one molecule. By using a compound, the glass transition temperature of the cured product can be made to be a specific temperature or more, it has excellent light-shielding part curability, and has excellent moisture resistance and adhesiveness even in a high temperature and high humidity environment. As a result, it has been found that display unevenness of the liquid crystal display element can be suppressed, and the present invention has been completed.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、1分子中にアクリロイル基を2つ以上有する化合物と1分子中にメタクリロイル基を2つ以上有する化合物とを含有する。
以下、上記1分子中にアクリロイル基を2つ以上有する化合物と上記1分子中にメタクリロイル基を2つ以上有する化合物とを併せて、ポリ(メタ)アクリル化合物ともいう。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin contains a compound having two or more acryloyl groups in one molecule and a compound having two or more methacryloyl groups in one molecule.
Hereinafter, the compound having two or more acryloyl groups in one molecule and the compound having two or more methacryloyl groups in one molecule are also referred to as a poly (meth) acrylic compound.
In the present specification, the “(meth) acryl” means acryl or methacryl.
上記ポリ(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等であって、1分子中に(メタ)アクリロイル基を2つ以上有する化合物が挙げられる。
なお、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
As said poly (meth) acrylic compound, (meth) acrylic acid ester compound obtained by making the compound which has a hydroxyl group react with (meth) acrylic acid, for example, making (meth) acrylic acid and an epoxy compound react. Epoxy (meth) acrylate obtained by the above, urethane (meth) acrylate obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group, and two (meth) acryloyl groups in one molecule The compound which has the above is mentioned.
The “(meth) acrylate” means acrylate or methacrylate, and the “epoxy (meth) acrylate” means a compound obtained by reacting all epoxy groups in the epoxy compound with (meth) acrylic acid. The above “(meth) acryloyl” means acryloyl or methacryloyl.
上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional one of the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diene. (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate , Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate , Polypropy Glycol (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) acrylate , Neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol di (Meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol di (meth) Acrylate, and the like.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth) acrylic acid ester compounds, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerol tri (meth) acrylate, propylene oxide-added glycerol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。 Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1001、jER1004(いずれも三菱化学社製)、エピクロン850(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、jER YL-7000(三菱化学社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
As what is marketed among the said bisphenol A type epoxy resins, jER828EL, jER1001, jER1004 (all are the Mitsubishi Chemical company make), Epicron 850 (made by DIC company), etc. are mentioned, for example.
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available bisphenol A type episulfide resins include jER YL-7000 (manufactured by Mitsubishi Chemical Corporation).
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314 And Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.
また、上記イソシアネート化合物としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 The isocyanate compound is obtained by, for example, reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and an excess isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane. Di (meth) acrylates of dihydric alcohols such as diol and polyethylene glycol, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin, and bisphenol A type Examples include epoxy (meth) acrylates such as epoxy (meth) acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Industries Manufactured by Co., Ltd.), AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, A-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記ポリ(メタ)アクリル化合物は、液晶への悪影響を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The poly (meth) acrylic compound preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing adverse effects on the liquid crystal.
上記硬化性樹脂は、ポリ(メタ)アクリル化合物として、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールE型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、及び、ビスフェノールS型エポキシ(メタ)アクリレートからなる群より選択される少なくとも一種を含有することが好ましい。 The curable resin is a bisphenol A type epoxy (meth) acrylate, bisphenol E type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, or bisphenol S type epoxy (meth) as a poly (meth) acrylic compound. It is preferable to contain at least one selected from the group consisting of acrylates.
上記硬化性樹脂全体におけるアクリロイル基とメタクリロイル基との合計量に対するメタクリロイル基の比率の好ましい下限は5モル%である。上記メタクリロイル基の比率が5モル%以上であることにより、得られる液晶表示素子用シール剤が、高温高湿環境下で保管した後の液晶表示素子の表示むらを抑制する効果により優れるものとなる。上記メタクリロイル基の比率のより好ましい下限は10モル%である。
また、接着性等の観点から、上記メタクリロイル基の比率の好ましい上限は80モル%、より好ましい上限は70モル%である。
The minimum with the preferable ratio of the methacryloyl group with respect to the total amount of the acryloyl group and the methacryloyl group in the said whole curable resin is 5 mol%. When the ratio of the methacryloyl group is 5 mol% or more, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of suppressing display unevenness of the liquid crystal display elements after storage in a high temperature and high humidity environment. . A more preferable lower limit of the ratio of the methacryloyl group is 10 mol%.
From the viewpoint of adhesiveness and the like, the preferable upper limit of the ratio of the methacryloyl group is 80 mol%, and the more preferable upper limit is 70 mol%.
上記硬化性樹脂全体100重量部中における上記1分子中にアクリロイル基を2つ以上有する化合物の含有量の好ましい下限は5重量部、好ましい上限は70重量部である。上記1分子中にアクリロイル基を2つ以上有する化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、優れた接着性を維持しつつ、高温高湿環境下で保管した後の液晶表示素子に表示むらを抑制する効果により優れるものとなる。上記1分子中にアクリロイル基を2つ以上有する化合物の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the compound having two or more acryloyl groups in one molecule in 100 parts by weight of the entire curable resin is 5 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the compound having two or more acryloyl groups in one molecule is within this range, the obtained sealing agent for liquid crystal display elements is stored in a high temperature and high humidity environment while maintaining excellent adhesiveness. The resulting liquid crystal display element is more excellent in the effect of suppressing display unevenness. The more preferable lower limit of the content of the compound having two or more acryloyl groups in one molecule is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.
上記硬化性樹脂全体100重量部中における上記1分子中にメタクリロイル基を2つ以上有する化合物の含有量の好ましい下限は1重量部、好ましい上限は75重量部である。上記1分子中にメタクリロイル基を2つ以上有する化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、優れた接着性を維持しつつ、高温高湿環境下で保管した後の液晶表示素子に表示むらを抑制する効果により優れるものとなる。上記1分子中にメタクリロイル基を2つ以上有する化合物の含有量のより好ましい下限は5重量部、より好ましい上限は60重量部、更に好ましい下限は20重量部、更に好ましい上限は50重量部である。 The preferable lower limit of the content of the compound having two or more methacryloyl groups in one molecule in 100 parts by weight of the entire curable resin is 1 part by weight, and the preferable upper limit is 75 parts by weight. When the content of the compound having two or more methacryloyl groups in one molecule is within this range, the obtained sealing agent for liquid crystal display elements is stored in a high temperature and high humidity environment while maintaining excellent adhesiveness. The resulting liquid crystal display element is more excellent in the effect of suppressing display unevenness. The more preferable lower limit of the content of the compound having two or more methacryloyl groups in one molecule is 5 parts by weight, the more preferable upper limit is 60 parts by weight, the still more preferable lower limit is 20 parts by weight, and the still more preferable upper limit is 50 parts by weight. .
上記硬化性樹脂は、本発明の目的を阻害しない範囲で単官能の(メタ)アクリル化合物を含有してもよい。
また、上記硬化性樹脂は、得られる液晶表示素子用シール剤の接着性を向上させること等を目的として、本発明の目的を阻害しない範囲で、エポキシ化合物を含有してもよい。
上記エポキシ化合物としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、1分子中に1つ以上のエポキシ基と1つの(メタ)アクリロイル基とを有する部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。なかでも、上記硬化性樹脂は、1分子中に1つ以上のエポキシ基と1つの(メタ)アクリロイル基とを有する部分(メタ)アクリル変性エポキシ樹脂を含有することが好ましい。
The said curable resin may contain a monofunctional (meth) acryl compound in the range which does not inhibit the objective of this invention.
Moreover, the said curable resin may contain an epoxy compound in the range which does not inhibit the objective of this invention for the purpose of improving the adhesiveness of the sealing compound for liquid crystal display elements obtained.
Examples of the epoxy compound include an epoxy compound that is a raw material for synthesizing the epoxy (meth) acrylate and a portion having one or more epoxy groups and one (meth) acryloyl group in one molecule (meta ) Acrylic modified epoxy resin and the like. Especially, it is preferable that the said curable resin contains the partial (meth) acryl modified | denatured epoxy resin which has one or more epoxy groups and one (meth) acryloyl group in 1 molecule.
上記硬化性樹脂として上記エポキシ化合物を含有する場合、上記硬化性樹脂全体におけるアクリロイル基とメタクリロイル基とエポキシ基との合計量に対するエポキシ基の比率の好ましい上限は50モル%である。上記エポキシ基の比率が50モル%以下であることにより、得られる液晶表示素子用シール剤が液晶に溶解することによる液晶汚染を抑制することができ、得られる液晶表示素子が表示性能により優れるものとなる。上記エポキシ基の比率のより好ましい上限は20モル%である。 When the said epoxy compound is contained as said curable resin, the upper limit with the preferable ratio of the epoxy group with respect to the total amount of the acryloyl group in the whole said curable resin, a methacryloyl group, and an epoxy group is 50 mol%. When the ratio of the epoxy group is 50 mol% or less, liquid crystal contamination due to dissolution of the obtained sealing agent for liquid crystal display elements in the liquid crystal can be suppressed, and the obtained liquid crystal display element is superior in display performance. It becomes. A more preferable upper limit of the ratio of the epoxy group is 20 mol%.
また、上記硬化性樹脂として1分子中に1つ以上のエポキシ基と1つの(メタ)アクリロイル基とを有する部分(メタ)アクリル変性エポキシ樹脂を含有する場合、上記硬化性樹脂全体100重量部中における上記部分(メタ)アクリル変性エポキシ樹脂の含有量の好ましい下限は3重量部、好ましい上限は50重量部である。上記部分(メタ)アクリル変性エポキシ樹脂をこの範囲で用いることにより、得られる液晶表示素子用シール剤が、接着性に優れ、かつ、得られる液晶表示素子の表示むらの発生を抑制する効果に優れるものとなる。上記部分(メタ)アクリル変性エポキシ樹脂の含有量のより好ましい下限は5重量部、より好ましい上限は40重量部である。 When the curable resin contains a partial (meth) acryl-modified epoxy resin having one or more epoxy groups and one (meth) acryloyl group in one molecule, in 100 parts by weight of the curable resin as a whole. The preferable lower limit of the content of the partial (meth) acryl-modified epoxy resin in is 3 parts by weight, and the preferable upper limit is 50 parts by weight. By using the partial (meth) acryl-modified epoxy resin in this range, the obtained sealing agent for liquid crystal display elements is excellent in adhesiveness and excellent in suppressing the occurrence of display unevenness in the obtained liquid crystal display elements. It will be a thing. The minimum with more preferable content of the said partial (meth) acryl modified epoxy resin is 5 weight part, and a more preferable upper limit is 40 weight part.
本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有する。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイル基等のラジカル重合性基を反応させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealing agent for liquid crystal display elements of the present invention contains a thermal radical polymerization initiator.
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo initiator is an azo group, and generates a radical that can react with a radical polymerizable group such as a (meth) acryloyl group by heat, and has a number average molecular weight of 300 or more. Means a compound of
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量がこの範囲であることにより、液晶への悪影響を防止しつつ、硬化性樹脂へより容易に混合することができる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymeric azo initiator is within this range, it can be more easily mixed into the curable resin while preventing adverse effects on the liquid crystal. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物の例としてはV-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
Examples of azo compounds that are not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱ラジカル重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤の含有量がこの範囲であることにより、未反応の熱ラジカル重合開始剤による液晶汚染を抑制しつつ、得られる液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal radical polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal radical polymerization initiator is within this range, the liquid crystal display element sealant obtained is more excellent in thermosetting while suppressing liquid crystal contamination by the unreacted thermal radical polymerization initiator. . The minimum with more preferable content of the said thermal radical polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤における上記熱ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤の含有量が0.1重量部以上であることにより、得られる液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量が10重量部以下であることにより、得られる液晶表示素子用シール剤の粘度が高くなりすぎず、塗布性等により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.15重量部、より好ましい上限は8重量部である。 The content of the thermal radical polymerization initiator in the sealing agent for liquid crystal display elements of the present invention is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermal radical polymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting. When the content of the thermal radical polymerization initiator is 10 parts by weight or less, the viscosity of the obtained sealing agent for liquid crystal display elements does not become too high, and the coating properties and the like are excellent. The minimum with more preferable content of the said thermal radical polymerization initiator is 0.15 weight part, and a more preferable upper limit is 8 weight part.
本発明の液晶表示素子用シール剤は、上記熱ラジカル重合開始剤に加えて、光ラジカル重合開始剤を含有してもよい。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン等が挙げられる。
The sealing agent for liquid crystal display elements of the present invention may contain a photo radical polymerization initiator in addition to the thermal radical polymerization initiator.
Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
上記光ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.1重量部以上であることにより、得られる液晶表示素子用シール剤が光硬化性により優れるものとなる。上記光ラジカル重合開始剤の含有量が10重量部以下であることにより、未反応の光ラジカル重合開始剤が多く残ることなく、得られる液晶表示素子用シール剤が耐候性により優れるものとなる。上記光ラジカル重合開始剤の含有量のより好ましい下限は0.2重量部、より好ましい上限は8重量部である。 The content of the photo radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the photo radical polymerization initiator is 0.1 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in photocurability. When the content of the radical photopolymerization initiator is 10 parts by weight or less, a large amount of unreacted radical photopolymerization initiator does not remain, and the resulting sealant for a liquid crystal display element has superior weather resistance. The minimum with more preferable content of the said radical photopolymerization initiator is 0.2 weight part, and a more preferable upper limit is 8 weight part.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。
The sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
上記固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル-5-イソプロピルヒダントイン)、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも味の素ファインテクノ社製)、SDH、IDH、ADH(いずれも大塚化学社製)、MDH(日本ファインケム社製)等が挙げられる。 Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl-5-isopropylhydantoin), sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like. Examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部以上であることにより、得られる液晶表示素子用シール剤が熱硬化性により優れるものとなる。上記熱硬化剤の含有量が50重量部以下であることにより、得られるシール剤の粘度が高くなりすぎず、塗布性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the thermosetting agent is 1 part by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in thermosetting. When the content of the thermosetting agent is 50 parts by weight or less, the viscosity of the obtained sealing agent does not become too high, and the coating property is excellent. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の更なる向上等を目的として充填剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and further improving the moisture resistance of the cured product. Good.
上記充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト、活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子、コアシェルアクリレート共重合体微粒子等の有機充填剤等が挙げられる。これらの充填剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, water Inorganic fillers such as aluminum oxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite, activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, core shell acrylate Examples include organic fillers such as copolymer fine particles. These fillers may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is within this range, effects such as improvement in adhesiveness are further improved while suppressing deterioration of applicability and the like. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
It is preferable that the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
As said silane coupling agent, since it is excellent in the effect which improves adhesiveness with a board | substrate etc. and it can suppress the outflow of curable resin in a liquid crystal by chemically bonding with curable resin, it is N, for example. -Phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, etc. are preferably used . These silane coupling agents may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は20重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は10重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing agents for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 20 weight part. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the occurrence of liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 10 weight part.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長(370~450nm)の光によって反応を開始可能なものを用いることで、本発明の液晶表示素子用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。
Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. Accordingly, as the photo radical polymerization initiator, a photocatalyst for the sealing agent for liquid crystal display elements of the present invention can be used by using a photo initiator capable of initiating the reaction with light having a wavelength (370 to 450 nm) at which the transmittance of titanium black is high. Curability can be further increased. On the other hand, the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
The titanium black preferably has an optical density (OD value) per μm of 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better. The OD value of the titanium black is not particularly limited, but is usually 5 or less.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを配合した本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has sufficient light-shielding properties, and therefore has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 μm. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
The primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量が5重量部以上であることにより、得られる液晶表示素子用シール剤が遮光性により優れるものとなる。上記遮光剤の含有量が80重量部以下であることにより、得られる液晶表示素子用シール剤が、基板に対する密着性、硬化後の強度、及び、描画性により優れるものとなる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is 5 parts by weight or more, the obtained sealing agent for liquid crystal display elements is more excellent in light-shielding properties. When the content of the light-shielding agent is 80 parts by weight or less, the obtained sealing agent for liquid crystal display elements is excellent in adhesion to the substrate, strength after curing, and drawing properties. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素、イソシアヌルカルボン酸等の硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他のカップリング剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea and isocyanuric carboxylic acid, an antifoamer, a leveling agent, a polymerization inhibitor, and another coupling agent.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、熱ラジカル重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for liquid crystal display elements of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin and a heat Examples thereof include a method of mixing a radical polymerization initiator and an additive such as a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤は、硬化物のガラス転移温度の好ましい下限が100℃である。上記硬化物のガラス転移温度が100℃以上であることにより、高温高湿環境下で保管した後の液晶表示素子の表示むらを抑制する効果により優れるものとなる。上記硬化物のガラス転移温度のより好ましい下限は110℃である。
また、接着性の観点から、上記硬化物のガラス転移温度の好ましい上限は130℃、より好ましい上限は120℃である。
なお、本明細書において上記「ガラス転移温度」とは、動的粘弾性測定により得られる損失正接(tanδ)の極大のうち、ミクロブラウン運動に起因する極大が現れる温度を意味し、粘弾性測定装置等を用いた従来公知の方法により測定することができる。また、上記ガラス転移温度を測定する硬化物は、液晶表示素子用シール剤を加熱により硬化させる場合は、120℃で1時間加熱することにより得ることができ、光照射により硬化させる場合は、100mW/cmの紫外線を30秒照射することにより得ることができる。
As for the sealing compound for liquid crystal display elements of this invention, the preferable minimum of the glass transition temperature of hardened | cured material is 100 degreeC. When the glass transition temperature of the cured product is 100 ° C. or higher, the effect of suppressing display unevenness of the liquid crystal display element after storage in a high-temperature and high-humidity environment is excellent. The minimum with a more preferable glass transition temperature of the said hardened | cured material is 110 degreeC.
From the viewpoint of adhesiveness, the preferable upper limit of the glass transition temperature of the cured product is 130 ° C., and the more preferable upper limit is 120 ° C.
In the present specification, the “glass transition temperature” means a temperature at which a maximum due to micro-Brownian motion appears among the maximum of loss tangent (tan δ) obtained by dynamic viscoelasticity measurement. It can be measured by a conventionally known method using an apparatus or the like. The cured product for measuring the glass transition temperature can be obtained by heating at 120 ° C. for 1 hour when the sealing agent for liquid crystal display elements is cured by heating, and 100 mW when cured by light irradiation. / Cm 2 of ultraviolet light for 30 seconds.
本発明の液晶表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conduction material can be produced by blending conductive fine particles with the sealing agent for liquid crystal display elements of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As said electroconductive fine particles, what formed the conductive metal layer on the surface of a metal ball, resin microparticles | fine-particles etc. can be used, for example. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、ITO薄膜等の電極を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により枠状のシールパターンを形成する工程、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の基板を重ね合わせる工程、及び、加熱してシール剤を硬化させる工程を有する方法等が挙げられる。
The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
As a method for producing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used. Specifically, for example, the liquid crystal display element of the present invention is provided on one of two transparent substrates having electrodes such as an ITO thin film. A step of forming a frame-shaped seal pattern by screen printing, dispenser application, etc., a step of applying a liquid crystal microdrop on the entire surface of the frame of the seal pattern, and superimposing the other substrate under vacuum, and The method etc. which have the process of heating and hardening a sealing compound are mentioned.
本発明によれば、遮光部硬化性に優れ、高温高湿環境下においても優れた耐湿性及び接着性を有し、液晶表示素子の表示むらの発生を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is the liquid crystal display element seal | sticker which is excellent in light-shielding part sclerosis | hardenability, has the outstanding moisture resistance and adhesiveness also in a high temperature, high humidity environment, and can suppress generation | occurrence | production of the display nonuniformity of a liquid crystal display element. An agent can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1~12、比較例1~4)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1~12、比較例1~4の液晶表示素子用シール剤を得た。
(Examples 1 to 12, Comparative Examples 1 to 4)
In accordance with the blending ratios described in Tables 1 and 2, each material was stirred with a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Netaro”) and then mixed uniformly with a ceramic three roll. Sealants for liquid crystal display elements of Examples 1 to 12 and Comparative Examples 1 to 4 were obtained.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)ガラス転移温度
実施例1~12及び比較例1~3で得られた各液晶表示素子用シール剤を120℃で1時間加熱してシール剤を完全に硬化させ、厚さ300μmのフィルムを作製し、試験片とした。比較例4で得られた液晶表示素子用シール剤については、120℃で1時間加熱する代わりに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射することによって試験片を得た。得られた試験片について、動的粘弾性測定装置(IT計測制御社製、「DVA-200」)を用いて、-80~200℃、10Hzにおいて動的粘弾性を測定し、損失正接(tanδ)の極大値の温度をガラス転移温度として求めた。
(1) Glass transition temperature Each of the sealing agents for liquid crystal display elements obtained in Examples 1 to 12 and Comparative Examples 1 to 3 was heated at 120 ° C. for 1 hour to completely cure the sealing agent, and a film having a thickness of 300 μm Was prepared as a test piece. About the sealing compound for liquid crystal display elements obtained by the comparative example 4, instead of heating at 120 degreeC for 1 hour, the test piece was obtained by irradiating 100 mW / cm < 2 > ultraviolet-ray for 30 second using a metal halide lamp. The obtained test piece was measured for dynamic viscoelasticity at −80 to 200 ° C. and 10 Hz using a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.), and loss tangent (tan δ) ) Was determined as the glass transition temperature.
(2)接着性(初期接着性及び高温高湿試験後接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、2枚のITO膜付きアルカリガラス試験片(30×40mm)のうち一方に微小滴下し、これにもう一方のガラス試験片を十字状に張り合わせた。実施例1~12及び比較例1~3で得られた各液晶表示素子用シール剤については、次いで、120℃で1時間加熱することによって接着試験片を得た。比較例4で得られた液晶表示素子用シール剤については、120℃で1時間加熱する代わりに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射することによって接着試験片を得た。得られた接着試験片の上下にチャックを配して引っ張り試験(5mm/sec)を行った。
また、同様にして作製した接着試験片について、121℃、100%RH、2気圧の環境下に48時間放置した後、引っ張り試験(5mm/sec)を行った。
得られた測定値(kgf)をシール塗布断面積(cm)で除した値が290kgf/cm以上であった場合を「◎」、270kgf/cm以上290kgf/cm未満であった場合を「○」、250kgf/cm以上270kgf/cm未満であった場合を「△」、250kgf/cm未満であった場合を「×」として初期接着性及び高温高湿試験後接着性を評価した。
(2) Adhesiveness (initial adhesiveness and adhesiveness after high temperature and high humidity test)
Each of the sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples was mixed with 1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.), and two pieces of alkali glass test pieces with ITO film (30 × 40 mm) was finely dropped on one side, and the other glass test piece was bonded to this in a cross shape. With respect to the sealing agents for liquid crystal display elements obtained in Examples 1 to 12 and Comparative Examples 1 to 3, adhesion test pieces were obtained by heating at 120 ° C. for 1 hour. About the sealing compound for liquid crystal display elements obtained in Comparative Example 4, an adhesive test piece was obtained by irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp instead of heating at 120 ° C. for 1 hour. . A tensile test (5 mm / sec) was performed by placing chucks on the upper and lower sides of the obtained adhesion test piece.
Further, the adhesion test piece produced in the same manner was left in an environment of 121 ° C., 100% RH, 2 atm for 48 hours, and then subjected to a tensile test (5 mm / sec).
If the resulting value obtained by dividing measured values (kgf) in the seal coating cross sectional area (cm 2) is "◎" the case was 290kgf / cm 2 or more was 270 kgf / cm 2 or more 290kgf / cm of less than 2 The initial adhesiveness and the adhesiveness after the high-temperature and high-humidity test are indicated as “◯”, “△” when 250 kgf / cm 2 or more and less than 270 kgf / cm 2 , and “X” when 250 kgf / cm 2 or less. evaluated.
(3)遮光部硬化性
厚さ0.7mmのコーニングガラスの半面をクロム蒸着した基板(A)と、前面をクロム蒸着した基板(B)とを別途準備した。次に、実施例及び比較例で得られた各液晶表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」、5μm)1重量部を分散させ、該シール剤を基板Aの中央部(クロム蒸着部と非蒸着部との境界)に塗布し、基板Bを貼り合わせてからシール剤を充分に押し潰した。実施例1~12及び比較例1~3で得られた各液晶表示素子用シール剤については、次いで、120℃で1時間加熱してシール剤を硬化させた。比較例4で得られた液晶表示素子用シール剤については、120℃で1時間加熱する代わりに、基板A側からメタルハライドランプを用いて100mW/cmの紫外線を30秒照射してシール剤を硬化させた。
その後、カッターを用いて基板A及びBを剥がし、基板Aのクロム蒸着部と非蒸着部との境界からクロム蒸着部側へ50μm離れた位置にあったシール剤について顕微IR法によってスペクトルを測定し、シール剤中の(メタ)アクリロイル基の転化率を以下の方法により求めた。即ち、815~800cm-1のピーク面積を(メタ)アクリロイル基のピーク面積とし、845~820cm-1のピーク面積をリファレンスピーク面積として、下記式により(メタ)アクリロイル基の転化率を算出し、(メタ)アクリロイル基の転化率が95%以上であったものを「○」、90%以上95%未満であったものを「△」、90%未満であったものを「×」として遮光部硬化性を評価した。
(メタ)アクリロイル基の転化率(%)=(1-(シール剤硬化後の(メタ)アクリロイル基のピーク面積/シール剤硬化後のリファレンスピーク面積)/(シール剤硬化前の(メタ)アクリロイル基のピーク面積/シール剤硬化前のリファレンスピーク面積))×100
(3) Light-shielding part curable A substrate (A) on which a half surface of Corning glass having a thickness of 0.7 mm was vapor-deposited and a substrate (B) in which the front surface was vapor-deposited with chromium were separately prepared. Next, 1 part by weight of spacer fine particles (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”, 5 μm) is dispersed in 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples. The sealing agent was applied to the center part of the substrate A (the boundary between the chromium deposition part and the non-deposition part), and after the substrate B was bonded, the sealing agent was sufficiently crushed. The sealing agents for liquid crystal display elements obtained in Examples 1 to 12 and Comparative Examples 1 to 3 were then heated at 120 ° C. for 1 hour to cure the sealing agent. About the sealing agent for liquid crystal display elements obtained in Comparative Example 4, instead of heating at 120 ° C. for 1 hour, the sealing agent was applied by irradiating 100 mW / cm 2 of ultraviolet rays from the substrate A side using a metal halide lamp for 30 seconds. Cured.
Thereafter, the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method with respect to the sealing agent located at a position 50 μm away from the boundary between the chromium deposition part and the non-deposition part of the substrate A to the chromium deposition part side. The conversion rate of the (meth) acryloyl group in the sealant was determined by the following method. That is, with the peak area of 815 to 800 cm −1 as the peak area of the (meth) acryloyl group and the peak area of 845 to 820 cm −1 as the reference peak area, the conversion ratio of the (meth) acryloyl group is calculated according to the following formula: A light-shielding portion where the conversion rate of the (meth) acryloyl group was 95% or more, “◯”, 90% or more and less than 95% “△”, and less than 90% “×” The curability was evaluated.
Conversion rate of (meth) acryloyl group (%) = (1− (peak area of (meth) acryloyl group after curing of sealant / reference peak area after curing of sealant) / ((meth) acryloyl before curing of sealant) Group peak area / reference peak area before curing of sealant)) × 100
(4)液晶表示素子の表示性能(作製直後、及び、高温高湿環境下で保管した後に駆動した液晶表示素子の色むら評価)
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、2枚のITO薄膜付きの透明電極基板のうちの一方に長方形の枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空張り合わせ装置にて5Paの減圧下にて貼り合わせ、セルを形成した。実施例1~12及び比較例1~3で得られた各液晶表示素子用シール剤については、得られたセルを120℃で1時間加熱することによってシール剤を硬化させ、液晶表示素子を作製した。比較例4で得られた液晶表示素子用シール剤については、得られたセルを120℃で1時間加熱する代わりに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射することによってシール剤を硬化させ、液晶表示素子を作製した。得られた液晶表示素子について、作製直後、及び、温度80℃湿度90%RHの環境下にて36時間保管した後に、AC3.5Vの電圧駆動をさせ、目視で観察した。液晶表示素子の周辺部に表示むら(色むら)が全く見られなかった場合を「◎」、周辺部に少し薄い表示むらが見えた場合を「○」、周辺部にはっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
(4) Display performance of liquid crystal display element (immediate evaluation of color unevenness of liquid crystal display element driven immediately after fabrication and after storage in a high temperature and high humidity environment)
Each liquid crystal display element sealant obtained in Examples and Comparative Examples was filled in a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Next, using a dispenser (“SHOTMASTER 300” manufactured by Musashi Engineering Co., Ltd.), a sealing agent was applied so as to draw a rectangular frame on one of the two transparent electrode substrates with an ITO thin film. Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) are applied dropwise with a liquid crystal dropping device, and the other transparent substrate is bonded under a reduced pressure of 5 Pa with a vacuum laminating device. Formed. About each liquid crystal display element sealing agent obtained in Examples 1 to 12 and Comparative Examples 1 to 3, the obtained cells were heated at 120 ° C. for 1 hour to cure the sealing agent, thereby producing liquid crystal display elements. did. About the sealing agent for liquid crystal display elements obtained in Comparative Example 4, instead of heating the obtained cell at 120 ° C. for 1 hour, it was sealed by irradiating 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp. The agent was cured to produce a liquid crystal display element. About the obtained liquid crystal display element, after storing for 36 hours in the environment of temperature 80 degreeC humidity 90% RH immediately after preparation, the voltage drive of AC3.5V was carried out and it observed visually. “◎” when no display unevenness (color unevenness) is observed at the periphery of the liquid crystal display element, “○” when slightly uneven display appears at the periphery, and clear dark display unevenness at the periphery The display performance of the liquid crystal display element was evaluated with “△” when the image was present and “×” when the clear dark display unevenness spread not only to the periphery but also to the center.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、遮光部硬化性に優れ、高温高湿環境下においても優れた耐湿性及び接着性を有し、液晶表示素子の表示むらの発生を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is the liquid crystal display element seal | sticker which is excellent in light-shielding part sclerosis | hardenability, has the outstanding moisture resistance and adhesiveness also in a high temperature, high humidity environment, and can suppress generation | occurrence | production of the display nonuniformity of a liquid crystal display element. An agent can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal display elements can be provided.

Claims (8)

  1. 硬化性樹脂と、熱ラジカル重合開始剤とを含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、1分子中にアクリロイル基を2つ以上有する化合物と1分子中にメタクリロイル基を2つ以上有する化合物とを含有することを特徴とする液晶表示素子用シール剤。
    A sealing agent for a liquid crystal display element containing a curable resin and a thermal radical polymerization initiator,
    The said curable resin contains the compound which has 2 or more of acryloyl groups in 1 molecule, and the compound which has 2 or more of methacryloyl groups in 1 molecule, The sealing compound for liquid crystal display elements characterized by the above-mentioned.
  2. 硬化性樹脂全体におけるアクリロイル基とメタクリロイル基との合計量に対するメタクリロイル基の比率が5モル%以上であることを特徴とする請求項1記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, wherein the ratio of methacryloyl groups to the total amount of acryloyl groups and methacryloyl groups in the entire curable resin is 5 mol% or more.
  3. 硬化性樹脂全体100重量部中における1分子中にメタクリロイル基を2つ以上有する化合物の含有量が1~75重量部であることを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 3. The sealing agent for a liquid crystal display element according to claim 1, wherein the content of the compound having two or more methacryloyl groups in one molecule in 100 parts by weight of the entire curable resin is 1 to 75 parts by weight. .
  4. 硬化性樹脂は、1分子中に1つ以上のエポキシ基と1つの(メタ)アクリロイル基とを有する部分(メタ)アクリル変性エポキシ樹脂を含有することを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。 4. The curable resin contains a partial (meth) acryl-modified epoxy resin having one or more epoxy groups and one (meth) acryloyl group in one molecule. A sealing agent for liquid crystal display elements.
  5. 硬化物のガラス転移温度が100℃以上であることを特徴とする請求項1、2、3又は4記載の液晶表示素子用シール剤。 The glass transition temperature of hardened | cured material is 100 degreeC or more, The sealing compound for liquid crystal display elements of Claim 1, 2, 3 or 4 characterized by the above-mentioned.
  6. 遮光剤を含有することを特徴とする請求項1、2、3、4又は5記載の液晶表示素子用シール剤。 The light-shielding agent is contained, The sealing agent for liquid crystal display elements of Claim 1, 2, 3, 4 or 5 characterized by the above-mentioned.
  7. 請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the liquid crystal display element sealing agent according to claim 1, 2, 3, 4, 5 or 6, and conductive fine particles.
  8. 請求項1、2、3、4、5若しくは6記載の液晶表示素子用シール剤又は請求項7記載の上下導通材料を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 5 or 6, or the vertical conduction material according to claim 7.
PCT/JP2016/063185 2015-05-08 2016-04-27 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element WO2016181840A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177006334A KR20180003527A (en) 2015-05-08 2016-04-27 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2016531720A JP6046866B1 (en) 2015-05-08 2016-04-27 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN201680003125.7A CN106796376A (en) 2015-05-08 2016-04-27 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015095869 2015-05-08
JP2015-095869 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181840A1 true WO2016181840A1 (en) 2016-11-17

Family

ID=57248940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063185 WO2016181840A1 (en) 2015-05-08 2016-04-27 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6046866B1 (en)
KR (1) KR20180003527A (en)
CN (1) CN106796376A (en)
TW (1) TWI695867B (en)
WO (1) WO2016181840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168442A (en) * 2017-07-14 2019-08-23 积水化学工业株式会社 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
JPWO2021002318A1 (en) * 2019-07-01 2021-09-13 積水化学工業株式会社 Sealing agent for display elements, vertical conductive materials, and display elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102329104B1 (en) 2019-12-05 2021-11-19 정칠수 Work cushion with comfortable seating
JP7029027B1 (en) * 2020-06-10 2022-03-02 積水化学工業株式会社 Sealant for display element, vertical conduction material, and display element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102550A1 (en) * 2007-02-20 2008-08-28 Mitsui Chemicals, Inc. Curable resin composition for sealing liquid crystal, and method for production of liquid crystal display panel using the same
WO2008139736A1 (en) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. Liquid crystal panel mounting substrate, and method for producing the same
JP2009058933A (en) * 2007-07-06 2009-03-19 Mitsui Chemicals Inc Liquid crystal sealing material, (meth)acrylic acid ester compound used for the same, and method for producing the compound
WO2009154138A1 (en) * 2008-06-18 2009-12-23 株式会社ブリヂストン Adhesive composition and method for manufacturing display panel using the same
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
WO2014199853A1 (en) * 2013-06-11 2014-12-18 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027502A1 (en) * 2002-09-19 2004-04-01 Mitsui Chemicals, Inc. Sealing composition for liquid crystal displays and process for production of liquid crystal display panels
JP5152868B2 (en) * 2009-06-11 2013-02-27 日本化薬株式会社 Visible light curable liquid crystal sealant and liquid crystal display cell using the same
JP5736613B2 (en) * 2010-10-01 2015-06-17 協立化学産業株式会社 Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102550A1 (en) * 2007-02-20 2008-08-28 Mitsui Chemicals, Inc. Curable resin composition for sealing liquid crystal, and method for production of liquid crystal display panel using the same
WO2008139736A1 (en) * 2007-05-14 2008-11-20 Mitsui Chemicals, Inc. Liquid crystal panel mounting substrate, and method for producing the same
JP2009058933A (en) * 2007-07-06 2009-03-19 Mitsui Chemicals Inc Liquid crystal sealing material, (meth)acrylic acid ester compound used for the same, and method for producing the compound
WO2009154138A1 (en) * 2008-06-18 2009-12-23 株式会社ブリヂストン Adhesive composition and method for manufacturing display panel using the same
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
WO2014199853A1 (en) * 2013-06-11 2014-12-18 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168442A (en) * 2017-07-14 2019-08-23 积水化学工业株式会社 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
JPWO2021002318A1 (en) * 2019-07-01 2021-09-13 積水化学工業株式会社 Sealing agent for display elements, vertical conductive materials, and display elements
JPWO2021002317A1 (en) * 2019-07-01 2021-09-13 積水化学工業株式会社 Sealing agent for display elements, vertical conductive materials, and display elements

Also Published As

Publication number Publication date
TWI695867B (en) 2020-06-11
JP6046866B1 (en) 2016-12-21
JPWO2016181840A1 (en) 2017-05-25
TW201702321A (en) 2017-01-16
CN106796376A (en) 2017-05-31
KR20180003527A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP5827752B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2017119406A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046866B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6114893B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6163045B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6313698B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000158B2 (en) Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6460797B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2020085081A1 (en) Sealant for display element, cured product, vertical conductive material, and display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6918693B2 (en) Light-shielding sealant for liquid crystal display elements, vertical conductive materials, and liquid crystal display elements
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6802147B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
KR20180015606A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
JP7053262B2 (en) Manufacturing method of sealant for liquid crystal display element
JP6978311B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2018230655A1 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
JPWO2019221044A1 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR20190098910A (en) Sealing agent for liquid crystal display elements, top and bottom conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016531720

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792565

Country of ref document: EP

Kind code of ref document: A1