WO2016178452A1 - 그래핀을 촉매로 한 실리콘의 화학적 식각 방법 - Google Patents
그래핀을 촉매로 한 실리콘의 화학적 식각 방법 Download PDFInfo
- Publication number
- WO2016178452A1 WO2016178452A1 PCT/KR2015/005501 KR2015005501W WO2016178452A1 WO 2016178452 A1 WO2016178452 A1 WO 2016178452A1 KR 2015005501 W KR2015005501 W KR 2015005501W WO 2016178452 A1 WO2016178452 A1 WO 2016178452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- silicon
- catalyst
- layer
- chemical etching
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
Definitions
- the present invention relates to a chemical etching method of silicon using a graphene catalyst capable of producing a silicon nanostructure through a chemical etching method using a graphene nanostructure as a catalyst.
- MACE metal-assisted chemical etching of semiconductors
- metal-based chemical etching has shown outstanding results in the fabrication of nanostructures of silicon such as silicon nanowires / nanoholes and porous silicon.
- the chemical etching method using metal as a catalyst should only use precious metal as a catalyst, and the precious metals are not only economically expensive but also difficult to remove.
- the conventional chemical etching method using a metal catalyst has a problem of using a highly toxic strong acid solution such as aqua regia mixed with nitric acid and hydrochloric acid in order to remove the precious metal during the etching process.
- graphene has attracted much attention as a future new material because of its unique and excellent physical properties.
- Graphene not only has high electrical conductivity, but also has high optical performance, so it is widely used as a new material in next-generation display fields such as flexible displays and touch panels, energy business fields such as solar cells, and various electronic industries such as smart windows and RFID. It is becoming.
- graphene can be manufactured inexpensively, and is composed of only carbon, so that the graphene can be easily removed through oxygen plasma treatment without using a poisonous substance.
- the present invention is to provide a method for producing a variety of semiconductor nanostructures through the chemical etching method of silicon as a graphene catalyst.
- the present invention is to provide a chemical etching method of a semiconductor using a graphene catalyst that can lower the economic cost burden by using a graphene rather than a precious metal as a catalyst.
- the present invention is to provide a chemical etching method of a semiconductor using a graphene catalyst capable of removing the catalyst through the oxygen plasma treatment without using a highly toxic strong acid solution during the etching process.
- Chemical etching method of silicon using a graphene catalyst comprises the steps of laminating a large area graphene layer on the silicon layer; Forming a nano template on the stacked graphene layer, and forming a graphene nanostructure using the formed nano template as a pattern mask; And forming a silicon nanostructure through the graphene-assisted chemical etching of the silicon layer using the formed graphene nanostructure as a catalyst.
- the graphene nanostructure may be formed by etching the graphene layer exposed through the nanotemplate by subjecting the formed nano template to oxygen plasma treatment.
- the formed graphene nanostructure as a catalyst may be used to form the silicon nanostructure by etching the silicon layer in an etching solution environment.
- the step of forming a graphene nanostructure comprises forming an ordered nanosphere array on the stacked graphene layer using nanosphere lithography; Etching the graphene layer exposed through the nanosphere array by performing oxygen plasma treatment on the formed nanosphere array to form graphene nanodoses; And removing the nanosphere array.
- the forming of the silicon nanostructure may include forming the silicon nanostructure by etching the silicon layer using the formed graphene nanodots as a catalyst in an etching solution environment including hydrofluoric acid (HF) and hydrogen peroxide (H 2 O 2 ). Can be formed.
- etching solution environment including hydrofluoric acid (HF) and hydrogen peroxide (H 2 O 2 ).
- the step of forming the graphene nanostructures comprises the steps of preparing an anodized aluminum membrane (AAO membrane); Depositing a metal thin film on the prepared anodized aluminum membrane; Transferring the patterned metal thin film formed by selectively removing the anodized aluminum membrane onto the stacked graphene layer; Performing an oxygen plasma treatment on the transferred patterned metal thin film to etch the graphene layer exposed through the patterned metal thin film to form a graphene mesh; And selectively removing the patterned metal thin film.
- AAO membrane an anodized aluminum membrane
- the silicon nanostructure may be formed by etching the silicon layer using the formed graphene mesh as a catalyst in an etching solution environment including hydrofluoric acid and hydrogen peroxide.
- the silicon nanostructures may be any one of silicon nanowires, silicon cone arrays, silicon hole arrays, and porous silicon.
- various semiconductor nanostructures may be manufactured through a chemical etching method of silicon using graphene as a catalyst.
- FIG. 1 is a flowchart illustrating a chemical etching method of silicon as a catalyst according to an embodiment of the present invention.
- FIGS. 2A to 2D illustrate a process of manufacturing a graphene nanostructure using nanosphere lithography according to an embodiment of the present invention, and a chemical etching method of silicon using the graphene nanostructure as a catalyst.
- 3A to 3F illustrate a process of manufacturing a graphene nanostructure using an anodized aluminum membrane according to another embodiment of the present invention, and a method of chemical etching silicon using the graphene nanostructure as a catalyst.
- FIG. 4A to 4C illustrate examples of silicon nanostructures fabricated through a chemical etching method using graphene as a catalyst according to an embodiment of the present invention.
- 5A and 5B illustrate scanning electron microscopy (SEM) images before treatment of oxygen plasma to fabricate graphene nanostructures according to an embodiment of the present invention.
- FIGS 6A and 6B illustrate scanning electron microscopy (SEM) images of graphene nanostructures manufactured according to an embodiment of the present invention.
- FIG. 7A to 7C illustrate scanning electron microscope images of silicon nanostructures manufactured by chemical etching of silicon using graphene as a catalyst according to an embodiment of the present invention.
- spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as including terms in different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as “below or beneath” of another device may be placed “above” of another device. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be oriented in other directions as well, in which case spatially relative terms may be interpreted according to orientation.
- FIG. 1 is a flowchart illustrating a chemical etching method of silicon as a catalyst according to an embodiment of the present invention.
- a graphene layer is stacked on a silicon layer in a large area in step 110.
- Step 110 may be a step of growing graphene using chemical vapor deposition (CVD), and transferring the graphene grown on a large area onto a silicon substrate.
- CVD chemical vapor deposition
- a nano template is formed on the graphene layer stacked in step 120, and a graphene nanostructure is formed using the formed nano template as a pattern mask.
- step 120 may be a step of forming a graphene nanostructure by etching the graphene layer exposed through the nano-template by oxygen plasma treatment on the formed nano-template.
- step 120 forms an ordered nanosphere array fabricated using nanosphere lithography on the graphene layer, and performs oxygen plasma treatment on the formed nanosphere array through a nanosphere array. After etching the exposed graphene layer, the nanosphere array may be removed to form a graphene nanostructure.
- the formed graphene nanostructures may be graphene nanodots.
- step 120 deposits a metal thin film on an anodized aluminum oxide (AAO), selectively removes the anodized aluminum membrane (membrane), patterned metal formed through selective removal
- AAO anodized aluminum oxide
- membrane anodized aluminum membrane
- patterned metal formed through selective removal
- an oxygen plasma treatment is performed to etch the exposed graphene layer through the patterned metal thin film, and then the patterned metal thin film is selectively removed to remove the graphene nanostructure. It may comprise the step of forming.
- the formed graphene nanostructure may be a graphene mesh.
- silicon nanostructures are formed through chemical-assisted chemical etching on the silicon layer.
- the formed graphene nanostructures may be catalysts, and the silicon layers may be etched in an etching solution environment to form the silicon nanostructures.
- the silicon nanostructure may be any one of silicon nanowires, silicon cone arrays, silicon hole arrays, and porous silicon.
- FIGS. 2A to 2D illustrate a process of manufacturing a graphene nanostructure using nanosphere lithography according to an embodiment of the present invention, and a chemical etching method of silicon using the graphene nanostructure as a catalyst.
- the graphene layer 220 is stacked on the silicon layer 210 in a large area.
- the graphene layer 220 may be grown using chemical vapor deposition (CVD), and the graphene layer 220 grown in a large area may be transferred onto the silicon layer 210.
- CVD chemical vapor deposition
- graphene production using chemical vapor deposition method deposits copper (or nickel) to be used as a catalyst layer on a substrate and reacts with a mixed gas of methane and hydrogen at a high temperature so that an appropriate amount of carbon is dissolved in the catalyst layer. Or by adsorbing and cooling to form a graphene crystal structure on the metal as the carbon atoms contained in the catalyst layer crystallized on the surface.
- the graphene may be prepared after separation from the substrate by removing the catalyst layer from the synthesized graphene thin film.
- the ammonium persulfate solution remaining on the graphene is washed with ultrapure water (DI water), and the washed graphene is transferred onto the silicon layer 210 to form a graphene layer ( 220 may be formed.
- DI water ultrapure water
- the bonding force between the silicon layer 210 and the graphene layer 220 ⁇ may be increased by heat treatment.
- acetone may be used to remove PMMA present on the graphene
- the graphene layer 220 may be formed by heat treatment with a rapid heat treatment to remove PMMA residue remaining on the graphene surface.
- the chemical etching method of silicon using graphene as a catalyst is aligned using nanosphere lithography on the graphene layer 220 stacked on the silicon layer 210 ( ordered) to form a nanosphere array (230).
- polystyrene beads 100-1000 nm polystyrene beads (PS bead) are sprinkled on water and coated in a single layer, followed by sodium dodecyl sulfate (NaDS). Sprinkle over water.
- PS bead polystyrene beads
- NaDS sodium dodecyl sulfate
- the surfaces of the polystyrenes have a hexagonal arrangement and adhere to each other, and the polystyrene bead array 230 may be manufactured.
- the polystyrene bead array 230 prepared as described above is transferred onto the graphene layer 220.
- the chemical etching method of silicon using graphene as a catalyst performs oxygen plasma treatment on the formed nanosphere array 230, and performs nanosphere array 230 on the nanosphere array 230.
- the exposed graphene layer 220 is etched through, and the nanosphere array 230 is removed to form graphene nanostructures of graphene nanodoses 310.
- the nanosphere array 230 when the nanosphere array 230 is subjected to oxygen plasma treatment, the diameter of the nanospheres of the nanosphere array is reduced, and at the same time, the graphene layer 220 exposed on the surface is removed.
- the nanosphere array 230 is removed to form a graphene nanostructure in the form of graphene nanodots 310.
- the nanosphere array 230 is a polystyrene bead array, it may be treated with acetone to selectively remove polystyrene to form the graphene nanodots 310.
- the silicon nanostructures may be manufactured by chemically etching the silicon layer 210 using the graphene nanodots 310 which are formed graphene nanostructures as catalysts.
- 3A to 3F illustrate a process of manufacturing a graphene nanostructure using an anodized aluminum membrane according to another embodiment of the present invention, and a method of chemical etching silicon using the graphene nanostructure as a catalyst.
- an anodized aluminum membrane (AAO membrane) 240 is prepared, and the prepared anodized aluminum membrane 240 The metal thin film 250 is deposited on the.
- the chemical etching method of silicon as a catalyst selectively removes the anodized aluminum membrane 240, and the patterned metal formed thereon.
- the thin film 250 may be transferred onto the graphene layer 220 stacked on the silicon layer 210.
- a 50 nm thick gold thin film is deposited on the surface of an aluminum membrane 240 having hexagonal channels and floated on a solution such as KOH or NaOH to selectively remove only the aluminum membrane 240.
- a gold thin film 250 having the same hole arrangement shape as that of 240 can be produced. Thereafter, the prepared gold thin film 250 is transferred onto the graphene layer 220.
- the formation process of the graphene layer 220 stacked on the silicon layer 210 is the same as described above with reference to FIG. 2A, and thus a detailed description thereof will be omitted.
- a method of chemically etching silicon using graphene as a catalyst may include oxygen plasma treatment on the transferred patterned metal thin film 250 as illustrated in FIG. 3E. After etching the exposed graphene layer 220 through the patterned metal thin film 250 to selectively remove the patterned metal thin film 250, as shown in Figure 3f graphene mesh (graphene mesh) , 320).
- the silicon nanostructure may be formed through graphene-assisted chemical etching of the silicon layer 210 using the graphene nanostructure graphene mesh 320 formed as a catalyst.
- FIG. 4A to 4C illustrate examples of silicon nanostructures fabricated through a chemical etching method using graphene as a catalyst according to an embodiment of the present invention.
- silicon nanowires, silicon cone arrays, and silicon hole arrays may be formed through a chemical etching method of silicon as a catalyst according to an embodiment of the present invention.
- Silicon nanostructures such as Si hole arrays) and porous silicon can be fabricated.
- the graphene mesh 320 fabricated on the n-type silicon layer 210 of FIG. 3F when placed in a mixed etching solution of hydrofluoric acid and hydrogen peroxide solution having a volume of 10: 0.5 at 50 ° C. or more, the graphene mesh 320 may be formed after several ten minutes. The portion covered by the fin mesh 320 is etched, and the silicon remaining in the hole of the graphene mesh 320 may be manufactured to have a nanowire or cone array as shown in FIG. 4A.
- the graphene nano dot 310 prepared on the n-type silicon layer 210 of Figure 2d in a mixed etching solution of hydrofluoric acid and hydrogen peroxide for several minutes the graphene nano dot 310 is It may be selectively etched to produce a silicon hole array as shown in FIG. 4B.
- the etching time in the mixed etching solution of hydrofluoric acid and hydrogen peroxide solution for manufacturing the silicon nanostructure may be 30 minutes or more, and as the etching time is increased, the etching degree of the silicon layer 210 is increased, so that the length of the pillar is long.
- Silicon nanospheres can be formed, such as cone arrays and arrays of silicon holes with deeper holes.
- 5A and 5B illustrate scanning electron microscopy (SEM) images before treatment of oxygen plasma to fabricate graphene nanostructures according to an embodiment of the present invention.
- FIG. 5A shows a scanning electron microscope image of an array of polystyrene beads transferred onto a graphene layer as shown in FIG. 2B.
- an array of polystyrene beads is transferred onto a graphene layer in the form of a hexagonal array. You can see that.
- FIG. 5B illustrates a runner electron microscope image of a metal (Au) thin film having a hole array obtained from anodized aluminum (AAO) as shown in FIG. 3, transferred onto a graphene layer.
- Au metal
- FIG. 5B the metal It can be seen that the gold thin film, which is a thin film, has a hexagonal hole arrangement and is well transferred onto the graphene layer.
- FIGS 6A and 6B illustrate scanning electron microscopy (SEM) images of graphene nanostructures manufactured according to an embodiment of the present invention.
- FIG. 6A shows a scanning electron microscope image of graphene nanodots on a silicon layer after treatment with oxygen plasma at 50 W for 1 minute in a polystyrene bead array transferred onto the graphene layer of FIG. 5A and selectively removed polystyrene using acetone. As such, it can be seen that graphene nanodots are well formed on the silicon layer.
- FIG. 6B is a graph showing the graphene mesh on silicon after treatment with oxygen plasma at 50 W for 1 minute for the gold thin film transferred onto the graphene layer in FIG. 5B, and after the gold thin film was selectively removed using a tape. As an electron microscope image, it can be seen that the graphene mesh is well formed on the silicon layer.
- FIG. 7A to 7C illustrate scanning electron microscope images of silicon nanostructures manufactured by chemical etching of silicon using graphene as a catalyst according to an embodiment of the present invention.
- FIG. 7A is a scanning electron microscope image of Si pillars having a diameter of about 50 nm, which clearly distinguishes the pillar arrangement formed on the flat silicon layer surface, and shows that the surface is not very smooth and somewhat rough. .
- FIG. 7B is a scanning electron microscope image of a silicon hole array with shallow hole arrays
- FIG. 7C is a scanning electron microscope image of porous silicon having a size of less than a few nm formed on the surface of the silicon layer.
- various types of silicon nanostructures may be manufactured according to the etching process treatment conditions.
- the graphene-based silicon chemical etching method can chemically etch not only silicon but also various semiconductors such as gallium arsenide (GaAs) and indium phosphorus (InP).
- GaAs gallium arsenide
- InP indium phosphorus
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
Abstract
귀금속이 아닌 그래핀을 촉매로 사용하여 경제적인 비용 부담을 낮추고, 독성이 높은 강산성의 용액을 사용하지 않아 상대적으로 안전한 그래핀을 촉매로 한 실리콘의 화학적 식각 방법을 제공한다.
Description
본 발명은 그래핀 나노 구조체를 촉매로 하여 화학적 식각법을 통해 실리콘 나노 구조체의 제조가 가능한 그래핀을 촉매로 한 실리콘의 화학적 식각 방법에 관한 것이다.
지난 수년간 금, 은, 백금, 팔라듐, 구리와 같은 귀금속을 촉매로 한 반도체의 화학적 식각법(Metal-assisted chemical etching of semiconductor, MaCE)은 반도체 나노구조를 제작하는데 많이 활용되어 왔다.
특히, 금속을 촉매로 한 화학적 식각법은 실리콘 나노선/나노홀, 다공성 실리콘과 같은 실리콘의 나노구조의 제작에 있어 눈에 띄는 우수한 결과를 가져왔다.
최근 연구에 의하면, 구조적으로 제어된 실리콘 나노선 및 갈륨비소의 나노구조가 금속을 촉매로 한 화학적 식각법을 통해 제작이 된 바 있다. 또한, 금속을 촉매로 한 화학적 식각법을 통하여 제작된 실리콘 나노선 및 다공성 실리콘은 태양전지, 광검출기, 분자센서와 같은 첨단소자의 기반물질로서 성공적으로 응용이 되고 있다.
그러나 전술한 우수한 결과에도 불구하고, 금속을 촉매로 한 화학적 식각법은 오직 귀금속을 촉매로 사용해야 하고, 귀금속은 경제적으로 비용부담이 클 뿐만 아니라, 제거하는 방법이 매우 어렵다는 문제점이 있었다.
또한, 종래의 금속을 촉매로 한 화학적 식각법은 식각 공정 중 귀금속을 제거하기 위하여 질산과 염산을 섞은 왕수와 같은 독성이 높은 강산성의 용액을 사용해야 하는 문제점도 있었다.
최근 그래핀은 독특하고 우수한 물리적 특성 때문에 미래 신소재로서 많은 각광을 받고 있다. 그래핀은 높은 전기 전도도를 가질 뿐만 아니라 광학적으로도 높은 성능을 가지고 있어서 플렉시블 디스플레이와 터치패널 등 차세대 디스플레이 분야와 태양전지 등 에너지 사업분야, 스마트윈도우, RFID 등 다양한 전자 산업 분야에서 신소재로 활용도가 확대되고 있다.
또한, 그래핀은 저렴하게 제작할 수 있고, 오직 탄소로만 구성되어 있어 독한 물질의 사용 없이 산소 플라즈마 처리를 통하여 손쉽게 제거를 할 수 있는 장점이 있다.
본 발명은 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법을 통하여 다양한 반도체 나노 구조체를 제조하는 방법을 제공하고자 한다.
또한, 본 발명은 귀금속이 아닌 그래핀을 촉매로 사용하여 경제적인 비용 부담을 낮출 수 있는 그래핀을 촉매로 한 반도체의 화학적 식각 방법을 제공하고자 한다.
또한, 본 발명은 식각 공정 중 독성이 높은 강산성의 용액을 사용하지 않고, 산소 플라즈마 처리를 통하여 촉매의 제거가 가능한 그래핀을 촉매로 한 반도체의 화학적 식각 방법을 제공하고자 한다.
실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 실리콘층 상에 대면적 그래핀층을 적층하는 단계; 상기 적층된 그래핀층 상에 나노 템플릿을 형성하고, 상기 형성된 나노 템플릿을 패턴 마스크로 하여 그래핀 나노 구조체를 형성하는 단계; 및 상기 형성된 그래핀 나노 구조체를 촉매로 하여 상기 실리콘층에 대한 화학적 식각(Graphene-assisted chemical etching)을 통하여 실리콘 나노 구조체를 형성하는 단계를 포함한다.
그래핀 나노 구조체를 형성하는 상기 단계는, 상기 형성된 나노 템플릿에 산소 플라즈마 처리를 하여 상기 나노 템플릿을 통하여 노출된 그래핀층을 식각하여 상기 그래핀 나노 구조체를 형성할 수 있다.
실리콘 나노 구조체를 형성하는 상기 단계는, 상기 나노 템플릿을 제거한 이후, 상기 형성된 그래핀 나노 구조체를 촉매로 하고, 식각용액 환경에서 상기 실리콘층을 식각하여 상기 실리콘 나노 구조체를 형성할 수 있다.
그래핀 나노 구조체를 형성시키는 상기 단계는, 나노스피어 리소그래피(nanosphere lithography)을 이용하여 정렬된(ordered) 나노스피어 어레이(nanosphere array)를 상기 적층된 그래핀층 상에 형성하는 단계; 상기 형성된 나노스피어 어레이에 산소 플라즈마 처리를 하여 상기 나노스피어 어레이를 통하여 노출된 그래핀층을 식각하여 그래핀 나노닷(graphene nanodos)을 형성하는 단계; 및 상기 나노스피어 어레이를 제거하는 단계를 포함할 수 있다.
실리콘 나노 구조체를 형성하는 상기 단계는, 불산(HF) 및 과산화수소(H2O2)를 포함하는 식각용액 환경에서 상기 형성된 그래핀 나노닷을 촉매로 하여 상기 실리콘층을 식각함으로써 상기 실리콘 나노 구조체를 형성할 수 있다.
그래핀 나노 구조체를 형성시키는 상기 단계는, 양극산화 알루미늄 멤브레인(AAO membrane)을 준비하는 단계; 상기 준비된 양극산화 알루미늄 멤브레인 상에 금속 박막을 증착하는 단계; 상기 양극산화 알루미늄 멤브레인을 선택적으로 제거하여 형성되는 패턴화된 금속 박막을 상기 적층된 그래핀층 상에 전사시키는 단계; 상기 전사된 패턴화된 금속 박막에 산소 플라즈마 처리를 하여 상기 패턴화된 금속 박막을 통하여 노출된 그래핀층을 식각하여 그래핀 메쉬(graphene mesh)를 형성하는 단계; 및 상기 패턴화된 금속 박막을 선택적으로 제거하는 단계를 포함할 수 있다.
실리콘 나노 구조체를 형성하는 상기 단계는, 불산 및 과산화수소를 포함하는 식각용액 환경에서 상기 형성된 그래핀 메쉬를 촉매로 하여 상기 실리콘층을 식각함으로써 상기 실리콘 나노 구조체를 형성할 수 있다.
상기 실리콘 나노 구조체는 실리콘 나노 와이어(Si nanowire), 실리콘 원추 어레이(Si cone arrays), 실리콘 홀 어레이(Si hole arrays) 및 다공성 실리콘(Porous Si) 중 어느 하나일 수 있다.
본 발명에 따르면, 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법을 통하여 다양한 반도체 나노 구조체를 제조할 수 있다.
또한, 본 발명에 따르면, 귀금속이 아닌 그래핀을 촉매로 사용하여 경제적인 비용 부담을 낮출 수 있다.
또한, 본 발명에 따르면 식각 공정 중 독성이 높은 강산성의 용액을 사용하지 않고, 산소 플라즈마 처리를 통하여 촉매의 제거가 가능한 그래핀을 촉매로 한 반도체의 화학적 식각 방법을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법을 설명하기 위한 흐름도를 도시한 것이다.
도 2a 내지 도 2d는 본 발명의 일실시예에 따른 나노스피어 리소그래피를 이용하여 그래핀 나노 구조체를 제작하고, 그래핀 나노 구조체를 촉매로 한 실리콘의 화학적 식각 방법의 프로세스를 도시한 것이다.
도 3a 내지 도 3f는 본 발명의 다른 실시예에 따른 양극산화 알루미늄 멤브레인을 이용하여 그래핀 나노 구조체를 제작하고, 그래핀 나노 구조체를 촉매로 한 실리콘의 화학적 식각 방법의 프로세스를 도시한 것이다.
도 4a 내지 도 4c는 본 발명의 실시예에 의한 그래핀을 촉매로 한 화학적 식각 방법을 통하여 제작된 실리콘 나노 구조체의 예를 도시한 것이다.
도 5a 및 도 5b 는 본 발명의 실시예에 따른 그래핀 나노 구조체를 제작하기 위한 산소 플라즈마의 처리 전의 주사전자현미경(SEM, scanning electron microscopy) 이미지를 도시한 것이다.
도 6a 및 도 6b는 본 발명의 실시예에 따라 제작된 그래핀 나노 구조체에 대한 주사전자현미경(SEM, scanning electron microscopy) 이미지를 도시한 것이다.
도 7a 내지 도 7c는 본 발명의 실시예에 따른 그래핀을 촉매로 한 실리콘의 화학적 식각 방법을 통하여 제작된 실리콘 나노 구조체에 대한 주사전자현미경 이미지를 도시한 것이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.
소자(elements) 또는 층이 다른 소자 또는 층의 "위(on)" 또는 "상(on)"으로 지칭되는 것은 다른 소자 또는 층의 바로 위뿐만 아니라 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 ""직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below 또는 beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있으며, 이 경우 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법을 설명하기 위한 흐름도를 도시한 것이다.
도 1을 참조하면, 본 발명의 실시예에 따른 그래핀을 촉매로 한 실리콘의 화학적 식각 방법은 단계 110 에서 실리콘층 상에 대면적으로 그래핀층을 적층한다.
단계 110은 그래핀을 화학기상증착법(chemical vapor deposition, CVD)을 이용하여 성장시키고, 대면적으로 성장시킨 그래핀을 실리콘 기판 상에 전사하는 단계일 수 있다.
단계 120에서 적층된 그래핀층 상에 나노 템플릿을 형성하고, 형성된 나노 템플릿을 패턴 마스크로 하여 그래핀 나노 구조체를 형성한다.
예를 들어, 단계 120은 형성된 나노 템플릿에 산소 플라즈마 처리를 하여 나노 템플릿을 통하여 노출된 그래핀층을 식각하여 그래핀 나노 구조체를 형성하는 단계일 수 있다.
또한, 실시예에 따라서는 단계 120은 그래핀층 상에 나노스피어 리소그래피(nanosphere lithography)를 이용하여 제조되는 정렬된 나노스피어 어레이를 형성하고, 형성된 나노스피어 어레이에 산소 플라즈마 처리를 하여 나노스피어 어레이를 통하여 노출된 그래핀층을 식각한 이후, 나노스피어 어레이를 제거하여 그래핀 나노 구조체를 형성하는 단계를 포함할 수 있다.
이 경우, 형성된 그래핀 나노 구조체는 그래핀 나노닷(graphene nanodots)일 수 있다.
또한, 다른 실시예에 따라 단계 120은 양극산화 알루미늄(anodized aluminum oxide, AAO) 상에 금속 박막을 증착하고, 양극산화 알루미늄 멤브레인(membrane)을 선택적으로 제거하며, 선택적 제거를 통해 형성된 패턴화된 금속 박막을 상기 적층된 그래핀층 상에 전사시킨 이후, 산소 플라즈마 처리를 하여 상기 패턴화된 금속 박막을 통하여 노출된 그래핀층을 식각한 이후, 패턴화된 금속 박막을 선택적으로 제거하여 그래핀 나노 구조체를 형성하는 단계를 포함할 수 있다.
이 경우, 형성된 그래핀 나노 구조체는 그래핀 메쉬(graphene mesh)일 수 있다.
단계 130에서 형성된 그래핀 나노 구조체를 촉매로 하여 실리콘층에 대한 화학적 식각(Graphene-assisted chemical etching)을 통하여 실리콘 나노 구조체를 형성한다.
단계 130은 나노 템플릿을 제거한 이후, 형성된 그래핀 나노 구조체를 촉매로 하고, 식각 용액 환경에서 실리콘층을 식각하여 실리콘 나노 구조체를 형성할 수 있다.
상기 실리콘 나노 구조체는 실리콘 나노 와이어(Si nanowire), 실리콘 원추 어레이(Si cone arrays), 실리콘 홀 어레이(Si hole arrays) 및 다공성 실리콘(porous Si) 중 어느 하나일 수 있다.
도 2a 내지 도 2d는 본 발명의 일실시예에 따른 나노스피어 리소그래피를 이용하여 그래핀 나노 구조체를 제작하고, 그래핀 나노 구조체를 촉매로 한 실리콘의 화학적 식각 방법의 프로세스를 도시한 것이다.
도 2a를 참고하면, 본 발명의 일실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 실리콘층(210) 상에 대면적으로 그래핀층(220)을 적층한다.
그래핀층(220)은 화학기상증착법(chemical vapor deposition, CVD)을 이용하여 성장시킬 수 있고, 대면적으로 성장시킨 그래핀층(220)을 실리콘층(210) 상에 전사시킬 수 있다.
이를 보다 구체적으로 설명하면, 화학기상증착법을 이용한 그래핀 제조는 촉매층으로 활용할 구리(또는 니켈)를 기판 위에 증착하고, 고온에서 메탄 및 수소의 혼합가스와 반응시켜 적절한 양의 탄소가 촉매층에 녹아 들어가거나 흡착되도록 하고, 냉각을 하여 촉매층에 포함되어 있던 탄소원자들이 표면에서 결정화되면서 그래핀 결정 구조를 금속 위에 형성한다.
이후, 합성된 그래핀 박막에서 촉매층을 제거함으로써 기판으로부터 분리시킨 후 그래핀을 제조할 수 있다.
이후, 폴리메타크릴산메틸(Poly(methyl methacrylate) 및 벤젠을 혼합한 PMMA를 합성된 그래핀 위에 스핀-코팅하는데, PMMA의 코팅을 통하여 PMMA가 과황산암모늄(ammonium persulfate) 용액을 사용하여 구리 호일을 제거할 때 그래핀을 잡아서 고정시키는 역할을 하도록 할 수 있다.
이후, 과황산암모늄 용액에 구리 호일을 제거한 후, 그래핀 상에 잔존하는 과황산암모늄 용액을 초순수(DI water)로 세척하고, 세척된 그래핀을 실리콘층(210) 상에 전사하여 그래핀층(220)을 형성할 수 있다.
다음으로, 그래핀층(220)을 실리콘층(210)에 전사한 후 열처리를 통하여 실리콘층(210) 및 그래핀층(220)\ 사이의 결합력을 높일 수 있다. 열처리 이후, 아세톤을 사용하여 그래핀 위에 존재하는 PMMA를 제거하고, 그래핀 표면에 남아 있는 PMMA 잔여물을 제거하기 위해 급속열처리기로 열처리하여 최종적으로 그래핀층(220)을 형성할 수 있다.
도 2b를 참고하면, 본 발명의 일실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 실리콘층(210) 상에 적층된 그래핀층(220) 위에 나노스피어 리소그래피를 이용하여 정렬된(ordered) 나노스피어 어레이(nanosphere array, 230)를 형성한다.
예를 들어, 나노스피어 리소그래피를 이용한 나노스피어 어레이의 형성을 위하여 물 위에 직경이 100~1000nm인 폴리스티렌 비드(Polystyrene bead, PS bead)를 뿌려서 단층으로 입힌 후 도데실 황산 나트륨(Sodium dodecyl sulfate, NaDS)를 물 위에 뿌린다.
이를 통하여 폴리스티렌이 육방배열을 갖는 구조로 서로 표면이 달라붙게 되고, 폴리스티렌 비드 어레이(230)가 제조될 수 있다.
도 2b에 도시된 바와 같이 전술하여 제조된 폴리스티렌 비드 어레이(230)를 그래핀층(220) 위에 전사한다.
도 2c 및 도 2d를 참조하면, 본 발명의 일실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 형성된 나노스피어 어레이(230)에 산소 플라즈마 처리를 하고, 나노스피어 어레이(230)를 통하여 노출된 그래핀층(220)을 식각하며, 나노스피어 어레이(230)를 제거하여 그래핀 나노닷(graphene nanodos, 310)의 그래핀 나노 구조체를 형성한다.
보다 구체적으로는, 도 2c에 도시된 바와 같이 나노스피어 어레이(230)에 산소 플라즈마 처리를 하면 나노스피어 어레이의 나노스피어의 직경이 줄어들고, 동시에 표면에 노출된 그래핀층(220)이 제거된다.
이후, 도 2d에 도시된 바와 같이 나노스피어 어레이(230)를 제거하여 그래핀 나노닷(310) 형태의 그래핀 나노 구조체를 형성한다. 예를 들면, 나노스피어 어레이(230)가 폴리스티렌 비드 어레이인 경우, 아세톤으로 처리하여 선택적으로 폴리스티렌을 제거하여 그래핀 나노닷(310)을 형성할 수 있다.
이후, 형성된 그래핀 나노 구조체인 그래핀 나노닷(310)을 촉매로 하여 실리콘층(210)에 대한 화학적 식각(Graphene-assisted chemical etching)을 통하여 실리콘 나노 구조체를 제작할 수 있다.
도 3a 내지 도 3f는 본 발명의 다른 실시예에 따른 양극산화 알루미늄 멤브레인을 이용하여 그래핀 나노 구조체를 제작하고, 그래핀 나노 구조체를 촉매로 한 실리콘의 화학적 식각 방법의 프로세스를 도시한 것이다.
도 3a 및 도 3b를 참고하면, 본 발명의 다른 실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 양극산화 알루미늄 멤브레인(AAO membrane, 240)을 준비하고, 준비된 양극산화 알루미늄 멤브레인(240) 상에 금속 박막(250)을 증착한다.
도 3c 및 도 3d를 참고하면, 본 발명의 다른 실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 양극산화 알루미늄 멤브레인(240)을 선택적으로 제거하고, 이를 통하여 형성되는 패턴화된 금속 박막(250)을 실리콘층(210) 상에 적층된 그래핀층(220) 위에 전사시킬 수 있다.
예를 들면, 육방 배열의 채널을 갖는 알루미늄 멤브레인(240)의 표면에 금 박막을 50nm 두께로 증착하고, KOH 또는 NaOH 와 같은 용액 위에 띄워 알루미늄 멤브레인(240)만 선택적으로 제거할 수 있고, 알루미늄 멤브레인(240)의 구멍 배열 모양을 똑같이 갖고 있는 금 박막(250)을 제작할 수 있다. 이후, 제작된 금 박막(250)을 그래핀층(220) 위에 전사시킨다.
또한, 실리콘층(210) 상에 적층된 그래핀층(220)의 형성 과정은 도 2a 에서 전술하여 설명한 바와 동일하여 이에 대한 상세한 설명은 생략하기로 한다.
도 3e 및 도 3f를 참조하면, 본 발명의 다른 실시예에 따른 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법은 도 3e에 도시된 바와 같이 전사된 패턴화된 금속 박막(250)에 산소 플라즈마 처리를 하여 패턴화된 금속 박막(250)을 통하여 노출된 그래핀층(220)을 식각한 이후, 패턴화된 금속 박막(250)을 선택적으로 제거하면 도 3f 에 도시된 바와 같이 그래핀 메쉬(graphene mesh, 320)를 형성할 수 있다.
이후, 형성된 그래핀 나노 구조체인 그래핀 메쉬(320)를 촉매로 하여 실리콘층(210)에 대한 화학적 식각(Graphene-assisted chemical etching)을 통하여 실리콘 나노 구조체를 형성할 수 있다.
이하에서는 도 4a 내지 도 4c를 참고하여 그래핀 나노 구조체를 촉매로 한 화학적 식각 방법을 통하여 제작된 실리콘 나노 구조체를 설명하기로 한다.
도 4a 내지 도 4c는 본 발명의 실시예에 의한 그래핀을 촉매로 한 화학적 식각 방법을 통하여 제작된 실리콘 나노 구조체의 예를 도시한 것이다.
도 4a 내지 도 4c를 참고하면, 본 발명의 실시예에 따른 그래핀을 촉매로 한 실리콘의 화학적 식각 방법을 통하여 실리콘 나노 와이어(Si nanowire), 실리콘 원추 어레이(Si cone arrays), 실리콘 홀 어레이(Si hole arrays) 및 다공성 실리콘(Porous Si)와 같은 실리콘 나노 구조체를 제작할 수 있다.
실시예에 따르면, 도 3f의 n 형 실리콘층(210) 위에 제작한 그래핀 메쉬(320)를 50도 이상에서 부피피가 10:0.5인 불산 및 과산화수소수의 혼합 식각 용액에 넣으면 수 십분 후에 그래핀 메쉬(320)가 덮고 있는 부분이 식각 되고, 그래핀 메쉬(320)의 구멍에 남은 실리콘이 도 4a에 도시된 것과 같은 나노 와이어 또는 원추 어레이의 모습을 갖도록 제조할 수 있다.
또한, 다른 실시예에 따르면, 도 2d의 n 형 실리콘층(210) 위에 제작한 그래핀 나노닷(310)을 불산 및 과산화수소수의 혼합 식각 용액에 수 십분간 넣으면 그래핀 나노닷(310)이 선택적으로 식각되어 도 4b에 도시된 것과 같은 실리콘 홀 어레이를 제작할 수 있다.
또 다른 실시예에 따르면, 도 3f의 n 형 실리콘층(210) 위에 제작한 그래핀 메쉬(320)를 부피비가 1:1인 불산 및 과산화수소수의 혼합 식각 용액에 수분간 넣으면 실리콘 표면이 전체적으로 식각되어 도 4c에 도시된 것과 같은 다공성 실리콘을 제작할 수 있다.
실리콘 나노 구조체를 제작하기 위한 불산 및 과산화수소수의 혼합 식각 용액에서의 식각 시간은 30분 이상일 수 있고, 상기 식각 시간이 증가할 수록 실리콘층(210)의 식각 정도가 증가되어 기둥의 길이가 긴 실리콘 원추 어레이 및 더 깊은 구멍을 갖는 실리콘 홀 어레이과 같은 실리콘 나노 구초체를 형성할 수 있다.
도 5a 및 도 5b 는 본 발명의 실시예에 따른 그래핀 나노 구조체를 제작하기 위한 산소 플라즈마의 처리 전의 주사전자현미경(SEM, scanning electron microscopy) 이미지를 도시한 것이다.
도 5a는 도 2b에 도시된 바와 같은 그래핀층 상에 전사된 폴리스티렌 비드 어레이의 주사전자현미경 이미지를 도시한 것으로서, 도 5a를 참고하면, 폴리스티렌 비드 어레이가 육방 배열의 형태로 그래핀층 상에 전사된 것을 확인할 수 있다.
도 5b는 도 3에 도시된 바와 같은 양극산화 알루미늄(AAO)로부터 얻은 홀 배열을 갖는 금속(Au) 박막을 그래핀층 상에 전사한 주자전자현미경 이미지를 도시한 것으로서, 도 5b를 참고하면, 금속 박막인 금 박막이 육방 배열의 구멍 배열을 갖고 그래핀층 상에 잘 전사된 것을 확인할 수 있다.
도 6a 및 도 6b는 본 발명의 실시예에 따라 제작된 그래핀 나노 구조체에 대한 주사전자현미경(SEM, scanning electron microscopy) 이미지를 도시한 것이다.
도 6a은 도 5a의 그래핀층 상에 전사된 폴리스티렌 비드 어레이에 산소 플라즈마를 50W로 1분간 처리하고 폴리스티렌을 아세톤을 사용하여 선택적으로 제거한 후의 실리콘층 상의 그래핀 나노닷의 주사전자현미경 이미지를 도시한 것으로서, 실리콘층 상에 그래핀 나노닷이 잘 형성된 것을 확인할 수 있다.
도 6b는 도 5b에서의 그래핀층 상에 전사된 금 박막에 대하여 산소 플라즈마를 50W로 1분간 처리하고 처리하고, 금 박막을 테이프를 사용하여 선택적으로 제거한 후 실리콘 상에 그래핀 메쉬를 도시한 주사전자현미경 이미지로서, 실리콘층 상에 그래핀 메쉬가 잘 형성된 것을 확인할 수 있다.
도 7a 내지 도 7c는 본 발명의 실시예에 따른 그래핀을 촉매로 한 실리콘의 화학적 식각 방법을 통하여 제작된 실리콘 나노 구조체에 대한 주사전자현미경 이미지를 도시한 것이다.
도 7a는 직경이 약 50 nm인 실리콘 기둥 배열(Si pillars)에 대한 주사전자현미경 이미지로서, 평평한 실리콘층 표면에 형성된 기둥 배열을 확실히 구별할 수 있으며, 표면은 아주 매끄럽지 않고 다소 거친 것을 확인할 수 있다.
도 7b는 얕은 홀 배열(hole arrays)을 갖는 실리콘 홀 어레이에 대한 주사전자현미경 이미지이고, 도 7c는 실리콘층 표면에 형성된 수 nm 미만의 크기를 갖는 다공성 실리콘에 대한 주사전자현미경 이미지로서, 본 발명의 그래핀을 촉매로 한 실리콘의 화학적 식각 방법에 따르면, 식각 공정 처리 조건에 따라 다양한 형태의 실리콘 나노 구조체를 제작할 수 있다.
전술한 바와 같이 본 발명의 실시예에 따른 그래핀을 촉매로 한 실리콘의 화학적 식각 방법은 실리콘뿐만 아니라, 갈륨비소(GaAs) 및 인듐인(InP)와 같은 다양한 반도체에 대해서도 화학적 식각이 가능하다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
Claims (8)
- 실리콘층 상에 대면적 그래핀층을 적층하는 단계;상기 적층된 그래핀층 상에 나노 템플릿을 형성하고, 상기 형성된 나노 템플릿을 패턴 마스크로 하여 그래핀 나노 구조체를 형성하는 단계; 및상기 형성된 그래핀 나노 구조체를 촉매로 하여 상기 실리콘층에 대한 화학적 식각(Graphene-assisted chemical etching)을 통하여 실리콘 나노 구조체를 형성하는 단계를 포함하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제1항에 있어서,그래핀 나노 구조체를 형성하는 상기 단계는,상기 형성된 나노 템플릿에 산소 플라즈마 처리를 하여 상기 나노 템플릿을 통하여 노출된 그래핀층을 식각하여 상기 그래핀 나노 구조체를 형성하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제1항에 있어서,실리콘 나노 구조체를 형성하는 상기 단계는,상기 나노 템플릿을 제거한 이후, 상기 형성된 그래핀 나노 구조체를 촉매로 하고, 식각용액 환경에서 상기 실리콘층을 식각하여 상기 실리콘 나노 구조체를 형성하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제1항에 있어서,그래핀 나노 구조체를 형성시키는 상기 단계는,나노스피어 리소그래피(nanosphere lithography)를 이용하여 정렬된(ordered) 나노스피어 어레이(nanosphere array)를 상기 적층된 그래핀층 상에 형성하는 단계;상기 형성된 나노스피어 어레이에 산소 플라즈마 처리를 하여 상기 나노스피어 어레이를 통하여 노출된 그래핀층을 식각하여 그래핀 나노닷(graphene nanodos)을 형성하는 단계; 및상기 나노스피어 어레이를 제거하는 단계를 포함하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제4항에 있어서,실리콘 나노 구조체를 형성하는 상기 단계는,불산(HF) 및 과산화수소(H2O2)를 포함하는 식각용액 환경에서 상기 형성된 그래핀 나노닷을 촉매로 하여 상기 실리콘층을 식각함으로써 상기 실리콘 나노 구조체를 형성하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제1항에 있어서,그래핀 나노 구조체를 형성시키는 상기 단계는,양극산화 알루미늄 멤브레인(AAO membrane)을 준비하는 단계;상기 준비된 양극산화 알루미늄 멤브레인 상에 금속 박막을 증착하는 단계;상기 양극산화 알루미늄 멤브레인을 선택적으로 제거하여 형성되는 패턴화된 금속 박막을 상기 적층된 그래핀층 상에 전사시키는 단계;상기 전사된 패턴화된 금속 박막에 산소 플라즈마 처리를 하여 상기 패턴화된 금속 박막을 통하여 노출된 그래핀층을 식각하여 그래핀 메쉬(graphene mesh)를 형성하는 단계; 및상기 패턴화된 금속 박막을 선택적으로 제거하는 단계를 포함하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제6항에 있어서,실리콘 나노 구조체를 형성하는 상기 단계는,불산 및 과산화수소를 포함하는 식각용액 환경에서 상기 형성된 그래핀 메쉬를 촉매로 하여 상기 실리콘층을 식각함으로써 상기 실리콘 나노 구조체를 형성하는 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
- 제1항에 있어서,상기 실리콘 나노 구조체는실리콘 나노 와이어(Si nanowire), 실리콘 원추 어레이(Si cone arrays), 실리콘 홀 어레이(Si hole arrays) 및 다공성 실리콘(Porous Si) 중 어느 하나인 것을 특징으로 하는 그래핀을 촉매로 하는 실리콘의 화학적 식각 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0063142 | 2015-05-06 | ||
KR1020150063142A KR101671627B1 (ko) | 2015-05-06 | 2015-05-06 | 그래핀을 촉매로 한 실리콘의 화학적 식각 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016178452A1 true WO2016178452A1 (ko) | 2016-11-10 |
Family
ID=57217655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/005501 WO2016178452A1 (ko) | 2015-05-06 | 2015-06-02 | 그래핀을 촉매로 한 실리콘의 화학적 식각 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101671627B1 (ko) |
WO (1) | WO2016178452A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018145331A1 (zh) * | 2017-02-09 | 2018-08-16 | 江苏大学 | 一种高光致发光性能的石墨烯-多孔硅材料及制备方法 |
CN110828309A (zh) * | 2019-07-03 | 2020-02-21 | 杭州电子科技大学 | 一种二维材料刻蚀氧化硅 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101962006B1 (ko) | 2017-03-22 | 2019-03-25 | 한양대학교 에리카산학협력단 | 가스 센서 및 그 제조 방법 |
CN112354375B (zh) * | 2020-10-23 | 2021-12-28 | 北京大学 | 一种在石墨烯上引入纳米孔的解耦合刻蚀方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110123578A (ko) * | 2010-05-07 | 2011-11-15 | 국립대학법인 울산과학기술대학교 산학협력단 | 실리콘 나노 와이어의 제조방법 및 이를 이용한 리튬 이차 전지의 제조방법 |
KR20120015512A (ko) * | 2010-08-12 | 2012-02-22 | 재단법인대구경북과학기술원 | 실리콘 와이어 구조체의 제조방법 |
US20120107562A1 (en) * | 2008-12-01 | 2012-05-03 | The Trustees Of Columbia University In The City Of | Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same |
KR20130050167A (ko) * | 2011-11-07 | 2013-05-15 | 삼성전자주식회사 | 그래핀 양자점의 제조방법 및 이에 의하여 제조된 그래핀 양자점 |
KR20140113929A (ko) * | 2011-12-23 | 2014-09-25 | 넥세온 엘티디 | 에칭된 실리콘 구조, 에칭된 실리콘 구조의 형성방법 및 이의 용도 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9012882B2 (en) | 2010-02-01 | 2015-04-21 | The Regents Of The University Of California | Graphene nanomesh and method of making the same |
-
2015
- 2015-05-06 KR KR1020150063142A patent/KR101671627B1/ko active IP Right Grant
- 2015-06-02 WO PCT/KR2015/005501 patent/WO2016178452A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120107562A1 (en) * | 2008-12-01 | 2012-05-03 | The Trustees Of Columbia University In The City Of | Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same |
KR20110123578A (ko) * | 2010-05-07 | 2011-11-15 | 국립대학법인 울산과학기술대학교 산학협력단 | 실리콘 나노 와이어의 제조방법 및 이를 이용한 리튬 이차 전지의 제조방법 |
KR20120015512A (ko) * | 2010-08-12 | 2012-02-22 | 재단법인대구경북과학기술원 | 실리콘 와이어 구조체의 제조방법 |
KR20130050167A (ko) * | 2011-11-07 | 2013-05-15 | 삼성전자주식회사 | 그래핀 양자점의 제조방법 및 이에 의하여 제조된 그래핀 양자점 |
KR20140113929A (ko) * | 2011-12-23 | 2014-09-25 | 넥세온 엘티디 | 에칭된 실리콘 구조, 에칭된 실리콘 구조의 형성방법 및 이의 용도 |
Non-Patent Citations (1)
Title |
---|
KIM, JEONG GIL ET AL.: "Study on chemical etching of Si using graphene as catalyst", ABSTRACT OF KOREA PHYSICAL SOCIETY 2015 SPRING MEETING, 24 April 2015 (2015-04-24) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018145331A1 (zh) * | 2017-02-09 | 2018-08-16 | 江苏大学 | 一种高光致发光性能的石墨烯-多孔硅材料及制备方法 |
CN110828309A (zh) * | 2019-07-03 | 2020-02-21 | 杭州电子科技大学 | 一种二维材料刻蚀氧化硅 |
Also Published As
Publication number | Publication date |
---|---|
KR101671627B1 (ko) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102109380B1 (ko) | 절연기판상에 그래핀 단일층을 제조하는 방법 | |
Qing et al. | Towards large-scale graphene transfer | |
CN102656702B (zh) | 包含石墨烯基层的电子装置和/或其制造方法 | |
US8641912B2 (en) | Method for fabricating monolithic two-dimensional nanostructures | |
WO2011046415A2 (ko) | 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치 | |
WO2016178452A1 (ko) | 그래핀을 촉매로 한 실리콘의 화학적 식각 방법 | |
US9087692B2 (en) | Method for transferring a graphene layer | |
US9299940B2 (en) | Carbon nanotube network thin-film transistors on flexible/stretchable substrates | |
CN109234807A (zh) | 一种可拉伸晶体半导体纳米线及其制备方法 | |
US11760641B2 (en) | Method for manufacturing suspended graphene support film by selectively etching growth substrate | |
US20110200787A1 (en) | Suspended Thin Film Structures | |
Wang et al. | Fabrication techniques of graphene nanostructures | |
WO2015012516A1 (ko) | 실리콘 나노 와이어 어레이의 제조방법 | |
WO2017065530A1 (ko) | 그래핀 저온 전사방법 | |
CN109437095B (zh) | 一种刻蚀方向可控的硅纳米孔结构制作方法 | |
EP2991754B1 (en) | Method of manufacturing a partially freestanding two-dimensional crystal film and device comprising such a film | |
US10745816B2 (en) | Transfer of vertically aligned ultra-high density nanowires onto flexible substrates | |
KR20200077646A (ko) | 금속 촉매 화학 식각을 이용한 마이크로 및 나노 구조물 형성방법 | |
WO2013058559A1 (en) | Method of obtaining graphene | |
WO2010140789A9 (ko) | 나노 디바이스 | |
WO2022239945A1 (ko) | 구리 복합 구조체의 제조방법 및 이에 의해 제조된 구리 복합 구조체를 포함하는 에너지 저장 장치 및 라만 분광 기판 구조물 | |
KR20070109462A (ko) | 위치 선택적 수직형 나노선 성장 방법, 수직형 나노선을포함하는 반도체 나노 소자 및 이의 제조 방법 | |
WO2010093069A1 (ko) | 나노 구조물 제작방법 | |
WO2019132312A1 (ko) | 나노물질 리본 패터닝 방법 및 이에 의해 제조되는 나노물질 리본 패턴 | |
Irani et al. | Elastomeric stamp-assisted exfoliation and transfer of patterned graphene layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15891316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15891316 Country of ref document: EP Kind code of ref document: A1 |