WO2016178596A1 - Accumulateur à ion lithium - Google Patents

Accumulateur à ion lithium Download PDF

Info

Publication number
WO2016178596A1
WO2016178596A1 PCT/RU2015/000346 RU2015000346W WO2016178596A1 WO 2016178596 A1 WO2016178596 A1 WO 2016178596A1 RU 2015000346 W RU2015000346 W RU 2015000346W WO 2016178596 A1 WO2016178596 A1 WO 2016178596A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
positions
doped
electrode active
Prior art date
Application number
PCT/RU2015/000346
Other languages
English (en)
Russian (ru)
Inventor
Владимир Владимирович КЛЮЕВ
Вячеслав Виталиевич ВОЛЫНСКИЙ
Вячеслав Николаевич ТЮГАЕВ
Original Assignee
Общество с ограниченной ответственностью "Научный центр "Автономные источники тока" (ООО "Научный центр "АИТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научный центр "Автономные источники тока" (ООО "Научный центр "АИТ") filed Critical Общество с ограниченной ответственностью "Научный центр "Автономные источники тока" (ООО "Научный центр "АИТ")
Publication of WO2016178596A1 publication Critical patent/WO2016178596A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the electrical industry and can be used in the production of lithium-ion batteries (LIA) and batteries based on them, intended for use as energy storage devices for electric vehicles, alternative energy sources, uninterruptible power supplies, energy recovery systems and equalization network loads.
  • LIA lithium-ion batteries
  • LIA lithium-ion battery technology
  • the traditional material of the negative electrode (anode) in such batteries is carbon, which is capable of reversibly introducing lithium [1]
  • the material of the positive electrode (cathode) is lithiated cobalt oxide (lithium cobaltate, lithium-cobalt oxide) LiCo0 2 [2].
  • lithiated cobalt oxide lithium cobaltate, lithium-cobalt oxide
  • Batteries for electric vehicles and energy should combine such characteristics as energy intensity, power (i.e., ability to quickly charge and resistance to high load currents), a wide range of operating temperatures, long service life and safe operation, therefore, their creation requires the development and application of fundamentally new active electrode materials.
  • the theoretical capacity of the richest lithium silicon compound (Li 2 2Si 5 ) reaches 4200 mAh / g calculated on pure silicon or 201 1 mAh / g calculated on the compound Li2 2 Si 5 .
  • the main obstacle to the stable operation of the lithium-silicon intercalation electrode is the large volumetric changes that occur during lithium incorporation / extraction cycles. These changes reach 310% of the initial volume of silicon and are the cause of the mechanical instability of the material [9].
  • a promising anode material for use in LIA construction is a group of compounds with moderate capacitance values, in which lithium activity and, accordingly, electrode potential have an intermediate value between traditional anode and cathode materials.
  • a typical example is lithium titanium spinel, or lithium titanate, Li 4 Ti 5 0 12 [14]. This material has a theoretical capacity of 175 mAh / g and a charge-discharge curve plateau potential of -1.55 V. This potential is much higher than the recovery potentials of most organic solvents, therefore, solid electrolyte films with high resistance are not formed on the surface, and the release lithium metal on the anode is practically eliminated.
  • Li 4 Ti 5 0 12 in comparison with silicon and tin compounds is their small volume changes (less than 0.2%) during lithiation and delitration, which guarantees stability during long-term cycling.
  • the material has a high conductive properties of lithium ions: the value of specific conductivity is
  • lithium-manganese spinel LiMn 2 0 4 [17] non-toxic, cheaper, powerful and safe to use in comparison with lithium cobalt.
  • the disadvantages of lithium manganese spinel are the low specific capacitance and its irreversible drop due to dissolution of manganese during cycling, especially at elevated temperatures [6, 7], which makes this material unsuitable for the development of LIB for transport and energy.
  • the structure of lithium ferrophosphate molecules causes a number of inherent disadvantages. Due to the specific features of the crystal structure, lithium ions can move only in one dimension [19] during charge and discharge of a battery, and not in three, as in traditional cathode materials based on transition metal oxides. This is the reason for the low conductivity of the cathode material, both ionic and electronic, which, in turn, leads to a lower specific energy (380 Wh / kg).
  • lithium ferrophosphate LiFeP0 gives a low potential difference (1.9 V and lower) [22], which negatively affects the specific energy characteristics LIA.
  • This increases the mass and dimensions of rechargeable batteries, which is especially critical for electric vehicles, and also increases the cost of 1 kWh of energy stored by batteries due to the need to install more batteries to achieve acceptable voltage and energy levels.
  • the objective of the invention was the development of LIA, combining in its design the active material of the negative electrode based on lithium titanate Li 4 Ti 5 0 12 and the active material of the positive electrode, which has high values of electrochemical potential and specific capacity, and at the same time capable of long-term reversible cycling in a wide range of charge-discharge currents and temperatures.
  • the use of such a combination of electrode materials makes it possible to design LIA-based energy storage devices suitable for use in electric transport, network load balancing systems, emergency power supply and uninterruptible power supply.
  • the technical result is the creation of a design of highly energy-intensive LIA with increased power, safety and stability during cycling.
  • the specified technical result is achieved in that the battery design uses a combination of the active material of the negative electrode based on lithium titanate Li 4 Ti 5 0i 2 and the active material of the positive electrode based on lithium vanadium phosphate (lithium phosphovanadate) Li 3 V 2 (P0 4 ) 3 .
  • Li 3 V 2 (P0 4 ) 3 is comparable to oxide active materials, and in terms of safety, due to its phosphate structure, it is close to LiFeP0 4 , however, it has a number of distinctive features that make it advantageous. which include: - high theoretical value of specific capacity - 198 mAh / g and the ability to achieve practical values of specific capacity close to theoretical;
  • nasicon-like Li 3 V 2 (P0 4 ) 3 gives a potential difference of the order of 2.8 V, and monoclinic Li 3 V 2 (P0 4 ) 3 - of the order of 3.3 V;
  • the active material of the negative electrode based on Li 4 Ti 5 0i 2 is doped with chromium at the positions of titanium and is a compound of the composition Li 4 Ti -x Cr x Oi 2 , where 0 ⁇ x ⁇ 0.2. Partial substitution of titanium by chromium in the indicated amounts causes a change in the structure of the crystal lattice of the active material, which leads to an increase in the utilization factor, as a result, the preservation of capacity during cycling increases by 1.3%.
  • Modification of the structure of lithium phosphovanadate in this way leads to an improvement in the electrical conductivity of the active material, as a result of which its discharge capacity and structural stability increase, which leads to an increase in the specific energy, power, and resource of LIB.
  • FIG. Figure 3 shows an increase in its discharge capacity during cycling with a current of 10–10 s.
  • the indicated technical result is also achieved by modifying the active materials used in the LIA design by applying a conductive carbon coating to the surface of their particles.
  • the electrical resistance at the interface between the crystals of the active substance decreases, which leads to an increase in the surface conductivity of the active material, which, in turn, helps to improve its characteristics such as specific capacitance, coefficient of utilization of the active material. terial, power and cycleability.
  • the result is also achieved through the use of starch as a carbon precursor, which during the synthesis of the active material forms a viscous medium that promotes the formation of particles of a particularly small size.
  • FIG. Figure 4 shows experimental data showing the ability of a composite of lithium-vanadium phosphate with carbon (1 zU 2 (P0 4 ) s / C) to cycle with extremely high currents (up to 320 ° C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention se rapporte au domaine de l'industrie électrotechnique et peut être utilisée lors de la production d'accumulateurs à ion lithium et de batteries les comprenant que l'on utilise comme accumulateur électrique pour le transport électrique, la production d'énergie alternative, des sources d'alimentation sans interruption, des systèmes de récupération d'énergie électrique et l'équilibrage de charges de réseaux. La structure de cet accumulateur à ion lithium combine un matériau actif d'électrode négative à base de Li4Ti5O12 et un matériau actif d'électrode positive à base de Li3V2(P04)3. Le matériau actif d'électrode négative à base de Li4Ti5012 peut être dopé au chrome aux positions du titane et consiste en un composé ayant la composition Li4Ti5-xCrxО12, où 0 < х ≤ 0,2. Le matériau actif d'électrode positive peut être dopé au sodium aux positions du lithium, un ou plusieurs métaux du groupe comprenant du magnésium, de l'aluminium, de l'yttrium et du lanthane aux positions du vanadium, du fluor ou du chlore aux positions du phosphate, et consiste en un composé ayant la composition Li3-xNaxV2-yMy(PО4)3-zHalz/C, où M est un ou plusieurs métaux du groupe comprenant Mg, Аl, Y, La; Hal = F, Cl; 0 < x ≤ 0,1; 0 < у ≤ 0,2; 0 < z ≤ 0,16. Les cristaux de matériaux actifs des électrodes négative et positive peuvent être recouverts par une couche de surface de carbone, qui peut être obtenue par l'introduction dans un mélange de réactifs de départ d'un précurseur d'amidon contenant du carbone. L'invention permet d'obtenir une structure d'accumulateurs à ion lithium de haute énergie et augmenter la puissance, la sécurité et la stabilité lors du cyclage.
PCT/RU2015/000346 2015-05-05 2015-06-02 Accumulateur à ion lithium WO2016178596A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015117203A RU2608598C2 (ru) 2015-05-05 2015-05-05 Литий-ионный аккумулятор
RU2015117203 2015-05-05

Publications (1)

Publication Number Publication Date
WO2016178596A1 true WO2016178596A1 (fr) 2016-11-10

Family

ID=57217669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000346 WO2016178596A1 (fr) 2015-05-05 2015-06-02 Accumulateur à ion lithium

Country Status (2)

Country Link
RU (1) RU2608598C2 (fr)
WO (1) WO2016178596A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473670A (zh) * 2018-12-18 2019-03-15 上海纳米技术及应用国家工程研究中心有限公司 锂离子二次电池负极材料氟改性钛酸锂的制备方法及产品和应用
CN109755568A (zh) * 2019-02-27 2019-05-14 湖北锂诺新能源科技有限公司 钾和钴共掺杂氟磷酸钒锂正极材料的制备方法
CN110224134A (zh) * 2019-07-24 2019-09-10 卢昌琴 一种锂离子电池正极材料及其制备方法
CN110364718A (zh) * 2019-07-24 2019-10-22 卢昌琴 一种用于锂离子电池的具有三维导电结构的正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221847A (ja) * 2005-02-08 2006-08-24 Sii Micro Parts Ltd リチウム二次電池
US20090017364A1 (en) * 2007-01-18 2009-01-15 Altairnano, Inc. Methods for improving lithium ion battery safety
CN102468515A (zh) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 一种锂离子电池及其制备方法
CN103456932A (zh) * 2012-05-27 2013-12-18 湖南省正源储能材料与器件研究所 一种储能材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047522A2 (fr) * 2008-10-22 2010-04-29 주식회사 엘지화학 Matériau composite de cathode présentant des caractéristiques d'efficacité de l'électrode et de densité énergétique améliorées

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221847A (ja) * 2005-02-08 2006-08-24 Sii Micro Parts Ltd リチウム二次電池
US20090017364A1 (en) * 2007-01-18 2009-01-15 Altairnano, Inc. Methods for improving lithium ion battery safety
CN102468515A (zh) * 2010-11-05 2012-05-23 海洋王照明科技股份有限公司 一种锂离子电池及其制备方法
CN103456932A (zh) * 2012-05-27 2013-12-18 湖南省正源储能材料与器件研究所 一种储能材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473670A (zh) * 2018-12-18 2019-03-15 上海纳米技术及应用国家工程研究中心有限公司 锂离子二次电池负极材料氟改性钛酸锂的制备方法及产品和应用
CN109755568A (zh) * 2019-02-27 2019-05-14 湖北锂诺新能源科技有限公司 钾和钴共掺杂氟磷酸钒锂正极材料的制备方法
CN110224134A (zh) * 2019-07-24 2019-09-10 卢昌琴 一种锂离子电池正极材料及其制备方法
CN110364718A (zh) * 2019-07-24 2019-10-22 卢昌琴 一种用于锂离子电池的具有三维导电结构的正极材料及其制备方法

Also Published As

Publication number Publication date
RU2015117203A (ru) 2016-11-27
RU2608598C2 (ru) 2017-01-23

Similar Documents

Publication Publication Date Title
JP7316564B2 (ja) 電池
JP5235282B2 (ja) 非水電解質二次電池用正極活物質及び電池
JP5972513B2 (ja) カソード及びこれを採用したリチウム電池
KR101921348B1 (ko) 개선된 노화 거동을 갖는 리튬 이온 전지
JP5099168B2 (ja) リチウムイオン二次電池
JP2013539594A (ja) リチウムリッチカソード材料を用いたリチウムイオン電池の非常に長期のサイクリング
JP2004342500A (ja) 非水電解質二次電池および電池充放電システム
KR100894608B1 (ko) 올리빈계 양극활물질을 사용한 양극 및 상기 양극을포함하는 이차전지
KR20120017671A (ko) 양극, 그 제조방법 및 이를 채용한 리튬전지
JP6576476B2 (ja) Naドープされた、およびNbドープされた、Wドープされたおよび/またはMoドープされたHE−NCM
WO2020244333A1 (fr) Nouvelle batterie à semi-conducteur et matériau d&#39;électrode positive associé
JP2016076496A (ja) 大出力リチウムイオン電池のためのアノード材料の製造方法
WO2016178596A1 (fr) Accumulateur à ion lithium
CN112151788A (zh) 具有高性能电解质和氧化硅活性材料的锂离子电池
JP2006302756A (ja) 電池
KR102155025B1 (ko) 리튬 메탈 표면의 불화리튬의 증착 및 이를 이용한 리튬 이차전지
WO2013129376A1 (fr) Matériau actif pour cellule secondaire à électrolyte non aqueux, électrode pour cellule secondaire à électrolyte non aqueux, cellule secondaire à électrolyte non aqueux et procédé de production de matériau actif pour cellule secondaire à électrolyte non aqueux
US20210074999A1 (en) Systems and Methods of Making Solid-State Batteries and Associated Solid-State Battery Anodes
EP1479118B9 (fr) Cellule electrochimique comprenant une matiere carbonee et du carbure de molybdene en tant qu&#39;anode
US10923710B2 (en) Electrode material for a lithium-ion battery
US20220393301A1 (en) Systems and methods for improved fluid gun delivery systems
Nanda et al. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
JP5766009B2 (ja) 負極活物質、その製造方法及びこれを採用した負極とリチウム電池
US20150050529A1 (en) Elevated Temperature Li/Metal Battery System
TWI404251B (zh) 鋰電池及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891334

Country of ref document: EP

Kind code of ref document: A1