WO2016181437A1 - Component mounting machine, and component supply method for component mounting machine - Google Patents

Component mounting machine, and component supply method for component mounting machine Download PDF

Info

Publication number
WO2016181437A1
WO2016181437A1 PCT/JP2015/063284 JP2015063284W WO2016181437A1 WO 2016181437 A1 WO2016181437 A1 WO 2016181437A1 JP 2015063284 W JP2015063284 W JP 2015063284W WO 2016181437 A1 WO2016181437 A1 WO 2016181437A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
supply
pallet
imaging
mounting
Prior art date
Application number
PCT/JP2015/063284
Other languages
French (fr)
Japanese (ja)
Inventor
通永 大西
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2017517462A priority Critical patent/JP6571176B2/en
Priority to PCT/JP2015/063284 priority patent/WO2016181437A1/en
Publication of WO2016181437A1 publication Critical patent/WO2016181437A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • This invention relates to the component mounting machine provided with the component supply apparatus which uses a supply pallet.
  • Equipment that produces boards with a large number of components mounted on them includes solder printers, component mounters, reflow machines, and board inspection machines. It has become common to configure a substrate production line by connecting these facilities.
  • the component mounting machine includes a substrate transfer device, a component supply device, a component transfer device, and a control device.
  • One type of component supply device is a device that uses a supply pallet that supplies components arranged in a horizontal plane.
  • a wafer pallet on which a dicing sheet with a die (component) attached is stretched, a tray pallet on which a supply tray on which components are mounted, and the like are used.
  • Patent Document 1 discloses a technical example related to a component mounter provided with a pallet type component supply device.
  • the mounting machine disclosed in Patent Document 1 has a wafer holding table (supply pallet) that holds wafer parts and can move in the Y-axis direction, and a push-up mechanism that can move in the X-axis direction with a mechanism for pushing the wafer parts from below.
  • An apparatus, a take-out apparatus having a mechanism for sucking the pushed-up wafer part and movable in the X-axis direction, and a head unit (mounting head) for receiving the wafer part from the take-out apparatus and mounting it on a substrate are provided. Further, it is disclosed that an imaging device (component imaging camera) having a mechanism for imaging a wafer part held on a wafer holding table and movable in the X-axis direction is disclosed.
  • Patent Document 1 a push-up device that moves below the wafer holding table, an extraction device and an imaging device that move above the wafer holding table, and a head that moves further above the extraction device
  • An embodiment comprising a unit is disclosed.
  • each device moves horizontally at three different height positions, interference between devices does not occur. According to this, it is supposed that it can suppress that an apparatus becomes large in an X-axis direction.
  • the head unit (mounting head) has a wide movable range from the wafer holding table to the positioned substrate, and the imaging device (component imaging camera) has a narrow movable range limited to the vicinity of the wafer holding table.
  • the imaging device component imaging camera
  • the present invention has been made in view of the above-mentioned problems of the background art, and has a configuration in which a component imaging camera is arranged on the lower side of a supply pallet so that interference with a mounting head having a mounting nozzle does not occur. It is an object to be solved to provide a component mounter that suppresses a decrease in efficiency and a component supply method for the component mounter.
  • the component mounter of the present invention that solves the above problems includes a supply pallet that supplies a plurality of components arranged in a horizontal plane, and a component supply device that has a pallet conveyance mechanism that pulls the supply pallet out of a storage magazine and conveys it to a supply position.
  • a mounting head having a mounting nozzle for picking up the component from above the supply pallet transported to the supply position and mounting it on the positioned substrate, and a component having a head drive mechanism for driving the mounting head in two horizontal directions
  • a component mounting machine comprising: a transfer device, wherein the component supply device is disposed below the supply position and faces upward, and through the supply pallet conveyed to the supply position, the component supply device A component imaging camera that recognizes the position of the component and enables sampling by the mounting nozzle, and the component imaging camera. Further comprising a camera driving mechanism for driving the horizontal two directions.
  • the component imaging camera of the component supply device is disposed below the supply pallet conveyed to the supply position and faces upward, and images the component through the supply pallet. For this reason, the component imaging camera does not interfere with the mounting head having the mounting nozzle that picks up the component from above the supply pallet. Therefore, it was necessary in the prior art to avoid interference between the component imaging camera and the mounting head. No waiting time or detour movement occurs, and a decrease in substrate production efficiency is suppressed.
  • FIG. 1 is a perspective view showing the overall configuration of the component mounter 1 of the first embodiment.
  • FIG. 2 is a block diagram illustrating a control configuration of the component mounter 1 according to the first embodiment.
  • the component mounting machine 1 includes a substrate transfer device 2, a component supply device 3, a component transfer device 4, a component camera 5, a control device 6, and the like.
  • the X-axis direction in FIG. 1 is a direction in which the substrate K is carried in and out, and the Y-axis direction is a direction orthogonal to the X-axis direction in the horizontal plane.
  • the substrate transfer device 2 is disposed across the upper surface of the machine base 11 in the X-axis direction.
  • the substrate transport device 2 includes a pair of guide rails arranged in parallel in the X-axis direction, and a pair of conveyor belts that are guided by the guide rails and transport the substrate K placed thereon.
  • the substrate transport device 2 has a backup device that pushes up and positions the loaded substrate K.
  • the component supply device 3 is provided at the rear part in the longitudinal direction of the component mounter 1 (left front side in FIG. 1).
  • the component supply device 3 supplies components to the component transfer device 4 using a supply pallet that supplies a plurality of components arranged in a horizontal plane.
  • the component supply device 3 includes a wafer pallet 7 which is a kind of supply pallet, a storage magazine 31, a pallet transport mechanism 32, a push-up mechanism 33, a component imaging camera 34, a horizontal drive mechanism 35, a control unit 39, and the like.
  • the storage magazine 31 is formed by using a substantially vertically long rectangular parallelepiped housing 311.
  • a pallet carry-in part 312 is provided at the upper part of the housing 311, and a pallet discharge part 313 is provided at the lower part of the housing 311.
  • a pallet transfer port 314 (shown in FIG. 3) is opened on the front side of the intermediate height of the housing 311.
  • a pallet stocker 315 is accommodated in the housing 311.
  • the pallet stocker 315 is a generally box-shaped member having a plurality of storage shelves. Each storage shelf stores the wafer pallet 7 so that it can be pulled out to the front side.
  • the pallet stocker 315 is driven by a lifting mechanism (not shown) to move up and down in the housing 311.
  • the wafer pallet 7 is loaded from the pallet loading unit 312 and is held on the upper surface of the raised pallet stocker 315. Thereafter, the wafer pallet 7 is once pulled out of the housing 311 by a pallet transport mechanism 32 described later, and then stored in a storage shelf of the pallet stocker 315. The used wafer pallet 7 is held on the lower surface of the descending pallet stocker 315, transferred to the pallet discharging unit 313, and discharged.
  • the pallet transport mechanism 32 is provided on the front side of the storage magazine 31.
  • the pallet transport mechanism 32 includes a rectangular parallelepiped machine base 321, a pair of guide rails 322 and 323, a ball screw feed mechanism 324, and the like.
  • the pair of guide rails 322 and 323 extend in the front-rear direction of the upper surface of the machine base 321 and are arranged in parallel to be separated from each other.
  • the guide rails 322 and 323 have rear portions facing the pallet transport port 314 of the storage magazine 31, and a supply position A is set at the front portions.
  • the ball screw feed mechanism 324 includes a ball screw 325, a servo motor 326, an engagement member 327, and the like.
  • the ball screw 325 is disposed close to and parallel to the one guide rail 322, and extends in the front-rear direction.
  • the servo motor 326 is coupled to one end of the ball screw 325 and can be switched between forward rotation and reverse rotation.
  • the engaging member 327 has a nut portion that is screwed into the ball screw 325 and a pallet locking portion that detachably locks the wafer pallet 7.
  • the engaging member 327 is screwed to convey the wafer pallet 7.
  • the wafer pallet 7 is drawn forward from the pallet stocker 315 through the pallet transfer port 314 and transferred to the supply position A on the guide rails 322 and 323.
  • the servo motor 326 rotates in the reverse direction to drive the ball screw 325 in the reverse direction
  • the engaging member 327 is screwed out and transports the wafer pallet 7 in the reverse direction.
  • the wafer pallet 7 is returned from the supply position A to the pallet stocker 315 through the pallet transfer port 314.
  • the push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 are disposed inside the machine base 321 and are not visible in FIG.
  • the push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 will be described later with reference to FIG.
  • the wafer pallet 7 supplies a die D (component) produced by dicing a semiconductor wafer.
  • the wafer pallet 7 includes a pallet frame 71 and an expanding table 72.
  • the pallet frame 71 is a rectangular plate and has a large circular hole in the center.
  • On one side of the pallet frame 71 a locking portion that is locked to the engaging member 327 of the pallet transport mechanism 32 is provided.
  • the expand base 72 is an annular member and is attached to the upper surface around the hole of the pallet frame 71.
  • the expand base 72 holds the periphery of the dicing sheet S that holds a plurality of dies D attached to the upper surface.
  • the dicing sheet S is held by the expanding base 72 and can be expanded and contracted.
  • the dicing sheet S is formed of a transparent or translucent material having optical transparency. Therefore, the position of the die D can be recognized through the dicing sheet S from below.
  • a defective product (bad die) may be contained in the plurality of dies D on the dicing sheet S.
  • the arrangement of defective dies D on the dicing sheet S is notified from the control device 6 to the control unit 39 in the form of a wafer map represented by electronic data.
  • the component transfer device 4 is an XY mobile robot type device that can move in the X-axis direction and the Y-axis direction.
  • the component transfer device 4 is disposed from above the substrate transfer device 2 (on the right back side in FIG. 2) to above the supply position A of the component supply device 3.
  • the component transfer device 4 includes a head driving mechanism 41 and a mounting head 42.
  • the head drive mechanism 41 drives the mounting head 42 in the X-axis direction and the Y-axis direction in the horizontal plane.
  • the head drive mechanism 41 can be configured by appropriately adopting various known techniques.
  • the mounting head 42 has a nozzle holder 43 and a substrate recognition camera 46.
  • the nozzle holder 43 has a mounting nozzle 44 on the lower side.
  • the mounting nozzle 44 approaches the wafer pallet 7 transferred to the supply position A from above, and sucks and collects the die D using negative pressure. Further, the mounting nozzle 44 is driven to the positioned substrate K to mount the die D at a predetermined mounting coordinate position on the substrate K.
  • the substrate recognition camera 46 images the fiducial mark attached to the substrate K and recognizes the accurate position of the substrate K.
  • the component camera 5 is provided upward between the substrate transfer device 2 and the component supply device 3 on the upper surface of the machine base 11.
  • the component camera 5 captures and detects the state of the die D collected at the lower end of the mounting nozzle 44 while the mounting head 42 moves from the component supply device 3 to the substrate K.
  • the control device 6 finely adjusts the component mounting operation as necessary.
  • the control device 6 is a computer device having a CPU and operating with software. As shown in FIG. 2, the control device 6 is communicatively connected to the substrate transfer device 2, the component supply device 3, the component transfer device 4, and the component camera 5. The control device 6 issues a command while appropriately exchanging information with these devices 2 to 5 to control the overall operation of the component mounting machine 1. Specifically, the control device 6 carries the substrate K in and out of the substrate transfer device 2, supplies components from the component supply device 3, component extraction operation and component mounting operation of the component transfer device 4, and imaging operation of the component camera 5. Etc. are controlled.
  • FIG. 3 is a side view schematically illustrating the configuration of the component supply device 3 and the component transfer device 4.
  • the pallet transport mechanism 32 is simply indicated by a thick arrow (the same applies to FIGS. 5 and 7).
  • the push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 are disposed inside the machine base 321 below the supply position A where the wafer pallet 7 is pulled out.
  • the push-up mechanism 33 drives the push-up pin 331 upward to push up the die D while extending the dicing sheet S of the wafer pallet 7 at the supply position A. As a result, most of the bottom surface of the die D is separated from the dicing sheet S, and the sticking force is reduced.
  • the component imaging camera 34 is arranged below the supply position A and faces upward, and images the bottom surface of the die D through the dicing sheet S having optical transparency. Thereby, the exact position of the die D is recognized, and the push-up position of the push-up pin 331 and the component collecting position of the mounting nozzle 44 are correctly controlled.
  • the imaging of the die D on the dicing sheet S can be performed by the substrate recognition camera 46 of the mounting head 42, but two cameras 34 and 46 are used in combination in order to improve substrate production efficiency.
  • the push-up mechanism 33 and the part imaging camera 34 are both attached to the common head 36.
  • the common head 36 is driven in two horizontal directions by the horizontal drive mechanism 35. That is, the horizontal drive mechanism 35 serves as both a mechanism that drives the push-up mechanism 33 in two horizontal directions and a camera drive mechanism that drives the component imaging camera 34 in two horizontal directions.
  • the horizontal drive mechanism 35 can be configured by applying a known XY mobile robot technology.
  • the movable range R1 of the mounting head 42 is wide from the wafer pallet 7 at the supply position A to the substrate K positioned from the supply position A.
  • the movable range R2 of the push-up mechanism 33 and the component imaging camera 34 is narrow below the wafer pallet 7 and in the vicinity of the supply position A.
  • the push-up mechanism 33 and the component imaging camera 34 are integrally driven by a horizontal drive mechanism 35. For this reason, when the component imaging camera 34 images a certain die D, the component imaging camera 34 is replaced and the push-up mechanism 33 is driven to the lower side of the die D, and then the die D can be pushed up.
  • the control unit 39 of the component supply device 3 is a computer device having a CPU and operating with software.
  • the control unit 39 is communicatively connected to the control device 6 and appropriately controls the component supply operation in accordance with a command from the control device 6. Specifically, the control unit 39 controls the loading and unloading of the wafer pallet 7 to and from the storage magazine 31 and the reciprocating conveyance of the wafer pallet 7 by the pallet conveying mechanism 32.
  • the control unit 39 further controls the movement of the push-up mechanism 33 and the component imaging camera 34 by the horizontal drive mechanism 35, the push-up operation of the push-up mechanism 33, and the imaging operation of the component imaging camera 34. Further, the control unit 39 refers to the above-described wafer map and controls not to supply the defective die D.
  • FIG. 4 is an operation flow diagram showing the component supply operation of the component supply apparatus 3. This operation flow is mainly executed by commands and control from the control unit 39. It is assumed that a predetermined wafer pallet 7 has already been carried into the storage magazine 31 and stored in the pallet stocker 315 before starting the component supply operation. 4, the pallet transport mechanism 32 transports the wafer pallet 7 to the supply position A based on a command from the controller 39.
  • step S2 the control unit 39 designates one specific die D on the wafer pallet 7 and controls the horizontal drive mechanism 35.
  • the horizontal drive mechanism 35 moves the component imaging camera 34 substantially directly below the specific die D.
  • step S ⁇ b> 3 the component imaging camera 34 captures the bottom surface of the specific die D through the dicing sheet S, and acquires component image data. Further, the component imaging camera 34 performs image processing on the component image data and recognizes an accurate position of the specific die D.
  • the obtained position information of the specific die D is transmitted to the control unit 39 and further transmitted to the control device 6.
  • the control unit 39 may receive the component image data and recognize the position of the die D by image processing.
  • step S4 the control unit 39 specifies the position information of the specific die D and controls the horizontal drive mechanism 35.
  • the horizontal drive mechanism 35 moves the push-up mechanism 33 to place the push-up pin 331 directly below the specific die D.
  • step S ⁇ b> 5 the push-up mechanism 33 drives the push-up pin 331 upward based on a command from the control unit 39 to push up the specific die D while extending the dicing sheet S. Thereby, the specific die D is in a state where it can be collected.
  • step S6 the mounting head 42 is driven above the wafer pallet 7, and the mounting nozzle 44 descends to collect a specific die D.
  • the head drive mechanism 41 receives the position information of the specific die D from the control device 6, so that the mounting nozzle 44 can be accurately driven to a position directly above the push-up pin 331.
  • the mounting head 42 is driven above the substrate K, and the mounting nozzle 44 mounts the specific die D on the substrate K.
  • control unit 39 sequentially designates the subsequent dies D and repeats the control of steps S2 to S6.
  • the control unit 39 repeats the control of steps S1 to S6 each time the wafer pallet 7 is transported to the supply position A.
  • FIG. 5 is a side view schematically illustrating the configuration of the component supply device 3U and the component transfer device 4 of the conventional component mounting machine.
  • the conventional component transfer device 4 has the same configuration as that of the first embodiment.
  • the component imaging camera 34V moves above the wafer pallet 7.
  • the conventional parts supply device 3U will be described.
  • the push-up mechanism 33U is disposed below the supply position A and is attached to the push-up head 36U.
  • the push-up head 36U is driven in two horizontal directions by a push-up horizontal drive mechanism 35U.
  • the component imaging camera 34V is disposed on the upper side of the supply position A and is attached to the camera head 36V.
  • the camera head 36V is driven in two horizontal directions separately from the push-up mechanism 33U by the camera horizontal drive mechanism 35V.
  • the component imaging camera 34V faces downward and images the upper surface of the die D on the dicing sheet S.
  • both the component imaging camera 34V and the mounting head 42 access the wafer pallet 7 from above the supply position A. For this reason, control for avoiding mutual interference is performed, and a waiting time until the counterpart device leaves or detour movement to avoid interference with the counterpart device occurs. This prolongs the production time per substrate and lowers the production efficiency.
  • the movable range R1 of the mounting head 42 is above the wafer pallet 7, and the movable range R2 of the push-up mechanism 33 and the component imaging camera 34 is below the wafer pallet 7. Therefore, there is no possibility that the push-up mechanism 33 and the component imaging camera 34 interfere with the mounting head 42. Further, the performance verification that has been performed so far to establish the control technique for avoiding interference is not necessary.
  • a tray pallet 8 may be used instead of the wafer pallet 7, and the wafer pallet 7 and the tray pallet 8 may be used in combination.
  • FIG. 6 is a perspective view illustrating a tray pallet 8 that can be used in the component mounter 1 of the first embodiment. Similar to the wafer pallet 7, the tray pallet 8 is stored in the storage magazine 31 and is transported to the supply position A by the pallet transport mechanism 32.
  • the tray pallet 8 is formed including a supply tray 83.
  • the supply tray 83 is formed in a rectangular dish shape using a transparent or translucent resin having optical transparency.
  • the supply tray 83 has a wide outer frame 84 projecting from the outer periphery of the upper surface, and a narrow partition frame 85 projecting in a lattice shape to form a plurality of cavities 86. In the example of FIG. 6, 54 cavities 86 are formed, and parts P (shown with hatching for convenience) are placed in 22 of them.
  • the tray pallet 8 is a frame-like plate material having a rectangular outer shape and having a rectangular hole slightly smaller than the supply tray 83 in the center. On one side of the tray pallet 8, a locking portion 81 that is locked to the engaging member 327 of the pallet transport mechanism 32 is provided.
  • the tray pallet 8 is fixed to the upper side of the rectangular hole by pressing two places on the both sides extending in the longitudinal direction of the supply tray 83, a total of four places, with the presser fittings 82. Therefore, the component imaging camera 34 can image the component P through the rectangular hole of the tray pallet 8 from below and through the supply tray 83. Note that when the tray pallet 8 is used, the mounting head 42 can also be used by replacing the mounting chuck for picking up the component P with the mounting nozzle 44.
  • the component mounter 1 of the first embodiment includes a supply pallet (wafer pallet 7 and tray pallet 8) that supplies a plurality of components arranged in a horizontal plane, and a pallet that pulls the supply pallet from the storage magazine 31 and conveys it to a supply position A.
  • a mounting head having a component supply device 3 having a transport mechanism 32 and a mounting nozzle 44 that picks up components (die D, component P) from above the supply pallet transported to the supply position A and mounts them on the positioned substrate K. 42, and a component transfer device 4 having a head drive mechanism 41 that drives the mounting head 42 in two horizontal directions.
  • the component supply device 3 is provided below the supply position A.
  • component imaging camera 34 to allow further comprises a camera driving mechanism for driving the component imaging camera 34 in the horizontal two directions (horizontal movement mechanism 35).
  • the component imaging camera 34 of the component supply device 3 is disposed below the supply pallet conveyed to the supply position A and faces upward, and images the component through the supply pallet. For this reason, the component imaging camera 34 does not interfere with the mounting head 42 having the mounting nozzle 44 that picks up components from above the supply pallet. Therefore, in order to avoid interference between the component imaging camera 34V and the mounting head 44 in the prior art. Therefore, the waiting time and detour movement required for the above are not generated, and the reduction in substrate production efficiency is suppressed. In addition, the performance verification that has been carried out in the development stage so far in order to establish the interference avoidance control technology becomes unnecessary.
  • the component is a die D produced by dicing a semiconductor wafer
  • the supply pallet holds a plurality of dies on the upper surface and holds a dicing sheet S having optical transparency so as to be stretchable.
  • a wafer pallet 7 provided, and the component supply device 3 drives a push-up pin 331 upward to push up the die D while extending the dicing sheet S of the wafer pallet 7 conveyed to the supply position A, and It further has a horizontal drive mechanism 35 that drives the push-up mechanism 33 in two horizontal directions.
  • the component imaging camera 34 images the die D through the dicing sheet S and is driven by the horizontal drive mechanism 35 that also serves as a camera drive mechanism. Is done.
  • the horizontal drive mechanism 35 serves as a mechanism for driving the push-up mechanism 33 in two horizontal directions and a camera drive mechanism, the configuration of the component supply device 3 can be simplified and the cost can be reduced.
  • the tray pallet 8 which is a kind of supply pallet includes a supply tray 83 having a plurality of cavities 86 for placing the parts P and having optical transparency. According to this, even in the form in which the component P is supplied from the supply tray 83, there is an effect that a reduction in substrate production efficiency is suppressed.
  • FIG. 7 is a side view schematically illustrating the configuration of the component supply device 3A and the component transfer device 4 of the component mounter according to the second embodiment.
  • the component transfer apparatus 4 of the second embodiment has the same configuration as that of the first embodiment.
  • the component supply apparatus 3A of the second embodiment recognizes a defective die D by an imaging operation instead of the wafer map, unlike the first embodiment.
  • the lower imaging position B is set further below the push-up mechanism 33 and the component imaging camera 34 below the supply position A.
  • a lower pallet transfer mechanism 37 is disposed in parallel below the pallet transfer mechanism 32 so that the wafer pallet 7 can be transferred to the lower imaging position B.
  • the lower pallet transport mechanism 37 has the same configuration as the pallet transport mechanism 32, and is simply indicated by a thick arrow in FIG.
  • a lower pallet conveyance port 317 is opened near the lower side of the housing 311 so as to face the rear part of the lower pallet conveyance mechanism 37.
  • the common head 36A to which the push-up mechanism 33 and the component imaging camera 34 are attached can be turned upside down. That is, the common head 36A is inverted upside down from the normal rotation posture shown in FIG. 3 to the reverse posture shown in FIG. 7 in accordance with the reverse command from the control unit 39. Further, the common head 36 ⁇ / b> A returns from the reverse posture to the normal rotation posture in accordance with the normal rotation command from the control unit 39. In the inverted posture of the common head 36A, the component imaging camera 34 can face the lower side and image the upper surface of the die D of the wafer pallet 7 conveyed to the lower imaging position B.
  • the recognition of the defective die D is performed based on the availability mark marked on the upper surface of the die D.
  • the usability mark a cross mark indicating unusable is marked on the upper surface of the defective die D, and nothing is marked on the upper surface of the good die D.
  • the availability mark other than x mark may be used, the marking position is the upper surface of the die D.
  • FIG. 8 is an operation flow diagram showing the component supply operation of the component supply device 3A of the second embodiment. This operation flow is mainly executed by commands and control from the control unit 39.
  • the component supply operation of the component supply apparatus 3A corresponds to the component supply method of the component mounter according to the embodiment of the present invention. It is assumed that a predetermined wafer pallet 7 has already been carried into the storage magazine 31 and stored in the pallet stocker 315 before starting the component supply operation.
  • the lower pallet transport mechanism 37 transports the wafer pallet 7 to the lower imaging position B based on a command from the control unit 39 (shown by a solid line in FIG. 7).
  • the control unit 39 inverts the top and bottom of the common head 36A and turns the component imaging camera 34 downward.
  • the control unit 39 specifies the first die D on the wafer pallet 7 and controls the horizontal drive mechanism 35.
  • the horizontal drive mechanism 35 moves the component imaging camera 34 substantially directly above the first die D.
  • step S14 the component imaging camera 34 images the upper surface of the first die D from above the wafer pallet 8 based on a command from the control unit 39, and acquires component image data. Further, in step S15, the component imaging camera 34 or the control unit 39 performs image processing on the component image data to determine whether or not an X mark (usability mark) is marked on the upper surface of the first die D. . The control unit 39 determines that the first die D can be used if the x mark is not marked, and determines that the first die D cannot be used if the x mark is marked.
  • X mark usability mark
  • step S16 the control unit 39 determines whether or not all the dies D on the dicing sheet S have been determined. In the first step S16, since the determination is not completed except for the first die D, the control unit 39 returns the execution of the operation flow to step S13. In step S13 for the second time, the control unit 39 specifies the second die D adjacent to the first die D and controls the horizontal drive mechanism 35. Thereafter, steps S13 to S16 are repeatedly executed for the number of dies D.
  • step S16 when all the dies D have been determined, the control unit 39 advances the execution of the operation flow to step S17.
  • the control unit 39 controls the lower pallet transfer mechanism 37, the lifting mechanism of the pallet stocker 315, and the pallet transfer mechanism 32 to move the wafer pallet 7 to the supply position A (shown by a broken line in FIG. 7). .
  • the wafer pallet 7 is returned from the lower pallet transfer port 317 to the pallet stocker 315, is lifted, and is transferred from the pallet transfer port 314 to the supply position A.
  • step S ⁇ b> 18 the control unit 39 rotates the common head 36 ⁇ / b> A forward so that the component imaging camera 34 faces upward.
  • the operations from Step S11 to Step S18 can be performed in the setup work before starting the production of the substrate K.
  • the subsequent operations associated with the production of the substrate K conform to steps S2 to S6 in the operation flow of FIG. 3 described in the first embodiment.
  • the component supply device 3A of the second embodiment supplies only the die D determined to be usable in step S15.
  • Step S11 in the operation flow of FIG. 8 corresponds to an imaging preparation step of the component supply method for the component mounter of the embodiment.
  • Steps S12 to S14 correspond to an imaging step
  • step S15 corresponds to a determination step.
  • step S17 corresponds to a supply preparation step
  • step S18 and steps S2 to S5 correspond to a supply step.
  • a lower imaging position B that is a position below the supply position A and that can transport the tray pallet 7 by the lower pallet transport mechanism 37 is set.
  • the die D is imaged from above the tray pallet 7 which is turned upside down and turned downward and conveyed to the lower imaging position B. According to this, even when the wafer map is not used and a usable / unusable mark is marked on the upper surface of the die D, the defective die D can be determined by the imaging operation, and there is no possibility of erroneous supply.
  • the component supply method of the component mounter of the embodiment includes an imaging preparation step (step S11) in which the wafer pallet 7 is transported to the lower imaging position B by the lower pallet transport mechanism 37, and an upper part of the wafer pallet 7 by the component imaging camera 34.
  • An imaging step (steps S12 to S14) for imaging the upper surface of the die D to acquire component image data, image processing of the component image data, and the die D based on the availability mark marked on the upper surface of the die D
  • the component imaging camera 34 has determined that the wafer pallet 7 can be used in the determination step through the watermark.
  • Capturing a Lee D comprises a supply step of enabling the collection by mounting the nozzle 44 to recognize the position of the die D (step S18 and step S2 ⁇ S5), the. According to this, even when the wafer map is not used and a usable / unusable mark is marked on the upper surface of the die D, the defective die D can be determined by the imaging operation, and there is no possibility of erroneous supply.
  • the component imaging camera 34 sequentially images the bottom surfaces of all the dies D on the dicing sheet S, but the present invention is not limited to this. That is, the component imaging camera 34 may capture the bottom surface of a limited number of dies D to recognize the positions, and the control unit 39 may obtain the positions of the other dies D by calculation.
  • the entire common head 36A is inverted up and down, but only the component imaging camera 34 may be inverted up and down.
  • a downward second component imaging camera may be additionally provided below the component imaging camera 34.
  • the present invention can have various other applications and modifications.
  • Component mounter 2 Board transport device 3
  • Component supply device 31 Storage magazine 32: Pallet transport mechanism 33, 33U: Push-up mechanism 34, 34V: Component imaging camera 35: Horizontal drive mechanism 36, 36A: Common head 37: Lower pallet transport mechanism 39:
  • Control unit 4 Component transfer device 41: Head drive mechanism 42: Mounting head 44: Mounting nozzle 5: Component camera 6: Control device 7: Wafer pallet 8: Tray pallet K: Substrate A: Supply position B: Lower imaging position D: Die (component) S: Dicing sheet P: Component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Die Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention is a component mounting machine (1) comprising: a component supply device (3) having a supply pallet (7, 8) and a pallet conveying mechanism (32) for conveying the supply pallet to a supply position (A); and a component transfer device (4) having a head drive mechanism (41), and a mounting head (42) equipped with a mounting nozzle (44) whereby a component (die D) is picked-up from above the supply pallet and mounted onto a base plate (K). The component supply device further comprises: a component imaging camera (34) facing upward and disposed on a lower side at the supply position, said component imaging camera being for imaging the component through the supply pallet in order to identify the position of the component and enable the pick-up by the mounting nozzle; and a camera drive mechanism (35) for driving the component imaging camera in two horizontal directions. In this manner, the wait time and the bypass movement that are needed in prior art to avoid interference between the component imaging camera and the mounting head do not occur, and a decrease in the base plate production efficiency can be suppressed.

Description

部品実装機、および部品実装機の部品供給方法Component mounter and component supply method for component mounter
 本発明は、供給パレットを用いる部品供給装置を備えた部品実装機に関する。 This invention relates to the component mounting machine provided with the component supply apparatus which uses a supply pallet.
 多数の部品が実装された基板を生産する設備として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがある。これらの設備を連結して基板生産ラインを構成することが一般的になっている。このうち部品実装機は、基板搬送装置、部品供給装置、部品移載装置、および制御装置を備える。部品供給装置の一種に、部品を水平面内に並べて供給する供給パレットを用いる装置がある。パレット式部品供給装置では、ダイ(部品)を貼着したダイシングシートを張設するウエハパレットや、部品を載置した供給トレイを載せるトレイパレットなどを用いる。パレット式部品供給装置を備えた部品実装機に関する技術例が特許文献1に開示されている。 Equipment that produces boards with a large number of components mounted on them includes solder printers, component mounters, reflow machines, and board inspection machines. It has become common to configure a substrate production line by connecting these facilities. Among these, the component mounting machine includes a substrate transfer device, a component supply device, a component transfer device, and a control device. One type of component supply device is a device that uses a supply pallet that supplies components arranged in a horizontal plane. In the pallet-type component supply device, a wafer pallet on which a dicing sheet with a die (component) attached is stretched, a tray pallet on which a supply tray on which components are mounted, and the like are used. Patent Document 1 discloses a technical example related to a component mounter provided with a pallet type component supply device.
 特許文献1の実装機は、ウエハ部品を保持してY軸方向に移動可能なウエハ保持テーブル(供給パレット)と、ウエハ部品を下方から突き上げる機構を有してX軸方向に移動可能な突上げ装置と、突き上げられたウエハ部品を吸着する機構を有してX軸方向に移動可能な取出し装置と、取出し装置からウエハ部品を受け取って基板に実装するヘッドユニット(実装ヘッド)と、を備える。また、ウエハ保持テーブルに保持されたウエハ部品を撮像する機構を有してX軸方向に移動可能な撮像装置(部品撮像カメラ)を備える旨が開示されている。 The mounting machine disclosed in Patent Document 1 has a wafer holding table (supply pallet) that holds wafer parts and can move in the Y-axis direction, and a push-up mechanism that can move in the X-axis direction with a mechanism for pushing the wafer parts from below. An apparatus, a take-out apparatus having a mechanism for sucking the pushed-up wafer part and movable in the X-axis direction, and a head unit (mounting head) for receiving the wafer part from the take-out apparatus and mounting it on a substrate are provided. Further, it is disclosed that an imaging device (component imaging camera) having a mechanism for imaging a wafer part held on a wafer holding table and movable in the X-axis direction is disclosed.
 さらに、特許文献1の実施形態には、ウエハ保持テーブルの下側を移動する突上げ装置と、ウエハ保持テーブルの上側を移動する取出し装置および撮像装置と、取出し装置よりもさらに上方を移動するヘッドユニットとを備える態様が開示されている。この態様では、各装置が3つの異なる高さ位置で水平移動するので、装置間の干渉が発生しない。これによれば、装置がX軸方向に大きくなってしまうことを抑制できる、とされている。 Further, in the embodiment of Patent Document 1, a push-up device that moves below the wafer holding table, an extraction device and an imaging device that move above the wafer holding table, and a head that moves further above the extraction device An embodiment comprising a unit is disclosed. In this aspect, since each device moves horizontally at three different height positions, interference between devices does not occur. According to this, it is supposed that it can suppress that an apparatus becomes large in an X-axis direction.
特開2012-23230号公報JP 2012-23230 A
 ところで、特許文献1の技術例では、ヘッドユニット(実装ヘッド)の装着ノズルおよび取出し装置の取出しノズルが別体とされて別々に駆動されるので、構成が複雑化してコストがアップする。このため、ヘッドユニットの装着ノズルによりウエハ保持テーブル(供給パレット)からウエハ部品を直接的に採取するようにして、取出し装置を省略した構成が実用化されている。取出し装置を省略した構成では、ウエハ保持テーブルの上側の概ね同じ高さにヘッドユニットの駆動機構と、撮像装置(部品撮像カメラ)の駆動機構とを配置することになる。 By the way, in the technical example of Patent Document 1, since the mounting nozzle of the head unit (mounting head) and the extraction nozzle of the extraction device are separated and driven separately, the configuration becomes complicated and the cost increases. For this reason, a configuration in which a wafer part is directly collected from a wafer holding table (supply pallet) by a mounting nozzle of the head unit and a take-out device is omitted has been put into practical use. In the configuration in which the take-out device is omitted, the drive mechanism of the head unit and the drive mechanism of the imaging device (component imaging camera) are arranged at substantially the same height above the wafer holding table.
 ここで、ヘッドユニット(実装ヘッド)は、ウエハ保持テーブルから位置決めされた基板までの広い可動範囲を有し、撮像装置(部品撮像カメラ)は、ウエハ保持テーブルの付近に限定された狭い可動範囲を有する。それでも、ウエハ保持テーブルの付近では両者の干渉を回避する必要が生じる。このため、相手側装置が退出するまでの待機時間や、相手側装置への干渉を避ける迂回移動が発生して、基板生産効率が低下する。さらに、干渉回避の制御技術を確立することは、開発段階での課題となり、性能検証が必要になっていた。 Here, the head unit (mounting head) has a wide movable range from the wafer holding table to the positioned substrate, and the imaging device (component imaging camera) has a narrow movable range limited to the vicinity of the wafer holding table. Have. Nevertheless, it is necessary to avoid interference between the two in the vicinity of the wafer holding table. For this reason, a standby time until the counterpart device exits or a detour movement that avoids interference with the counterpart device occurs, resulting in a decrease in substrate production efficiency. Furthermore, establishment of interference avoidance control technology has become an issue at the development stage, and performance verification has been required.
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、部品撮像カメラを供給パレットの下側に配設して装着ノズルをもつ実装ヘッドとの干渉が発生しない構成とし、基板生産効率の低下を抑制した部品実装機、および部品実装機の部品供給方法を提供することを解決すべき課題とする。 The present invention has been made in view of the above-mentioned problems of the background art, and has a configuration in which a component imaging camera is arranged on the lower side of a supply pallet so that interference with a mounting head having a mounting nozzle does not occur. It is an object to be solved to provide a component mounter that suppresses a decrease in efficiency and a component supply method for the component mounter.
 上記課題を解決する本発明の部品実装機は、複数の部品を水平面内に並べて供給する供給パレット、および前記供給パレットを収納マガジンから引き出して供給位置に搬送するパレット搬送機構を有する部品供給装置と、前記供給位置に搬送された供給パレットの上方から前記部品を採取して位置決めされた基板に装着する装着ノズルをもつ実装ヘッド、および前記実装ヘッドを水平二方向に駆動するヘッド駆動機構を有する部品移載装置と、を備えた部品実装機であって、前記部品供給装置は、前記供給位置の下側に配設されて上方を向き、前記供給位置に搬送された供給パレットを透かして前記部品を撮像することにより、当該部品の位置を認識して前記装着ノズルによる採取を可能にする部品撮像カメラ、および、前記部品撮像カメラを水平二方向に駆動するカメラ駆動機構をさらに有する。 The component mounter of the present invention that solves the above problems includes a supply pallet that supplies a plurality of components arranged in a horizontal plane, and a component supply device that has a pallet conveyance mechanism that pulls the supply pallet out of a storage magazine and conveys it to a supply position. A mounting head having a mounting nozzle for picking up the component from above the supply pallet transported to the supply position and mounting it on the positioned substrate, and a component having a head drive mechanism for driving the mounting head in two horizontal directions A component mounting machine comprising: a transfer device, wherein the component supply device is disposed below the supply position and faces upward, and through the supply pallet conveyed to the supply position, the component supply device A component imaging camera that recognizes the position of the component and enables sampling by the mounting nozzle, and the component imaging camera. Further comprising a camera driving mechanism for driving the horizontal two directions.
 本発明の部品実装機において、部品供給装置の部品撮像カメラは、供給位置に搬送された供給パレットの下側に配設されて上方を向き、供給パレットを透かして部品を撮像する。このため、部品撮像カメラは、供給パレットの上方から部品を採取する装着ノズルをもつ実装ヘッドに干渉しない、したがって、従来技術において部品撮像カメラと実装ヘッドとの干渉を回避するために必要であった待機時間や迂回移動が発生せず、基板生産効率の低下が抑制される。 In the component mounter of the present invention, the component imaging camera of the component supply device is disposed below the supply pallet conveyed to the supply position and faces upward, and images the component through the supply pallet. For this reason, the component imaging camera does not interfere with the mounting head having the mounting nozzle that picks up the component from above the supply pallet. Therefore, it was necessary in the prior art to avoid interference between the component imaging camera and the mounting head. No waiting time or detour movement occurs, and a decrease in substrate production efficiency is suppressed.
第1実施形態の部品実装機の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the component mounting machine of 1st Embodiment. 第1実施形態の部品実装機の制御の構成を示すブロック図である。It is a block diagram which shows the structure of control of the component mounting machine of 1st Embodiment. 部品供給装置および部品移載装置の構成を模式的に説明する側面図である。It is a side view which illustrates typically composition of a parts supply device and a parts transfer device. 部品供給装置の部品供給動作を示す動作フローの図である。It is a figure of the operation | movement flow which shows the components supply operation | movement of a components supply apparatus. 従来技術の部品実装機の部品供給装置および部品移載装置の構成を模式的に説明する側面図である。It is a side view which illustrates typically composition of a parts supply device and a parts transfer device of a conventional component mounting machine. 第1実施形態に使用できるトレイパレットを例示した斜視図である。It is the perspective view which illustrated the tray pallet which can be used for a 1st embodiment. 第2実施形態の部品実装機の部品供給装置および部品移載装置の構成を模式的に説明する側面図である。It is a side view which illustrates typically composition of a component supply device and a component transfer device of a component mounting machine of a 2nd embodiment. 第2実施形態の部品供給装置の部品供給動作を示す動作フローの図である。It is a figure of the operation | movement flow which shows the components supply operation | movement of the components supply apparatus of 2nd Embodiment.
 (1.第1実施形態の部品実装機1の全体構成)
 本発明の第1実施形態の部品実装機1について、図1~図4を参考にして説明する。図1は、第1実施形態の部品実装機1の全体構成を示す斜視図である。また、図2は、第1実施形態の部品実装機1の制御の構成を示すブロック図である。部品実装機1は、基板搬送装置2、部品供給装置3、部品移載装置4、部品カメラ5、および制御装置6などで構成されている。図1の中のX軸方向は基板Kを搬入出する方向であり、Y軸方向は水平面内でX軸方向に直交する方向である。
(1. Overall configuration of the component mounting machine 1 of the first embodiment)
A component mounter 1 according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing the overall configuration of the component mounter 1 of the first embodiment. FIG. 2 is a block diagram illustrating a control configuration of the component mounter 1 according to the first embodiment. The component mounting machine 1 includes a substrate transfer device 2, a component supply device 3, a component transfer device 4, a component camera 5, a control device 6, and the like. The X-axis direction in FIG. 1 is a direction in which the substrate K is carried in and out, and the Y-axis direction is a direction orthogonal to the X-axis direction in the horizontal plane.
 基板搬送装置2は、機台11の上面をX軸方向に横断して配設されている。基板搬送装置2は、X軸方向に平行に並設された一対のガイドレール、およびガイドレールにそれぞれ案内され基板Kを載置して搬送する一対のコンベアベルトなどにより構成されている。また、基板搬送装置2は、搬入した基板Kを押し上げて位置決めするバックアップ装置を有している。 The substrate transfer device 2 is disposed across the upper surface of the machine base 11 in the X-axis direction. The substrate transport device 2 includes a pair of guide rails arranged in parallel in the X-axis direction, and a pair of conveyor belts that are guided by the guide rails and transport the substrate K placed thereon. The substrate transport device 2 has a backup device that pushes up and positions the loaded substrate K.
 部品供給装置3は、部品実装機1の長手方向の後部(図1の左前側)に設けられている。部品供給装置3は、複数の部品を水平面内に並べて供給する供給パレットを用いて、部品移載装置4に部品を供給する。部品供給装置3は、供給パレットの一種であるウエハパレット7、収納マガジン31、パレット搬送機構32、突き上げ機構33、部品撮像カメラ34、水平駆動機構35、および制御部39などで構成されている。 The component supply device 3 is provided at the rear part in the longitudinal direction of the component mounter 1 (left front side in FIG. 1). The component supply device 3 supplies components to the component transfer device 4 using a supply pallet that supplies a plurality of components arranged in a horizontal plane. The component supply device 3 includes a wafer pallet 7 which is a kind of supply pallet, a storage magazine 31, a pallet transport mechanism 32, a push-up mechanism 33, a component imaging camera 34, a horizontal drive mechanism 35, a control unit 39, and the like.
 収納マガジン31は、概ね縦長の直方体形状のハウジング311を用いて形成されている。ハウジング311の上部にパレット搬入部312が設けられ、ハウジング311の下部にパレット排出部313が設けられている。ハウジング311の概ね中間高さの前側に、パレット搬送口314(図3に示す)が開口している。ハウジング311の内部に、パレットストッカ315が収容されている。パレットストッカ315は、複数段の収納棚を有する概ね箱状の部材である。各収納棚は、ウエハパレット7を前側に引き出し可能に収納する。パレットストッカ315は、図略の昇降機構に駆動されてハウジング311内を昇降する。 The storage magazine 31 is formed by using a substantially vertically long rectangular parallelepiped housing 311. A pallet carry-in part 312 is provided at the upper part of the housing 311, and a pallet discharge part 313 is provided at the lower part of the housing 311. A pallet transfer port 314 (shown in FIG. 3) is opened on the front side of the intermediate height of the housing 311. A pallet stocker 315 is accommodated in the housing 311. The pallet stocker 315 is a generally box-shaped member having a plurality of storage shelves. Each storage shelf stores the wafer pallet 7 so that it can be pulled out to the front side. The pallet stocker 315 is driven by a lifting mechanism (not shown) to move up and down in the housing 311.
 ウエハパレット7は、パレット搬入部312から搬入され、上昇したパレットストッカ315の上面に保持される。その後、ウエハパレット7は、後述するパレット搬送機構32によって一旦ハウジング311から引き出され、次いでパレットストッカ315の収納棚に収納される。使用済みのウエハパレット7は、下降するパレットストッカ315の下面に保持されて、パレット排出部313に移送され、排出される。 The wafer pallet 7 is loaded from the pallet loading unit 312 and is held on the upper surface of the raised pallet stocker 315. Thereafter, the wafer pallet 7 is once pulled out of the housing 311 by a pallet transport mechanism 32 described later, and then stored in a storage shelf of the pallet stocker 315. The used wafer pallet 7 is held on the lower surface of the descending pallet stocker 315, transferred to the pallet discharging unit 313, and discharged.
 パレット搬送機構32は、収納マガジン31の前側に設けられている。パレット搬送機構32は、直方体形状の機台321、一対のガイドレール322、323、およびボールねじ送り機構324などで構成されている。一対のガイドレール322、323は、機台321の上面の前後方向に延在し、相互に離隔して平行配置されている。ガイドレール322、323は、後部が収納マガジン31のパレット搬送口314に臨み、前部に供給位置Aが設定されている。 The pallet transport mechanism 32 is provided on the front side of the storage magazine 31. The pallet transport mechanism 32 includes a rectangular parallelepiped machine base 321, a pair of guide rails 322 and 323, a ball screw feed mechanism 324, and the like. The pair of guide rails 322 and 323 extend in the front-rear direction of the upper surface of the machine base 321 and are arranged in parallel to be separated from each other. The guide rails 322 and 323 have rear portions facing the pallet transport port 314 of the storage magazine 31, and a supply position A is set at the front portions.
 ボールねじ送り機構324は、ボールねじ325、サーボモータ326、および係合部材327などで構成されている。ボールねじ325は、一方のガイドレール322に近接して平行に配置され、前後方向に延在している。サーボモータ326は、ボールねじ325の一端に結合されており、正転および逆転の切り替えが可能になっている。係合部材327は、ボールねじ325に螺合するナット部、およびウエハパレット7を着脱可能に係止するパレット係止部をもつ。 The ball screw feed mechanism 324 includes a ball screw 325, a servo motor 326, an engagement member 327, and the like. The ball screw 325 is disposed close to and parallel to the one guide rail 322, and extends in the front-rear direction. The servo motor 326 is coupled to one end of the ball screw 325 and can be switched between forward rotation and reverse rotation. The engaging member 327 has a nut portion that is screwed into the ball screw 325 and a pallet locking portion that detachably locks the wafer pallet 7.
 係合部材327がウエハパレット7を係止した状態でサーボモータ326が正転してボールねじ325を回転駆動すると、係合部材327は螺進してウエハパレット7を搬送する。これにより、ウエハパレット7は、パレットストッカ315からパレット搬送口314を通って前方に引き出され、ガイドレール322、323上を供給位置Aまで搬送される。サーボモータ326が逆転してボールねじ325を逆回転駆動すると、係合部材327は、螺退してウエハパレット7を逆方向に搬送する。これにより、ウエハパレット7は、供給位置Aからパレット搬送口314を通ってパレットストッカ315まで戻される。 When the servo motor 326 rotates forward with the engaging member 327 engaging the wafer pallet 7 and the ball screw 325 is driven to rotate, the engaging member 327 is screwed to convey the wafer pallet 7. As a result, the wafer pallet 7 is drawn forward from the pallet stocker 315 through the pallet transfer port 314 and transferred to the supply position A on the guide rails 322 and 323. When the servo motor 326 rotates in the reverse direction to drive the ball screw 325 in the reverse direction, the engaging member 327 is screwed out and transports the wafer pallet 7 in the reverse direction. As a result, the wafer pallet 7 is returned from the supply position A to the pallet stocker 315 through the pallet transfer port 314.
 突き上げ機構33、部品撮像カメラ34、および水平駆動機構35は、機台321の内部に配設されており、図1に見えない。突き上げ機構33、部品撮像カメラ34、および水平駆動機構35については、後で図3を参考にして説明する。 The push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 are disposed inside the machine base 321 and are not visible in FIG. The push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 will be described later with reference to FIG.
 ウエハパレット7は、半導体ウエハがダイシングされて生産されたダイD(部品)を供給する。ウエハパレット7は、パレット枠71およびエキスパンド台72からなる。パレット枠71は、矩形の板材であり、中央に大きな円形の穴を有する。パレット枠71の一辺には、パレット搬送機構32の係合部材327に係止される係止部が設けられている。 The wafer pallet 7 supplies a die D (component) produced by dicing a semiconductor wafer. The wafer pallet 7 includes a pallet frame 71 and an expanding table 72. The pallet frame 71 is a rectangular plate and has a large circular hole in the center. On one side of the pallet frame 71, a locking portion that is locked to the engaging member 327 of the pallet transport mechanism 32 is provided.
 エキスパンド台72は、円環状の部材であり、パレット枠71の穴の周りの上面に取り付けられる。エキスパンド台72は、上面に複数のダイDを貼着して保持するダイシングシートSの周囲を保持する。ダイシングシートSは、エキスパンド台72に保持されて伸縮可能になっている。ダイシングシートSは、光学的透過性をもつ透明または半透明の材質で形成されている。したがって、下方からダイシングシートSを透かしてダイDの位置を認識できる。ダイシングシートS上の複数のダイDの中に、不良品(バッドダイ)が入っている場合がある。ダイシングシートS上における不良品のダイDの配置は、電子データで表されたウエハマップの形態で制御装置6から制御部39に通知される。 The expand base 72 is an annular member and is attached to the upper surface around the hole of the pallet frame 71. The expand base 72 holds the periphery of the dicing sheet S that holds a plurality of dies D attached to the upper surface. The dicing sheet S is held by the expanding base 72 and can be expanded and contracted. The dicing sheet S is formed of a transparent or translucent material having optical transparency. Therefore, the position of the die D can be recognized through the dicing sheet S from below. A defective product (bad die) may be contained in the plurality of dies D on the dicing sheet S. The arrangement of defective dies D on the dicing sheet S is notified from the control device 6 to the control unit 39 in the form of a wafer map represented by electronic data.
 部品移載装置4は、X軸方向およびY軸方向に移動可能なXY移動ロボットタイプの装置である。部品移載装置4は、基板搬送装置2の上方(図2の右奥側)から部品供給装置3の供給位置Aの上方にかけて配設されている。部品移載装置4は、ヘッド駆動機構41および実装ヘッド42などで構成されている。ヘッド駆動機構41は、実装ヘッド42を水平面内のX軸方向およびY軸方向に駆動する。ヘッド駆動機構41は、公知の各種技術を適宜採用して構成できる。 The component transfer device 4 is an XY mobile robot type device that can move in the X-axis direction and the Y-axis direction. The component transfer device 4 is disposed from above the substrate transfer device 2 (on the right back side in FIG. 2) to above the supply position A of the component supply device 3. The component transfer device 4 includes a head driving mechanism 41 and a mounting head 42. The head drive mechanism 41 drives the mounting head 42 in the X-axis direction and the Y-axis direction in the horizontal plane. The head drive mechanism 41 can be configured by appropriately adopting various known techniques.
 実装ヘッド42は、ノズルホルダ43および基板認識カメラ46を有する。ノズルホルダ43は、下側に装着ノズル44をもつ。装着ノズル44は、供給位置Aに搬送されたウエハパレット7に上方から接近し、負圧を利用してダイDを吸着採取する。さらに、装着ノズル44は、位置決めされた基板Kまで駆動され、ダイDを基板Kの所定の装着座標位置に装着する。基板認識カメラ46は、基板Kに付設されたフィデューシャルマークを撮像して、基板Kの正確な位置を認識する。 The mounting head 42 has a nozzle holder 43 and a substrate recognition camera 46. The nozzle holder 43 has a mounting nozzle 44 on the lower side. The mounting nozzle 44 approaches the wafer pallet 7 transferred to the supply position A from above, and sucks and collects the die D using negative pressure. Further, the mounting nozzle 44 is driven to the positioned substrate K to mount the die D at a predetermined mounting coordinate position on the substrate K. The substrate recognition camera 46 images the fiducial mark attached to the substrate K and recognizes the accurate position of the substrate K.
 部品カメラ5は、機台11の上面の基板搬送装置2と部品供給装置3との間に、上向きに設けられている。部品カメラ5は、実装ヘッド42が部品供給装置3から基板Kに移動する途中で、装着ノズル44の下端に採取されているダイDの状態を撮像して検出する。部品カメラ5がダイDの吸着位置の誤差や回転角のずれなどを検出すると、制御装置6は、必要に応じて部品装着動作を微調整する。 The component camera 5 is provided upward between the substrate transfer device 2 and the component supply device 3 on the upper surface of the machine base 11. The component camera 5 captures and detects the state of the die D collected at the lower end of the mounting nozzle 44 while the mounting head 42 moves from the component supply device 3 to the substrate K. When the component camera 5 detects an error in the suction position of the die D or a shift in the rotation angle, the control device 6 finely adjusts the component mounting operation as necessary.
 制御装置6は、CPUを有してソフトウェアで動作するコンピュータ装置である。図2に示されるように、制御装置6は、基板搬送装置2、部品供給装置3、部品移載装置4、および部品カメラ5と通信接続されている。制御装置6は、これらの装置2~5と適宜情報を交換しつつ指令を発して、部品実装機1の動作の全般を制御する。具体的に、制御装置6は、基板搬送装置2による基板Kの搬入出、部品供給装置3からの部品供給、部品移載装置4の部品採取動作および部品装着動作、および部品カメラ5の撮像動作などを指令して制御する。 The control device 6 is a computer device having a CPU and operating with software. As shown in FIG. 2, the control device 6 is communicatively connected to the substrate transfer device 2, the component supply device 3, the component transfer device 4, and the component camera 5. The control device 6 issues a command while appropriately exchanging information with these devices 2 to 5 to control the overall operation of the component mounting machine 1. Specifically, the control device 6 carries the substrate K in and out of the substrate transfer device 2, supplies components from the component supply device 3, component extraction operation and component mounting operation of the component transfer device 4, and imaging operation of the component camera 5. Etc. are controlled.
 (2.部品供給装置3の機台321内部の構成)
 次に、部品供給装置3の機台321内部の構成について説明する。図3は、部品供給装置3および部品移載装置4の構成を模式的に説明する側面図である。図3において、パレット搬送機構32は、太線の矢印で簡略に示されている(図5、図7においても同様)。図示されるように、突き上げ機構33、部品撮像カメラ34、および水平駆動機構35は、ウエハパレット7を引き出す供給位置Aの下側の機台321内部に配設されている。
(2. Internal structure of machine base 321 of component supply device 3)
Next, the configuration inside the machine base 321 of the component supply device 3 will be described. FIG. 3 is a side view schematically illustrating the configuration of the component supply device 3 and the component transfer device 4. In FIG. 3, the pallet transport mechanism 32 is simply indicated by a thick arrow (the same applies to FIGS. 5 and 7). As shown in the figure, the push-up mechanism 33, the component imaging camera 34, and the horizontal drive mechanism 35 are disposed inside the machine base 321 below the supply position A where the wafer pallet 7 is pulled out.
 突き上げ機構33は、突き上げピン331を上方に駆動して、供給位置Aのウエハパレット7のダイシングシートSを伸長させつつダイDを突き上げる。これにより、ダイDは、底面の大部分がダイシングシートSから離れて貼着力が減少し、装着ノズル44による採取が可能になる。 The push-up mechanism 33 drives the push-up pin 331 upward to push up the die D while extending the dicing sheet S of the wafer pallet 7 at the supply position A. As a result, most of the bottom surface of the die D is separated from the dicing sheet S, and the sticking force is reduced.
 部品撮像カメラ34は、供給位置Aの下側に配設されて上方を向き、光学的透過性をもつダイシングシートSを透かしてダイDの底面を撮像する。これにより、ダイDの正確な位置が認識され、突き上げピン331の突き上げ位置および装着ノズル44の部品採取位置が正しく制御される。なお、ダイシングシートS上のダイDの撮像は、実装ヘッド42の基板認識カメラ46でも実施可能であるが、基板生産効率を向上するために2個のカメラ34、46を併用する The component imaging camera 34 is arranged below the supply position A and faces upward, and images the bottom surface of the die D through the dicing sheet S having optical transparency. Thereby, the exact position of the die D is recognized, and the push-up position of the push-up pin 331 and the component collecting position of the mounting nozzle 44 are correctly controlled. The imaging of the die D on the dicing sheet S can be performed by the substrate recognition camera 46 of the mounting head 42, but two cameras 34 and 46 are used in combination in order to improve substrate production efficiency.
 突き上げ機構33および部品撮像カメラ34は、ともに共通ヘッド36に取り付けられている。共通ヘッド36は、水平駆動機構35によって水平二方向に駆動される。つまり、水平駆動機構35は、突き上げ機構33を水平二方向に駆動する機構と、部品撮像カメラ34を水平二方向に駆動するカメラ駆動機構とを兼ねている。水平駆動機構35は、公知のXY移動ロボットの技術を応用して構成できる。 The push-up mechanism 33 and the part imaging camera 34 are both attached to the common head 36. The common head 36 is driven in two horizontal directions by the horizontal drive mechanism 35. That is, the horizontal drive mechanism 35 serves as both a mechanism that drives the push-up mechanism 33 in two horizontal directions and a camera drive mechanism that drives the component imaging camera 34 in two horizontal directions. The horizontal drive mechanism 35 can be configured by applying a known XY mobile robot technology.
 実装ヘッド42の可動範囲R1は、供給位置Aのウエハパレット7よりも上方で、かつ供給位置Aから位置決めされた基板Kまでと広い。一方、突き上げ機構33および部品撮像カメラ34の可動範囲R2は、ウエハパレット7よりも下方で、かつ供給位置Aの付近に限定されて狭い。突き上げ機構33および部品撮像カメラ34は、水平駆動機構35によって一体的に駆動される。このため、部品撮像カメラ34が或るダイDを撮像したとき、部品撮像カメラ34に入れ替わって突き上げ機構33が当該のダイDの下側まで駆動され、その後にダイDの突き上げが可能となる。 The movable range R1 of the mounting head 42 is wide from the wafer pallet 7 at the supply position A to the substrate K positioned from the supply position A. On the other hand, the movable range R2 of the push-up mechanism 33 and the component imaging camera 34 is narrow below the wafer pallet 7 and in the vicinity of the supply position A. The push-up mechanism 33 and the component imaging camera 34 are integrally driven by a horizontal drive mechanism 35. For this reason, when the component imaging camera 34 images a certain die D, the component imaging camera 34 is replaced and the push-up mechanism 33 is driven to the lower side of the die D, and then the die D can be pushed up.
 部品供給装置3の制御部39は、CPUを有してソフトウェアで動作するコンピュータ装置である。制御部39は、制御装置6と通信接続されており、制御装置6からの指令にしたがって適切に部品供給動作を制御する。具体的に、制御部39は、収納マガジン31へのウエハパレット7の搬入および排出や、パレット搬送機構32によるウエハパレット7の往復搬送を制御する。制御部39は、さらに水平駆動機構35による突き上げ機構33および部品撮像カメラ34の移動、突き上げ機構33の突き上げ動作、ならびに部品撮像カメラ34の撮像動作を制御する。また、制御部39は、前述したウエハマップを参照して、不良品のダイDを供給しないように制御する。 The control unit 39 of the component supply device 3 is a computer device having a CPU and operating with software. The control unit 39 is communicatively connected to the control device 6 and appropriately controls the component supply operation in accordance with a command from the control device 6. Specifically, the control unit 39 controls the loading and unloading of the wafer pallet 7 to and from the storage magazine 31 and the reciprocating conveyance of the wafer pallet 7 by the pallet conveying mechanism 32. The control unit 39 further controls the movement of the push-up mechanism 33 and the component imaging camera 34 by the horizontal drive mechanism 35, the push-up operation of the push-up mechanism 33, and the imaging operation of the component imaging camera 34. Further, the control unit 39 refers to the above-described wafer map and controls not to supply the defective die D.
 (3.部品実装機1における部品供給動作および作用)
 次に、部品実装機1における部品供給装置3の部品供給動作について説明する。図4は、部品供給装置3の部品供給動作を示す動作フローの図である。この動作フローは、主に制御部39からの指令および制御によって実行される。部品供給動作を開始する以前に、既に所定のウエハパレット7が収納マガジン31に搬入され、パレットストッカ315に収納されているものとする。図4の動作フローのステップS1で、パレット搬送機構32は、制御部39からの指令に基づき、ウエハパレット7を供給位置Aまで搬送する。
(3. Component supply operation and action in component mounter 1)
Next, the component supply operation of the component supply device 3 in the component mounter 1 will be described. FIG. 4 is an operation flow diagram showing the component supply operation of the component supply apparatus 3. This operation flow is mainly executed by commands and control from the control unit 39. It is assumed that a predetermined wafer pallet 7 has already been carried into the storage magazine 31 and stored in the pallet stocker 315 before starting the component supply operation. 4, the pallet transport mechanism 32 transports the wafer pallet 7 to the supply position A based on a command from the controller 39.
 ステップS2で、制御部39は、ウエハパレット7上の1つの特定のダイDを指定して、水平駆動機構35を制御する。水平駆動機構35は、部品撮像カメラ34を特定のダイDの概ね真下へ移動させる。ステップS3で、部品撮像カメラ34は、ダイシングシートSを透かして特定のダイDの底面を撮像して、部品画像データを取得する。さらに、部品撮像カメラ34は、部品画像データを画像処理して、特定のダイDの正確な位置を認識する。得られた特定のダイDの位置情報は、制御部39に伝送され、さらに制御装置6にも伝送される。なお、制御部39が部品画像データを受け取り、画像処理によるダイDの位置認識を行うようにしてもよい。 In step S2, the control unit 39 designates one specific die D on the wafer pallet 7 and controls the horizontal drive mechanism 35. The horizontal drive mechanism 35 moves the component imaging camera 34 substantially directly below the specific die D. In step S <b> 3, the component imaging camera 34 captures the bottom surface of the specific die D through the dicing sheet S, and acquires component image data. Further, the component imaging camera 34 performs image processing on the component image data and recognizes an accurate position of the specific die D. The obtained position information of the specific die D is transmitted to the control unit 39 and further transmitted to the control device 6. Note that the control unit 39 may receive the component image data and recognize the position of the die D by image processing.
 ステップS4で、制御部39は、特定のダイDの位置情報を指定して、水平駆動機構35を制御する。水平駆動機構35は、突き上げ機構33を移動させて、突き上げピン331を特定のダイDの真下に配置する。ステップS5で、突き上げ機構33は、制御部39からの指令に基づき、突き上げピン331を上方に駆動して、ダイシングシートSを伸長させつつ特定のダイDを突き上げる。これにより、特定のダイDは、採取が可能な状態となる。 In step S4, the control unit 39 specifies the position information of the specific die D and controls the horizontal drive mechanism 35. The horizontal drive mechanism 35 moves the push-up mechanism 33 to place the push-up pin 331 directly below the specific die D. In step S <b> 5, the push-up mechanism 33 drives the push-up pin 331 upward based on a command from the control unit 39 to push up the specific die D while extending the dicing sheet S. Thereby, the specific die D is in a state where it can be collected.
 ステップS6で、実装ヘッド42がウエハパレット7の上方へ駆動され、装着ノズル44が下降して特定のダイDを採取する。このとき、ヘッド駆動機構41は、制御装置6から特定のダイDの位置情報を受け取るので、装着ノズル44を突き上げピン331の真上の位置に正確に駆動できる。次に、実装ヘッド42は基板Kの上方へ駆動され、装着ノズル44は特定のダイDを基板Kに装着する。 In step S6, the mounting head 42 is driven above the wafer pallet 7, and the mounting nozzle 44 descends to collect a specific die D. At this time, the head drive mechanism 41 receives the position information of the specific die D from the control device 6, so that the mounting nozzle 44 can be accurately driven to a position directly above the push-up pin 331. Next, the mounting head 42 is driven above the substrate K, and the mounting nozzle 44 mounts the specific die D on the substrate K.
 この後、制御部39は、次以降のダイDを順次指定してステップS2~S6の制御を繰り返す。また、1種類の基板Kに対して2個以上のウエハパレット7からダイDを供給する場合には、ウエハパレット7の供給位置Aへの搬入出が適宜行われる。そして、制御部39は、ウエハパレット7を供給位置Aまで搬送する都度、ステップS1~S6の制御を繰り返す。 Thereafter, the control unit 39 sequentially designates the subsequent dies D and repeats the control of steps S2 to S6. In addition, when the dies D are supplied from two or more wafer pallets 7 to one type of substrate K, the loading and unloading of the wafer pallet 7 to and from the supply position A is appropriately performed. The control unit 39 repeats the control of steps S1 to S6 each time the wafer pallet 7 is transported to the supply position A.
 次に、第1実施形態の部品実装機1の作用について、従来技術と対比して説明する。図5は、従来技術の部品実装機の部品供給装置3Uおよび部品移載装置4の構成を模式的に説明する側面図である。図示されるように、従来技術の部品移載装置4は、第1実施形態と同様の構成である。従来技術の部品供給装置3Uは、第1実施形態と異なり、部品撮像カメラ34Vがウエハパレット7の上方を移動する。 Next, the operation of the component mounter 1 according to the first embodiment will be described in comparison with the prior art. FIG. 5 is a side view schematically illustrating the configuration of the component supply device 3U and the component transfer device 4 of the conventional component mounting machine. As shown in the figure, the conventional component transfer device 4 has the same configuration as that of the first embodiment. In the conventional component supply apparatus 3U, unlike the first embodiment, the component imaging camera 34V moves above the wafer pallet 7.
 従来技術の部品供給装置3Uについて説明する。突き上げ機構33Uは、供給位置Aの下側に配設され、突き上げ用ヘッド36Uに取り付けられている。突き上げ用ヘッド36Uは、突き上げ用水平駆動機構35Uによって水平二方向に駆動される。一方、部品撮像カメラ34Vは、供給位置Aの上側に配設され、カメラ用ヘッド36Vに取り付けられている。カメラ用ヘッド36Vは、カメラ用水平駆動機構35Vにより、突き上げ機構33Uとは別々に水平二方向に駆動される。部品撮像カメラ34Vは、下方を向いて、ダイシングシートS上のダイDの上面を撮像する。 The conventional parts supply device 3U will be described. The push-up mechanism 33U is disposed below the supply position A and is attached to the push-up head 36U. The push-up head 36U is driven in two horizontal directions by a push-up horizontal drive mechanism 35U. On the other hand, the component imaging camera 34V is disposed on the upper side of the supply position A and is attached to the camera head 36V. The camera head 36V is driven in two horizontal directions separately from the push-up mechanism 33U by the camera horizontal drive mechanism 35V. The component imaging camera 34V faces downward and images the upper surface of the die D on the dicing sheet S.
 従来技術において、部品撮像カメラ34Vおよび実装ヘッド42は、ともに供給位置Aの上方から、ウエハパレット7にアクセスする。このため、相互の干渉を回避する制御が行われ、相手側装置が退出するまでの待機時間や、相手側装置への干渉を避ける迂回移動が発生する。これにより、基板1枚当たりの生産時間が長引いて、生産効率が低下する。 In the prior art, both the component imaging camera 34V and the mounting head 42 access the wafer pallet 7 from above the supply position A. For this reason, control for avoiding mutual interference is performed, and a waiting time until the counterpart device leaves or detour movement to avoid interference with the counterpart device occurs. This prolongs the production time per substrate and lowers the production efficiency.
 さらに、干渉回避の制御技術を確立することは、開発段階での課題となり、性能検証が必要になっていた。例えば、部品撮像カメラ34Vおよび実装ヘッド42が移動を開始する好適なタイミングは、それぞれの現在位置および目標位置に依存して変化し、加えて、移動時の速度や加速度、移動経路なども干渉回避に関係する。これらの要因を組み合わせた全パターンの動作を確認して、優れた干渉回避方法を確立する性能検証には、膨大な検証時間および手間がかかっていた。 Furthermore, establishment of interference avoidance control technology has become an issue at the development stage, and performance verification has been required. For example, the suitable timing at which the component imaging camera 34V and the mounting head 42 start moving varies depending on the current position and target position, and in addition, interference with the speed, acceleration, movement path, etc. during movement is avoided. Related to. It took enormous verification time and effort to verify the operation of all patterns combining these factors and establish an excellent interference avoidance method.
 これに対し、第1実施形態では、実装ヘッド42の可動範囲R1はウエハパレット7の上方とされ、突き上げ機構33および部品撮像カメラ34の可動範囲R2はウエハパレット7の下方とされている。したがって、突き上げ機構33および部品撮像カメラ34が実装ヘッド42に干渉するおそれは無い。また、干渉回避の制御技術を確立するためにこれまで実施されていた性能検証は不要となる。 In contrast, in the first embodiment, the movable range R1 of the mounting head 42 is above the wafer pallet 7, and the movable range R2 of the push-up mechanism 33 and the component imaging camera 34 is below the wafer pallet 7. Therefore, there is no possibility that the push-up mechanism 33 and the component imaging camera 34 interfere with the mounting head 42. Further, the performance verification that has been performed so far to establish the control technique for avoiding interference is not necessary.
 なお、第1実施形態において、ウエハパレット7に代えてトレイパレット8を使用してもよく、ウエハパレット7およびトレイパレット8を併用してもよい。図6は、第1実施形態の部品実装機1に使用できるトレイパレット8を例示した斜視図である。トレイパレット8は、ウエハパレット7と同様に、収納マガジン31に収納され、パレット搬送機構32により供給位置Aまで搬送される。 In the first embodiment, a tray pallet 8 may be used instead of the wafer pallet 7, and the wafer pallet 7 and the tray pallet 8 may be used in combination. FIG. 6 is a perspective view illustrating a tray pallet 8 that can be used in the component mounter 1 of the first embodiment. Similar to the wafer pallet 7, the tray pallet 8 is stored in the storage magazine 31 and is transported to the supply position A by the pallet transport mechanism 32.
 トレイパレット8は、供給トレイ83を含んで形成されている。供給トレイ83は、光学的透過性をもつ透明または半透明の樹脂を用いて矩形の皿状に形成されている。供給トレイ83は、上面の外周に広幅の外枠84が突設され、さらに狭幅の仕切り枠85が格子状に突設されて、複数のキャビティ86が形成されている。図6の例では、54個のキャビティ86が形成され、そのうちの22箇所に部品P(便宜的にハッチングを付して示す)が載置されている。トレイパレット8は、外形が矩形であって、中央に供給トレイ83よりも少し小さめの矩形穴を有する額縁状の板材である。トレイパレット8の一辺に、パレット搬送機構32の係合部材327に係止される係止部81が設けられている。 The tray pallet 8 is formed including a supply tray 83. The supply tray 83 is formed in a rectangular dish shape using a transparent or translucent resin having optical transparency. The supply tray 83 has a wide outer frame 84 projecting from the outer periphery of the upper surface, and a narrow partition frame 85 projecting in a lattice shape to form a plurality of cavities 86. In the example of FIG. 6, 54 cavities 86 are formed, and parts P (shown with hatching for convenience) are placed in 22 of them. The tray pallet 8 is a frame-like plate material having a rectangular outer shape and having a rectangular hole slightly smaller than the supply tray 83 in the center. On one side of the tray pallet 8, a locking portion 81 that is locked to the engaging member 327 of the pallet transport mechanism 32 is provided.
 トレイパレット8は、供給トレイ83の長手方向に延びる両辺の2箇所、合計4箇所を押え金具82で押えて、矩形穴の上側に固定保持する。したがって、部品撮像カメラ34は、下方からトレイパレット8の矩形穴を通し、供給トレイ83を透かして部品Pを撮像できる。なお、トレイパレット8を使用するとき、実装ヘッド42は、部品Pを挟んで採取する挟持チャックを装着ノズル44と交換して使用することもできる。 The tray pallet 8 is fixed to the upper side of the rectangular hole by pressing two places on the both sides extending in the longitudinal direction of the supply tray 83, a total of four places, with the presser fittings 82. Therefore, the component imaging camera 34 can image the component P through the rectangular hole of the tray pallet 8 from below and through the supply tray 83. Note that when the tray pallet 8 is used, the mounting head 42 can also be used by replacing the mounting chuck for picking up the component P with the mounting nozzle 44.
 (4.第1実施形態の部品実装機1の態様および効果)
 第1実施形態の部品実装機1は、複数の部品を水平面内に並べて供給する供給パレット(ウエハパレット7、トレイパレット8)、および供給パレットを収納マガジン31から引き出して供給位置Aに搬送するパレット搬送機構32を有する部品供給装置3と、供給位置Aに搬送された供給パレットの上方から部品(ダイD、部品P)を採取して位置決めされた基板Kに装着する装着ノズル44をもつ実装ヘッド42、および実装ヘッド42を水平二方向に駆動するヘッド駆動機構41を有する部品移載装置4と、を備えた部品実装機1であって、部品供給装置3は、供給位置Aの下側に配設されて上方を向き、供給位置Aに搬送された供給パレットを透かして部品を撮像することにより、当該部品の位置を認識して装着ノズル44による採取を可能にする部品撮像カメラ34、および、部品撮像カメラ34を水平二方向に駆動するカメラ駆動機構(水平移動機構35)をさらに有する。
(4. Aspects and effects of the component mounter 1 of the first embodiment)
The component mounter 1 of the first embodiment includes a supply pallet (wafer pallet 7 and tray pallet 8) that supplies a plurality of components arranged in a horizontal plane, and a pallet that pulls the supply pallet from the storage magazine 31 and conveys it to a supply position A. A mounting head having a component supply device 3 having a transport mechanism 32 and a mounting nozzle 44 that picks up components (die D, component P) from above the supply pallet transported to the supply position A and mounts them on the positioned substrate K. 42, and a component transfer device 4 having a head drive mechanism 41 that drives the mounting head 42 in two horizontal directions. The component supply device 3 is provided below the supply position A. When the component is imaged through the supply pallet transported to the supply position A through the supply pallet, the position of the component is recognized and taken by the mounting nozzle 44. And component imaging camera 34, to allow further comprises a camera driving mechanism for driving the component imaging camera 34 in the horizontal two directions (horizontal movement mechanism 35).
 第1実施形態において、部品供給装置3の部品撮像カメラ34は、供給位置Aに搬送された供給パレットの下側に配設されて上方を向き、供給パレットを透かして部品を撮像する。このため、部品撮像カメラ34は、供給パレットの上方から部品を採取する装着ノズル44をもつ実装ヘッド42に干渉しない、したがって、従来技術において部品撮像カメラ34Vと実装ヘッド44との干渉を回避するために必要であった待機時間や迂回移動が発生せず、基板生産効率の低下が抑制される。また、干渉回避の制御技術を確立するためにこれまで開発段階で実施されていた性能検証は不要になる。 In the first embodiment, the component imaging camera 34 of the component supply device 3 is disposed below the supply pallet conveyed to the supply position A and faces upward, and images the component through the supply pallet. For this reason, the component imaging camera 34 does not interfere with the mounting head 42 having the mounting nozzle 44 that picks up components from above the supply pallet. Therefore, in order to avoid interference between the component imaging camera 34V and the mounting head 44 in the prior art. Therefore, the waiting time and detour movement required for the above are not generated, and the reduction in substrate production efficiency is suppressed. In addition, the performance verification that has been carried out in the development stage so far in order to establish the interference avoidance control technology becomes unnecessary.
 さらに、部品は、半導体ウエハがダイシングされて生産されたダイDであり、供給パレットは、上面に複数のダイを貼着して保持するとともに光学的透過性をもつダイシングシートSを伸縮可能に張設したウエハパレット7であり、部品供給装置3は、突き上げピン331を上方に駆動して供給位置Aに搬送されたウエハパレット7のダイシングシートSを伸長させつつダイDを突き上げる突き上げ機構33、および突き上げ機構33を水平二方向に駆動する水平駆動機構35をさらに有し、部品撮像カメラ34は、ダイシングシートSを透かしてダイDを撮像するとともに、カメラ駆動機構を兼ねた水平駆動機構35によって駆動される。 Further, the component is a die D produced by dicing a semiconductor wafer, and the supply pallet holds a plurality of dies on the upper surface and holds a dicing sheet S having optical transparency so as to be stretchable. A wafer pallet 7 provided, and the component supply device 3 drives a push-up pin 331 upward to push up the die D while extending the dicing sheet S of the wafer pallet 7 conveyed to the supply position A, and It further has a horizontal drive mechanism 35 that drives the push-up mechanism 33 in two horizontal directions. The component imaging camera 34 images the die D through the dicing sheet S and is driven by the horizontal drive mechanism 35 that also serves as a camera drive mechanism. Is done.
 これによれば、半導体ウエハから生産されたダイDを供給する形態において、基板生産効率の低下が抑制されるという効果が顕著になる。加えて、水平駆動機構35は、突き上げ機構33を水平二方向に駆動する機構と、カメラ駆動機構とを兼ねるので、部品供給装置3の構成の簡素化およびコストの低減が実現される。 According to this, in the form in which the die D produced from the semiconductor wafer is supplied, the effect of suppressing the decrease in substrate production efficiency becomes remarkable. In addition, since the horizontal drive mechanism 35 serves as a mechanism for driving the push-up mechanism 33 in two horizontal directions and a camera drive mechanism, the configuration of the component supply device 3 can be simplified and the cost can be reduced.
 さらに、供給パレットの一種であるトレイパレット8は、部品Pを載置する複数のキャビティ86を有するとともに光学的透過性をもつ供給トレイ83を含む。これによれば、供給トレイ83から部品Pを供給する形態においても、基板生産効率の低下が抑制されるという効果が生じる。 Further, the tray pallet 8 which is a kind of supply pallet includes a supply tray 83 having a plurality of cavities 86 for placing the parts P and having optical transparency. According to this, even in the form in which the component P is supplied from the supply tray 83, there is an effect that a reduction in substrate production efficiency is suppressed.
 (5.第2実施形態の部品実装機の構成)
 次に、第2実施形態の部品実装機の構成について説明する。図7は、第2実施形態の部品実装機の部品供給装置3Aおよび部品移載装置4の構成を模式的に説明する側面図である。図示されるように、第2実施形態の部品移載装置4は、第1実施形態と同様の構成である。第2実施形態の部品供給装置3Aは、ダイDの使用可否の判定方法が第1実施形態と異なり、ウエハマップに代わる撮像動作によって不良品のダイDを認識する。
(5. Configuration of the component mounting machine of the second embodiment)
Next, the structure of the component mounting machine of 2nd Embodiment is demonstrated. FIG. 7 is a side view schematically illustrating the configuration of the component supply device 3A and the component transfer device 4 of the component mounter according to the second embodiment. As illustrated, the component transfer apparatus 4 of the second embodiment has the same configuration as that of the first embodiment. Unlike the first embodiment, the component supply apparatus 3A of the second embodiment recognizes a defective die D by an imaging operation instead of the wafer map, unlike the first embodiment.
 第2実施形態の部品供給装置3Aについて、第1実施形態と異なる点を主に説明する。第2実施形態では、供給位置Aの下側の突き上げ機構33および部品撮像カメラ34よりもさらに下方に、下方撮像位置Bが設定されている。下方撮像位置Bにウエハパレット7を搬送できるように、パレット搬送機構32の下側に下方パレット搬送機構37が並行して配設されている。下方パレット搬送機構37は、パレット搬送機構32と同一の構成であり、図7に太線の矢印で簡略に示されている。下方パレット搬送機構37の後部に臨んで、ハウジング311の下方寄りに下方パレット搬送口317が開口している。 Differences from the first embodiment will be mainly described regarding the component supply device 3A of the second embodiment. In the second embodiment, the lower imaging position B is set further below the push-up mechanism 33 and the component imaging camera 34 below the supply position A. A lower pallet transfer mechanism 37 is disposed in parallel below the pallet transfer mechanism 32 so that the wafer pallet 7 can be transferred to the lower imaging position B. The lower pallet transport mechanism 37 has the same configuration as the pallet transport mechanism 32, and is simply indicated by a thick arrow in FIG. A lower pallet conveyance port 317 is opened near the lower side of the housing 311 so as to face the rear part of the lower pallet conveyance mechanism 37.
 また、突き上げ機構33および部品撮像カメラ34が取り付けられた共通ヘッド36Aは、上下の反転が可能となっている。すなわち、共通ヘッド36Aは、制御部39からの反転指令にしたがって、図3に示された正転姿勢から図7に示された反転姿勢へと上下反転する。また、共通ヘッド36Aは、制御部39からの正転指令にしたがって、反転姿勢から正転姿勢に戻る。共通ヘッド36Aの反転姿勢において、部品撮像カメラ34は、下方を向き、下方撮像位置Bに搬送されたウエハパレット7のダイDの上面を撮像できる。 Also, the common head 36A to which the push-up mechanism 33 and the component imaging camera 34 are attached can be turned upside down. That is, the common head 36A is inverted upside down from the normal rotation posture shown in FIG. 3 to the reverse posture shown in FIG. 7 in accordance with the reverse command from the control unit 39. Further, the common head 36 </ b> A returns from the reverse posture to the normal rotation posture in accordance with the normal rotation command from the control unit 39. In the inverted posture of the common head 36A, the component imaging camera 34 can face the lower side and image the upper surface of the die D of the wafer pallet 7 conveyed to the lower imaging position B.
 不良品のダイDの認識は、ダイDの上面に印された使用可否マークに基づいて行われる。使用可否マークの一例として、不良品のダイDの上面に使用不可を表す×マークを印し、良品のダイDの上面には何も印さないことにする。なお、×マーク以外の使用可否マークを用いてもよいが、印す位置はダイDの上面とする。 The recognition of the defective die D is performed based on the availability mark marked on the upper surface of the die D. As an example of the usability mark, a cross mark indicating unusable is marked on the upper surface of the defective die D, and nothing is marked on the upper surface of the good die D. In addition, although the availability mark other than x mark may be used, the marking position is the upper surface of the die D.
 (6.第2実施形態おける部品供給動作および実施形態の部品実装機の部品供給方法)
 次に、第2実施形態の部品実装機における部品供給装置3Aの部品供給動作について説明する。図8は、第2実施形態の部品供給装置3Aの部品供給動作を示す動作フローの図である。この動作フローは、主に制御部39からの指令および制御によって実行される。部品供給装置3Aの部品供給動作は、本発明の実施形態の部品実装機の部品供給方法に相当する。部品供給動作を開始する以前に、既に所定のウエハパレット7が収納マガジン31に搬入され、パレットストッカ315に収納されているものとする。
(6. Component supply operation in second embodiment and component supply method of component mounter of embodiment)
Next, the component supply operation of the component supply apparatus 3A in the component mounter of the second embodiment will be described. FIG. 8 is an operation flow diagram showing the component supply operation of the component supply device 3A of the second embodiment. This operation flow is mainly executed by commands and control from the control unit 39. The component supply operation of the component supply apparatus 3A corresponds to the component supply method of the component mounter according to the embodiment of the present invention. It is assumed that a predetermined wafer pallet 7 has already been carried into the storage magazine 31 and stored in the pallet stocker 315 before starting the component supply operation.
 図8の動作フローのステップS11で、下方パレット搬送機構37は、制御部39からの指令に基づき、ウエハパレット7を下方撮像位置Bに搬送する(図7に実線で示す)。ステップS12で、制御部39は、共通ヘッド36Aの上下を反転させ、部品撮像カメラ34を下向きにする。ステップS13で、制御部39は、ウエハパレット7上の1番目のダイDを指定して、水平駆動機構35を制御する。水平駆動機構35は、部品撮像カメラ34を1番目のダイDの概ね真上へ移動させる。 8, the lower pallet transport mechanism 37 transports the wafer pallet 7 to the lower imaging position B based on a command from the control unit 39 (shown by a solid line in FIG. 7). In step S12, the control unit 39 inverts the top and bottom of the common head 36A and turns the component imaging camera 34 downward. In step S <b> 13, the control unit 39 specifies the first die D on the wafer pallet 7 and controls the horizontal drive mechanism 35. The horizontal drive mechanism 35 moves the component imaging camera 34 substantially directly above the first die D.
 ステップS14で、部品撮像カメラ34は、制御部39からの指令に基づき、ウエハパレット8の上方から1番目のダイDの上面を撮像して、部品画像データを取得する。さらに、ステップS15で、部品撮像カメラ34または制御部39は、部品画像データを画像処理して、1番目のダイDの上面に×マーク(使用可否マーク)が印されているか否かを判別する。制御部39は、×マークが印されていなければ1番目のダイDを使用可と判定し、×マークが印されていれば1番目のダイDを使用不可と判定する。 In step S14, the component imaging camera 34 images the upper surface of the first die D from above the wafer pallet 8 based on a command from the control unit 39, and acquires component image data. Further, in step S15, the component imaging camera 34 or the control unit 39 performs image processing on the component image data to determine whether or not an X mark (usability mark) is marked on the upper surface of the first die D. . The control unit 39 determines that the first die D can be used if the x mark is not marked, and determines that the first die D cannot be used if the x mark is marked.
 ステップS16で、制御部39はダイシングシートS上の全部のダイDの判定が終了したか否かを判断する。初回のステップS16で、1番目のダイD以外は判定が終了していないので、制御部39は、動作フローの実行をステップS13に戻す。2回目のステップS13で、制御部39は、1番目のダイDの隣の2番目のダイDを指定して、水平駆動機構35を制御する。以下、ステップS13~ステップS16がダイDの個数だけ繰り返して実行される。 In step S16, the control unit 39 determines whether or not all the dies D on the dicing sheet S have been determined. In the first step S16, since the determination is not completed except for the first die D, the control unit 39 returns the execution of the operation flow to step S13. In step S13 for the second time, the control unit 39 specifies the second die D adjacent to the first die D and controls the horizontal drive mechanism 35. Thereafter, steps S13 to S16 are repeatedly executed for the number of dies D.
 ステップS16で、全部のダイDの判定が終了していると、制御部39は、動作フローの実行をステップS17に進める。ステップS17で、制御部39は、下方パレット搬送機構37、パレットストッカ315の昇降機構、およびパレット搬送機構32を制御して、ウエハパレット7を供給位置Aに移動する(図7に破線で示す)。ウエハパレット7は、下方パレット搬送口317からパレットストッカ315に戻され、上昇して、パレット搬送口314から供給位置Aまで搬送される。ステップS18で、制御部39は、共通ヘッド36Aを正転させて、部品撮像カメラ34を上向きにする。ステップS11~ステップS18の動作は、基板Kの生産を開始する以前の段取り作業の中で実施できる。 In step S16, when all the dies D have been determined, the control unit 39 advances the execution of the operation flow to step S17. In step S17, the control unit 39 controls the lower pallet transfer mechanism 37, the lifting mechanism of the pallet stocker 315, and the pallet transfer mechanism 32 to move the wafer pallet 7 to the supply position A (shown by a broken line in FIG. 7). . The wafer pallet 7 is returned from the lower pallet transfer port 317 to the pallet stocker 315, is lifted, and is transferred from the pallet transfer port 314 to the supply position A. In step S <b> 18, the control unit 39 rotates the common head 36 </ b> A forward so that the component imaging camera 34 faces upward. The operations from Step S11 to Step S18 can be performed in the setup work before starting the production of the substrate K.
 以降の基板Kの生産に伴う動作は、第1実施形態で説明した図3の動作フローのステップS2~ステップS6に準じる。ただし、第2実施形態の部品供給装置3Aは、ステップS15で使用可と判定されたダイDのみを供給する。 The subsequent operations associated with the production of the substrate K conform to steps S2 to S6 in the operation flow of FIG. 3 described in the first embodiment. However, the component supply device 3A of the second embodiment supplies only the die D determined to be usable in step S15.
 図8の動作フロー中のステップS11は、実施形態の部品実装機の部品供給方法の撮像準備ステップに相当する。また、ステップS12~S14は撮像ステップに相当し、ステップS15は判定ステップに相当する。さらに、ステップS17は供給準備ステップに相当し、ステップS18およびステップS2~S5は供給ステップに相当する。 Step S11 in the operation flow of FIG. 8 corresponds to an imaging preparation step of the component supply method for the component mounter of the embodiment. Steps S12 to S14 correspond to an imaging step, and step S15 corresponds to a determination step. Further, step S17 corresponds to a supply preparation step, and step S18 and steps S2 to S5 correspond to a supply step.
 第2実施形態の部品実装機において、供給位置Aの下方の位置であって、下方パレット搬送機構37によりトレイパレット7を搬送可能な下方撮像位置Bが設定されており、部品撮像カメラ34は、上下反転して下方を向き、下方撮像位置Bに搬送されたトレイパレット7の上方からダイDを撮像する。これによれば、ウエハマップが用いられずにダイDの上面に使用可否マークが印される場合でも、撮像動作によって不良品のダイDを判定でき、誤って供給してしまうおそれが無い。 In the component mounter of the second embodiment, a lower imaging position B that is a position below the supply position A and that can transport the tray pallet 7 by the lower pallet transport mechanism 37 is set. The die D is imaged from above the tray pallet 7 which is turned upside down and turned downward and conveyed to the lower imaging position B. According to this, even when the wafer map is not used and a usable / unusable mark is marked on the upper surface of the die D, the defective die D can be determined by the imaging operation, and there is no possibility of erroneous supply.
 また、実施形態の部品実装機の部品供給方法は、下方パレット搬送機構37によりウエハパレット7を下方撮像位置Bに搬送する撮像準備ステップ(ステップS11)と、部品撮像カメラ34によりウエハパレット7の上方からダイDの上面を撮像して部品画像データを取得する撮像ステップ(ステップS12~S14)と、部品画像データを画像処理し、ダイDの上面に印された使用可否マークに基づいて当該ダイDの使用の可否を判定する判定ステップ(ステップS15)と、下方パレット搬送機構37およびパレット搬送機構32によりウエハパレット7を下方撮像位置Bから供給位置Aに搬送する供給準備ステップ(ステップS17)と、部品撮像カメラ34によりウエハパレット7を透かして判定ステップで使用可と判定されたダイDを撮像し、当該ダイDの位置を認識して装着ノズル44による採取を可能にする供給ステップ(ステップS18およびステップS2~S5)と、を備えている。これによれば、ウエハマップが用いられずにダイDの上面に使用可否マークが印される場合でも、撮像動作によって不良品のダイDを判定でき、誤って供給してしまうおそれが無い。 The component supply method of the component mounter of the embodiment includes an imaging preparation step (step S11) in which the wafer pallet 7 is transported to the lower imaging position B by the lower pallet transport mechanism 37, and an upper part of the wafer pallet 7 by the component imaging camera 34. An imaging step (steps S12 to S14) for imaging the upper surface of the die D to acquire component image data, image processing of the component image data, and the die D based on the availability mark marked on the upper surface of the die D A determination step (step S15) for determining whether or not the sheet can be used, a supply preparation step (step S17) for transferring the wafer pallet 7 from the lower imaging position B to the supply position A by the lower pallet transfer mechanism 37 and the pallet transfer mechanism 32; The component imaging camera 34 has determined that the wafer pallet 7 can be used in the determination step through the watermark. Capturing a Lee D, and comprises a supply step of enabling the collection by mounting the nozzle 44 to recognize the position of the die D (step S18 and step S2 ~ S5), the. According to this, even when the wafer map is not used and a usable / unusable mark is marked on the upper surface of the die D, the defective die D can be determined by the imaging operation, and there is no possibility of erroneous supply.
 (7.実施形態の応用および変形)
 なお、第1実施形態において、部品撮像カメラ34はダイシングシートS上の全部のダイDの底面を順番に撮像してゆくが、これに限定されない。すなわち、部品撮像カメラ34は限られた個数のダイDの底面を撮像して位置を認識し、その他のダイDの位置は制御部39が演算によって求めるようにしてもよい。また、第2実施形態において、共通ヘッド36Aの全体が上下に反転するが、部品撮像カメラ34のみが上下に反転してもよい。さらに、上下反転機構を設ける代わりに、下向きの第2部品撮像カメラを部品撮像カメラ34の下側に追加して設けてもよい。本発明は、他にも様々な応用や変形が可能である。
(7. Application and modification of embodiment)
In the first embodiment, the component imaging camera 34 sequentially images the bottom surfaces of all the dies D on the dicing sheet S, but the present invention is not limited to this. That is, the component imaging camera 34 may capture the bottom surface of a limited number of dies D to recognize the positions, and the control unit 39 may obtain the positions of the other dies D by calculation. In the second embodiment, the entire common head 36A is inverted up and down, but only the component imaging camera 34 may be inverted up and down. Furthermore, instead of providing the upside down mechanism, a downward second component imaging camera may be additionally provided below the component imaging camera 34. The present invention can have various other applications and modifications.
  1:部品実装機  2:基板搬送装置
  3、3A:部品供給装置  31:収納マガジン
  32:パレット搬送機構  33、33U:突き上げ機構
  34、34V:部品撮像カメラ  35:水平駆動機構
  36、36A:共通ヘッド  37:下方パレット搬送機構
  39:制御部
  4:部品移載装置  41:ヘッド駆動機構
  42:実装ヘッド  44:装着ノズル
  5:部品カメラ  6:制御装置
  7:ウエハパレット  8:トレイパレット
  K:基板  A:供給位置  B:下方撮像位置
  D:ダイ(部品)  S:ダイシングシート  P:部品
1: Component mounter 2: Board transport device 3, 3A: Component supply device 31: Storage magazine 32: Pallet transport mechanism 33, 33U: Push- up mechanism 34, 34V: Component imaging camera 35: Horizontal drive mechanism 36, 36A: Common head 37: Lower pallet transport mechanism 39: Control unit 4: Component transfer device 41: Head drive mechanism 42: Mounting head 44: Mounting nozzle 5: Component camera 6: Control device 7: Wafer pallet 8: Tray pallet K: Substrate A: Supply position B: Lower imaging position D: Die (component) S: Dicing sheet P: Component

Claims (5)

  1.  複数の部品を水平面内に並べて供給する供給パレット、および前記供給パレットを収納マガジンから引き出して供給位置に搬送するパレット搬送機構を有する部品供給装置と、
     前記供給位置に搬送された供給パレットの上方から前記部品を採取して位置決めされた基板に装着する装着ノズルをもつ実装ヘッド、および前記実装ヘッドを水平二方向に駆動するヘッド駆動機構を有する部品移載装置と、を備えた部品実装機であって、
     前記部品供給装置は、
     前記供給位置の下側に配設されて上方を向き、前記供給位置に搬送された供給パレットを透かして前記部品を撮像することにより、当該部品の位置を認識して前記装着ノズルによる採取を可能にする部品撮像カメラ、および、
     前記部品撮像カメラを水平二方向に駆動するカメラ駆動機構をさらに有する部品実装機。
    A supply pallet for supplying a plurality of parts side by side in a horizontal plane, and a parts supply apparatus having a pallet transfer mechanism for pulling out the supply pallet from a storage magazine and transferring it to a supply position;
    A component transfer unit having a mounting head having a mounting nozzle for collecting the component from above the supply pallet conveyed to the supply position and mounting the component on a positioned substrate, and a head drive mechanism for driving the mounting head in two horizontal directions. A component mounting machine comprising a mounting device,
    The component supply device includes:
    By imaging the part through the supply pallet transported to the supply position by being arranged below the supply position and facing upward, it is possible to recognize the position of the part and collect it with the mounting nozzle Parts imaging camera, and
    A component mounter further comprising a camera drive mechanism for driving the component imaging camera in two horizontal directions.
  2.  前記部品は、半導体ウエハがダイシングされて生産されたダイであり、前記供給パレットは、上面に複数の前記ダイを貼着して保持するとともに光学的透過性をもつダイシングシートを伸縮可能に張設したウエハパレットであり、
     前記部品供給装置は、突き上げピンを上方に駆動して前記供給位置に搬送されたウエハパレットの前記ダイシングシートを伸長させつつ前記ダイを突き上げる突き上げ機構、および前記突き上げ機構を水平二方向に駆動する水平駆動機構をさらに有し、
     前記部品撮像カメラは、前記ダイシングシートを透かして前記ダイを撮像するとともに、前記カメラ駆動機構を兼ねた前記水平駆動機構によって駆動される請求項1に記載の部品実装機。
    The component is a die produced by dicing a semiconductor wafer, and the supply pallet holds and holds a plurality of the dies on the upper surface and stretches a dicing sheet having optical transparency so as to be stretchable. Wafer pallet,
    The component supply device drives a push-up pin upward to extend the dicing sheet of the wafer pallet conveyed to the supply position, and pushes up the die while driving the push-up mechanism in two horizontal directions. A drive mechanism;
    2. The component mounter according to claim 1, wherein the component imaging camera images the die through the dicing sheet and is driven by the horizontal driving mechanism that also serves as the camera driving mechanism.
  3.  前記供給パレットは、前記部品を載置する複数のキャビティを有するとともに光学的透過性をもつ供給トレイを含む請求項1に記載の部品実装機。 2. The component mounting machine according to claim 1, wherein the supply pallet includes a plurality of cavities for mounting the components and includes a supply tray having optical transparency.
  4.  前記供給位置の下方の位置であって、前記パレット搬送機構により前記供給パレットを搬送可能な下方撮像位置が設定されており、
     前記部品撮像カメラは、上下反転して下方を向き、前記下方撮像位置に搬送された供給パレットの上方から前記部品を撮像し、あるいは、
     前記部品撮像カメラとは別の第2部品撮像カメラが、前記下方撮像位置に搬送された供給パレットの上方から前記部品を撮像する請求項1~3のいずれか一項に記載の部品実装機。
    A lower imaging position that is a position below the supply position and capable of conveying the supply pallet by the pallet conveyance mechanism is set,
    The component imaging camera is turned upside down and faces downward, and images the component from above the supply pallet conveyed to the lower imaging position, or
    The component mounter according to any one of claims 1 to 3, wherein a second component imaging camera different from the component imaging camera images the component from above the supply pallet conveyed to the lower imaging position.
  5.  請求項4に記載された部品実装機の部品供給方法であって、
     前記パレット搬送機構により前記供給パレットを前記下方撮像位置に搬送する撮像準備ステップと、
     前記部品撮像カメラまたは前記第2部品撮像カメラにより前記供給パレットの上方から前記部品の上面を撮像して部品画像データを取得する撮像ステップと、
     前記部品画像データを画像処理し、前記部品の上面に印された使用可否マークに基づいて当該部品の使用の可否を判定する判定ステップと、
     前記パレット搬送機構により前記供給パレットを前記下方撮像位置から前記供給位置に搬送する供給準備ステップと、
     前記部品撮像カメラにより前記供給パレットを透かして前記判定ステップで使用可と判定された部品を撮像し、当該部品の位置を認識して前記装着ノズルによる採取を可能にする供給ステップと、を備えた部品実装機の部品供給方法。
    It is the component supply method of the component mounting machine described in Claim 4,
    An imaging preparation step of transporting the supply pallet to the lower imaging position by the pallet transport mechanism;
    An imaging step of acquiring the component image data by imaging the upper surface of the component from above the supply pallet by the component imaging camera or the second component imaging camera;
    A determination step of performing image processing on the component image data and determining whether or not the component can be used on the basis of a usability mark marked on an upper surface of the component;
    A supply preparing step of transporting the supply pallet from the lower imaging position to the supply position by the pallet transport mechanism;
    A step of imaging the component determined to be usable in the determination step through the supply pallet by the component imaging camera, and recognizing the position of the component to enable sampling by the mounting nozzle; Component supply method for component mounters.
PCT/JP2015/063284 2015-05-08 2015-05-08 Component mounting machine, and component supply method for component mounting machine WO2016181437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017517462A JP6571176B2 (en) 2015-05-08 2015-05-08 Component mounter and component supply method for component mounter
PCT/JP2015/063284 WO2016181437A1 (en) 2015-05-08 2015-05-08 Component mounting machine, and component supply method for component mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063284 WO2016181437A1 (en) 2015-05-08 2015-05-08 Component mounting machine, and component supply method for component mounting machine

Publications (1)

Publication Number Publication Date
WO2016181437A1 true WO2016181437A1 (en) 2016-11-17

Family

ID=57247915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063284 WO2016181437A1 (en) 2015-05-08 2015-05-08 Component mounting machine, and component supply method for component mounting machine

Country Status (2)

Country Link
JP (1) JP6571176B2 (en)
WO (1) WO2016181437A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305845A (en) * 2018-01-29 2018-07-20 江苏长电科技股份有限公司 Semiconductor auto loading mechanism and operation method
CN110137104A (en) * 2018-02-02 2019-08-16 东京毅力科创株式会社 The teaching method of liquid processing device and liquid processing device
CN110366772A (en) * 2017-03-09 2019-10-22 株式会社富士 Component mounter
JP2022125244A (en) * 2018-09-19 2022-08-26 ファスフォードテクノロジ株式会社 Die bonding apparatus and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150738A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Bonder
JPH08306764A (en) * 1995-05-02 1996-11-22 Tokyo Electron Ltd Method and machine for mounting semiconductor device
JP2003059955A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Apparatus and method for packaging electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332200A (en) * 1991-05-07 1992-11-19 Toshiba Corp Electronic part mounting apparatus
JP3228959B2 (en) * 1991-07-18 2001-11-12 ローム株式会社 Pellet pickup device
JP3948551B2 (en) * 2001-11-05 2007-07-25 東レエンジニアリング株式会社 Mounting method and mounting apparatus
JP5721476B2 (en) * 2011-03-09 2015-05-20 富士機械製造株式会社 Electronic component mounting apparatus and electronic component mounting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150738A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Bonder
JPH08306764A (en) * 1995-05-02 1996-11-22 Tokyo Electron Ltd Method and machine for mounting semiconductor device
JP2003059955A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Apparatus and method for packaging electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366772A (en) * 2017-03-09 2019-10-22 株式会社富士 Component mounter
CN110366772B (en) * 2017-03-09 2023-06-23 株式会社富士 Component mounting machine
CN108305845A (en) * 2018-01-29 2018-07-20 江苏长电科技股份有限公司 Semiconductor auto loading mechanism and operation method
CN110137104A (en) * 2018-02-02 2019-08-16 东京毅力科创株式会社 The teaching method of liquid processing device and liquid processing device
CN110137104B (en) * 2018-02-02 2024-06-04 东京毅力科创株式会社 Liquid processing apparatus and teaching method for liquid processing apparatus
JP2022125244A (en) * 2018-09-19 2022-08-26 ファスフォードテクノロジ株式会社 Die bonding apparatus and method for manufacturing semiconductor device
JP7284328B2 (en) 2018-09-19 2023-05-30 ファスフォードテクノロジ株式会社 Die bonding apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPWO2016181437A1 (en) 2018-02-22
JP6571176B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
KR101624004B1 (en) Mounting apparatus and mounting method
KR20120049172A (en) Screen printing device and screen printing method
JP2009044044A (en) Method and apparatus for mounting electronic-component
JP6571176B2 (en) Component mounter and component supply method for component mounter
JP3719182B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP6577965B2 (en) Parts supply apparatus and holder determination method
WO2020008761A1 (en) Screen-printing device and screen-printing method
JP4801558B2 (en) Mounting machine and component imaging method thereof
JP2005064205A (en) Transfer device and transfer method of circuit board, and method of mounting solder ball
JPWO2016092658A1 (en) Component storage member and storage method
JP6796363B2 (en) Parts mounting machine
JP6009695B2 (en) Component mounting apparatus and component mounting method
JP5934919B2 (en) Tray replacement method and component mounting apparatus
JP6053572B2 (en) Mounting apparatus and mounting method
JP4989384B2 (en) Component mounting equipment
JP2010278221A (en) Sticking device and sticking method, and sticking program for flexible substrate
JP5879493B2 (en) Electronic component mounting method
JP2008091733A (en) Component mounting equipment
CN104604356A (en) Control system and control method for component mounting machine
JP4655194B2 (en) Electronic component assembly method
JP5819745B2 (en) Component mounting apparatus and component mounting method
JP6527228B2 (en) Board inspection machine
JP6998113B2 (en) Electronic component mounting machine
JP2003152397A (en) Electric component mounting system and electric circuit manufacturing method
JP2003077941A (en) Electronic parts installing apparatus and electronic parts installing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891763

Country of ref document: EP

Kind code of ref document: A1