WO2016178430A1 - 高強度鋼板及びその製造方法 - Google Patents

高強度鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016178430A1
WO2016178430A1 PCT/JP2016/063660 JP2016063660W WO2016178430A1 WO 2016178430 A1 WO2016178430 A1 WO 2016178430A1 JP 2016063660 W JP2016063660 W JP 2016063660W WO 2016178430 A1 WO2016178430 A1 WO 2016178430A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
martensite
less
strength steel
grains
Prior art date
Application number
PCT/JP2016/063660
Other languages
English (en)
French (fr)
Inventor
力 岡本
石田 欽也
嘉宏 諏訪
卓史 横山
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177033656A priority Critical patent/KR101987573B1/ko
Priority to PL16789566T priority patent/PL3293279T3/pl
Priority to MX2017014094A priority patent/MX2017014094A/es
Priority to EP16789566.3A priority patent/EP3293279B1/en
Priority to JP2017516621A priority patent/JP6471800B2/ja
Priority to ES16789566T priority patent/ES2784699T3/es
Priority to BR112017023881-0A priority patent/BR112017023881A2/ja
Priority to CN201680026467.0A priority patent/CN107614722B/zh
Priority to US15/571,619 priority patent/US11174529B2/en
Publication of WO2016178430A1 publication Critical patent/WO2016178430A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength steel sheet suitable for automobiles and a method for producing the same.
  • Dual Phase steel sheets DP steel sheets
  • TRIP transformation induced plasticity
  • Patent Document 1 describes a high-strength hot-rolled steel sheet aimed at improving fatigue strength, but it may be difficult to manufacture a member having a complicated shape.
  • An object of the present invention is to provide a high-strength steel sheet capable of improving local ductility while ensuring high strength, and a method for producing the same.
  • the present inventors have intensively studied to clarify the reason why the excellent local ductility cannot be obtained in the conventional high-strength steel sheet. As a result, it has been clarified that among the martensite grains contained in the conventional high-strength steel sheet, those at the grain boundary triple point are likely to become the starting point of cracking. It was also clarified that many of the martensite grains at the grain boundary triple point have a shape that easily receives stress concentration. Furthermore, in the conventional method for producing a high-strength steel sheet, ferrite, bainite, pearlite, or any combination thereof grows during cooling from the two-phase region of austenite and ferrite, and martensite grains are formed in the gaps. It has also become clear that the shape must be subject to stress concentration.
  • the inventor of the present application has come up with the following aspects of the invention as a result of further intensive studies based on such knowledge.
  • the ratio of the number of the bulge-type martensite grains to the number of the plurality of martensite grains on the grain boundary triple point of the parent phase is 70% or more
  • the total area of a plurality of martensite grains on the grain boundary triple points of the parent phase is defined as VM, and the total number of polygons formed by line segments connecting the two adjacent grain boundary triple points in the plurality of martensite grains.
  • a high-strength steel sheet characterized in that the area ratio represented by VM / A0 is 1.0 or more when the area is A0.
  • the surface layer of a depth from the surface up to 4 ⁇ D 0 steel plate according to the average particle diameter D S of the ferrite in the portion is equal to or less than 2 times the average particle diameter D 0 (1).
  • Nb 0.005% to 0.3%
  • Ti 0.005% to 0.3%
  • V 0.01% to 0.5%
  • the area fraction of pearlite in the steel sheet is 10% by area or less, the area fraction of unrecrystallized ferrite is 10% or less, and the average particle size of the pearlite grains is 10 ⁇ m or less,
  • the average grain diameter of ferrite in the region where the depth from the surface of the steel sheet is 1 ⁇ 4 of the thickness of the steel sheet is D 0
  • the average particle diameter D S is less than twice the average particle diameter D 0
  • Cooling to the second temperature starts within 8 seconds after the temperature of the steel sheet reaches the first temperature,
  • the steel sheet is in mass%, % By mass C: 0.03% to 0.35%, Si: 0.01% to 2.0%, Mn: 0.3% to 4.0%, Al: 0.01% to 2.0%, P: 0.10% or less, S: 0.05% or less, N: 0.010% or less, Cr: 0.
  • the step of preparing the steel sheet includes The method for producing a high-strength steel sheet according to (8), comprising a step of hot rolling and cooling the slab.
  • the step of preparing the steel sheet includes A process of hot rolling a slab to obtain a hot rolled steel sheet, Cold rolling, annealing and cooling the hot-rolled steel sheet; (8) The manufacturing method of the high-strength steel plate according to (8).
  • the rolling reduction in the cold rolling is 30% or more
  • the annealing temperature is 730 ° C. to 900 ° C.
  • the high strength according to (11), wherein an average cooling rate from the annealing temperature to 600 ° C. in the cooling during the step of preparing the steel sheet is 1.0 ° C./second to 20 ° C./second.
  • Nb 0.005% to 0.3%
  • Ti 0.005% to 0.3%
  • V 0.01% to 0.5%
  • FIG. 1A is a diagram showing an example of the shape of martensite grains.
  • FIG. 1B is a diagram showing another example of the shape of martensite grains.
  • FIG. 2 is a diagram showing martensite grain formation sites.
  • FIG. 3 is a diagram showing various martensite grain shapes.
  • FIG. 4A is a diagram showing an example of the relationship between the area of martensite grains and the area of polygons.
  • FIG. 4B is a diagram showing another example of the relationship between the area of martensite grains and the area of polygons.
  • FIG. 4C is a diagram showing still another example of the relationship between the area of martensite grains and the area of polygons.
  • FIG. 5 is a diagram showing the inclusion relationship of martensite grains.
  • FIG. 5 is a diagram showing the inclusion relationship of martensite grains.
  • FIG. 6A is a diagram showing changes in the microstructure.
  • FIG. 6B is a diagram showing changes in the microstructure following FIG. 6A.
  • FIG. 6C is a diagram showing changes in the microstructure following FIG. 6B.
  • FIG. 7 is a diagram showing the relationship between tensile strength and elongation in the first experiment.
  • FIG. 8 is a diagram showing the relationship between the tensile strength and the drawing in the first experiment.
  • FIG. 9 is a diagram showing the relationship between tensile strength and elongation in the second experiment.
  • FIG. 10 is a diagram showing the relationship between the tensile strength and the drawing in the second experiment.
  • the high-strength steel sheet manufactured by the present inventors by cooling with a run-out table after hot rolling, and the high-strength steel sheet manufactured by annealing after cold rolling (hereinafter sometimes referred to as cold-rolled sheet annealing) and cooling.
  • the ferrite, bainite or pearlite crystal grains 111, 112, and 113 grow in such a way as to bulge outward, and these grain boundary triple points are observed. It was revealed that martensite grains 110 were formed on the top.
  • the grain boundary B1 between the martensite grain 110 and the crystal grain 111 is seen from the martensite grain 110, and the grain boundary triple point T31 of the martensite grain 110, the crystal grain 113 and the crystal grain 111 and the martensite grain.
  • 110, the crystal grain 111, and the grain boundary triple point T12 of the crystal grain 112 swell to the martensite grain 10 side from the line segment L1.
  • Grain boundary B2 between martensite grain 110 and crystal grain 112 is more martensitic than line segment L2 connecting grain boundary triple point T12 and grain boundary triple point T23 of martensite grain 110, crystal grain 112, and crystal grain 113. It swells to the 10 side.
  • the grain boundary B3 between the martensite grain 110 and the crystal grain 113 swells to the martensite grain 110 side from the line segment L3 connecting the grain boundary triple point T23 and the grain boundary triple point T31.
  • the grain boundaries of the martensite grains 110 are recessed, and stress tends to concentrate near the grain boundary triple points T12, T23, and T31, and cracks occur from this point. Cheap. For this reason, it is difficult to obtain excellent local ductility.
  • the microstructure as shown in FIG. 1B is suitable for improving the local ductility. It became clear that there was. That is, it became clear that the microstructure in which the martensite grains 210 bulge outward and is surrounded by the host phase crystal grains 211, 212, and 213 such as ferrite is suitable. In this microstructure, the grain boundary B1 between the martensite grain 210 and the crystal grain 211 is viewed from the martensite grain 210, and the grain boundary triple point T31 of the martensite grain 210, the crystal grain 213 and the crystal grain 211 and the martensite grain.
  • the grain boundary B2 between the martensite grain 210 and the crystal grain 212 connects the grain boundary triple point T12 and the grain boundary triple point T23 of the martensite grain 210, the crystal grain 212, and the crystal grain 213 when viewed from the martensite grain 210. It swells to the grain 212 side from the line segment L2.
  • Grain boundary B3 between martensite grain 210 and crystal grain 213 swells closer to grain 213 than line segment L3 connecting grain boundary triple point T23 and grain boundary triple point T31, as viewed from martensite grain 210.
  • the grain boundaries of the martensite grains 210 swell so that they face outward, and stress is not easily concentrated in the vicinity of the grain boundary triple points T12, T23, and T31. Local ductility can be obtained.
  • a high-strength steel plate having such a microstructure can be manufactured by the method described later.
  • the chemical composition of the high-strength steel plate according to the embodiment of the present invention and the steel used for manufacturing the high-strength steel plate will be described. Although the details will be described later, the high-strength steel plate according to the embodiment of the present invention is manufactured through hot rolling, cooling, and reheating, or through hot rolling, cold rolling, cold rolled sheet annealing, cooling, and heat treatment. Or manufactured. Therefore, the chemical composition of the high-strength steel sheet and steel takes into account not only the properties of the high-strength steel sheet but also these treatments. In the following description, “%”, which is a unit of the content of each element contained in a high-strength steel sheet and steel, means “mass%” unless otherwise specified.
  • the high-strength steel sheet according to the present embodiment and the steel used for manufacturing the same are in mass%, C: 0.03% to 0.35%, Si: 0.01% to 2.0%, Mn: 0.3% To 4.0%, Al: 0.01% to 2.0%, P: 0.10% or less, S: 0.05% or less, N: 0.010% or less, Cr: 0.0% to 3 0.0%, Mo: 0.0% to 1.0%, Ni: 0.0% to 3.0%, Cu: 0.0% to 3.0%, Nb: 0.0% to 0.3% %, Ti: 0.0% to 0.3%, V: 0.0% to 0.5%, B: 0.0% to 0.1%, Ca: 0.00% to 0.01%, Mg: 0.00% to 0.01%, Zr: 0.00% to 0.01%, rare earth elements (rare earth metal: REM): 0.00% to 0.01%, and the balance: Fe and impurities It has a chemical composition represented by Examples of the impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process. Sn and
  • C (C: 0.03% to 0.35%) C contributes to improvement in strength through strengthening of martensite.
  • the C content is less than 0.03%, sufficient strength, for example, a tensile strength of 500 N / m 2 or more cannot be obtained. Therefore, the C content is 0.03% or more.
  • the C content exceeds 0.35%, the area fraction and size of pearlite in the initial structure after hot rolling and cooling increase, and the area of pearlite and island-like cementite in the microstructure after reheating. The fraction tends to be high and sufficient local ductility cannot be obtained. Therefore, the C content is 0.35% or less.
  • the C content is desirably 0.25% or less, and in order to obtain excellent hole expandability, the C content is desirably 0.1% or less.
  • Si 0.01% to 2.0%
  • Si is a ferrite-forming element and promotes the formation of ferrite during cooling after hot rolling. Si contributes to the improvement of workability by suppressing the formation of harmful carbides, or contributes to the improvement of strength through solid solution strengthening. If the Si content is less than 0.01%, these effects cannot be obtained sufficiently. Therefore, the Si content is 0.01% or more.
  • the Si content is desirably 0.3% or more.
  • the Si content exceeds 2.0%, chemical conversion property and spot weldability deteriorate. Therefore, the Si content is 2.0% or less.
  • Mn 0.3% to 4.0% Mn contributes to the improvement of strength. If the Mn content is less than 0.3%, sufficient strength cannot be obtained. Therefore, the Mn content is 0.3% or more. On the other hand, if the Mn content exceeds 4.0%, microsegregation and macrosegregation easily occur, and the local ductility and hole expandability deteriorate. Therefore, the Mn content is 4.0% or less.
  • Al acts as a deoxidizer. If the Al content is less than 0.01%, oxygen may not be sufficiently eliminated. Therefore, the Al content is 0.01% or more. Al, like Si, promotes the formation of ferrite or suppresses the formation of harmful carbides and contributes to the improvement of workability. Further, Al does not affect the chemical conversion property as much as Si. Therefore, Al is useful for achieving both ductility and chemical conversion properties. However, if the Al content exceeds 2.0%, the effect of improving ductility is saturated, or the chemical conversion property and spot weldability are deteriorated. Therefore, the Al content is 2.0% or less. In order to obtain better chemical conversion property, the Al content is desirably 1.0% or less.
  • P 0.10% or less
  • P is not an essential element but is contained as an impurity in steel, for example. Since P deteriorates weldability, workability, and toughness, the lower the P content, the better. In particular, when the P content exceeds 0.10%, the weldability, workability, and toughness are significantly reduced. Therefore, the P content is 0.10% or less. In order to obtain better workability, the P content is desirably 0.03% or less. Reduction of the P content is costly, and if it is attempted to reduce it to less than 0.001%, the cost increases remarkably. For this reason, the P content may be 0.001% or more. P improves corrosion resistance when Cu is contained.
  • S is not an essential element but is contained as an impurity in steel, for example.
  • S forms sulfides such as MnS, becomes a starting point of cracking, and lowers local ductility and hole expandability. Therefore, the lower the S content, the better.
  • the S content exceeds 0.05%, the local ductility and hole expandability are significantly reduced. Therefore, the S content is 0.05% or less. Reduction of the S content is costly, and if it is attempted to reduce it to less than 0.0005%, the cost increases remarkably. For this reason, S content is good also as 0.0005% or more.
  • N is not an essential element but is contained as an impurity in steel, for example. N causes stretcher strain and degrades workability. When N contains Ti and Nb, N forms (Ti, Nb) N and becomes the starting point of cracking. N causes a rough end surface at the time of punching, or greatly reduces the local ductility. Therefore, the lower the N content, the better. In particular, the above phenomenon is remarkable when the N content exceeds 0.010%. Therefore, the N content is 0.010% or less. Reduction of the N content is costly, and if it is attempted to reduce it to less than 0.0005%, the cost increases remarkably. For this reason, the N content may be 0.0005% or more.
  • Cr, Mo, Ni, Cu, Nb, Ti, V, B, Ca, Mg, Zr, and REM are not essential elements, but are optional elements that may be appropriately contained in steel plates and steels up to a predetermined amount. .
  • Cu contributes to improvement in strength. Cu improves the corrosion resistance when P is contained. Therefore, Cu may be contained. In order to sufficiently obtain these effects, the Cu content is desirably 0.05% or more. On the other hand, if the Cu content exceeds 3.0%, the hardenability becomes excessive and the ductility decreases. Therefore, the Cu content is 3.0% or less. Ni facilitates the formation of martensite through improved hardenability. Ni contributes to suppression of hot cracking that is likely to occur when Cu is contained. Therefore, Ni may be contained. In order to obtain these effects sufficiently, the Ni content is desirably 0.05% or more.
  • the Ni content exceeds 3.0%, the hardenability becomes excessive and the ductility is lowered. Therefore, the Ni content is 3.0% or less.
  • Mo suppresses the formation of cementite and suppresses the formation of pearlite in the initial structure. Mo is also effective in forming martensite grains during reheating. Therefore, Mo may be contained. In order to obtain these effects sufficiently, the Mo content is desirably 0.05% or more.
  • the Mo content exceeds 1.0%, the ductility decreases. Therefore, the Mo content is 1.0% or less.
  • Cr like Mo, suppresses the formation of cementite and suppresses the formation of pearlite in the initial structure. Therefore, Cr may be contained. In order to sufficiently obtain this effect, the Cr content is desirably 0.05% or more. On the other hand, if the Cr content exceeds 3.0%, the ductility decreases. Therefore, the Cr content is 3.0%.
  • Nb 0.0% to 0.3%, Ti: 0.0% to 0.3%, V: 0.0% to 0.5%)
  • Nb, Ti, and V contribute to the improvement of strength by forming carbides. Therefore, Nb, Ti or V or any combination thereof may be contained.
  • the Nb content is desirably 0.005% or more
  • the Ti content is desirably 0.005% or more
  • the V content is desirably 0.01% or more.
  • the Nb content is 0.3% or less
  • the Nb content is 0.3% or less
  • the V content is 0.5% or less.
  • B (B: 0.0% to 0.1%) B contributes to improvement in strength. Therefore, B may be contained. In order to sufficiently obtain this effect, the B content is desirably 0.0001% or more. On the other hand, if the B content exceeds 0.1%, the hardenability becomes excessive and the ductility is lowered. Therefore, the B content is 0.1% or less.
  • Ca, Mg, Zr, and REM control the shape of sulfide inclusions and are effective in improving local ductility. Therefore, Ca, Mg, Zr, REM, or any combination thereof may be included.
  • the Ca content is desirably 0.0005% or more
  • the Mg content is desirably 0.0005% or more
  • the Zr content is desirably 0.0005% or more
  • REM is contained. The amount is desirably 0.0005% or more.
  • the Ca content is over 0.01%, the Mg content is over 0.01%, the Zr content is over 0.01%, or the REM content is over 0.01%. Then, ductility and local ductility deteriorate. Therefore, the Ca content is 0.01% or less, the Mg content is 0.01% or less, the Zr content is 0.01% or less, and the REM content is 0.01% or less.
  • REM rare earth metal
  • REM content means the total content of these 17 elements.
  • Lanthanoids are added industrially, for example, in the form of misch metal.
  • the high-strength steel sheet according to the embodiment of the present invention has a microstructure represented by area%, martensite: 5% or more, ferrite: 20% or more, and pearlite: 5% or less.
  • Martensite contributes to the improvement of strength in Dual Phase steel (DP steel).
  • the area fraction of martensite is less than 5%, sufficient strength, for example, tensile strength of 500 N / m 2 or more cannot be obtained. Therefore, the area fraction of martensite is 5% or more. In order to obtain better strength, the martensite area fraction is desirably 10% or more. On the other hand, if the area fraction of martensite exceeds 60%, sufficient elongation may not be obtained. Accordingly, the area fraction of martensite is desirably 60% or less.
  • Ferrite contributes to the improvement of elongation in DP steel. If the area fraction of ferrite is less than 20%, sufficient elongation cannot be obtained. Therefore, the area fraction of ferrite is 20% or more. In order to obtain better elongation, the area fraction of ferrite is desirably 30% or more.
  • Pearlite is not an essential phase but may be produced in the manufacturing process of high-strength steel sheets. Since pearlite reduces the elongation and hole expansibility of DP steel, the lower the pearlite area fraction, the better. In particular, when the area fraction of pearlite exceeds 5%, the elongation and hole expansibility are markedly reduced. Therefore, the area fraction of pearlite is 5% or less.
  • the balance of the microstructure is, for example, bainite, retained austenite, or both.
  • the average particle diameter of martensite is 4 ⁇ m or less in terms of the equivalent circle diameter, and the ratio of the number of swollen martensite grains to the number of martensite grains on the grain boundary triple point of the parent phase is 70% or more.
  • the predetermined area ratio is 1.0 or more.
  • the average particle diameter of martensite is 4 ⁇ m or less in terms of equivalent circle diameter.
  • the average particle diameter of martensite is preferably an equivalent circle diameter of 3 ⁇ m or less.
  • the bulging-type martensite grains are the martensite grains on one grain boundary triple point of the parent phase, and adjacent ones of the grain boundary triple points formed by the martensite grains and the parent phase crystal grains. Martensite in which at least one of the connecting grain boundaries has an outwardly convex curvature with respect to the line connecting the two grain boundary triple points, and the martensite grain is on one grain boundary triple point of the parent phase A grain. As shown in FIG.
  • the high-strength steel sheet includes martensite grains 301 on the triple boundary of the parent phase and martensite grains 302 on the grain boundary between the two crystal grains of the parent phase.
  • Type martensite grains belong to martensite grains 301.
  • the martensite grains on the grain boundary triple point include martensite grains 303 formed by contacting martensite grains on two or more grain boundary triple points with each other. It does not belong to the swollen martensite grain because it is not “one grain boundary triple point”.
  • martensite grains 401, 402, 403, and 404 connect adjacent ones of the grain boundary triple points formed by the martensite grains and the crystal grains of the parent phase.
  • At least one of the grain boundaries has an outwardly convex curvature with respect to a line segment connecting the two grain boundary triple points, and therefore belongs to a bulging martensite grain.
  • the martensite grains 405 and 406 all of the grain boundaries that connect adjacent ones of the grain boundary triple points formed by the martensite grains and the parent phase crystal grains connect the two grain boundary triple points. Since it does not have an outwardly convex curvature with respect to the line segment, it does not belong to the swollen martensite grain.
  • the ratio of the number of bulge-type martensite grains the less stress concentration occurs and the better the local ductility. If the ratio of the number of swollen martensite grains to the number of martensite grains on the grain boundary triple point of the parent phase is less than 70%, the ratio of martensite grains that are prone to stress concentration is high, and excellent local ductility is obtained. Absent. Accordingly, the ratio of the number of swollen martensite grains to the number of martensite grains on the triple boundary point of the parent phase is 70% or more.
  • the bulge-type martensite grains may include those in which the proportion of convex portions having an outwardly convex curvature with respect to the line segment is greater than or equal to the proportion of concave portions having an inwardly convex curvature.
  • the former is easier to contribute to the improvement of local ductility than the latter, and the higher the area fraction of the latter, the lower the local ductility.
  • the area VM1 of the swollen martensite grain is composed of a line segment connecting two adjacent grain boundary triple points in the swollen martensite grain. It is not less than the polygonal area A01.
  • the area VM2 of the bulge-type martensite grain is composed of a line segment connecting two adjacent grain boundary triple points in the bulge-type martensite grain. Is smaller than the polygonal area A02.
  • the martensite grains on a plurality of grain boundary triple points of the parent phase such as the martensite grains 303 in FIG. 2 include the martensite as shown in FIG. 4C.
  • the area VM3 of the site grain is smaller than the polygonal area A03 constituted by the line segment connecting two adjacent grain boundary triple points in the martensite grain.
  • the total area of the martensite grains on a plurality of, for example, 200 or more grain boundary triple points is defined as VM, and the polygon formed by line segments connecting two adjacent grain boundary triple points in the plurality of martensite grains.
  • the total area of A0 is A0
  • the area ratio represented by VM / A0 is less than 1.0, it is difficult to obtain sufficient local ductility even if the proportion of bulging martensite grains is 70% or more. Therefore, the area ratio represented by VM / A0 is 1.0 or more.
  • FIG. 5 shows the inclusion relationship of martensite grains in the present embodiment.
  • the ratio of the number of swollen martensite grains (group B) to the number of martensite grains (group A) on the triple boundary point of the parent phase is 70% or more, and About the martensite grain (group A) on importance, the area ratio represented by VM / A0 is 1.0 or more.
  • a tensile strength of 500 N / mm 2 or more and a diaphragm RA of 0.5 or less can be obtained.
  • a product (TS ⁇ EL) indicating a balance between the tensile strength TS and the elongation EL a value of 18000 N / mm 2 ⁇ % or more can be obtained.
  • the local ductility outstanding compared with the conventional high strength steel plate with comparable tensile strength can be obtained.
  • the high-strength steel plate may include a hot dip galvanized layer.
  • the hot dip galvanized layer is included, excellent corrosion resistance can be obtained.
  • the plating adhesion amount is not particularly limited, but in order to obtain particularly good corrosion resistance, the plating adhesion amount is desirably 5 g / m 2 or more per side.
  • the hot-dip galvanized layer preferably contains, for example, Zn and Al, and the Fe content is 13% or less.
  • a hot-dip galvanized layer having an Fe content of 13% or less is excellent in plating adhesion, formability, and hole expandability.
  • the adhesiveness of the hot dip galvanized layer itself is low, and the hot dip galvanized layer may break or fall off during the processing of a high-strength steel sheet and adhere to the mold. Yes, it can cause wrinkles.
  • the hot dip galvanized layer may be alloyed. Since the alloyed hot-dip galvanized layer incorporates Fe from the mother steel plate, excellent spot weldability and paintability can be obtained.
  • the Fe content of the alloyed hot dip galvanized layer is preferably 7% or more. This is because if the Fe content is less than 7%, the effect of improving spot weldability may be insufficient. Note that the Fe content of the non-alloyed hot-dip galvanized layer may be less than 7% as long as it is less than 13%, and good plating adhesion, formability, and even if substantially 0%. Hole expandability is obtained.
  • the high-strength steel sheet may include an upper plating layer on the hot-dip galvanized layer.
  • the upper plating layer When the upper plating layer is included, excellent paintability and weldability can be obtained.
  • surface treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, and weldability improvement treatment may be applied to the high-strength steel plate including the hot-dip galvanized layer.
  • FIG. 6A is diagrams showing changes in the microstructure.
  • the microstructure (initial structure) of the steel sheet obtained through hot rolling and subsequent cooling is such that the area fraction of pearlite is low and the average particle size of pearlite is small.
  • the remainder of the initial structure is, for example, ferrite ( ⁇ ) (FIG. 6A).
  • ferrite
  • austenite ⁇ is grown on the ferrite grain boundary triple point (FIG.
  • a steel plate is obtained by hot rolling and subsequent cooling.
  • the microstructure (initial structure) of the steel sheet is such that the area fraction of pearlite is 10% or less and the average particle size of pearlite is 10 ⁇ m or less in terms of equivalent circle diameter.
  • Pearlite contains cementite, and the cementite dissolves during reheating and inhibits the formation of austenite. If the area fraction of pearlite exceeds 10%, a sufficient amount of austenite cannot be obtained during reheating, and as a result, it is difficult to make the area fraction of martensite in a high-strength steel sheet 5% or more. It is. Therefore, the area fraction of pearlite is 10% or less.
  • the average particle diameter of pearlite is 10 ⁇ m or less in terms of equivalent circle diameter.
  • the balance of the initial structure of the steel sheet is not particularly limited, but is preferably ferrite, bainite, martensite, or any combination thereof.
  • the area fraction of one of these is preferably 90% or more. This is to facilitate the growth of austenite from the grain boundary triple point during reheating.
  • the average grain size of the crystal grains of ferrite, bainite, martensite, or any combination thereof is desirably 10 ⁇ m or less in terms of equivalent circle diameter. This is to reduce the martensite grains in the high-strength steel plate.
  • the bulk cementite may be contained in the remainder of the initial structure of the steel sheet, the area fraction is desirably 1% or less in order to inhibit the formation of austenite during reheating.
  • the ferrite grains in the surface layer portion of the steel sheet are preferably small. Ferrite does not transform during reheating and remains in the high-strength steel sheet.
  • the high-strength steel plate is thicker, and the distortion of the surface layer portion in forming such as bending, hole expansion, and overhanging tends to be larger than the internal distortion. Therefore, when the ferrite grain of the surface layer part of a high-strength steel plate is large, a crack may arise in a surface layer part and local ductility may fall.
  • the conditions for hot rolling are not particularly limited, but in the final two stands of finish rolling, the temperature is preferably set to “Ar3 transformation point + 10 ° C.” to 1000 ° C., and the total rolling reduction is preferably 15% to 45%. %.
  • the thickness after hot rolling is, for example, 1.0 mm to 6.0 mm.
  • the rolling temperature in the final 2 stands is any one and the Ar3 point is less than + 10 ° C, the surface coarse layer is likely to be formed. Accordingly, the rolling temperature in the last two stands is desirably Ar3 point + 10 ° C. or higher in any case. On the other hand, if the rolling temperature is higher than 1000 ° C., the average particle size of pearlite in the initial structure is less likely to be 10 ⁇ m or less in terms of the equivalent circle diameter. Therefore, the rolling temperature in the final two stands is desirably 1000 ° C. or lower in any case.
  • the total rolling reduction of the last two stands is desirably 15% or more, and more desirably 20% or more.
  • the total rolling reduction of the last two stands is desirably 45% or less, and more desirably 40% or less.
  • the cooling stop temperature exceeds 550 ° C.
  • the area fraction of pearlite exceeds 10%.
  • This cooling is performed by, for example, a runout table (ROT).
  • ROT runout table
  • part or all of austenite is transformed into ferrite during this cooling.
  • the cooling conditions are not particularly limited, and part or all of austenite may be transformed into bainite, martensite, or both. In this way, a steel sheet having a predetermined initial structure is obtained.
  • the steel plate is wound up.
  • the winding temperature is 550 ° C. or lower.
  • the area fraction of pearlite exceeds 10%.
  • the steel sheet is heated to a first temperature of 770 ° C. to 820 ° C. at an average heating rate of 3 ° C./second to 120 ° C./second, and a first cold rolling rate of 300 ° C. or less at an average cold rolling rate of 60 ° C./second or more. Cool to a temperature of 2. Cooling to the second temperature starts within 8 seconds after the temperature of the steel sheet reaches the first temperature. As described above, austenite grains that swell outward are grown during reheating, and martensite grains having the same shape are obtained.
  • the average heating rate is less than 3 ° C./second, austenite grows excessively or austenite grains are bonded to each other during heating, making it difficult to obtain desired martensite in the high-strength steel sheet. Therefore, the average heating rate is 3 ° C./second or more. On the other hand, if the average heating rate exceeds 120 ° C./sec, carbide remains and a sufficient amount of austenite cannot be obtained. Therefore, the average heating rate is 120 ° C./second or less.
  • the ultimate temperature of the reheating (first temperature) is less than 770 ° C.
  • the initial structure contains bainite, martensite, or both, they are difficult to transform into austenite, and the desired strength of the high-strength steel sheet It becomes difficult to obtain martensite. Therefore, the ultimate temperature is 770 ° C. or higher. That is, in this embodiment, when the initial structure contains bainite, martensite, or both, they are not tempered but transformed into austenite.
  • the ultimate temperature exceeds 820 ° C., the ferrite is transformed into austenite, and it becomes difficult to obtain desired martensite in the high-strength steel sheet. Therefore, the ultimate temperature is 820 ° C. or less.
  • the average cooling rate is 60 ° C./second or more.
  • the average cooling rate exceeds 200 ° C./sec, it is difficult to adversely affect the mechanical properties of the steel sheet, but it is difficult to control the shape of the steel sheet due to an increased load on the equipment and a decrease in temperature uniformity. It may become. Therefore, the average cooling rate is preferably 200 ° C./second or less.
  • the cooling stop temperature (second temperature) exceeds 300 ° C., quenching is not sufficient and it is difficult to obtain desired martensite in a high-strength steel sheet. Therefore, the cooling stop temperature is set to 300 ° C. or less.
  • the holding time until the start of cooling is less than 8 seconds. In order to obtain particularly excellent local ductility, the holding time is desirably 5 seconds or less.
  • the high-strength steel plate according to this embodiment can be manufactured.
  • the high-strength steel plate manufactured using the steel plate including the surface layer coarse-grained layer includes the surface-layer coarse-grained layer
  • the high-strength steel plate manufactured using the steel plate not including the surface-layer coarse-grained layer is
  • the average grain size of ferrite in the region where the depth from the surface is 1/4 of the thickness of the high-strength steel sheet is D 0
  • the average of ferrite in the surface layer portion where the depth from the surface is 4 ⁇ D 0 particle size D S is less than twice the average particle diameter D 0.
  • the manufacturing method of the high-strength steel plate according to the embodiment of the present invention will be described.
  • hot rolling, cold rolling, cold rolled sheet annealing, cooling and reheating of the slab having the above chemical composition are performed in this order.
  • the microstructure (initial structure) of the steel sheet obtained through cold-rolled sheet annealing and subsequent cooling is such that the area fraction of pearlite is low and the average particle diameter of pearlite is small.
  • the remainder of the initial structure is, for example, ferrite ( ⁇ ) (FIG. 6A).
  • the temperature of the steel sheet is raised to the two-phase region, and austenite ( ⁇ ) is grown on the ferrite grain boundary triple point (FIG. 6B).
  • Austenite grown on the grain boundary triple point has a shape bulging outward. Then, austenite is transformed into martensite (M) by rapid cooling from the two-phase region (FIG. 6C). As a result, martensite grains having an outwardly bulging shape are obtained.
  • Hot rolling In the hot rolling, a slab is hot rolled to obtain a hot rolled steel sheet having a thickness of 1.0 mm to 6.0 mm, for example.
  • a steel sheet is obtained by cold rolling of the hot-rolled steel sheet, cold-rolled sheet annealing, and subsequent cooling.
  • the microstructure (initial structure) of the steel sheet has an area fraction of pearlite of 10% or less, an average particle size of pearlite of 10 ⁇ m or less in equivalent circle diameter, and an area fraction of unrecrystallized ferrite of 10% or less.
  • Pearlite contains cementite, and the cementite dissolves during reheating and inhibits the formation of austenite.
  • the area fraction of pearlite exceeds 10%, a sufficient amount of austenite cannot be obtained during reheating, and as a result, it is difficult to make the area fraction of martensite in a high-strength steel sheet 5% or more. It is. Therefore, the area fraction of pearlite is 10% or less. Even if the average particle diameter of pearlite is equivalent to a circle and exceeding 10 ⁇ m, a sufficient amount of austenite cannot be obtained during reheating, and as a result, the martensite area fraction in the high-strength steel sheet may be 5% or more. Have difficulty. In addition, when the average particle size of pearlite is equivalent to a circle and exceeds 10 ⁇ m, austenite grows in the pearlite and may be bonded.
  • the shape of austenite grains obtained by combining a plurality of austenite is unlikely to have a shape bulging outward. Therefore, the average particle diameter of pearlite is 10 ⁇ m or less in terms of equivalent circle diameter. If the area fraction of non-recrystallized ferrite exceeds 10%, sufficient local ductility cannot be obtained. Therefore, the area fraction of non-recrystallized ferrite is 10% or less.
  • the remainder of the initial structure of the steel sheet is not particularly limited, it is preferably ferrite, bainite, martensite, or any combination thereof as in the first example, and in particular, an area fraction of one of these is desirable. 90% or more.
  • the average grain diameter of ferrite, bainite, martensite, or any combination thereof is desirably 10 ⁇ m or less in terms of equivalent circle diameter.
  • bulk cementite may be contained in the remainder of the initial structure of the steel sheet, the area fraction is desirably 1% or less.
  • the conditions for cold rolling are not particularly limited, but desirably the rolling reduction is 30% or more.
  • the rolling reduction is 30% or more.
  • the crystal grains contained in the initial structure can be made fine, and the average grain size of martensite in the high-strength steel sheet can be easily set to 3 ⁇ m or less.
  • the thickness after cold rolling is, for example, 0.4 mm to 3.0 mm.
  • the conditions for cold-rolled sheet annealing are not particularly limited, but preferably the annealing temperature is 730 ° C. to 900 ° C., followed by cooling to 600 ° C. at an average rate of 1.0 ° C./second to 20 ° C./second.
  • the annealing temperature is desirably 730 ° C. or higher.
  • the annealing temperature exceeds 900 ° C., the average grain size of pearlite in the initial structure is less than 10 ⁇ m in terms of the equivalent circle diameter, and the average grain size of martensite in the high-strength steel sheet tends to be large. Therefore, the annealing temperature is desirably 900 ° C. or lower.
  • the average cooling rate up to 600 ° C is less than 1.0 ° C / second, the area fraction of pearlite in the initial structure may exceed 10%, or the average particle size of pearlite may exceed 10 ⁇ m in terms of equivalent circle diameter. There is. Therefore, this average cooling rate is desirably 1.0 ° C./second or more.
  • the average cooling rate up to 600 ° C. exceeds 20 ° C./second, the initial structure is not stable, and a desired initial structure may not be obtained. Therefore, this average cooling rate is desirably 20 ° C./second or less.
  • the cooling stop temperature exceeds 600 ° C
  • the area fraction of pearlite exceeds 10%.
  • part or all of austenite is transformed into ferrite during this cooling.
  • the cooling conditions are not particularly limited, and part or all of austenite may be transformed into bainite, martensite, or both. In this way, a steel sheet having a predetermined initial structure is obtained.
  • Reheating is performed under the same conditions as in the first example. That is, the steel sheet is heated to a first temperature of 770 ° C. to 820 ° C. at an average heating rate of 3 ° C./sec to 120 ° C./sec, and a second temperature of 300 ° C. or less at an average cold rolling rate of 60 ° C./sec or more. Cool to temperature. Cooling to the second temperature starts within 8 seconds after the temperature of the steel sheet reaches the first temperature. As described above, austenite grains that swell outward are grown during reheating, and martensite grains having the same shape are obtained.
  • the high-strength steel plate according to this embodiment can be manufactured.
  • the microstructure of the high-strength steel sheet manufactured using a steel sheet having an area fraction of non-recrystallized ferrite exceeding 10% includes non-recrystallized ferrite in an area fraction exceeding 10%.
  • the area fraction of unrecrystallized ferrite is 10% or less.
  • the steel sheet since the steel sheet is prepared by hot rolling and subsequent cooling, the steel sheet does not contain more than 10% of non-recrystallized ferrite.
  • the steel sheet since the steel sheet is prepared by cold rolling of the hot-rolled steel sheet, cold-rolled sheet annealing, and subsequent cooling, the surface layer coarse-grained layer is not included in the steel sheet.
  • a steel plate or a high-strength steel plate may be immersed in a plating bath to form a plating layer, or after forming the plating layer, an alloying treatment at 600 ° C. or less may be performed.
  • an alloying treatment at 600 ° C. or less may be performed.
  • a hot dip galvanized layer may be formed, and an alloying process may be performed thereafter.
  • An upper plating layer may be formed on the hot dip galvanizing layer.
  • surface treatment such as chromate treatment, phosphate treatment, lubricity improvement treatment and weldability improvement treatment may be performed. Pickling and skin pass rolling may be performed.
  • the area fraction of each phase and structure can be measured, for example, by the following method.
  • high-strength steel sheets are subjected to repeller etching or nital etching, observation using an optical microscope or scanning electron microscope (SEM), identification of each phase and structure, and image analysis equipment, etc.
  • SEM scanning electron microscope
  • the observation target region is, for example, a region whose depth from the surface of the high-strength steel plate is 1 ⁇ 4 of the thickness of the high-strength steel plate.
  • the measurement is performed for 200 or more martensite grains.
  • the average grain size of ferrite grains in the steel sheet used in the first example can be measured by the following method, for example. That is, the steel sheet is subjected to nital etching, a cross section perpendicular to the rolling direction using an optical microscope or SEM is observed, and the average grain size of the ferrite grains is measured using an image analyzer or the like. At this time, the observation target region is a region whose depth from the surface of the steel plate is 1 ⁇ 4 of the thickness of the steel plate and a surface layer portion. These measurement methods are examples, and the measurement methods are not limited to these.
  • the area fraction of non-recrystallized ferrite in the steel sheet used in the second example can be measured by the following method, for example. That is, a region having a depth from the surface of the steel sheet of 1/4 of the thickness of the steel sheet is used as a measurement surface, and crystal orientation measurement in an electron backscattering pattern (EBSP) of each measurement surface is performed. Get the data. In the preparation of the sample, for example, thinning by mechanical polishing or the like, and removal and thinning of strain by electrolytic polishing or the like are performed. The EBSP measures five or more points in each crystal grain of the sample, and acquires crystal orientation measurement data obtained from each measurement result for each measurement point (pixel).
  • EBSP electron backscattering pattern
  • the obtained crystal orientation measurement data is analyzed by the Kernel Average Misorientation (KAM) method, the unrecrystallized ferrite contained in the ferrite is discriminated, and the area fraction of the unrecrystallized ferrite in the ferrite is calculated.
  • the area fraction of the non-recrystallized ferrite in the initial structure can be calculated from the area fraction of the ferrite in the initial structure and the area fraction of the non-recrystallized ferrite in the ferrite.
  • the crystal orientation difference between adjacent measurement points can be quantitatively shown.
  • a crystal grain having an average crystal orientation difference of 1 ° or more from adjacent measurement points is defined as non-recrystallized ferrite. .
  • Table 2 indicates that the item is out of the scope of the present invention.
  • Table The column "surface coarse layer" 2 the depth from the surface of the steel sheet 4 ⁇ D 0 to an average particle diameter D S of the ferrite in the surface layer portion is not more than 2 times the average particle diameter D 0 of the Some are “None” and more than twice are “Yes”.
  • each high-strength steel plate was subjected to a tensile test in accordance with JIS Z2241, and the tensile strength TS, elongation EL, and drawing RA were measured.
  • the aperture RA was measured by enlarging the average value W of the width on both sides of the fractured portion and the average value t of the thicknesses on both sides with a real projector, and calculated from the following (Equation 1).
  • W0 and t0 are the width and thickness before the tensile test, respectively.
  • sample No. 1 the area fraction of pearlite in the steel sheet was too high, and the average particle size of the pearlite grains was too large, so the area fraction of martensite in the high-strength steel sheet was too low and the area fraction of pearlite was too high. For this reason, a good product (TS ⁇ EL) and aperture RA were not obtained.
  • the reason why the area fraction of pearlite in the steel sheet was too high and the average particle size of the pearlite grains was too large was because the cooling stop temperature after hot rolling was too high.
  • Sample No. In No. 4 since the average cooling rate of reheating was too low, the average grain size of martensite in the high-strength steel plate was too large.
  • FIG. 7 shows the relationship between the tensile strength and elongation of these invention examples and comparative examples
  • FIG. 8 shows the relationship between the tensile strength and the drawing.
  • FIG. 7 if the tensile strength is about the same, high elongation could be obtained in the inventive examples.
  • FIG. 8 when the tensile strength is about the same, an excellent diaphragm can be obtained in the inventive examples.
  • each high-strength steel sheet was subjected to a tensile test in accordance with JIS Z2241, and the tensile strength TS, elongation EL, and drawing RA were measured. These results are shown in Table 8.
  • the underline in Table 8 indicates that the value is out of the desired range.
  • sample No. In 101 the area fraction of pearlite in the steel sheet was too high, and the average particle size of the pearlite grains was too large. Therefore, the area fraction of martensite in the high-strength steel sheet was too low, and the area fraction of pearlite was too high. For this reason, a good product (TS ⁇ EL) and aperture RA were not obtained.
  • the reason why the area fraction of pearlite in the steel sheet was too high and the average particle diameter of the pearlite grains was too large was because the average cooling rate of cold-rolled sheet annealing was too low.
  • Sample No. In 104 since the average heating rate of reheating was low, the average particle size of the martensite grains in the high-strength steel plate was too large.
  • FIG. 9 shows the relationship between the tensile strength and elongation of these invention examples and comparative examples
  • FIG. 10 shows the relationship between the tensile strength and the drawing.
  • FIG. 9 if the tensile strength is comparable, high elongation could be obtained in the inventive example.
  • FIG. 10 when the tensile strength was approximately the same, an excellent diaphragm could be obtained in the inventive example.
  • the present invention can be used, for example, in industries related to high-strength steel sheets suitable for automobile parts.

Abstract

高強度鋼板は、所定の化学組成を有し、面積%で、マルテンサイト:5%以上、フェライト:20%以上、かつパーライト:5%以下、で表されるミクロ組織を有する。マルテンサイトの平均粒径は円相当径で4μm以下である。母相の粒界三重点上の複数のマルテンサイト粒のうち、当該マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界の少なくとも1つが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持ち、かつ当該マルテンサイト粒が母相の1つの粒界三重点上にあるマルテンサイト粒を膨らみ型マルテンサイト粒としたとき、母相の粒界三重点上の複数のマルテンサイト粒の個数に対する膨らみ型マルテンサイト粒の個数の割合は70%以上である。母相の粒界三重点上の複数のマルテンサイト粒の総面積をVMとし、複数のマルテンサイト粒における隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の総面積をA0としとしたとき、VM/A0で表される面積比が1.0以上である。

Description

高強度鋼板及びその製造方法
 本発明は、自動車に好適な高強度鋼板及びその製造方法に関する。
 自動車の燃費改善対策としての車体軽量化、及び部品の一体成形によるコストダウンの要望が高まっており、プレス成形性に優れた高強度鋼板の開発が進められている。プレス成形性に優れた高強度鋼板として、フェライト及びマルテンサイトを含むDual Phase鋼板(DP鋼板)及び残留オーステナイトの変態誘起塑性(Transformation Induced Plasticity:TRIP)を利用したTRIP鋼板が知られている。
 しかしながら、従来のDP鋼板及びTRIP鋼板では、局部延性の向上に限界があり、形状が複雑で高い強度が望まれる部材の製造が困難である。機械的特性の観点では、高い引張強度を得ながら良好な局部延性を得ることが困難である。局部延性の指標として、穴広げ性及び絞りが挙げられる。穴広げ試験によれば、伸びフランジ成形部などにおいては実成形に近い評価を行うことができるが、割れ発生部(方向)の特性で評価される。一方で、絞りは、変形方向を限定した引張試験で測定されるため、材料の局部延性の定量的な差を表しやすい。例えば、特許文献1に、疲労強度の向上を目的とした高強度熱延鋼板が記載されているが、複雑な形状の部材の製造が困難な場合がある。
特開2014-173151号公報
 本発明は、高い強度を確保しながら、局部延性を向上することができる高強度鋼板及びその製造方法を提供することを目的とする。
 本発明者らは、従来の高強度鋼板において優れた局部延性が得られない原因を明らかにすべく鋭意検討を行った。この結果、従来の高強度鋼板に含まれるマルテンサイト粒のうち粒界三重点にあるものが割れの起点になりやすいことが明らかになった。また、その理由として、粒界三重点にあるマルテンサイト粒の多くが応力集中を受けやすい形状を備えていることも明らかになった。更に、従来の高強度鋼板の製造方法では、オーステナイト及びフェライトの二相域からの冷却中にフェライト、ベイナイト若しくはパーライト又はこれらの任意の組み合わせが成長し、マルテンサイト粒はその隙間に形成されるため、応力集中を受けやすい形状にならざるを得ないことも明らかになった。
 そして、本発明者らは、粒界三重点上のマルテンサイト粒の形状を、応力集中を受けにくい形状にすべく鋭意検討を行った。この結果、パーライトの面積分率及びサイズが所定の範囲内のミクロ組織(初期組織)を備えた鋼板を準備し、この鋼板の再加熱を所定の条件で行うことが重要であることが明らかになった。更に、上記の鋼板を準備するためには、所定の条件で熱間圧延を行うか、冷間圧延後に所定の条件で焼鈍を行うことが効果的であることも明らかになった。
 本願発明者は、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
 (1)
 質量%で、
 C:0.03%~0.35%、
 Si:0.01%~2.0%、
 Mn:0.3%~4.0%、
 Al:0.01%~2.0%、
 P:0.10%以下、
 S:0.05%以下、
 N:0.010%以下、
 Cr:0.0%~3.0%、
 Mo:0.0%~1.0%、
 Ni:0.0%~3.0%、
 Cu:0.0%~3.0%、
 Nb:0.0%~0.3%、
 Ti:0.0%~0.3%、
 V:0.0%~0.5%、
 B:0.0%~0.1%、
 Ca:0.00%~0.01%、
 Mg:0.00%~0.01%、
 Zr:0.00%~0.01%、
 REM:0.00%~0.01%、かつ
 残部:Fe及び不純物、
で表される化学組成を有し、
 面積%で、
 マルテンサイト:5%以上、
 フェライト:20%以上、かつ
 パーライト:5%以下、
で表されるミクロ組織を有し、
 マルテンサイト粒の平均粒径は円相当径で4μm以下であり、
 母相の粒界三重点上の複数のマルテンサイト粒のうち、
  当該マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界の少なくとも1つが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持ち、かつ
  当該マルテンサイト粒が前記母相の1つの粒界三重点上にある
 マルテンサイト粒を膨らみ型マルテンサイト粒としたとき、
 前記母相の粒界三重点上の複数のマルテンサイト粒の個数に対する前記膨らみ型マルテンサイト粒の個数の割合は70%以上であり、
 前記母相の粒界三重点上の複数のマルテンサイト粒の総面積をVMとし、前記複数のマルテンサイト粒における前記隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の総面積をA0としとしたとき、VM/A0で表される面積比が1.0以上であることを特徴する高強度鋼板。
 (2)
 当該高強度鋼板の表面からの深さが当該高強度鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、前記表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下であることを特徴する(1)に記載の高強度鋼板。
 (3)
 前記ミクロ組織において、未再結晶フェライトの面積分率は10%以下であることを特徴とする(1)又は(2)に記載の高強度鋼板
 (4)
 前記化学組成において、
 Cr:0.05%~3.0%、
 Mo:0.05%~1.0%、
 Ni:0.05%~3.0%、若しくは
 Cu:0.05%~3.0%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(1)~(3)のいずれかに記載の高強度鋼板。
 (5)
 前記化学組成において、
 Nb:0.005%~0.3%、
 Ti:0.005%~0.3%、若しくは
 V:0.01%~0.5%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(1)~(4)のいずれかに記載の高強度鋼板。
 (6)
 前記化学組成において、
 B:0.0001%~0.1%、
 が満たされることを特徴とする(1)~(5)のいずれかに記載の高強度鋼板。
 (7)
 前記化学組成において、
 Ca:0.0005%~0.01%、
 Mg:0.0005%~0.01%、
 Zr:0.0005%~0.01%、若しくは
 REM:0.0005%~0.01%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(1)~(6)のいずれかに記載の高強度鋼板。
 (8)
 鋼板を準備する工程と、
 前記鋼板を3℃/秒~120℃/秒の平均加熱速度で770℃~820℃の第1の温度まで再加熱する工程と、
 次いで、前記鋼板を60℃/秒以上の平均冷却速度で300℃以下の第2の温度まで冷却する工程と、
 を有し、
 前記鋼板におけるパーライトの面積分率は10面積%以下であり、未再結晶フェライトの面積分率は10%以下であり、パーライト粒の平均粒径は10μm以下であり、
 前記鋼板の表面からの深さが当該鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、前記表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下であり、
 前記第2の温度までの冷却は、前記鋼板の温度が前記第1の温度に達してから8秒間以内に開始し、
 前記鋼板は、質量%で、
 質量%で、
 C:0.03%~0.35%、
 Si:0.01%~2.0%、
 Mn:0.3%~4.0%、
 Al:0.01%~2.0%、
 P:0.10%以下、
 S:0.05%以下、
 N:0.010%以下、
 Cr:0.0%~3.0%、
 Mo:0.0%~1.0%、
 Ni:0.0%~3.0%、
 Cu:0.0%~3.0%、
 Nb:0.0%~0.3%、
 Ti:0.0%~0.3%、
 V:0.0%~0.5%、
 B:0.0%~0.1%、
 Ca:0.00%~0.01%、
 Mg:0.00%~0.01%、
 Zr:0.00%~0.01%、
 REM:0.00%~0.01%、かつ
 残部:Fe及び不純物、
で表される化学組成を有することを特徴とする高強度鋼板の製造方法。
 (9)
 前記鋼板を準備する工程は、
 スラブの熱間圧延及び冷却を行う工程を有することを特徴とする(8)に記載の高強度鋼板の製造方法。
 (10)
 前記熱間圧延の仕上げ圧延の最終2スタンドでは、温度を「Ar3変態点+10℃」~1000℃とし、合計圧下率を15%以上とし、
 前記鋼板を準備する工程中の前記冷却の停止温度は550℃以下とすることを特徴とする(9)に記載の高強度鋼板の製造方法。
 (11)
 前記鋼板を準備する工程は、
 スラブの熱間圧延を行って熱延鋼板を得る工程と、
 前記熱延鋼板の冷間圧延、焼鈍及び冷却を行う工程と、
 を有することを特徴とする(8)に記載の高強度鋼板の製造方法。
 (12)
 前記冷間圧延における圧下率を30%以上とし、
 前記焼鈍の温度を730℃~900℃とし、
 前記鋼板を準備する工程中の前記冷却における前記焼鈍の温度から600℃までの平均冷却速度を1.0℃/秒~20℃/秒とすることを特徴とする(11)に記載の高強度鋼板の製造方法。
 (13)
 前記化学組成において、
 Cr:0.05%~3.0%、
 Mo:0.05%~1.0%、
 Ni:0.05%~3.0%、若しくは
 Cu:0.05%~3.0%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(8)~(12)のいずれかに記載の高強度鋼板の製造方法。
 (14)
 前記化学組成において、
 Nb:0.005%~0.3%、
 Ti:0.005%~0.3%、若しくは
 V:0.01%~0.5%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(8)~(13)のいずれかに記載の高強度鋼板の製造方法。
 (15)
 前記化学組成において、
 B:0.0001%~0.1%、
 が満たされることを特徴とする(8)~(14)のいずれかに記載の高強度鋼板の製造方法。
 (16)
 前記化学組成において、
 Ca:0.0005%~0.01%、
 Mg:0.0005%~0.01%、
 Zr:0.0005%~0.01%、若しくは
 REM:0.0005%~0.01%、
 又はこれらの任意の組み合わせが満たされることを特徴とする(8)~(15)のいずれかに記載の高強度鋼板の製造方法。
 本発明によれば、マルテンサイト粒の形態が適切であるため、高い強度を確保しながら、局部延性を向上することができる。
図1Aは、マルテンサイト粒の形状の例を示す図である。 図1Bは、マルテンサイト粒の形状の他の例を示す図である。 図2は、マルテンサイト粒の形成サイトを示す図である。 図3は、種々のマルテンサイト粒の形状を示す図である。 図4Aは、マルテンサイト粒の面積と多角形の面積との関係の例を示す図である。 図4Bは、マルテンサイト粒の面積と多角形の面積との関係の他の例を示す図である。 図4Cは、マルテンサイト粒の面積と多角形の面積との関係の更に他の例を示す図である。 図5は、マルテンサイト粒の包含関係を示す図である。 図6Aは、ミクロ組織の変化を示す図である。 図6Bは、図6Aに引き続き、ミクロ組織の変化を示す図である。 図6Cは、図6Bに引き続き、ミクロ組織の変化を示す図である。 図7は、第1の実験における引張強度と伸びとの関係を示す図である。 図8は、第1の実験における引張強度と絞りとの関係を示す図である。 図9は、第2の実験における引張強度と伸びとの関係を示す図である。 図10は、第2の実験における引張強度と絞りとの関係を示す図である。
 本発明者らが、熱間圧延後にランナウトテーブルで冷却して製造した高強度鋼板、並びに、冷間圧延後に焼鈍(以下、冷延板焼鈍ということがある)及び冷却して製造した高強度鋼板のミクロ組織を観察したところ、多くの視野にて、図1Aに示すように、フェライト、ベイナイト又はパーライトの結晶粒111、112、113が外側に膨らむようにして成長し、これらの粒界三重点上にマルテンサイト粒110が形成されていることが明らかになった。このミクロ組織では、マルテンサイト粒110と結晶粒111との粒界B1は、マルテンサイト粒110から見て、マルテンサイト粒110、結晶粒113及び結晶粒111の粒界三重点T31とマルテンサイト粒110、結晶粒111及び結晶粒112の粒界三重点T12とを結ぶ線分L1よりもマルテンサイト粒10側に膨らんでいる。マルテンサイト粒110と結晶粒112との粒界B2は、粒界三重点T12とマルテンサイト粒110、結晶粒112及び結晶粒113の粒界三重点T23とを結ぶ線分L2よりもマルテンサイト粒10側に膨らんでいる。マルテンサイト粒110と結晶粒113との粒界B3は、粒界三重点T23と粒界三重点T31とを結ぶ線分L3よりもマルテンサイト粒110側に膨らんでいる。このようなミクロ組織を有する高強度鋼板では、マルテンサイト粒110の結晶粒界は凹んでおり、粒界三重点T12、T23及びT31の近傍に応力が集中しやすく、ここを起点に割れが生じやすい。このため、優れた局部延性が得にくい。
 このようなミクロ組織が得られる理由として、熱間圧延後のランナウトテーブルでの冷却又は冷延板焼鈍後の冷却中にフェライト粒等が外側に膨らむように成長し、その残部にマルテンサイトが形成されるからであると考えられる。
 本発明者らが、上記のような観察結果を参考にして、優れた局部延性が得られるミクロ組織について鋭意検討を行った結果、図1Bに示すようなミクロ組織が局部延性の向上に好適であることが明らかになった。すなわち、マルテンサイト粒210が外側に膨らみ、これがフェライト等の母相の結晶粒211、212及び213により囲まれているミクロ組織が好適であることが明らかになった。このミクロ組織では、マルテンサイト粒210と結晶粒211との粒界B1は、マルテンサイト粒210から見て、マルテンサイト粒210、結晶粒213及び結晶粒211の粒界三重点T31とマルテンサイト粒210、結晶粒211及び結晶粒212の粒界三重点T12とを結ぶ線分L1よりも粒211側に膨らんでいる。マルテンサイト粒210と結晶粒212との粒界B2は、マルテンサイト粒210から見て、粒界三重点T12とマルテンサイト粒210、結晶粒212及び結晶粒213の粒界三重点T23とを結ぶ線分L2よりも粒212側に膨らんでいる。マルテンサイト粒210と結晶粒213との粒界B3は、マルテンサイト粒210から見て、粒界三重点T23と粒界三重点T31とを結ぶ線分L3よりも粒213側に膨らんでいる。このようなミクロ組織を有する高強度鋼板では、マルテンサイト粒210の結晶粒界が外側を向くようにして膨らんでおり、粒界三重点T12、T23及びT31の近傍に応力が集中しにくく、優れた局部延性が得られる。このようなミクロ組織を備えた高強度鋼板は後述の方法により製造することができる。
 以下、本発明の実施形態について説明する。
 先ず、本発明の実施形態に係る高強度鋼板及びその製造に用いる鋼の化学組成について説明する。詳細は後述するが、本発明の実施形態に係る高強度鋼板は、熱間圧延、冷却及び再加熱を経て製造されたり、熱間圧延、冷間圧延、冷延板焼鈍、冷却及び熱処理を経て製造されたりする。従って、高強度鋼板及び鋼の化学組成は、高強度鋼板の特性のみならず、これらの処理を考慮したものである。以下の説明において、高強度鋼板及び鋼に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る高強度鋼板及びその製造に用いる鋼は、質量%で、C:0.03%~0.35%、Si:0.01%~2.0%、Mn:0.3%~4.0%、Al:0.01%~2.0%、P:0.10%以下、S:0.05%以下、N:0.010%以下、Cr:0.0%~3.0%、Mo:0.0%~1.0%、Ni:0.0%~3.0%、Cu:0.0%~3.0%、Nb:0.0%~0.3%、Ti:0.0%~0.3%、V:0.0%~0.5%、B:0.0%~0.1%、Ca:0.00%~0.01%、Mg:0.00%~0.01%、Zr:0.00%~0.01%、希土類元素(rare earth metal:REM):0.00%~0.01%、かつ残部:Fe及び不純物、で表される化学組成を有している。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。Sn及びAsが不純物の例として挙げられる。
 (C:0.03%~0.35%)
 Cは、マルテンサイトの強化を通じて強度の向上に寄与する。C含有量が0.03%未満では、十分な強度、例えば500N/m以上の引張強度が得られない。従って、C含有量は0.03%以上とする。一方、C含有量が0.35%超では、熱間圧延及び冷却後の初期組織におけるパーライトの面積分率及びサイズが高くなり、また、再加熱後のミクロ組織においてパーライト及び島状セメンタイトの面積分率が高くなりやすく、十分な局部延性が得られない。従って、C含有量は0.35%以下とする。より高い局部延性を得るためにC含有量は望ましくは0.25%以下とし、優れた穴広げ性を得るためにC含有量は望ましくは0.1%以下とする。
 (Si:0.01%~2.0%)
 Siは、フェライト生成元素であり、熱間圧延後の冷却中にフェライトの生成を促進する。Siは、有害な炭化物の生成を抑えて加工性の改善に寄与したり、固溶強化を通じて強度の向上に寄与したりする。Si含有量が0.01%未満では、これらの効果を十分に得られない。従って、Si含有量は0.01%以上とする。Al含有量が0.1%未満の場合、Si含有量は望ましくは0.3%以上とする。一方、Si含有量が2.0%超では、化成処理性及び点溶接性が劣化する。従って、Si含有量は2.0%以下とする。
 (Mn:0.3%~4.0%)
 Mnは、強度の向上に寄与する。Mn含有量が0.3%未満では、十分な強度が得られない。従って、Mn含有量は0.3%以上とする。一方、Mn含有量が4.0%超では、ミクロ偏析及びマクロ偏析が起こりやすくなり、局部延性及び穴広げ性が劣化する。従って、Mn含有量は4.0%以下とする。
 (Al:0.01%~2.0%)
 Alは、脱酸材として作用する。Al含有量が0.01%未満では、酸素を十分に排除できないことがある。従って、Al含有量は0.01%以上とする。Alは、Siと同様に、フェライトの生成を促進したり、有害な炭化物の生成を抑えて加工性の改善に寄与したりする。また、Alは、Siほど化成処理性に影響しない。従って、Alは、延性及び化成処理性の両立に有用である。しかしながら、Al含有量が2.0%超では、延性の向上の効果が飽和したり、化成処理性及び点溶接性が劣化したりする。従って、Al含有量は2.0%以下とする。より優れた化成処理性を得るために、Al含有量は望ましくは1.0%以下とする。
 (P:0.10%以下)
 Pは、必須元素ではなく、例えば鋼中に不純物として含有される。Pは、溶接性、加工性及び靭性を劣化させるため、P含有量は低ければ低いほどよい。特に、P含有量が0.10%超で、溶接性、加工性及び靭性の低下が著しい。従って、P含有量は0.10%以下とする。より優れた加工性を得るために、P含有量は望ましくは0.03%以下とする。P含有量の低減にはコストがかかり、0.001%未満まで低減しようとすると、コストが著しく上昇する。このため、P含有量は0.001%以上としてもよい。Pは、Cuが含有されている場合、耐腐食性を向上させる。
 (S:0.05%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、MnS等の硫化物を形成し、割れの起点となり、局部延性及び穴広げ性を低下させるため、S含有量は低ければ低いほどよい。特に、S含有量が0.05%超で、局部延性及び穴広げ性の低下が著しい。従って、S含有量は0.05%以下とする。S含有量の低減にはコストがかかり、0.0005%未満まで低減しようとすると、コストが著しく上昇する。このため、S含有量は0.0005%以上としてもよい。
 (N:0.010%以下)
 Nは、必須元素ではなく、例えば鋼中に不純物として含有される。Nは、ストレッチャーストレインの原因となり、加工性を劣化させる。Nは、Ti及びNbが含有されている場合、(Ti,Nb)Nを形成し、割れの起点となる。Nは、打ち抜き加工時の端面荒れの原因になったり、局部延性を大きく低下させたりする。従って、N含有量は低ければ低いほどよい。特に、N含有量が0.010%超で、上記の現象が著しい。従って、N含有量は0.010%以下とする。N含有量の低減にはコストがかかり、0.0005%未満まで低減しようとすると、コストが著しく上昇する。このため、N含有量は0.0005%以上としてもよい。
 Cr、Mo、Ni、Cu、Nb、Ti、V、B、Ca、Mg、Zr及びREMは、必須元素ではなく、鋼板及び鋼に所定量を限度に適宜含有されていてもよい任意元素である。
 (Cr:0.0%~3.0%、Mo:0.0%~1.0%、Ni:0.0%~3.0%、Cu:0.0%~3.0%)
 Cuは、強度の向上に寄与する。Cuは、Pが含有されている場合、耐腐食性を向上させる。従って、Cuが含有されていてもよい。これらの効果を十分に得るために、Cu含有量は望ましくは0.05%以上とする。その一方で、Cu含有量が3.0%超では、焼入れ性が過剰となり、延性が低下する。従って、Cu含有量は3.0%以下とする。Niは、焼入れ性の向上を通じてマルテンサイトの形成を容易にする。Niは、Cuが含有されている場合に生じやすい熱間割れの抑制に寄与する。従って、Niが含有されていてもよい。これらの効果を十分に得るために、Ni含有量は望ましくは0.05%以上とする。一方、Ni含有量が3.0%超では、焼入れ性が過剰となり、延性が低下する。従って、Ni含有量は3.0%以下とする。Moは、セメンタイトの形成を抑制し、初期組織におけるパーライトの形成を抑制する。Moは、再加熱中のマルテンサイト粒の形成にも有効である。従って、Moが含有されていてもよい。これらの効果を十分に得るために、Mo含有量は望ましくは0.05%以上とする。一方、Mo含有量が1.0%超では、延性が低下する。従って、Mo含有量は1.0%以下とする。Crは、Moと同様に、セメンタイトの形成を抑制し、初期組織におけるパーライトの形成を抑制する。従って、Crが含有されていてもよい。この効果を十分に得るために、Cr含有量が望ましくは0.05%以上とする。一方、Cr含有量が3.0%超では、延性が低下する。従って、Cr含有量は3.0%とする。
 以上のことから、「Cr:0.05%~3.0%」、「Mo:0.05%~1.0%」、「Ni:0.05%~3.0%」、若しくは「Cu:0.05%~3.0%」、又はこれらの任意の組み合わせが満たされることが望ましい。
 (Nb:0.0%~0.3%、Ti:0.0%~0.3%、V:0.0%~0.5%)
 Nb、Ti及びVは、炭化物を形成して強度の向上に寄与する。従って、Nb、Ti若しくはV又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Nb含有量は望ましくは0.005%以上とし、Ti含有量は望ましくは0.005%以上とし、V含有量は望ましくは0.01%以上とする。一方、Ni含有量が0.3%超であるか、Ti含有量が0.3%超であるか、V含有量が0.5%超では、析出強化が過剰となり、加工性が劣化する。従って、Nb含有量は0.3%以下とし、Nb含有量は0.3%以下とし、V含有量は0.5%以下とする。
 以上のことから、「Nb:0.005%~0.3%」、「Ti:0.005%~0.3%」、若しくは「V:0.01%~0.5%」、又はこれらの任意の組み合わせが満たされることが望ましい。
 (B:0.0%~0.1%)
 Bは、強度の向上に寄与する。従って、Bが含有されていてもよい。この効果を十分に得るために、B含有量は望ましくは0.0001%以上とする。一方、B含有量が0.1%超では、焼入れ性が過剰となり、延性が低下する。従って、B含有量は0.1%以下とする。
 (Ca:0.00%~0.01%、Mg:0.00%~0.01%、Zr:0.00%~0.01%、REM:0.00%~0.01%)
 Ca、Mg、Zr及びREMは、硫化物系の介在物の形状を制御し、局部延性の向上に有効である。従って、Ca、Mg、Zr若しくはREM又はこれらの任意の組み合わせが含まれていてもよい。この効果を十分に得るために、Ca含有量は望ましくは0.0005%以上とし、Mg含有量は望ましくは0.0005%以上とし、Zr含有量は望ましくは0.0005%以上とし、REM含有量は望ましくは0.0005%以上とする。一方、Ca含有量が0.01%超であるか、Mg含有量が0.01%超であるか、Zr含有量が0.01%超であるか、REM含有量が0.01%超では、延性及び局部延性が劣化する。従って、Ca含有量は0.01%以下とし、Mg含有量は0.01%以下とし、Zr含有量は0.01%以下とし、REM含有量は0.01%以下とする。
 以上のことから、「Ca:0.0005%~0.01%」、「Mg:0.0005%~0.01%」、「Zr:0.0005%~0.01%」、若しくは「REM:0.0005%~0.01%」、又はこれらの任意の組み合わせが満たされることが望ましい。
 REM(希土類金属)はSc、Y及びランタノイドの合計17種類の元素を指し、「REM含有量」はこれら17種類の元素の合計の含有量を意味する。ランタノイドは、工業的には、例えばミッシュメタルの形で添加される。
 次に、本発明の実施形態に係る高強度鋼板のミクロ組織について説明する。以下の説明において、高強度鋼板に含まれる相や組織の単位である「%」は、特に断りがない限り「面積%」を意味する。本発明の実施形態に係る高強度鋼板は、面積%で、マルテンサイト:5%以上、フェライト:20%以上、かつパーライト:5%以下、で表されるミクロ組織を有する。
 (マルテンサイト:5%以上)
 マルテンサイトは、Dual Phase鋼(DP鋼)における強度の向上に寄与する。マルテンサイトの面積分率が5%未満では、十分な強度、例えば500N/m以上の引張強度が得られない。従って、マルテンサイトの面積分率は5%以上とする。より優れた強度を得るために、マルテンサイトの面積分率は望ましくは10%以上とする。一方、マルテンサイトの面積分率が60%超では、十分な伸びが得られないことがある。従って、マルテンサイトの面積分率は望ましくは60%以下とする。
 (フェライト:20%以上)
 フェライトは、DP鋼における伸びの向上に寄与する。フェライトの面積分率が20%未満では、十分な伸びが得られない。従って、フェライトの面積分率は20%以上とする。より優れた伸びを得るために、フェライトの面積分率は望ましくは30%以上とする。
 (パーライト:5%以下)
 パーライトは、必須の相ではなく、高強度鋼板の製造過程で生成することがある。パーライトは、DP鋼の伸び及び穴広げ性を低下させるため、パーライトの面積分率は低ければ低いほどよい。特に、パーライトの面積分率が5%超で、伸び及び穴広げ性の低下が顕著である。従って、パーライトの面積分率は5%以下とする。
 ミクロ組織の残部は、例えば、ベイナイト若しくは残留オーステナイト又はこれらの両方である。
 ここで、マルテンサイトの形態について詳述する。本実施形態において、マルテンサイトの平均粒径は円相当径で4μm以下であり、母相の粒界三重点上のマルテンサイト粒の個数に対する膨らみ型マルテンサイト粒の個数の割合は70%以上であり、所定の面積比は1.0以上である。
 (マルテンサイトの平均粒径:円相当径で4μm以下)
 マルテンサイトの平均粒径が円相当径で4μm超では、マルテンサイトに応力が集中しやすく、割れが生じやすい。従って、マルテンサイトの平均粒径は円相当径で4μm以下とする。より優れた成形性を得るために、マルテンサイトの平均粒径は円相当径で望ましくは3μm以下とする。
 (母相の粒界三重点上のマルテンサイト粒の個数に対する膨らみ型マルテンサイト粒の個数の割合:70%以上)
 膨らみ型マルテンサイト粒とは、母相の1つの粒界三重点上のマルテンサイト粒のうち、当該マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界の少なくとも1つが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持ち、かつ当該マルテンサイト粒が母相の1つの粒界三重点上にあるマルテンサイト粒をいう。図2に示すように、高強度鋼板には、母相の粒界三重点上のマルテンサイト粒301及び母相の2つの結晶粒間の粒界上のマルテンサイト粒302が含まれるところ、膨らみ型マルテンサイト粒はマルテンサイト粒301に属する。粒界三重点上のマルテンサイト粒には、2つ以上の粒界三重点上のマルテンサイト粒が互いに接して構成されたマルテンサイト粒303が含まれるところ、マルテンサイト粒303は「母相の1つの粒界三重点上」のものではないため、膨らみ型マルテンサイト粒に属さない。図3に示す6個のマルテンサイト粒のうち、マルテンサイト粒401、402、403及び404は、マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界の少なくとも1つが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持つため、膨らみ型マルテンサイト粒に属する。一方、マルテンサイト粒405及び406は、マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界のすべてが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持たないため、膨らみ型マルテンサイト粒に属さない。
 膨らみ型マルテンサイト粒の個数の割合が高いほど、応力集中が生じにくく、優れた局部延性が得られる。母相の粒界三重点上のマルテンサイト粒の個数に対する膨らみ型マルテンサイト粒の個数の割合が70%未満では、応力集中が生じやすいマルテンサイト粒の割合が高く、優れた局部延性が得られない。従って、母相の粒界三重点上のマルテンサイト粒の個数に対する膨らみ型マルテンサイト粒の個数の割合は70%以上とする。
 (所定の面積比:1.0以上)
 膨らみ型マルテンサイト粒には、線分に対して外側に凸の曲率を持つ凸部分の割合が内側に凸の曲率を持つ凹部分の割合以上のもの、及びそうでないものが含まれ得る。前者は後者よりも局部延性の向上に寄与しやすく、後者の面積分率が高いほど局部延性が低くなる。前者の膨らみ型マルテンサイト粒では、図4Aに示すように、当該膨らみ型マルテンサイト粒の面積VM1は、当該膨らみ型マルテンサイト粒における隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の面積A01以上である。一方、後者の膨らみ型マルテンサイト粒では、図4Bに示すように、当該膨らみ型マルテンサイト粒の面積VM2は、当該膨らみ型マルテンサイト粒における隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の面積A02より小さい。また、膨らみ型マルテンサイト粒に属さないものの、図2中のマルテンサイト粒303のような母相の複数の粒界三重点上にあるマルテンサイト粒には、図4Cに示すように、当該マルテンサイト粒の面積VM3が当該マルテンサイト粒における隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の面積A03より小さいものがある。そして、複数、例えば200個以上の粒界三重点上のマルテンサイト粒の総面積をVMとし、これら複数のマルテンサイト粒における隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の総面積をA0としたとき、VM/A0で表される面積比が1.0未満では、膨らみ型マルテンサイト粒の割合が70%以上であっても、十分な局部延性を得にくい。従って、VM/A0で表される面積比は1.0以上とする。
 図5に、本実施形態におけるマルテンサイト粒の包含関係を示す。本実施形態では、母相の粒界三重点上のマルテンサイト粒(グループA)の個数に対する膨らみ型マルテンサイト粒(グループB)の個数の割合が70%以上であり、母相の粒界三重点上のマルテンサイト粒(グループA)について、VM/A0で表される面積比が1.0以上である。
 本実施形態によれば、例えば、500N/mm以上の引張強度及び0.5以下の絞りRAを得ることができる。また、引張強度TSと伸びELとのバランスを示すこれらの積(TS×EL)として、18000N/mm・%以上の値を得ることもできる。そして、引張強度が同程度の従来の高強度鋼板と比較して優れた局部延性を得ることができる。
 高強度鋼板に溶融亜鉛めっき層が含まれていてもよい。溶融亜鉛めっき層が含まれている場合、優れた耐食性を得ることができる。めっき付着量は特に限定されないが、特に良好な耐食性を得るために、めっき付着量は片面あたり望ましくは5g/m以上とする。
 溶融亜鉛めっき層は、例えばZn及びAlを含み、Fe含有量が13%以下であることが好ましい。Fe含有量が13%以下の溶融亜鉛めっき層は、めっき密着性、成形性及び穴広げ性に優れる。一方、Fe含有量が13%超では、溶融亜鉛めっき層自体の密着性が低く、高強度鋼板の加工の際に溶融亜鉛めっき層が破壊したり脱落したりして金型に付着することがあり、疵の原因となることがある。
 溶融亜鉛めっき層が合金化されていてもよい。合金化された溶融亜鉛めっき層には、母鋼板からFeが取り込まれているため、優れたスポット溶接性及び塗装性が得られる。合金化された溶融亜鉛めっき層のFe含有量は7%以上であることが好ましい。Fe含有量が7%未満では、スポット溶接性の向上効果が不十分となる場合があるからである。なお、合金化されていない溶融亜鉛めっき層のFe含有量は13%未満であれば、7%未満であってもよく、実質的に0%であっても良好なめっき密着性、成形性及び穴広げ性が得られる。
 高強度鋼板に、溶融亜鉛めっき層上の上層めっき層が含まれていてもよい。上層めっき層が含まれている場合、優れた塗装性及び溶接性を得ることができる。また、溶融亜鉛めっき層を含む高強度鋼板に、クロメート処理、りん酸塩処理、潤滑性向上処理及び溶接性向上処理等の表面処理が施されていてもよい。
 次に、本発明の実施形態に係る高強度鋼板の製造方法の第1の例について説明する。第1の例では、上記の化学組成を有するスラブの熱間圧延、冷却及び再加熱をこの順で行う。図6A乃至図6Cは、ミクロ組織の変化を示す図である。熱間圧延及びそれに続く冷却を通じて得られる鋼板のミクロ組織(初期組織)は、パーライトの面積分率が低く、パーライトの平均粒径が小さいものとする。この初期組織の残部は、例えばフェライト(α)とする(図6A)。その後の再加熱では、鋼板を二相域まで昇温し、フェライトの粒界三重点上にオーステナイト(γ)を成長させる(図6B)。粒界三重点上に成長するオーステナイトは外側に膨らんだ形状を有する。そして、二相域からの急冷により、オーステナイトをマルテンサイト(M)に変態させる(図6C)。この結果、外側に膨らんだ形状を有するマルテンサイト粒が得られる。以下、これらの処理について詳述する。
 (熱間圧延及び冷却)
 熱間圧延及びそれに続く冷却により鋼板を得る。このとき、鋼板のミクロ組織(初期組織)は、パーライトの面積分率が10%以下、パーライトの平均粒径が円相当径で10μm以下とする。パーライトにはセメンタイトが含まれており、再加熱の際にセメンタイトが溶解してオーステナイトの形成を阻害する。そして、パーライトの面積分率が10%超では、再加熱の際に十分な量のオーステナイトが得られず、その結果、高強度鋼板におけるマルテンサイトの面積分率を5%以上にすることが困難である。従って、パーライトの面積分率は10%以下とする。パーライトの平均粒径が円相当径で10μm超でも、再加熱の際に十分な量のオーステナイトが得られず、その結果、高強度鋼板におけるマルテンサイトの面積分率を5%以上にすることが困難である。また、パーライトの平均粒径が円相当径で10μm超では、パーライト中にもオーステナイトが成長し、これらが結合することがある。複数のオーステナイトが結合して得られるオーステナイト粒の形状は外側に膨らんだ形状を持ちにくい。従って、パーライトの平均粒径は円相当径で10μm以下とする。
 鋼板の初期組織の残部は特に限定されないが、望ましくはフェライト、ベイナイト若しくはマルテンサイト又はこれらの任意の組み合わせであり、特に、これらの1種の面積分率が望ましくは90%以上である。再加熱において、粒界三重点からオーステナイトを成長させやすくするためである。また、フェライト、ベイナイト若しくはマルテンサイト又はこれらの任意の組み合わせの結晶粒の平均粒径は望ましくは円相当径で10μm以下である。高強度鋼板におけるマルテンサイト粒を小さくするためである。鋼板の初期組織の残部に塊状セメンタイトが含まれていてもよいが、再加熱の際のオーステナイトの形成を阻害するため、その面積分率は望ましくは1%以下である。
 鋼板の表層部におけるフェライト粒は小さいことが好ましい。フェライトは再加熱の際に変態せず、そのまま高強度鋼板に残る。第1の例では冷間圧延を行わないため、高強度鋼板は厚めであり、曲げ、穴広げ、張り出し等の成形における表層部の歪が内部の歪より大きくなりやすい。従って、高強度鋼板の表層部のフェライト粒が大きい場合、表層部に割れが生じて局部延性が低下することがある。このような表層部の割れを抑制するために、鋼板の表面からの深さが当該鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、鋼板の表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下とする。以下、表層部のフェライトの平均粒径Dが平均粒径Dの2倍超の部分を表層粗粒層ということがある。
 熱間圧延の条件は特に限定されないが、仕上げ圧延の最終2スタンドの圧延では、温度を望ましくはいずれにおいても「Ar3変態点+10℃」~1000℃とし、合計圧下率を望ましくは15%~45%とする。熱間圧延後の厚さは、例えば1.0mm~6.0mmとする。
 最終2スタンドでの圧延温度がいずれかでAr3点+10℃未満では、表層粗粒層が形成されやすい。従って、最終2スタンドでの圧延温度は望ましくはいずれにおいてもAr3点+10℃以上とする。一方、圧延温度がいずれかで1000℃超では、初期組織におけるパーライトの平均粒径が円相当径で10μm以下になりにくい。従って、最終2スタンドでの圧延温度は望ましくはいずれかにおいても1000℃以下とする。
 最終2スタンドの合計圧下率が15%未満では、オーステナイト粒が大きくなり、初期組織におけるパーライトの平均粒径が円相当径で10μm以下になりにくい。従って、最終2スタンドの合計圧下率は望ましくは15%以上とし、より望ましくは20%以上とする。一方、合計圧下率が45%超では、鋼板の機械的特性への悪影響は生じにくいものの、鋼板の形状の制御が困難になることがある。従って、最終2スタンドの合計圧下率は望ましくは45%以下とし、より望ましくは40%以下とする。
 熱間圧延後には、550℃以下まで冷却する。冷却停止温度が550℃超では、パーライトの面積分率が10%超になる。この冷却は、例えばランナウトテーブル(run out table:ROT)で行う。例えば、この冷却中にオーステナイトの一部又は全部がフェライトに変態する。冷却条件は特に限定されず、オーステナイトの一部又は全部がベイナイト若しくはマルテンサイト又はこれらの両方に変態してもよい。このようにして、所定の初期組織を有する鋼板が得られる。冷却後には鋼板を巻き取る。例えば、巻取温度は550℃以下とする。巻取温度が550℃超では、パーライトの面積分率が10%超になる。
 (再加熱)
 再加熱では、鋼板を3℃/秒~120℃/秒の平均加熱速度で770℃~820℃の第1の温度まで加熱し、60℃/秒以上の平均冷延速度で300℃以下の第2の温度まで冷却する。第2の温度までの冷却は、鋼板の温度が第1の温度に達してから8秒間以内に開始する。上記のように、再加熱中に、外側に膨らむオーステナイト粒が成長し、そのままの形状のマルテンサイト粒が得られる。
 平均加熱速度が3℃/秒未満では、加熱中に、オーステナイトが過剰に成長したり、オーステナイト粒同士が結合したりして、高強度鋼板において所望のマルテンサイトを得にくくなる。従って、平均加熱速度は3℃/秒以上とする。一方で、平均加熱速度が120℃/秒超では、炭化物が残存し、十分な量のオーステナイトが得られない。従って、平均加熱速度は120℃/秒以下とする。
 再加熱の到達温度(第1の温度)が770℃未満では、初期組織にベイナイト若しくはマルテンサイト又はこれらの両方が含まれている場合に、これらがオーステナイトに変態しにくく、高強度鋼板において所望のマルテンサイトを得にくくなる。従って、到達温度は770℃以上とする。つまり、本実施形態では、初期組織にベイナイト若しくはマルテンサイト又はこれらの両方が含まれている場合、これらを焼戻しするのではなく、オーステナイトに変態させる。一方、到達温度が820℃超では、フェライトがオーステナイトに変態し、高強度鋼板において所望のマルテンサイトを得にくくなる。従って、到達温度は820℃以下とする。
 平均冷却速度が60℃/秒未満では、フェライトが成長しやすく、外側に膨らんだ形状のマルテンサイトが得にくくなる。従って、平均冷却速度は60℃/秒以上とする。一方、平均冷却速度が200℃/秒超では、鋼板の機械的特性への悪影響は生じにくいものの、設備への負荷が大きくなったり、温度の均一性が低下して鋼板の形状の制御が困難になったりすることがある。従って、平均冷却速度は好ましくは200℃/秒以下とする。
 冷却停止温度(第2の温度)が300℃超では、焼入れが十分ではなく、高強度鋼板において所望のマルテンサイトを得にくい。従って、冷却停止温度は300℃以下とする。
 鋼板の温度が第1の温度に達してから第2の温度までの冷却を開始するまでの時間が8秒間超では、保持中に、オーステナイトが過剰に成長したり、オーステナイト粒同士が結合したりして、高強度鋼板において所望のマルテンサイトを得にくくなる。従って、冷却開始までの保持時間は8秒間未満とする。特に優れた局部延性を得るために、保持時間は望ましくは5秒間以下とする。
 このようにして、本実施形態に係る高強度鋼板を製造することができる。なお、表層粗粒層を含む鋼板を用いて製造した高強度鋼板には表層粗粒層が含まれ、表層粗粒層を含まない鋼板を用いて製造した高強度鋼板では、当該高強度鋼板の表面からの深さが当該高強度鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下である。
 次に、本発明の実施形態に係る高強度鋼板の製造方法の第2の例について説明する。第2の例では、上記の化学組成を有するスラブの熱間圧延、冷間圧延、冷延板焼鈍、冷却及び再加熱をこの順で行う。冷延板焼鈍及びそれに続く冷却を通じて得られる鋼板のミクロ組織(初期組織)は、パーライトの面積分率が低く、パーライトの平均粒径が小さいものとする。この初期組織の残部は、例えばフェライト(α)とする(図6A)。その後の再加熱では、鋼板を二相域まで昇温し、フェライトの粒界三重点上にオーステナイト(γ)を成長させる(図6B)。粒界三重点上に成長するオーステナイトは外側に膨らんだ形状を有する。そして、二相域からの急冷により、オーステナイトをマルテンサイト(M)に変態させる(図6C)。この結果、外側に膨らんだ形状を有するマルテンサイト粒が得られる。以下、これらの処理について詳述する。
 (熱間圧延)
 熱間圧延では、スラブの熱間圧延を行い、例えば厚さが1.0mm~6.0mmの熱延鋼板を得る。
 (冷間圧延、冷延板焼鈍及び冷却)
 熱延鋼板の冷間圧延、冷延板焼鈍及びそれに続く冷却により鋼板を得る。このとき、鋼板のミクロ組織(初期組織)は、パーライトの面積分率が10%以下、パーライトの平均粒径が円相当径で10μm以下、未再結晶フェライトの面積分率が10%以下とする。パーライトにはセメンタイトが含まれており、再加熱の際にセメンタイトが溶解してオーステナイトの形成を阻害する。そして、パーライトの面積分率が10%超では、再加熱の際に十分な量のオーステナイトが得られず、その結果、高強度鋼板におけるマルテンサイトの面積分率を5%以上にすることが困難である。従って、パーライトの面積分率は10%以下とする。パーライトの平均粒径が円相当径で10μm超でも、再加熱の際に十分な量のオーステナイトが得られず、その結果、高強度鋼板におけるマルテンサイトの面積分率を5%以上にすることが困難である。また、パーライトの平均粒径が円相当径で10μm超では、パーライト中にもオーステナイトが成長し、これらが結合することがある。複数のオーステナイトが結合して得られるオーステナイト粒の形状は外側に膨らんだ形状を持ちにくい。従って、パーライトの平均粒径は円相当径で10μm以下とする。未再結晶フェライトの面積分率が10%超では、十分な局部延性が得られない。従って、未再結晶フェライトの面積分率は10%以下とする。
 鋼板の初期組織の残部は特に限定されないが、第1の例と同様に、望ましくはフェライト、ベイナイト若しくはマルテンサイト又はこれらの任意の組み合わせであり、特に、これらの1種の面積分率が望ましくは90%以上である。フェライト、ベイナイト若しくはマルテンサイト又はこれらの任意の組み合わせの結晶粒の平均粒径は望ましくは円相当径で10μm以下である。鋼板の初期組織の残部に塊状セメンタイトが含まれていてもよいが、その面積分率は望ましくは1%以下である。
 冷間圧延の条件は特に限定されないが、望ましくは圧下率を30%以上とする。圧下率を30%以上とすることにより、初期組織に含まれる結晶粒を微細にすることができ、高強度鋼板におけるマルテンサイトの平均粒径を3μm以下にしやすい。冷間圧延後の厚さは、例えば0.4mm~3.0mmとする。
 冷延板焼鈍の条件は特に限定されないが、望ましくは、焼鈍温度は730℃~900℃とし、それに続いて1.0℃/秒~20℃/秒の平均速度で600℃まで冷却する。
 焼鈍温度が730℃未満では、初期組織における未再結晶フェライトの面積分率を10%以下にしにくい。従って、焼鈍温度は望ましくは730℃以上とする。一方、焼鈍温度が900℃超では、初期組織におけるパーライトの平均粒径を円相当径で10μm以下にしにくく、高強度鋼板におけるマルテンサイトの平均粒径が大きくなりやすい。従って、焼鈍温度は望ましくは900℃以下とする。
 600℃までの平均冷却速度が1.0℃/秒未満では、初期組織におけるパーライトの面積分率が10%超となったり、パーライトの平均粒径が円相当径で10μm超となったりすることがある。従って、この平均冷却速度は望ましくは1.0℃/秒以上とする。一方、600℃までの平均冷却速度が20℃/秒超では、初期組織が安定せず、所望の初期組織が得られないことがある。従って、この平均冷却速度は望ましくは20℃/秒以下とする。
 冷却停止温度が600℃超では、パーライトの面積分率が10%超になる。例えば、この冷却中にオーステナイトの一部又は全部がフェライトに変態する。冷却条件は特に限定されず、オーステナイトの一部又は全部がベイナイト若しくはマルテンサイト又はこれらの両方に変態してもよい。このようにして、所定の初期組織を有する鋼板が得られる。
 (再加熱)
 再加熱は、第1の例と同様の条件で行う。すなわち、鋼板を3℃/秒~120℃/秒の平均加熱速度で770℃~820℃の第1の温度まで加熱し、60℃/秒以上の平均冷延速度で300℃以下の第2の温度まで冷却する。第2の温度までの冷却は、鋼板の温度が第1の温度に達してから8秒間以内に開始する。上記のように、再加熱中に、外側に膨らむオーステナイト粒が成長し、そのままの形状のマルテンサイト粒が得られる。
 このようにして、本実施形態に係る高強度鋼板を製造することができる。なお、未再結晶フェライトの面積分率が10%超の鋼板を用いて製造した高強度鋼板のミクロ組織には10%超の面積分率で未再結晶フェライトが含まれ、未再結晶フェライトの面積分率が10%以下の鋼板を用いて製造した高強度鋼板のミクロ組織では未再結晶フェライトの面積分率は10%以下である。
 第1の例では、熱間圧延及びそれに続く冷却により鋼板を準備するため、この鋼板に10%超の未再結晶フェライトが含まれることはない。第2の例では、熱延鋼板の冷間圧延、冷延板焼鈍及びそれに続く冷却により鋼板を準備するため、この鋼板に表層粗粒層が含まれることはない。
 なお、鋼板又は高強度鋼板をめっき浴に浸漬してめっき層を形成してもよく、めっき層を形成した後に600℃以下での合金化処理を行ってもよい。例えば、溶融亜鉛めっき層を形成してもよく、その後に合金化処理を行ってもよい。溶融亜鉛めっき層上に上層めっき層を形成してもよい。溶融亜鉛めっき層の形成後にクロメート処理、りん酸塩処理、潤滑性向上処理及び溶接性向上処理等の表面処理を行ってもよい。酸洗及びスキンパス圧延を行ってもよい。
 各相及び組織の面積分率は、例えば下記の方法で測定することができる。例えば、高強度鋼板のレペラーエッチング又はナイタールエッチングを行い、光学顕微鏡又は走査型電子顕微鏡(scanning electron microscope:SEM)を用いた観察を行い、各相及び組織を同定し、画像解析装置等を用いて面積分率を測定する。このとき、観察対象領域は、例えば、高強度鋼板の表面からの深さが当該高強度鋼板の厚さの1/4の領域とする。なお、マルテンサイト粒の平均粒径及び面積の測定に際しては、200個以上のマルテンサイト粒についての測定を行う。
 第1の例で用いる鋼板におけるフェライト粒の平均粒径は、例えば下記の方法で測定することができる。すなわち、鋼板のナイタールエッチングを行い、光学顕微鏡又はSEMを用いた圧延方向に直交する断面の観察を行い、画像解析装置等を用いてフェライト粒の平均粒径を測定する。このとき、観察対象領域は、鋼板の表面からの深さが当該鋼板の厚さの1/4の領域及び表層部とする。これらの測定方法は一例であり、測定方法はこれらに限定されない。
 第2の例で用いる鋼板における未再結晶フェライトの面積分率は、例えば下記の方法で測定することができる。すなわち、鋼板の表面からの深さが当該鋼板の厚さの1/4の領域を測定面とする作製し、各測定面の電子後方散乱解析像(electron back scattering pattern:EBSP)における結晶方位測定データを得る。試料の作製では、例えば、機械研磨等による薄化並びに電解研磨等による歪の除去及び薄化を行う。EBSPは試料の各結晶粒内で5点以上測定し、各測定結果から得られた結晶方位測定データを測定点(ピクセル)毎に取得する。次いで、得られた結晶方位測定データをKernel Average Misorientation(KAM)法で解析し、フェライトに含まれる未再結晶フェライトを判別し、フェライト中の未再結晶フェライトの面積分率を算出する。初期組織中のフェライトの面積分率、及びフェライト中の未再結晶フェライトの面積分率から初期組織中の未再結晶フェライトの面積分率を算出することができる。KAM法では、隣接した測定点の結晶方位差を定量的に示すことができ、本発明では、隣接する測定点との平均結晶方位差が1°以上の結晶粒を未再結晶フェライトと定義する。
 これらの測定方法は一例であり、測定方法はこれらに限定されない。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (第1の実験)
 第1の実験では、表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブを製造した。表1に示す化学組成の残部はFe及び不純物である。表1中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、表2に示す条件で熱間圧延及びROTでの冷却を行って表2に示す初期組織を有する鋼板を得た。その後、表2に示す条件で再加熱を行い、酸洗及び圧下率が0.5%のスキンパス圧延を行って、高強度鋼板を得た。高強度鋼板の厚さは2.6mm~3.2mmとした。表2中の下線は、その項目が本発明の範囲から外れていることを示す。表2中の「表層粗粒層」の欄については、鋼板の表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dが平均粒径Dの2倍以下であるものを「なし」、2倍超であるものを「あり」としている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、各高強度鋼板について、ミクロ組織を特定し、マルテンサイトの形態を特定した。これらの結果を表3に示す。表3中の下線は、その項目が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000003
 更に、JIS Z2241に準拠して各高強度鋼板の引張試験を行い、引張強度TS、伸びEL及び絞りRAを測定した。絞りRAは、破断部の両側の幅の平均値W及び両側の厚さの平均値tを実物投影機で拡大して測定を行い、下記の(式1)から算出した。ここで、W0、t0は、それぞれ引張試験前の幅及び厚さである。これらの結果を表4に示す。表4中の下線は、その数値が望ましい範囲から外れていることを示す。
   RA=1-(W×t)/(W0×t0)   (式1)
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明範囲内にある試料No.2~No.3、No.5、No.8~No.9、No.11~No.12、No.14、No.16~No.19、No.21~No.24、No.27~No.33、No.35~No.37、及びNo.52では、優れた引張強度及び絞りRAを得ることができ、引張強度と伸びとのバランスも良好であった。
 一方、試料No.1では、鋼板におけるパーライトの面積分率が高すぎ、パーライト粒の平均粒径が大きすぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの面積分率が高すぎ、パーライト粒の平均粒径が大きすぎたのは、熱間圧延後の冷却停止温度が高すぎたためである。
 試料No.4では、再加熱の平均冷却速度が低すぎたため、高強度鋼板におけるマルテンサイトの平均粒径が大きすぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.6では、鋼板におけるパーライト粒の平均粒径が大きすぎたため、高強度鋼板におけるパーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライト粒の平均粒径が大きすぎたのは、熱間圧延の最終2スタンドにおける合計圧下率が低すぎたためである。
 試料No.7では、鋼板に表層粗粒層が含まれていたため、高強度鋼板にも表層粗粒層が残存した。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板に表層粗粒層が含まれていたのは、熱間圧延の最終2スタンドの温度が低すぎたためである。
 試料No.10では、再加熱の保持時間が長すぎたため、高強度鋼板におけるマルテンサイトの平均粒径が大きすぎ、膨らみ型マルテンサイト粒の割合が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.13では、再加熱の到達温度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎ、膨らみ型マルテンサイト粒の割合が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.15では、再加熱の冷却停止温度が高すぎたため、高強度鋼板におけるパーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.20では、再加熱の平均冷却速度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.25では、再加熱の冷却停止温度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.26では、鋼板に表層粗粒層が含まれていたため、高強度鋼板にも表層粗粒層が残存した。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板に表層粗粒層が含まれていたのは、熱間圧延の最終2スタンドの温度が低すぎたためである。
 試料No.34では、再加熱の到達温度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型マルテンサイト粒の割合が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.38~試料No.44では、化学組成が本発明範囲から外れていたため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.45では、再加熱の平均加熱速度が高すぎ、到達温度が低すぎ、冷却停止温度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な絞りRAが得られなかった。
 試料No.46では、再加熱の平均加熱速度が高すぎ、冷却停止温度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な絞りRAが得られなかった。
 試料No.47では、再加熱の平均冷却速度が低すぎ、冷却停止温度が高すぎたため、結合したマルテンサイトが高強度鋼板中に多数存在し、膨らみ型マルテンサイトの割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.48では、冷却停止温度が高すぎたため、膨らみ型マルテンサイトの割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.49では、鋼板におけるパーライトの面積分率が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型マルテンサイトの割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの面積分率が高すぎたのは、熱間圧延後の冷却停止温度が高すぎたためである。
 試料No.50では、再加熱の平均加熱速度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.51では、再加熱の到達温度が高すぎたため、高強度鋼板におけるマルテンサイトの平均粒径が大きすぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 これら発明例及び比較例の引張強度と伸びとの関係を図7に示し、引張強度と絞りとの関係を図8に示す。図7に示すように、引張強度が同程度であれば、発明例にて高い伸びを得ることができた。図8に示すように、引張強度が同程度であれば、発明例にて優れた絞りを得ることができた。
 (第2の実験)
 第2の実験では、表5に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブを製造した。表5に示す化学組成の残部はFe及び不純物である。表5中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、熱間圧延を行い、表6に示す条件で冷間圧延、冷延板焼鈍及び冷却を行って表6に示す初期組織を有する鋼板を得た。その後、表6に示す条件で再加熱を行い、酸洗及び圧下率が0.5%のスキンパス圧延を行って、高強度鋼板を得た。高強度鋼板の厚さは1.0mm~1.8mmとした。表6中の下線は、その項目が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 そして、各高強度鋼板について、ミクロ組織を特定し、マルテンサイトの形態を特定した。これらの結果を表7に示す。表7中の下線は、その項目が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000007
 更に、JIS Z2241に準拠して各高強度鋼板の引張試験を行い、引張強度TS、伸びEL及び絞りRAを測定した。これらの結果を表8に示す。表8中の下線は、その数値が望ましい範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、本発明範囲内にある試料No.102~No.103、No.105、No.108~No.109、No.111~No.112、No.114、No.116~No.119、No.121~No.124、No.126~No.131、No.133~No.138、及びNo.149では、優れた引張強度及び絞りを得ることができ、引張強度と伸びとのバランスも良好であった。
 一方、試料No.101では、鋼板におけるパーライトの面積分率が高すぎ、パーライト粒の平均粒径が大きすぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの面積分率が高すぎ、パーライト粒の平均粒径が大きすぎたのは、冷延板焼鈍の平均冷却速度が低すぎたためである。
 試料No.104では、再加熱の平均加熱速度が低かったため、高強度鋼板におけるマルテンサイト粒の平均粒径が大きすぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.106では、鋼板におけるパーライト粒の平均粒径が大きすぎ、未再結晶フェライトの面積分率が高すぎたため、高強度鋼板におけるパーライトの面積分率が高すぎ、マルテンサイト粒の平均粒径が大きすぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの平均粒径が大きすぎ、未再結晶フェライトの面積分率が高すぎたのは、冷間圧延の圧下率が低すぎたためである。
 試料No.107では、鋼板におけるパーライト粒の平均粒径が大きかったため、高強度鋼板におけるパーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの平均粒径が大きすぎたのは、冷延板焼鈍の温度が低すぎたためである。
 試料No.110では、再加熱の保持時間が長すぎたため、高強度鋼板におけるマルテンサイト粒の平均粒径が大きすぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.113では、再加熱の到達温度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎ、膨らみ型のマルテンサイトの割合が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.115では、再加熱の冷却停止温度が高すぎたため、高強度鋼板におけるパーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.120では、再加熱の平均冷却速度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、パーライトの面積分率が高すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.125では、再加熱の冷却停止温度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.132では、再加熱の到達温度が低すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型のマルテンサイトの割合が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.138~No.145では、化学組成が本発明範囲から外れていたため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.146では、鋼板におけるパーライトの面積分率が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型マルテンサイトの割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。鋼板におけるパーライトの面積分率が高すぎたのは、冷延板焼鈍の平均冷却速度が低すぎたためである。
 試料No.147では、再加熱の平均加熱速度が高すぎたため、高強度鋼板におけるマルテンサイトの面積分率が低すぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 試料No.148では、再加熱の到達温度が高すぎたため、高強度鋼板におけるマルテンサイトの平均粒径が大きすぎ、膨らみ型マルテンサイト粒の割合が低すぎ、所定の面積比が低すぎた。このため、良好な積(TS×EL)及び絞りRAが得られなかった。
 これら発明例及び比較例の引張強度と伸びとの関係を図9に示し、引張強度と絞りとの関係を図10に示す。図9に示すように、引張強度が同程度であれば、発明例にて高い伸びを得ることができた。図10に示すように、引張強度が同程度であれば、発明例にて優れた絞りを得ることができた。
 本発明は、例えば、自動車部品に好適な高強度鋼板に関連する産業に利用することができる。

Claims (16)

  1.  質量%で、
     C:0.03%~0.35%、
     Si:0.01%~2.0%、
     Mn:0.3%~4.0%、
     Al:0.01%~2.0%、
     P:0.10%以下、
     S:0.05%以下、
     N:0.010%以下、
     Cr:0.0%~3.0%、
     Mo:0.0%~1.0%、
     Ni:0.0%~3.0%、
     Cu:0.0%~3.0%、
     Nb:0.0%~0.3%、
     Ti:0.0%~0.3%、
     V:0.0%~0.5%、
     B:0.0%~0.1%、
     Ca:0.00%~0.01%、
     Mg:0.00%~0.01%、
     Zr:0.00%~0.01%、
     REM:0.00%~0.01%、かつ
     残部:Fe及び不純物、
    で表される化学組成を有し、
     面積%で、
     マルテンサイト:5%以上、
     フェライト:20%以上、かつ
     パーライト:5%以下、
    で表されるミクロ組織を有し、
     マルテンサイト粒の平均粒径は円相当径で4μm以下であり、
     母相の粒界三重点上の複数のマルテンサイト粒のうち、
      当該マルテンサイト粒と母相の結晶粒が構成する粒界三重点のうちの隣り合うもの同士を結ぶ粒界の少なくとも1つが、当該2つの粒界三重点を結ぶ線分に対して外側に凸の曲率を持ち、かつ
      当該マルテンサイト粒が前記母相の1つの粒界三重点上にある
     マルテンサイト粒を膨らみ型マルテンサイト粒としたとき、
     前記母相の粒界三重点上の複数のマルテンサイト粒の個数に対する前記膨らみ型マルテンサイト粒の個数の割合は70%以上であり、
     前記母相の粒界三重点上の複数のマルテンサイト粒の総面積をVMとし、前記複数のマルテンサイト粒における前記隣り合う2つの粒界三重点を結ぶ線分で構成される多角形の総面積をA0としとしたとき、VM/A0で表される面積比が1.0以上であることを特徴する高強度鋼板。
  2.  当該高強度鋼板の表面からの深さが当該高強度鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、前記表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下であることを特徴する請求項1に記載の高強度鋼板。
  3.  前記ミクロ組織において、未再結晶フェライトの面積分率は10%以下であることを特徴とする請求項1又は2に記載の高強度鋼板。
  4.  前記化学組成において、
     Cr:0.05%~3.0%、
     Mo:0.05%~1.0%、
     Ni:0.05%~3.0%、若しくは
     Cu:0.05%~3.0%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項1乃至3のいずれか1項に記載の高強度鋼板。
  5.  前記化学組成において、
     Nb:0.005%~0.3%、
     Ti:0.005%~0.3%、若しくは
     V:0.01%~0.5%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項1乃至4のいずれか1項に記載の高強度鋼板。
  6.  前記化学組成において、
     B:0.0001%~0.1%、
     が満たされることを特徴とする請求項1乃至5のいずれか1項に記載の高強度鋼板。
  7.  前記化学組成において、
     Ca:0.0005%~0.01%、
     Mg:0.0005%~0.01%、
     Zr:0.0005%~0.01%、若しくは
     REM:0.0005%~0.01%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項1乃至6のいずれか1項に記載の高強度鋼板。
  8.  鋼板を準備する工程と、
     前記鋼板を3℃/秒~120℃/秒の平均加熱速度で770℃~820℃の第1の温度まで再加熱する工程と、
     次いで、前記鋼板を60℃/秒以上の平均冷却速度で300℃以下の第2の温度まで冷却する工程と、
     を有し、
     前記鋼板におけるパーライトの面積分率は10面積%以下であり、未再結晶フェライトの面積分率は10%以下であり、パーライト粒の平均粒径は10μm以下であり、
     前記鋼板の表面からの深さが当該鋼板の厚さの1/4の領域におけるフェライトの平均粒径をDとしたとき、前記表面から深さが4×Dまでの表層部内でのフェライトの平均粒径Dは平均粒径Dの2倍以下であり、
     前記第2の温度までの冷却は、前記鋼板の温度が前記第1の温度に達してから8秒間以内に開始し、
     前記鋼板は、質量%で、
     質量%で、
     C:0.03%~0.35%、
     Si:0.01%~2.0%、
     Mn:0.3%~4.0%、
     Al:0.01%~2.0%、
     P:0.10%以下、
     S:0.05%以下、
     N:0.010%以下、
     Cr:0.0%~3.0%、
     Mo:0.0%~1.0%、
     Ni:0.0%~3.0%、
     Cu:0.0%~3.0%、
     Nb:0.0%~0.3%、
     Ti:0.0%~0.3%、
     V:0.0%~0.5%、
     B:0.0%~0.1%、
     Ca:0.00%~0.01%、
     Mg:0.00%~0.01%、
     Zr:0.00%~0.01%、
     REM:0.00%~0.01%、かつ
     残部:Fe及び不純物、
    で表される化学組成を有することを特徴とする高強度鋼板の製造方法。
  9.  前記鋼板を準備する工程は、
     スラブの熱間圧延及び冷却を行う工程を有することを特徴とする請求項8に記載の高強度鋼板の製造方法。
  10.  前記熱間圧延の仕上げ圧延の最終2スタンドでは、温度を「Ar3変態点+10℃」~1000℃とし、合計圧下率を15%以上とし、
     前記鋼板を準備する工程中の前記冷却の停止温度は550℃以下とすることを特徴とする請求項9に記載の高強度鋼板の製造方法。
  11.  前記鋼板を準備する工程は、
     スラブの熱間圧延を行って熱延鋼板を得る工程と、
     前記熱延鋼板の冷間圧延、焼鈍及び冷却を行う工程と、
     を有することを特徴とする請求項8に記載の高強度鋼板の製造方法。
  12.  前記冷間圧延における圧下率を30%以上とし、
     前記焼鈍の温度を730℃~900℃とし、
     前記鋼板を準備する工程中の前記冷却における前記焼鈍の温度から600℃までの平均冷却速度を1.0℃/秒~20℃/秒とすることを特徴とする請求項11に記載の高強度鋼板の製造方法。
  13.  前記化学組成において、
     Cr:0.05%~3.0%、
     Mo:0.05%~1.0%、
     Ni:0.05%~3.0%、若しくは
     Cu:0.05%~3.0%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項8乃至12のいずれか1項に記載の高強度鋼板の製造方法。
  14.  前記化学組成において、
     Nb:0.005%~0.3%、
     Ti:0.005%~0.3%、若しくは
     V:0.01%~0.5%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項8乃至13のいずれか1項に記載の高強度鋼板の製造方法。
  15.  前記化学組成において、
     B:0.0001%~0.1%、
     が満たされることを特徴とする請求項8乃至14のいずれか1項に記載の高強度鋼板の製造方法。
  16.  前記化学組成において、
     Ca:0.0005%~0.01%、
     Mg:0.0005%~0.01%、
     Zr:0.0005%~0.01%、若しくは
     REM:0.0005%~0.01%、
     又はこれらの任意の組み合わせが満たされることを特徴とする請求項8乃至15のいずれか1項に記載の高強度鋼板の製造方法。
PCT/JP2016/063660 2015-05-07 2016-05-06 高強度鋼板及びその製造方法 WO2016178430A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020177033656A KR101987573B1 (ko) 2015-05-07 2016-05-06 고강도 강판 및 그 제조 방법
PL16789566T PL3293279T3 (pl) 2015-05-07 2016-05-06 Blacha stalowa o dużej wytrzymałości i sposób jej wytwarzania
MX2017014094A MX2017014094A (es) 2015-05-07 2016-05-06 Placa de acero de alta resistencia y metodo de produccion para la misma.
EP16789566.3A EP3293279B1 (en) 2015-05-07 2016-05-06 High-strength steel plate and production method therefor
JP2017516621A JP6471800B2 (ja) 2015-05-07 2016-05-06 高強度鋼板及びその製造方法
ES16789566T ES2784699T3 (es) 2015-05-07 2016-05-06 Placa de acero de alta resistencia y método de producción de la misma
BR112017023881-0A BR112017023881A2 (ja) 2015-05-07 2016-05-06 A high intensity steel plate and a manufacturing method for the same
CN201680026467.0A CN107614722B (zh) 2015-05-07 2016-05-06 高强度钢板及其制造方法
US15/571,619 US11174529B2 (en) 2015-05-07 2016-05-06 High-strength steel sheet and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015095158 2015-05-07
JP2015095157 2015-05-07
JP2015-095158 2015-05-07
JP2015-095157 2015-05-07

Publications (1)

Publication Number Publication Date
WO2016178430A1 true WO2016178430A1 (ja) 2016-11-10

Family

ID=57217898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063660 WO2016178430A1 (ja) 2015-05-07 2016-05-06 高強度鋼板及びその製造方法

Country Status (11)

Country Link
US (1) US11174529B2 (ja)
EP (1) EP3293279B1 (ja)
JP (1) JP6471800B2 (ja)
KR (1) KR101987573B1 (ja)
CN (1) CN107614722B (ja)
BR (1) BR112017023881A2 (ja)
ES (1) ES2784699T3 (ja)
MX (1) MX2017014094A (ja)
PL (1) PL3293279T3 (ja)
TW (1) TWI606123B (ja)
WO (1) WO2016178430A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108277441B (zh) * 2018-04-11 2019-12-03 东北大学 一种600MPa级Ti微合金化热轧双相钢板及其制备方法
CN108315663B (zh) * 2018-04-11 2019-12-03 东北大学 一种540MPa级Ti微合金化热轧双相钢板及其制备方法
WO2020017606A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
US20220145435A1 (en) * 2019-03-12 2022-05-12 Osaka University Weathering steel for solid-state welding, weathering steel material for solid-state welding, solid-state welded structure and solid-state welding method
CN111074049B (zh) * 2019-11-24 2021-10-29 舞阳钢铁有限责任公司 一种减少高铬含量的铬钼合金钢板表面裂纹的生产工艺
CN112430772A (zh) * 2020-09-28 2021-03-02 甘肃酒钢集团宏兴钢铁股份有限公司 基于csp流程的中温卷取型热轧dp600生产方法
CN112267066B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112267065B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112226690B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112251669B (zh) * 2020-09-30 2022-02-18 鞍钢股份有限公司 2000MPa级热冲压车轮轮辐用热轧钢板及其制造方法
CN112267067B (zh) * 2020-09-30 2022-02-18 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112226691B (zh) * 2020-09-30 2022-02-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辐用热轧钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308002A (ja) * 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
WO2010087529A1 (ja) * 2009-02-02 2010-08-05 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010285636A (ja) * 2009-06-09 2010-12-24 Kobe Steel Ltd 伸び、伸びフランジ性および溶接性を兼備した高強度冷延鋼板
JP2014173151A (ja) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal 加工性と疲労特性に優れた高強度熱延鋼板及びその製造方法
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015019558A1 (ja) * 2013-08-09 2015-02-12 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332355B2 (ja) * 2007-07-11 2013-11-06 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5549414B2 (ja) * 2010-06-23 2014-07-16 Jfeスチール株式会社 形状凍結性に優れた冷延薄鋼板およびその製造方法
BR112014007496B1 (pt) * 2011-09-30 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Chapa de aço galvanizada por imersão a quente de alta resistência e chapa de aço galvanizada por imersão a quente ligada de alta resistência e método para sua produção
EP2799568A4 (en) 2011-12-26 2016-04-27 Jfe Steel Corp FINE HIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREOF
US10273566B2 (en) * 2012-12-11 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
BR112015031596B1 (pt) * 2013-07-04 2020-03-03 Nippon Steel Corporation Tubo de aço sem emendas para tubo em linha usado em ambientes acres
MX2017010910A (es) * 2015-02-27 2017-11-24 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia y metodo para fabricar la misma.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308002A (ja) * 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
WO2010087529A1 (ja) * 2009-02-02 2010-08-05 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010285636A (ja) * 2009-06-09 2010-12-24 Kobe Steel Ltd 伸び、伸びフランジ性および溶接性を兼備した高強度冷延鋼板
JP2014173151A (ja) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal 加工性と疲労特性に優れた高強度熱延鋼板及びその製造方法
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015019558A1 (ja) * 2013-08-09 2015-02-12 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法

Also Published As

Publication number Publication date
JP6471800B2 (ja) 2019-02-20
ES2784699T3 (es) 2020-09-30
EP3293279A4 (en) 2018-12-19
MX2017014094A (es) 2018-03-16
PL3293279T3 (pl) 2020-07-27
US11174529B2 (en) 2021-11-16
BR112017023881A2 (ja) 2018-07-17
KR101987573B1 (ko) 2019-06-10
TW201700747A (zh) 2017-01-01
JPWO2016178430A1 (ja) 2018-03-08
EP3293279A1 (en) 2018-03-14
CN107614722A (zh) 2018-01-19
CN107614722B (zh) 2019-08-27
KR20170138545A (ko) 2017-12-15
EP3293279B1 (en) 2020-03-25
US20180148809A1 (en) 2018-05-31
TWI606123B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6471800B2 (ja) 高強度鋼板及びその製造方法
JP5857909B2 (ja) 鋼板およびその製造方法
JP5454746B2 (ja) 高強度冷延鋼板及びその製造方法
US9988700B2 (en) High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
JP5574070B1 (ja) 熱延鋼板およびその製造方法
JP5273324B1 (ja) 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR101621639B1 (ko) 강판, 도금 강판 및 그들의 제조 방법
JP5549414B2 (ja) 形状凍結性に優れた冷延薄鋼板およびその製造方法
US9708684B2 (en) Hot dip galvanized and galvannealed steel sheet having excellent elongation properties
JPWO2018062380A1 (ja) 鋼板およびその製造方法
JP4740099B2 (ja) 高強度冷延鋼板及びその製造方法
JP5712771B2 (ja) 圧延直角方向のヤング率に優れた鋼板及びその製造方法
WO2020209276A1 (ja) 鋼板及びその製造方法
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP5878829B2 (ja) 曲げ性に優れた高強度冷延鋼板およびその製造方法
JP6620431B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
JP2011214070A (ja) 冷延鋼板およびその製造方法
US11060157B2 (en) Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
JP2018502992A (ja) 成形性に優れた複合組織鋼板及びその製造方法
JP5919812B2 (ja) 成形性に優れた高強度薄鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法
JP5988000B1 (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15571619

Country of ref document: US

Ref document number: MX/A/2017/014094

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017516621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033656

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016789566

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017023881

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017023881

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171106