WO2016179785A1 - 复合隔膜及使用该复合隔膜的锂离子电池 - Google Patents

复合隔膜及使用该复合隔膜的锂离子电池 Download PDF

Info

Publication number
WO2016179785A1
WO2016179785A1 PCT/CN2015/078702 CN2015078702W WO2016179785A1 WO 2016179785 A1 WO2016179785 A1 WO 2016179785A1 CN 2015078702 W CN2015078702 W CN 2015078702W WO 2016179785 A1 WO2016179785 A1 WO 2016179785A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
binder
inorganic particles
composite separator
Prior art date
Application number
PCT/CN2015/078702
Other languages
English (en)
French (fr)
Inventor
袁成龙
彭宁
郭超
张盛武
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL20185972.5T priority Critical patent/PL3809509T3/pl
Priority to PCT/CN2015/078702 priority patent/WO2016179785A1/zh
Priority to HUE15891488A priority patent/HUE050432T2/hu
Priority to PT158914887T priority patent/PT3297063T/pt
Priority to EP20185972.5A priority patent/EP3809509B1/en
Priority to DK15891488.7T priority patent/DK3297063T3/da
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to HUE20185972A priority patent/HUE059794T2/hu
Priority to EP15891488.7A priority patent/EP3297063B1/en
Priority to PL15891488T priority patent/PL3297063T3/pl
Priority to ES15891488T priority patent/ES2813749T3/es
Publication of WO2016179785A1 publication Critical patent/WO2016179785A1/zh
Priority to US15/809,224 priority patent/US20180069220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a composite separator of a lithium ion battery and a lithium ion battery using the same.
  • Lithium-ion batteries are widely used in mobile communication and consumer electronic products (such as mobile phones, notebook computers, etc.) because of their unique high energy density performance. At present, large-capacity lithium-ion batteries developed by researchers in various countries have been used as electric vehicles. Power supply promotion application.
  • a lithium ion battery structure includes a positive electrode, a negative electrode, a separator, an electrolyte, and a cell structural member, wherein the lithium ion battery internal separator is one of key materials, and has an electronically insulated ion conduction property, which can isolate a cathode and an anode of a lithium ion battery. In order to prevent direct contact between the two poles in the cell to cause a short circuit.
  • the lithium ion battery separator is mainly a polyolefin porous polymer film.
  • the shrinkage of such a polymer in a high temperature environment causes a large area contact between the positive and negative electrodes of the battery and rapidly generates a large amount of heat to cause thermal runaway, thereby causing the battery to burn or explode.
  • R&D personnel are working to solve.
  • inorganic ceramic coated separators are widely used in the field of power batteries due to their excellent high temperature and safety.
  • the inorganic ceramic coated separator is coated with a layer of inorganic ceramic coating particles on one side or both sides of the existing polyolefin porous separator base material.
  • the inorganic ceramic powder material used has a hydrophilic surface, it is hydrophobic with polyethylene. (PE), polypropylene (PP) and other separator substrates are non-polar, and their surface compatibility is poor. It is easy to cause coating adhesion, surface cracking and aging, and porosity change during ceramic powder coating.
  • the diaphragm loses powder during the winding process, and the ceramic particles falling off the surface of the diaphragm are interposed between the diaphragm and the pole piece, causing the diaphragm to be broken during the hot pressing test, resulting in a decrease in production yield; even the hot pressing test Through the ceramic particles interposed between the diaphragm and the pole piece, the micro-short circuit inside the diaphragm, the probability of self-discharge of the subsequent battery core, and even the safety performance of the battery (such as internal short circuit) are greatly affected.
  • an object of the present invention is to provide a method for preparing a ceramic coated separator which can improve the cohesive force of a ceramic coating layer and the interface with a separator, and the method can effectively solve the problem that the ceramic coating on the surface of the polyolefin separator is powdered off. Problems such as stripping and other issues are conducive to improving product quality and battery safety.
  • the object of the present invention is to provide a preparation method of a lithium ion battery separator for improving the cohesive force of an inorganic particle coating.
  • the composite separator prepared by the method has obvious interfacial adhesion, and solves the process of manufacturing the composite membrane and winding the core. The phenomenon that the inorganic particles fall off the powder.
  • the composite membrane of the present invention selects an inorganic particulate material containing a specific functional group to match the functional group of the corresponding binder, and enhances the adhesion between the inorganic particles by the interaction force of the functional group such as hydrogen bonding, thereby reducing the inorganic particle.
  • the problem of particle falling and peeling caused by weak adhesion.
  • An aspect of the present invention provides a lithium ion battery composite separator comprising a polyolefin substrate having a coating layer comprising a binder and inorganic particles on a surface thereof, between the binder and the inorganic particles There is a hydrogen bond.
  • the binder contains an aqueous binder containing a -CO- or -CN functional group; the inorganic particles are inorganic particles containing an -OH functional group.
  • the binder is formed by polymerizing one or more monomers selected from the group consisting of acrylates, carboxylic acid alkenyl esters, and alkenyl nitriles.
  • R 1 may independently be H or a hydrocarbon group having 1 to 3 carbon atoms
  • R 2 may independently be a hydrocarbon group having 1 to 4 carbon atoms
  • R 3 may independently be H or a carbon number of 1 to 1. a hydrocarbon group of 3.
  • carboxylic acid alkenyl ester refers to a monomer having a structural formula of the formula:
  • R 5 may independently be an alkenyl group having 2 to 4 carbon atoms; and R 4 may independently be H or a hydrocarbon group having 1 to 3 carbon atoms.
  • alkenyl nitrile refers to a monomer of the formula:
  • R 6 may independently be an alkenyl group having 2 to 5 carbon atoms.
  • hydrocarbon group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group and a butyl group.
  • alkenyl group examples include a vinyl group, a propenyl group, an allyl group, an isopropenyl group, a butenyl group, and a pentenyl group.
  • the above acrylates are preferably methyl acrylate, ethyl acrylate, methyl methacrylate or ethyl methacrylate.
  • carboxylic acid alkenyl ester is preferably vinyl acetate.
  • the above alkenyl nitrile is preferably acrylonitrile.
  • the polymerization of the above binder can be carried out by a polymerization method known in the art, and examples thereof include a bulk polymerization method and an emulsion polymerization method.
  • a polymerization aid or the like may be added as needed.
  • the polymerization aid include an initiator, a catalyst, an emulsifier, a dispersant, a molecular weight modifier, a terminator, and the like.
  • the binder further comprises carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the inorganic particles are selected from one or more of boehmite, aluminum hydroxide, and magnesium hydroxide particles.
  • the inorganic particles have a particle diameter D50 ⁇ 3 ⁇ m and D100 ⁇ 15 ⁇ m.
  • the inorganic particles have a particle diameter D50 of more than 0.3 ⁇ m and D100 of more than 1 ⁇ m.
  • the thickness of the composite separator is from 6 ⁇ m to 30 ⁇ m.
  • the inorganic particle coating has a thickness of 2-6 ⁇ m.
  • the inorganic particle coating layer is formed on one or both sides of the polyolefin substrate.
  • Another aspect of the present invention provides a method for preparing a lithium ion battery composite separator, which comprises an inorganic powder particle having a covalent bond hydroxy-OH functional group and a water-based binder having a -CO- or -CN functional group.
  • the composite separator of the present invention is prepared by using an inorganic powder particle having a crystal structure containing a covalent bond hydroxy-OH specific functional group and an aqueous binder having a corresponding functional group of -CO- or -CN to form an inorganic particle coating. Since the covalent bond -OH contained in the crystal structure forms a hydrogen bond with -CO- or -CN contained in the binder, as follows:
  • the inorganic particles of the composite separator of the present invention Due to the strong hydrogen bonding force between the inorganic particles and the binder, the inorganic particles of the composite separator of the present invention have stronger adhesion to the oxide ceramics such as alumina and silica which have been reported in related literatures. Coated diaphragm.
  • the composite separator of the present invention has the present invention in comparison with the existing lithium ion battery composite separator.
  • the composite membrane prepared by the invention selects a binder and inorganic particles with a specific structure, improves the mutual coupling mode between the binder and the inorganic particles, improves the adhesion of the coating by hydrogen bonding, and reduces the inorganic particles in the actual production process.
  • the problem that the adhesion of the coating is not strong and the surface is cracked and the inorganic particles fall off during the coating process, and the battery of the lithium ion battery composite separator of the invention improves the product quality and reduces the leakage of inorganic particles in the production process, which affects the safety performance of the battery. risk.
  • Fig. 1 is a comparison diagram of self-discharge test results of battery cells assembled in different diaphragms of an embodiment of the present invention and a comparative example.
  • the composite separator of the present invention a method for producing the same, and a lithium ion battery using the same will be explained below with reference to the examples.
  • the inorganic particles are aluminum hydroxide (Al(OH) 3 ) particles, the D50 of the particles is 1.5 ⁇ m, the D100 is 10 ⁇ m, the binder is selected from polymethyl methacrylate, and the deionized water is poured into the planetary stirring tank.
  • the aluminum hydroxide particles are then laid in deionized water, the solid content is controlled to 60%, the mixer is stirred for 60 minutes, the binder polymethyl methacrylate is added twice, and the cylinder wall is scraped once, stirring time For 180 min, the slurry temperature was controlled within 25-35 ° C during the agitation. The slurry was transferred to an ultrafine disperser for dispersion.
  • the prepared slurry was uniformly coated on one side of the PE separator, the coating thickness was 3 ⁇ m, and finally dried and wound up by a subsequent oven to obtain a composite membrane of a lithium hydroxide particle coated lithium ion battery.
  • the thickness of the composite separator was 15 ⁇ m.
  • the inorganic particles are selected as boehmite particles, and the particles have a D50 of 1.6 ⁇ m and a D100 of 12 ⁇ m.
  • the binder was polyvinyl acetate.
  • the slurry was prepared according to the stirring process of Example 1. The prepared slurry was uniformly coated on one side of the PE separator, the coating thickness was 3 ⁇ m, and finally dried and wound by a subsequent oven. A boehmite particle coated lithium ion battery composite separator was obtained, and the thickness of the composite separator was 15 ⁇ m.
  • the inorganic particles are selected as boehmite particles, the D50 of the particles is 1.6 ⁇ m, the D100 is 12 ⁇ m, the binder is polymethyl acrylate, the slurry is prepared according to the stirring procedure of Example 1, and the prepared slurry is uniformly coated on the PE. One side of the diaphragm, the thickness of the coating is 3 ⁇ m, and finally baked and wound up in a subsequent oven to obtain a boehmite particle-coated lithium ion battery composite separator having a thickness of 15 ⁇ m.
  • the inorganic particles are selected as magnesium hydroxide particles containing -OH, the D50 of the particles is 1.4 ⁇ m, the D100 is 10 ⁇ m, the binder is an acrylic emulsion (produced from Qingdao Dikai New Material Co., Ltd.), and the slurry according to the embodiment 1 is used.
  • the slurry is prepared by a stirring process, and the prepared slurry is uniformly coated on one side of the PE separator, and the coating thickness is controlled to be 3 ⁇ m.
  • the magnesium hydroxide particle-coated lithium ion battery composite separator is obtained through an oven and winding, and the composite separator is used. The thickness is 15 ⁇ m.
  • the inorganic particles are selected from the group consisting of boehmite particles, the particles have a D50 of 1.5 ⁇ m and the D100 is 12 ⁇ m, and the binder is a water-based acrylonitrile type LA132 (produced by Xuzhou Zhuoyuan Chemical Co., Ltd.) containing the corresponding functional group of -CN.
  • the slurry was prepared according to the stirring procedure of Example 1. The prepared slurry was uniformly coated on one side of the PE separator, and the coating thickness was controlled to be 3 ⁇ m. Finally, the boehmite particle coating was obtained by baking and winding.
  • the composite diaphragm of the lithium ion battery has a thickness of 15 ⁇ m.
  • a slurry of 0.4% CMC binder was added to the formulation of Example 3 to prepare a slurry, which was coated, baked, and wound to obtain a lithium having a coating thickness of 3 ⁇ m.
  • the composite membrane of the ion battery has a thickness of 15 ⁇ m.
  • the inorganic particles are selected as boehmite particles, the D50 of the particles is 1.6 ⁇ m, the D100 is 12 ⁇ m, the binder is a polymethyl acrylate copolymer, and the slurry is prepared according to the stirring procedure of Example 1, and the prepared slurry is uniformly coated. Covered on both sides of PE separator, the thickness of the coating is 2 ⁇ m. Finally, it is baked and wound up in the subsequent oven to obtain a composite membrane of boehmite particle coated lithium ion battery. The thickness of the composite separator is 6 ⁇ m.
  • Comparative Example 1 The binder was selected from polyvinyl acetate, and the ceramic particles were selected from conventional alumina particles containing no covalent bond-OH to prepare alumina ceramic particles.
  • the slurry was prepared according to the stirring procedure of Example 1, and the above preparation was carried out. A good slurry is uniformly coated on one side of the PE separator, and the coating thickness is controlled to 2-4 ⁇ m. Finally, the ceramic-coated lithium ion battery separator is obtained by baking and winding.
  • Comparative Example 2 The inorganic particles were selected as boehmite particles, and the binder was a polymer PVDF containing no -CO- or -CN as a binder.
  • the slurry was prepared according to the stirring procedure of Example 1, and the prepared slurry was prepared.
  • the material is evenly coated on one side of the PE separator, and the coating thickness is controlled to 2-4 ⁇ m.
  • the separator for boehmite particle-coated lithium ion battery is obtained by baking and winding.
  • Lithium-ion battery manufacturing
  • LFP lithium iron phosphate
  • NMP N-methyl-2-pyrrolidone
  • acetylene black a conductive agent and 5% by weight.
  • PVDF Polyvinylidene fluoride
  • Graphite (C) was used as the anode active material, and 92% by weight of the active material was added to the deionized water solvent, and then 3% by weight of carbon black was used as the conductive agent and 1.5% by weight of hydroxymethylcellulose (CMC) and 3.5.
  • the weight% styrene-butadiene rubber (SBR) is used as a binder, and after stirring and dispersing, an anode slurry is formed, and the anode slurry is uniformly coated on a 8 ⁇ m copper foil current collector, and dried and cold-pressed to form an anode pole piece.
  • Test Example 1 Analysis of cohesive force of coatings of different composite coating membranes
  • test samples were the separators for different composite coated lithium ion batteries obtained according to Examples 1-7.
  • the alumina composite separators and binders containing no covalent bond-OH used in Comparative Examples 1 and 2 were not used.
  • the cohesion test of the coating was carried out by the cohesive force test method. The test method was as follows: the green rubber was adhered to the surface of the composite coating membrane at room temperature, and then rolled by a 50N pressure roller for 3 times, and the high-speed iron force meter was used at a speed of 5 mm/min. The 180° peeling test was carried out, and the test results are shown in Table 1.
  • the composite separator prepared by the method of the present invention has a coating cohesive force greater than that of the control group 1 and 2.
  • the binding force and the increase of the cohesive force of the composite separator can effectively reduce the effect of the inorganic particles falling off and peeling during the subsequent process.
  • a cell assembly was formed in a wound form using a cathode anode piece and several different ceramic coated separators as described in Examples 1-7 and Comparative Examples 1, 2, and the cell assembly was subjected to a force of 1000 kgf and a temperature of 80 ° C. Hot pressing on the cell, using a 200V voltage, internal resistance 20M ⁇ Hi-pot tester to test the internal short circuit of the battery, the following list 2 provides the short circuit results of eight different ceramic diaphragms.
  • the short circuit rate of the composite separator prepared according to the examples using the boehmite ceramic particles containing the covalent bond-OH and the binder containing -CO- or -CN is much lower than that of the control group 1 and 2 preparation Ceramic diaphragm. This is because the boehmite ceramic particles containing covalent bond-OH and the binder containing -CO- or -CN are cohesive due to the hydrogen bonding of the ceramic coating during the preparation of the separator, and do not contain covalent bonds.
  • -OH alumina with a binder containing -CO- or -CN and a boehmite ceramic particle containing a covalent bond -OH and a PVDF binder coating containing no -CO- or -CN are less cohesive,
  • the ceramic particles are easily detached and interposed between the pole piece and the diaphragm, causing the ceramic particles to pierce the diaphragm under high pressure, thereby being broken down at high voltage and disassembled in the battery core. It can be seen that black spots on the surface of the diaphragm with ceramic particles are present.
  • Test Example 3 Self-discharge of lithium ion batteries assembled in three different sets of diaphragms
  • the lithium ion battery assembled by the separator prepared in Examples 1-6 has a lower self-discharge than the lithium ion battery prepared in Comparative Examples 1 and 2, and the principle is that the ratio 1 and the entire manufacturing process are 2
  • the ceramic coated membrane prepared by the coating has small cohesive force, and the ceramic particles are easily detached and then trapped inside the battery core.
  • the ceramic particles trapped by the battery after the charge and discharge test pierce the separator, causing micro-short circuit inside the battery to cause lithium ion.
  • the internal reaction of the battery is irreversible, which accelerates the self-discharge rate inside the battery.
  • the coating adhesion, cell short-circuit rate and battery self-discharge of the composite separator prepared by using boehmite inorganic ceramic particles are superior to the current alumina ceramic coated separator, and from the examples 6 comparison data found that the combination of polymethyl acrylate and CMC mixed The separator prepared by the binder had the best performance; the data of Comparative Examples 7 and 3 found that the cohesive force and the short circuit result of the double-sided coating were better than the single-sided coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供一种锂离子电池复合隔膜,包括聚烯烃基材、所述聚烯烃基材表面具有包含粘结剂和无机颗粒的涂层,所述粘结剂和所述无极颗粒之间存在氢键。还提供该锂离子电池复合隔膜的制备方法及使用该复合隔膜的锂离子电池。本发明的复合隔膜增加了基材与无机颗粒之间的粘结力,从而降低无机颗粒的脱落,采用该复合隔膜的电池提升产品质量、降低生产过程中无机颗粒脱落影响电池安全性能的风险。

Description

复合隔膜及使用该复合隔膜的锂离子电池 技术领域
本发明属于锂离子电池技术领域,尤其涉及锂离子电池的复合隔膜及使用该复合隔膜的锂离子电池。
背景技术
锂离子电池以其独特的高能量密度性能优势在移动通信、消费电子产品(如:手机、笔记本电脑等)中得到普遍的应用,目前各国研究人员开发的大容量锂离子电池已作为电动汽车的动力电源推广应用。通常锂离子电池结构包括正极、负极、隔膜、电解液和电芯结构件,其中锂离子电池内部隔膜为关键材料之一,其具有电子绝缘离子导通的特性,能隔离锂离子电池阴极和阳极,从而防止电芯内两极直接接触而产生短路。然而锂离子电池隔膜主要为聚烯烃多孔高分子膜,此类聚合物在高温环境下收缩导致电池正负极大面积接触并迅速产生大量热引起热失控从而使得电池发生燃烧或爆炸,这成为各国研发人员致力解决的关键课题之一。经过多年的研发,无机陶瓷涂层隔膜以其优异的耐高温及安全性而在动力电池领域得到广泛使用。
无机陶瓷涂层隔膜是在现有聚烯烃多孔隔膜母材单面或者双面涂覆一层无机陶瓷涂层颗粒,然而由于所用无机陶瓷粉体材料具有亲水的表面,因此与疏水的聚乙烯(PE)、聚丙烯(PP)等隔膜基材为非极性其表面相容性能差,容易造成陶瓷粉体涂覆过程中涂层粘结力不强、表面龟裂与老化、孔隙率变化等影响产品质量的情况产生,而且涂层粘结力不强容易导 致后期隔膜在卷绕过程中掉粉,从隔膜表面脱落的陶瓷颗粒夹杂在隔膜与极片中间,导致电芯在热压测试过程中隔膜被击穿,导致生产成品率降低;即使热压测试通过,夹杂在隔膜与极片中间的陶瓷颗粒会造成隔膜内部微短路、后续电芯自放电概率高甚至对电池的安全性能(如内短路)造成重大影响。因此针对上述问题本发明的目的提供了一种可提高陶瓷涂层内聚力及与隔膜界面粘结力的一种陶瓷涂层隔膜的制备方法,该方法能有效解决聚烯烃隔膜表面陶瓷涂层掉粉、剥离等问题,有利于提升产品质量及电池的安全性能。
发明内容
本发明的目的提供了一种提高无机颗粒涂层内聚力的锂离子电池隔膜的制备方法,采用该方法制备的复合隔膜其界面粘结力明显增强,解决复合隔膜制造及电芯制作卷绕过程中无机颗粒掉粉等现象。本发明的复合隔膜选取含有特定官能团的无机颗粒材料与相应粘结剂的官能团进行匹配,通过官能团的相互作用力如氢键结合等来提高无机颗粒之间的粘结力,从而减少无机颗粒因粘结力不强而造成的颗粒掉粉及剥落问题。
本发明一方面提供一种锂离子电池复合隔膜,包括聚烯烃基材、所述聚烯烃基材表面具有包含粘结剂和无机颗粒的涂层,所述粘结剂和所述无机颗粒之间存在氢键。
所述粘结剂中含有含-CO-或-CN官能团的水系粘结剂;所述无机颗粒是含有-OH官能团的无机颗粒。
所述粘结剂由选自丙烯酸酯类、羧酸烯基酯类、烯基腈类中的一种或多种单体聚合而成。
上述丙烯酸酯类是指结构式如式1所示的单体:
Figure PCTCN2015078702-appb-000001
   (式1)
在式1中,R1可独立地为H或碳原子数1-3的烃基;R2可独立地为碳原子数1-4的烃基;R3可独立地为H或碳原子数1-3的烃基。
上述羧酸烯基酯类是指结构式如式2所示的单体:
R4-CH2COOR5   (式2)
在式2中,R5可独立地为碳原子数2-4的烯基;R4可独立地为H或碳原子数1-3的烃基。
上述烯基腈类是指结构式如式3所示的单体:
R6-CN   (式3)
在式3中,R6可独立地为碳原子数2-5的烯基。
上述烃基具体可举出甲基、乙基、丙基、异丙基、丁基。上述烯基具体可举出乙烯基、丙烯基、烯丙基、异丙烯基、丁烯基、戊烯基。
具体地,上述丙烯酸酯类优选为丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯。
具体地,上述羧酸烯基酯类优选为醋酸乙烯酯。
具体地,上述烯基腈类优选为丙烯腈。
在上述粘结剂的聚合可通过本领域公知的聚合方法进行,例如,可举出本体聚合方法、乳液聚合方法。在聚合过程中,也可根据需要加入聚合助剂等。作为聚合助剂,例如可举出引发剂、催化剂、乳化剂、分散剂、分子量调节剂和终止剂等。
所述粘结剂还包含羧甲基纤维素(CMC)。
所述无机颗粒选自勃姆石、氢氧化铝、氢氧化镁颗粒中的一种或多种。
所述无机颗粒的粒径D50<3μm,D100<15μm。无机颗粒的粒径D50大于0.3μm,D100大于1μm。
所述复合隔膜的厚度是6μm-30μm。
所述无机颗粒涂层厚度为2-6μm。
所述无机颗粒涂层形成于所述聚烯烃基材的单面或双面。
本发明另一方面提供一种锂离子电池复合隔膜的制备方法,采用晶体结构含有共价键羟基-OH官能团的无机物粉末颗粒与有-CO-或-CN官能团的水系粘结剂。
本发明的复合隔膜采用晶体结构含有共价键羟基-OH特定官能团的无机物粉末颗粒与有-CO-或-CN相应官能团的水系粘结剂制备成无机颗粒涂层。由于晶体结构所含共价键-OH与粘结剂所含-CO-或-CN形成氢键结合力,如下所示:
Figure PCTCN2015078702-appb-000002
   氢键作用原理
M-OH+R3-CN→M-OH···NC-R3   氢键作用原理
由于无机颗粒与粘结剂存在较强的氢键结合力,使得本发明的复合隔膜的无机颗粒的粘结力强于现有相关文献报道的选用氧化铝、二氧化硅等类型的氧化物陶瓷涂层隔膜。
因此本发明的复合隔膜与现有锂离子电池复合隔膜相比,本发明具有 以下有益效果:
本发明制备的复合隔膜选用具有特定结构的粘结剂和无机颗粒,提高粘结剂和无机颗粒之间相互耦合方式,通过氢键相互结合提高涂层粘结力,降低实际生产过程中无机颗粒涂覆过程中涂层粘结力不强、表面龟裂而发生无机颗粒脱落的问题,采用本发明的锂离子电池复合隔膜的电池提升产品质量、降低生产过程中无机颗粒脱落影响电池安全性能的风险。
附图说明
图1是本发明实施例和对比例的不同隔膜组装的电芯自放电测试结果对比图。
具体实施方式
下面结合实施例解释说明本发明的复合隔膜、其制备方法及使用它的锂离子电池。
实施例1:
选用无机颗粒为氢氧化铝(Al(OH)3)颗粒,颗粒的D50为1.5μm,D100为10μm,粘结剂选用聚甲基丙烯酸甲酯,将去离子水倒入行星式搅拌罐内,再将氢氧化铝颗粒平铺在去离子水内,其固含量控制为60%,开启搅拌机搅拌60min,再分两次加入粘结剂聚甲基丙烯酸甲酯,并刮缸壁一次,搅拌时间为180min,搅拌过程中浆料温度控制在25-35℃内。在上述浆料转入超细分散机内进行分散。将上述制备好的浆料均匀涂覆在PE隔膜单面,涂层厚度为3μm,最后经后续烘箱烘干、收卷,得到氢氧化铝颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例2:
选用无机颗粒为勃姆石颗粒,颗粒的D50为1.6μm,D100为12μm, 粘结剂为聚醋酸乙烯酯按照实施例1搅拌过程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,涂层厚度为3μm,最后经后续烘箱烘干、收卷,得到勃姆石颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例3:
选用无机颗粒为勃姆石颗粒,颗粒的D50为1.6μm,D100为12μm,粘结剂为聚丙烯酸甲酯按照实施例1搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,涂层的厚度为3μm,最后经过后续烘箱烘烤、收卷,得到勃姆石颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例4:
选用无机颗粒为含-OH的氢氧化镁颗粒,颗粒的D50为1.4μm,D100为10μm,粘结剂为丙烯酸乳液(产自于青岛迪凯新材料有限公司),按照实施例1的浆料搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,涂层厚度控制在3μm,最后经过烘箱、收卷得到氢氧化镁颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例5:
选用无机颗粒为勃姆石颗粒,颗粒的D50为1.5μm,D100为12μm,,粘结剂为含有-CN相应官能团的水系丙烯腈类LA132(产自于徐州卓远化工有限公司)为粘结剂,按照实施例1搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,其涂布厚度控制在3μm,最后经过烘烤、收卷得到勃姆石颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例6:
为进一步提高浆料稳定性及涂层粘结力,在实施例3配方中添加0.4%CMC粘结剂制备浆料,经涂布、烘烤、收卷后得到涂层厚度为3μm的、锂离子电池复合隔膜,复合隔膜的厚度为15μm。
实施例7:
选用无机颗粒为勃姆石颗粒,颗粒的D50为1.6μm,D100为12μm,粘结剂为聚丙烯酸甲酯共聚物,按照实施例1搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜双面,涂层的厚度为2μm,最后经过后续烘箱烘烤、收卷,得到勃姆石颗粒涂层锂离子电池复合隔膜,复合隔膜的厚度为6μm。
对比例1:粘结剂选用聚醋酸乙烯酯,陶瓷颗粒选用传统的不含共价键-OH的氧化铝无机颗粒来制备氧化铝陶瓷颗粒,按照实施例1搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,其涂布厚度控制在2-4μm,最后经过烘烤、收卷得到陶瓷涂层锂离子电池用隔膜。
对比例2:选用无机颗粒为勃姆石颗粒,粘结剂为不含-CO-或-CN的聚合物PVDF作粘结剂,按照实施例1搅拌流程制备浆料,将上述制备好的浆料均匀涂覆在PE隔膜单面,其涂布厚度控制在2-4μm,最后经过烘烤、收卷得到勃姆石颗粒涂层锂离子电池用隔膜。
锂离子电池的制造:
采用磷酸铁锂(LFP)作为阴极活性材料,将比例为90重量%LFP活性材料加入N-甲基-2-吡咯烷酮(NMP)溶剂中,再加入5重量%乙炔黑作导电剂和5重量%聚偏氟乙烯(PVDF)作粘结剂,经搅拌、分散后形成阴极浆料,将上述阴极浆料均匀涂覆在20μm铝箔集流体上,经干燥、冷压后形成阴极极片。
采用石墨(C)作为阳极活性材料,将比例为92重量%的活性材料加入去离子水溶剂中,再加入3重量%炭黑作导电剂以及1.5重量%羟甲基纤维素(CMC)和3.5重量%丁苯橡胶(SBR)作粘结剂,经搅拌、分散后形成阳极浆料,将上述阳极浆料均匀涂覆在8μm铜箔集流体上,经干燥、冷压后形成阳极极片。
采用上述制造的阴阳极极片及由实施例1-6和对比例1-2所述的八种 不同复合涂层隔膜以卷绕的形式形成电芯组件,电芯经热压、封装等工序后向电芯中注入电解液(电解质为:1mol/L六氟磷酸锂,溶剂为:碳酸乙烯酯:碳酸二甲酯=1:2)得到锂离子电池。
测试例1:分析不同复合涂层隔膜的涂层内聚力大小
该测试样品为根据实施例1-7获得的不同复合涂层锂离子电池用隔膜,作为对照,对比例1、2中使用的不含共价键-OH的氧化铝复合隔膜及粘结剂不含-CO-或-CN的勃姆石复合隔膜。通过内聚力测试方法进行涂层内聚力测试,其测试方法为:常温下采用绿胶粘附在复合涂层隔膜表面,然后采用50N的压辊碾压3次,采用高铁拉力计以5mm/min的速度进行180°剥离测试,其测试结果如表1,从表1可以看出,从粘结力测试结果可以看出:采用本发明方法制备的复合隔膜其涂层内聚力大于对照组1、2的粘结力,复合隔膜其涂层内聚力的提高能有效降低无机颗粒在后续工序过程中发生掉粉、剥离的影响。
表1不同组别隔膜涂层内聚力测试结果
Figure PCTCN2015078702-appb-000003
测试例2:对比电芯组装热压短路率
采用阴阳极极片及由实施例1-7和对比例1、2所述的几种不同陶瓷涂层隔膜以卷绕的形式形成电芯组件,电芯组件以1000kgf的力、80℃的温度热压在电芯上方,采用200V电压、内阻20MΩHi-pot测试仪测试电芯内部短路情况,下列表2提供了八组不同陶瓷隔膜的电芯短路结果。从测试结果可以看出:采用含共价键-OH的勃姆石陶瓷颗粒与含-CO-或-CN的粘结剂按照实施例制备的复合隔膜短路率远低于对照组对比例1和2制备 的陶瓷隔膜。这是由于含共价键-OH的勃姆石陶瓷颗粒与含-CO-或-CN的粘结剂在隔膜制备过程中由于氢键的结合陶瓷涂层内聚力较大,而不含共价键-OH的氧化铝与含-CO-或-CN的粘结剂以及含共价键-OH的勃姆石陶瓷颗粒与不含-CO-或-CN的PVDF粘结剂涂层内聚力较小,复合隔膜在分切、卷绕过程中陶瓷颗粒易脱落夹杂在极片与隔膜中间导致隔膜在高压力作用下陶瓷颗粒对隔膜进行刺穿,从而在高电压下被击穿,拆解电芯中可以看出隔膜表面留有陶瓷颗粒的黑点存在。
表2:陶瓷隔膜的电芯短路结果
Figure PCTCN2015078702-appb-000004
测试例3:对比三组不同隔膜组装锂离子电池的自放电
对上述按照锂离子电池制造过程所得不同组别陶瓷涂层隔膜的锂离子电池进行电池自放电测试对比,将电池充电到满电3.65V,测试记录测试电池的电压V0;然后将电池在高温45℃环境下搁置30天再次测试电池电压V1,按照公式自放电=(V0-V1)/30*24h得到不同隔膜所制作锂离子电池在单位时间内的自放电结果,如图1所示。从图中可以看出实施例1-6制备的隔膜组装的锂离子电池其自放电要低于对比例1和2制备复合隔膜的锂离子电池,其原理在于在整个制造过程中对比例1和2制备的陶瓷涂层隔膜由于涂层内聚力较小,陶瓷颗粒易脱落后夹留在电芯内部,电池经充放电测试后夹留的陶瓷颗粒刺穿隔膜,导致电池内部微短路而引起锂离子电池内部不可逆反应,从而加速了电池内部的自放电速率。
综上,对比上述测试数据,采用勃姆石无机陶瓷颗粒制备的复合隔膜的涂层粘结力、电芯短路率及电池自放电均优越于目前的氧化铝陶瓷涂层隔膜,且从实施例6对比数据发现采用聚丙烯酸甲酯与CMC混合的复合 粘结剂制备的隔膜具有最佳性能;对比实施例7和例3的数据发现采用双面涂覆的内聚力和电芯短路结果均较单面涂覆要好。
以上实施例仅用于解释说明本发明的构思,并不意在限定本发明。当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种锂离子电池复合隔膜,包括聚烯烃基材、所述聚烯烃基材表面具有包含粘结剂和无机颗粒的涂层,其特征在于,所述粘结剂和所述无机颗粒之间存在氢键。
  2. 根据权利要求1所述的锂离子电池复合隔膜,其特征在于,所述粘结剂中含有含-CO-或-CN官能团的水系粘结剂;所述无机颗粒是含有-OH官能团的无机颗粒。
  3. 根据权利要求2所述的锂离子电池复合隔膜,其特征在于,所述粘结剂由选自丙烯酸酯类、羧酸烯基酯类、烯基腈类中的一种或多种单体聚合而成。
  4. 根据权利要求2所述的锂离子电池复合隔膜,其特征在于,所述粘结剂还包含CMC。
  5. 根据权利要求2所述的锂离子电池复合隔膜,其特征在于,所述无机颗粒选自勃姆石、氢氧化铝、氢氧化镁颗粒中的一种或多种。
  6. 根据权利要求1所述的锂离子电池复合隔膜,其特征在于,所述无机颗粒的粒径D50<3μm,D100<15μm。
  7. 根据权利要求1所述的锂离子电池复合隔膜,其特征在于,所述锂离子电池复合隔膜的厚度是6μm-30μm。
  8. 根据权利要求1所述的锂离子电池复合隔膜,其特征在于,所述涂层厚度为2-6μm。
  9. 根据权利要求1所述的锂离子电池复合隔膜,其特征在于,所述涂层形成于所述聚烯烃基材的单面或双面。
  10. 一种锂离子电池,其特征在于,包括权利要求1-9任一项所述的锂离子电池复合隔膜。
PCT/CN2015/078702 2015-05-11 2015-05-11 复合隔膜及使用该复合隔膜的锂离子电池 WO2016179785A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/CN2015/078702 WO2016179785A1 (zh) 2015-05-11 2015-05-11 复合隔膜及使用该复合隔膜的锂离子电池
HUE15891488A HUE050432T2 (hu) 2015-05-11 2015-05-11 Kompozit membrán és azt tartalmazó lítium-ion akkumulátor
PT158914887T PT3297063T (pt) 2015-05-11 2015-05-11 Diafragma compósito e bateria de iões de lítio usando o mesmo
EP20185972.5A EP3809509B1 (en) 2015-05-11 2015-05-11 Composite diaphragm and lithium ion battery using same
DK15891488.7T DK3297063T3 (da) 2015-05-11 2015-05-11 Kompositmembran og lithium-ion-batteri dermed
PL20185972.5T PL3809509T3 (pl) 2015-05-11 2015-05-11 Membrana złożona i bateria litowo-jonowa, w której się ją stosuje
HUE20185972A HUE059794T2 (hu) 2015-05-11 2015-05-11 Kompozit membrán és azt tartalmazó lítium-ion akkumulátor
EP15891488.7A EP3297063B1 (en) 2015-05-11 2015-05-11 Composite diaphragm and lithium ion battery using same
PL15891488T PL3297063T3 (pl) 2015-05-11 2015-05-11 Membrana złożona i bateria litowo-jonowa, w której się ją stosuje
ES15891488T ES2813749T3 (es) 2015-05-11 2015-05-11 Diafragma de material compuesto y batería de iones de litio que lo usa
US15/809,224 US20180069220A1 (en) 2015-05-11 2017-11-10 Composite separator and lithium-ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078702 WO2016179785A1 (zh) 2015-05-11 2015-05-11 复合隔膜及使用该复合隔膜的锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/809,224 Continuation US20180069220A1 (en) 2015-05-11 2017-11-10 Composite separator and lithium-ion battery using the same

Publications (1)

Publication Number Publication Date
WO2016179785A1 true WO2016179785A1 (zh) 2016-11-17

Family

ID=57248463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078702 WO2016179785A1 (zh) 2015-05-11 2015-05-11 复合隔膜及使用该复合隔膜的锂离子电池

Country Status (8)

Country Link
US (1) US20180069220A1 (zh)
EP (2) EP3809509B1 (zh)
DK (1) DK3297063T3 (zh)
ES (1) ES2813749T3 (zh)
HU (2) HUE059794T2 (zh)
PL (2) PL3809509T3 (zh)
PT (1) PT3297063T (zh)
WO (1) WO2016179785A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131928A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Separator für elektrochemische Energiespeicher und Wandler
DE102018131922A1 (de) 2018-12-12 2020-06-18 Carl Freudenberg Kg Membran für den selektiven Stofftransport
JP7252014B2 (ja) * 2019-03-08 2023-04-04 株式会社エンビジョンAescジャパン 電池
JP7320172B2 (ja) * 2019-03-20 2023-08-03 株式会社Aescジャパン 電極、電極の製造方法及び電池
CN110364663A (zh) * 2019-06-03 2019-10-22 江西力能新能源科技有限公司 一种含勃姆石的陶瓷涂层的锂电池结构
WO2021167411A1 (ko) * 2020-02-21 2021-08-26 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 이를 제조하는 방법
US11713140B2 (en) * 2020-06-11 2023-08-01 The Aerospace Corporation Lithium ion battery de-orbiter
CN113381126B (zh) * 2021-06-30 2022-09-30 万向一二三股份公司 一种抑制硅碳负极膨胀的锂电池隔膜及含有该隔膜的锂电池电芯的热压方法
CN115347324B (zh) * 2022-09-19 2024-05-24 武汉微美新材料科技有限公司 陶瓷涂层及包括所述陶瓷涂层的隔膜和锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059613A (zh) * 2012-12-31 2013-04-24 天津市捷威动力工业有限公司 一种锂离子电池安全涂层及其制备方法
CN103579564A (zh) * 2013-11-18 2014-02-12 番禺南沙殷田化工有限公司 一种陶瓷隔膜及其制备方法和应用
CN103811702A (zh) * 2014-02-12 2014-05-21 佛山市金辉高科光电材料有限公司 一种新型陶瓷涂层聚烯烃复合膜及其制备方法
CN103872385A (zh) * 2012-12-14 2014-06-18 丰田自动车株式会社 非水电解质二次电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191597B2 (ja) * 2012-04-05 2017-09-06 日本ゼオン株式会社 二次電池用セパレータ
CN104040756B (zh) * 2012-09-24 2016-04-13 株式会社Lg化学 制备用于锂二次电池的隔膜的方法、通过该方法制备的隔膜以及包含其的锂二次电池
KR102035034B1 (ko) * 2012-12-28 2019-10-23 에스케이이노베이션 주식회사 내열성 및 전기화학적 안정성이 우수한 복합 미세다공막 및 이의 제조방법
CN103915591A (zh) * 2014-04-09 2014-07-09 深圳市星源材质科技股份有限公司 水性陶瓷涂层锂离子电池隔膜及其加工方法
CN104332578A (zh) * 2014-11-20 2015-02-04 深圳市星源材质科技股份有限公司 能粘结的复合隔膜及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872385A (zh) * 2012-12-14 2014-06-18 丰田自动车株式会社 非水电解质二次电池
CN103059613A (zh) * 2012-12-31 2013-04-24 天津市捷威动力工业有限公司 一种锂离子电池安全涂层及其制备方法
CN103579564A (zh) * 2013-11-18 2014-02-12 番禺南沙殷田化工有限公司 一种陶瓷隔膜及其制备方法和应用
CN103811702A (zh) * 2014-02-12 2014-05-21 佛山市金辉高科光电材料有限公司 一种新型陶瓷涂层聚烯烃复合膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297063A4 *

Also Published As

Publication number Publication date
EP3809509B1 (en) 2022-07-27
EP3297063A1 (en) 2018-03-21
EP3297063B1 (en) 2020-07-29
EP3809509A1 (en) 2021-04-21
EP3297063A4 (en) 2019-01-09
DK3297063T3 (da) 2020-08-24
PT3297063T (pt) 2020-09-03
HUE059794T2 (hu) 2022-12-28
HUE050432T2 (hu) 2020-12-28
US20180069220A1 (en) 2018-03-08
ES2813749T3 (es) 2021-03-24
PL3297063T3 (pl) 2020-12-28
PL3809509T3 (pl) 2022-10-31

Similar Documents

Publication Publication Date Title
WO2016179785A1 (zh) 复合隔膜及使用该复合隔膜的锂离子电池
JP6585906B2 (ja) リチウム二次電池用セパレータ、それを採用したリチウム二次電池及びその製造方法
CN107123767B (zh) 一种有机功能化多孔性隔离膜、制备方法及锂离子电池
CN114122320B (zh) 电极片及电化学装置
WO2012111425A1 (ja) 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池
KR20130040206A (ko) 리튬 이온 이차 전지 전극용 바인더, 이들 전극용 바인더를 사용하여 얻어지는 슬러리, 이들 슬러리를 사용하여 얻어지는 전극 및 이들 전극을 사용하여 얻어지는 리튬 이온 이차 전지
CN111048786B (zh) 一种含有无机/有机核壳结构的乳液型粘结剂及锂离子电池
WO2023193399A1 (zh) 核壳树脂材料以及制备方法、水性聚合物涂料、电池隔膜、二次电池
CN113410468B (zh) 负极粘结剂及其制备方法、负极片的制备方法、锂离子电池
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
WO2022205163A1 (zh) 隔离膜及包含该隔离膜的电化学装置和电子装置
WO2023093505A1 (zh) 极片及电化学装置
WO2022016378A1 (zh) 电池及电子装置
WO2024045472A1 (zh) 分散剂、粘结剂组合物、正极浆料、二次电池、电池模块、电池包及用电装置
CN112467309A (zh) 一种隔膜及电化学装置
CN114006024A (zh) 一种隔膜及含有该隔膜的电池
CN105762319A (zh) 一种高内聚力的锂离子电池复合隔膜及其制备方法
WO2024032162A1 (zh) 一种电池隔膜和电池
WO2022253032A1 (zh) 一种负极片及电池
CN113300048B (zh) 一种隔膜及包括该隔膜的锂离子电池
WO2024011356A1 (zh) 隔离膜、其制备方法及二次电池、电池模块、电池包和用电装置
CN113728504B (zh) 聚合物粘结剂、叠层多孔膜、电池及电子装置
CN116825952A (zh) 一种电极极片及包含其的电化学装置
CN115863642A (zh) 粘接剂、极片浆料、极片和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE