WO2016178343A1 - 人体通信装置、人体通信方法およびプログラム - Google Patents

人体通信装置、人体通信方法およびプログラム Download PDF

Info

Publication number
WO2016178343A1
WO2016178343A1 PCT/JP2016/059569 JP2016059569W WO2016178343A1 WO 2016178343 A1 WO2016178343 A1 WO 2016178343A1 JP 2016059569 W JP2016059569 W JP 2016059569W WO 2016178343 A1 WO2016178343 A1 WO 2016178343A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
transmission
human body
terminal
body communication
Prior art date
Application number
PCT/JP2016/059569
Other languages
English (en)
French (fr)
Inventor
翔 天野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017516570A priority Critical patent/JP6624198B2/ja
Priority to EP16789479.9A priority patent/EP3293896B1/en
Priority to CN201680025898.5A priority patent/CN107534496B/zh
Publication of WO2016178343A1 publication Critical patent/WO2016178343A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body

Definitions

  • the present disclosure relates to a human body communication device, a human body communication method, and a program.
  • human body communication In recent years, research and development on the technology of communication via the human body (hereinafter also referred to as human body communication) has been conducted. Since such a device for performing human body communication is generally difficult to continuously supply power, it is desired to reduce power consumption in order to improve continuity of operation.
  • Patent Document 1 relates to a human body communication device that performs human body communication for user authentication in a communication mode that is shifted when an electric field is detected and does not perform human body communication in a power saving mode that is returned after the end of the user authentication.
  • the invention is disclosed.
  • a new and improved human body communication device, human body communication method, and program capable of reducing power consumption of at least one of the own device and a communication partner while maintaining communication connection of human body communication are provided. suggest.
  • the transmission unit that performs the first frame transmission using the human body communication during the frame transmission period of the own apparatus, which is determined in advance, regardless of the presence or absence of data to be transmitted.
  • the human body communication device is provided, wherein the transmission unit stops the first frame transmission while the second frame transmission in the frame transmission period of the own device is performed by the communication partner.
  • a receiving unit that receives a frame using human body communication
  • a transmitting unit that transmits a frame using human body communication during a predetermined frame transmission period of the own device
  • a human body communication device including a control unit that controls whether or not the receiving unit can receive a frame while continuing frame transmission for each frame transmission period.
  • the first frame is transmitted using the human body communication during the frame transmission period of the own apparatus, which is determined in advance, regardless of the presence / absence of data to be transmitted.
  • a human body communication method including: performing transmission; and stopping the first frame transmission while the second frame transmission in the frame transmission period of the own device is performed by a communication partner. .
  • the reception unit receives a frame using human body communication
  • the transmission unit transmits a frame using human body communication during a frame transmission period of the own apparatus determined in advance.
  • a control unit that controls whether or not the receiving unit can receive a frame while continuing frame transmission for each frame transmission period.
  • the transmission for performing the first frame transmission using the human body communication during the frame transmission period of the own apparatus which is determined in advance, regardless of the presence or absence of the data to be transmitted.
  • a reception function for receiving a frame using human body communication, a transmission function for transmitting a frame using human body communication during a predetermined frame transmission period of the own device, and the transmission function include There is provided a program for causing a computer to realize a control function for controlling whether or not the reception function can receive a frame while continuing frame transmission for each frame transmission period.
  • a human body communication device capable of reducing power consumption of at least one of the own device and a communication partner while maintaining communication connection of human body communication.
  • a program capable of reducing power consumption of at least one of the own device and a communication partner while maintaining communication connection of human body communication.
  • FIG. 5 is a sequence diagram illustrating an example of processing of a terminal according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating an example of a schematic functional configuration of a terminal according to the embodiment.
  • FIG. It is a sequence diagram which shows notionally the example of the transfer process to the 1st sleep mode of the terminal which concerns on the embodiment. It is a sequence diagram which shows notionally the example of the return process to the normal mode of the terminal which concerns on the same embodiment. It is a sequence diagram which shows notionally the example of the transfer process to the 1st sleep mode of the terminal which concerns on the 1st modification of the embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of processing of a terminal according to the second embodiment of the present disclosure.
  • FIG. It is a sequence diagram which shows notionally the example of the transfer process in case the transfer to the 2nd sleep mode is notified from the proxy terminal which concerns on the embodiment.
  • FIG. It is a sequence diagram which shows notionally the example of the transfer process in case the transfer to the 2nd sleep mode is notified from the stop terminal which concerns on the embodiment.
  • Human body communication devices (hereinafter also referred to as terminals) generally have a transmission function and a reception function.
  • the transmission function performs frame transmission processing using human body communication
  • the reception function performs frame reception processing using human body communication. Therefore, the terminal can perform bidirectional communication with other terminals.
  • ECMA-401 is a communication standard related to human body communication.
  • the time axis is divided into time slots called TDS (Time Division Slot), and one P-PDU (PHY Protocol Data Unit) (hereinafter also referred to as a frame) is transmitted in one TDS.
  • TDS Time Division Slot
  • P-PDU PHY Protocol Data Unit
  • the frame is alternately transmitted by each terminal that performs communication.
  • sequence number information called a sequence number is added to the above frame.
  • the sequence number is incremented when the frame is correctly received, and the incremented sequence number is added to the next frame to be transmitted.
  • the sequence number may be binary 2-bit information.
  • a frame not including data (hereinafter also referred to as a Null frame) is transmitted.
  • a sequence number is also added to the Null frame.
  • FIG. 1 is a sequence diagram illustrating an example of processing of a conventional human body communication device.
  • a data frame is transmitted from terminal A, and the data frame is received by terminal B (step S11). Specifically, the data frame is transmitted in the second TDS, and the sequence number added to the data frame is 2, that is, (10) b (hereinafter, shown in a format such as 2 (10) b). is there. The data frame is transmitted from terminal A and received by terminal B.
  • the data frame is transmitted from the terminal B, and the data frame is received by the terminal A (step S12). Specifically, the terminal B adds the sequence number 3 (11) b obtained by incrementing the sequence number added to the received data frame to the data frame to be transmitted. Then, the data frame to which the sequence number is added is transmitted from terminal B and received by terminal A.
  • a null frame is transmitted from terminal A, and the null frame is received by terminal B (step S13). Specifically, when there is no data to be transmitted in terminal A, terminal A generates a Null frame that does not include data. Terminal A adds a sequence number 0 (00) b obtained by incrementing the sequence number added to the received data frame to the generated Null frame. Then, a Null frame with the sequence number added is transmitted from terminal A and received by terminal B.
  • step S13 and subsequent steps as in step S13, there is no data to be transmitted in each terminal. Therefore, as shown in FIG. 1, the Null frame to which the incremented sequence number is added. Transmission and reception are repeated.
  • transmission / reception of a Null frame is repeated in order to maintain a communication connection even when there is no data to be transmitted.
  • TDS without data to be transmitted can occur continuously, so that transmission and reception of Null frames can occur repeatedly.
  • processing such as transmission processing, reception processing, acquisition of a sequence number, and increment of the acquired sequence number is performed on the Null frame. Therefore, even in the case of a Null frame, power equivalent to that of data frame communication is consumed to maintain communication connection.
  • the terminal has a role of either Master or Slave, and when the power saving mode is other than Hold Mode, the master terminal does not shift to the power saving mode.
  • the terminal in ECMA-401, it is desirable that the terminal has one of the roles of Talker and Listener, and the terminal having any role can be shifted to the power saving mode.
  • the present disclosure proposes a human body communication device capable of reducing the power consumption of at least one of the own device and the communication partner while maintaining the human body communication communication connection.
  • each of the human body communication devices 100 according to each embodiment of the present disclosure will be described in detail. Further, for convenience of explanation, each of the human body communication devices 100 according to the first to third embodiments is denoted by a number corresponding to the embodiment at the end, such as the human body communication device 100-1 to the human body communication device 100-3. It distinguishes by attaching.
  • FIG. 2 is a sequence diagram illustrating an example of processing of the terminal 100-1 according to the first embodiment of the present disclosure.
  • the terminal 100-1 has a normal mode and a power saving mode (hereinafter also referred to as a sleep mode), and has a first sleep mode as the sleep mode.
  • the first sleep mode is a mode in which the frame reception process is stopped while the frame transmission process is continued.
  • the communicating terminals 100-1A and 100-1B transmit frames alternately, but the transmitted frames are not received. For this reason, in the normal mode, the sequence number is incremented each time a frame is transmitted, but in the first sleep mode, reception processing is not performed, and therefore transmission of frames including the same sequence number is repeated.
  • the terminal as the communication partner may determine that the frame is retransmitted frequently, that is, the communication environment has deteriorated, and stop communication. Therefore, at the time of transition to the first sleep mode or before the transition, it is possible to confirm whether or not the first sleep mode is supported and the operation in the first sleep mode is not treated as an error between terminals. desirable.
  • the reception process is stopped while the transmission process is continued. Therefore, for example, when there is no data to be transmitted and a Null frame is transmitted, the first sleep mode is selected. Thus, it is possible to reduce power consumption while the Null frame is being transmitted.
  • the first embodiment will be described in detail.
  • FIG. 3 is a block diagram illustrating an example of a schematic functional configuration of the terminal 100-1 according to the first embodiment of the present disclosure.
  • the terminal 100-1 includes a transmission unit 102, a reception unit 104, a processing unit 106, and a control unit 108 as shown in FIG.
  • the transmission unit 102 transmits a frame using human body communication. Specifically, while the communication is continued, the transmission unit 102 performs frame transmission using human body communication (hereinafter referred to as “first transmission”) during the frame transmission period of its own terminal, regardless of the presence or absence of data to be transmitted. 1 frame transmission).
  • first transmission frame transmission using human body communication
  • the first frame transmission is performed according to ECMA-401.
  • the frame transmission period corresponds to TDS
  • the TDS of each terminal is determined between terminals at the start of connection, that is, at the time of association. Note that the frame transmitted by the transmission unit 102 is generated by the processing unit 106 described later.
  • the transmission unit 102 when the transmitted frame is not received, that is, when the frame reception is failed by the communication partner, the transmission unit 102 retransmits the same frame. For example, if the sequence number added to the frame received from the communication partner after frame transmission is not a value obtained by incrementing the sequence number added to the frame transmitted by the terminal, the transmitting unit 102 resends the frame. Do.
  • the receiving unit 104 receives a frame using human body communication. Specifically, the receiving unit 104 waits for a frame transmitted using human body communication. For example, when a frame is transmitted from a terminal that is a communication partner, the reception unit 104 receives the transmitted frame and provides the received frame to the processing unit 106.
  • the processing unit 106 generates and analyzes a frame. Specifically, the processing unit 106 generates frames such as a PS-REQ frame and a PS-ACK frame, which will be described later, based on an instruction from the control unit 108, and provides the generated frames to the transmission unit 102.
  • frames such as a PS-REQ frame and a PS-ACK frame, which will be described later, based on an instruction from the control unit 108, and provides the generated frames to the transmission unit 102.
  • the processing unit 106 acquires, updates, and uses frame exchange information that is updated when a frame based on the received frame is transmitted. More specifically, the processing unit 106 acquires frame exchange information from the frame received by the receiving unit 104, and updates the acquired frame exchange information. Then, the processing unit 106 adds the updated frame exchange information to the generated frame.
  • the frame exchange information is the above-described sequence number, and the processing unit 106 increments the sequence number acquired from the received frame. Then, the processing unit 106 adds the incremented sequence number to the generated frame.
  • the control unit 108 generally controls the operation of the terminal 100-1. Specifically, the control unit 108 selects the operation mode of the terminal 100-1. For example, the operation mode of the terminal 100-1 includes the normal mode and the first sleep mode as described above.
  • the control unit 108 controls whether or not the reception unit 104 can receive a frame while allowing the transmission unit 102 to continue frame transmission for each frame transmission period of the terminal itself. More specifically, the control unit 108 includes a frame (hereinafter also referred to as a transition notification frame or a PS-REQ frame) related to a notification of frame reception stop of the reception unit 104 as the first frame exchange and the transition.
  • a frame serving as a response to the notification frame hereinafter also referred to as a transition notification response frame or a PS-ACK frame
  • the reception unit 104 stops frame reception.
  • the PS-REQ frame and the PS-ACK frame may be frames in a layer corresponding to the PHY (Physical) layer or frames in a layer corresponding to the MAC (Media Access Control) layer.
  • the control unit 108 transmits a PS-REQ frame to the communication partner via the transmission unit 102 and the processing unit 106. Then, when a PS-ACK frame indicating permission to shift to the first sleep mode is received from the communication partner, the control unit 108 receives the operation of the receiving unit 104, that is, the frame reception and the processing unit 106, that is, the sequence number. Stop incrementing. Note that the control unit 108 performs a transition process to the sleep mode in response to a sleep request from the application.
  • control unit 108 shifts to the first sleep mode when a PS-REQ frame is received from the communication partner.
  • a PS-ACK frame indicating permission of the transmission is transmitted via the transmission unit 102 and the processing unit 106. Then, control unit 108 stops the operations of receiving unit 104 and processing unit 106 after the transmission of the PS-ACK frame.
  • the transition timing may be indicated or shared. Specifically, information indicating the frame reception stop timing of the reception unit 104 is added to the PS-REQ frame or the PS-ACK frame, and the control unit 108 stops frame reception of the reception unit 104 based on the information. .
  • the frame reception stop timing is the elapsed time from the reception of the PS-ACK frame (time segment or the number of TDS), or the elapsed time from connection processing (transmission or reception of Association Request1, Association Response1, or Association Request2).
  • the time segment includes a plurality of TDSs, for example, 8 TDSs.
  • the PS-REQ frame and the PS-ACK frame are P-DU frames
  • the PS-REQ frame or the like is divided into at least two PHY frames, that is, P-PDU frames, and transmitted across at least two TDSs. Is done.
  • one terminal 100-1 shifts to the first sleep mode based on the reception of a part of the P-DU frame, it becomes difficult for the other terminal 100-1 to shift to the first sleep mode. obtain.
  • the occurrence of such a situation can be prevented by aligning the timing for shifting to the first sleep mode as described above.
  • control unit 108 controls power supply to each unit of the terminal 100-1, particularly the transmission unit 102, the reception unit 104, and the processing unit 106, thereby controlling the operation of each unit.
  • control unit 108 may control the operation of each unit of the terminal 100-1 by hardware or software processing other than power supply control.
  • the control unit 108 When a predetermined time (hereinafter also referred to as a temporary return timing) arrives as the third time during the first sleep mode, the control unit 108 is also referred to as a predetermined period (hereinafter also referred to as a temporary return period). ) Causes the receiving unit 104 to receive a frame. Then, when the second frame exchange is performed in the temporary return period, the control unit 108 causes the reception unit 104 to start frame reception.
  • a predetermined time hereinafter also referred to as a temporary return timing
  • a temporary return period hereinafter also referred to as a temporary return period
  • the control unit 108 uses the frame related to the notification of the start of frame reception by the receiving unit 104 (hereinafter referred to as a return notification frame or a PS-WUP frame) as the second frame exchange. And a frame serving as a response to the return notification frame (hereinafter also referred to as a return notification response frame) are exchanged, the reception unit 104 starts frame reception.
  • the control unit 108 returns the terminal itself to the normal mode for the temporary return period.
  • the temporary return period is preferably set to a length that takes into account the possibility of frame reception failure.
  • the control unit 108 transmits the PS-WUP frame to the communication partner via the transmission unit 102 and the processing unit 106 during the temporary recovery period. Then, when a Null frame serving as a response to the PS-WUP frame is received from the communication partner, the control unit 108 resumes the operations of the receiving unit 104 and the processing unit 106.
  • the restart of the operation means that the operation is continued even after the temporary return period has elapsed.
  • the control unit 108 when the own terminal returns to the normal mode in response to a notification from the communication partner, when the PS-WUP frame is received from the communication partner, the control unit 108 becomes a response to the PS-WUP frame. The frame is transmitted via the transmission unit 102 and the processing unit 106. Then, the control unit 108 restarts the operations of the receiving unit 104 and the processing unit 106 after transmitting the Null frame. Whether the received Null frame is a response to the PS-WUP frame is determined based on the sequence number. For example, the control unit 108 determines whether the sequence number added to the Null frame is a value obtained by incrementing the sequence number added to the PS-WUP frame.
  • the frame serving as a response to the PS-WUP frame is a null frame.
  • the frame serving as a response is another frame such as a specific frame or a data frame prepared separately. May be.
  • control unit 108 may cause the transmission unit 102 and the processing unit 106 to continue retransmission of the PS-WUP frame until a Null frame that is a response to the PS-WUP frame is received. Furthermore, an upper limit of the number of retransmissions is provided, and the control unit 108 may cause the transmission unit 102 or the like to stop the retransmission when the number of retransmissions reaches the upper limit.
  • FIG. 4 is a sequence diagram conceptually illustrating an example of the transition process to the first sleep mode of the terminal 100-1 according to the present embodiment.
  • the terminal 100-1A When the terminal 100-1A is determined to shift to the first sleep mode, the terminal 100-1A transmits a PS-REQ frame (step S201). Specifically, the control unit 108 causes the processing unit 106 to generate a PS-REQ frame, and the generated PS-REQ frame is transmitted by the transmission unit 102. For example, the sequence number added to the PS-REQ frame is 0 (00) b.
  • the terminal 100-1B that has received the PS-REQ frame transmits a PS-ACK frame and shifts to the first sleep mode (step S202). Specifically, when the PS-REQ frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a PS-ACK frame, and the generated PS-ACK frame is transmitted by the transmitting unit 102. The Then, control unit 108 stops the operations of receiving unit 104 and processing unit 106 after the transmission of the PS-ACK frame. For example, the sequence number added to the PS-ACK frame is 1 (01) b obtained by incrementing the sequence number added to the received PS-REQ frame.
  • the terminal 100-1A that has received the PS-ACK frame transmits a null frame and shifts to the first sleep mode (step S203). Specifically, when the PS-ACK frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a Null frame, and the generated Null frame is transmitted by the transmitting unit 102. Then, the control unit 108 stops the operations of the receiving unit 104 and the processing unit 106 after transmitting the Null frame. For example, the sequence number added to the Null frame is 2 (10) b obtained by incrementing the sequence number added to the received PS-ACK frame.
  • each of the terminal 100-1A and the terminal 100-1B transmits each of the other frames before the transition to the first sleep mode in each frame transmission period.
  • the retransmission of the same frame as the frame transmitted later (hereinafter also referred to as the frame immediately before the transition) is continued.
  • each of terminal 100-1A and terminal 100-1B is in the first sleep mode, that is, in a state where the operations of receiving unit 104 and processing unit 106 are stopped, frame reception and sequence number incrementing are performed. Not done.
  • FIG. 5 is a sequence diagram conceptually showing an example of the return process to the normal mode of the terminal 100-1 according to the present embodiment.
  • the terminals 100-1A and 100-1B in the first sleep mode transmit Null frames to each other (Steps S301 and S302). Specifically, the transmission unit 102 retransmits the same frame every frame transmission period of the terminal itself. Since the receiving unit 104 and the processing unit 106 have stopped operating, no frames are received.
  • the terminals 100-1A and 100-1B temporarily return to the normal mode. Specifically, during the first sleep mode, the control unit 108 receives the reception unit 104 and the processing unit 106 for a temporary return period as indicated by dot hatching in FIG. To resume operation.
  • step S303 when the terminal 100-1A completely returns to the normal mode, the terminal 100-1A transmits a PS-WUP frame (step S303). Specifically, when terminal 100-1A completely returns to the normal mode, control unit 108 causes processing unit 106 to generate a PS-WUP frame, and the generated PS-WUP frame is transmitted by transmitting unit 102.
  • the sequence number added to the PS-WUP frame is 0 (00) b.
  • the terminal 100-1B that has received the PS-WUP frame transmits a null frame and returns to the normal mode (step S304). Specifically, when the PS-WUP frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a Null frame that is a response to the PS-WUP frame, and the generated Null frame is transmitted. Transmitted by the unit 102. For example, the sequence number added to the Null frame is 1 (01) b obtained by incrementing the sequence number added to the PS-WUP frame.
  • the terminal 100-1A that has received the null frame returns to the normal mode and transmits a data frame (step S305). Specifically, when the Null frame to which the incremented sequence number is added is received by the receiving unit 104, the control unit 108 continues the operations of the receiving unit 104 and the processing unit 106. Then, when there is data to be transmitted, the processing unit 106 generates a data frame, and the generated data frame is transmitted by the transmission unit 102. For example, the sequence number added to the data frame is 2 (10) b obtained by incrementing the sequence number added to the received Null frame.
  • the terminal 100-1B receiving the data frame transmits a null frame when there is no data to be transmitted (step S306). Specifically, when the data frame is received by the receiving unit 104, the processing unit 106 generates a Null frame when there is no data frame to be transmitted, and the generated Null frame is transmitted by the transmitting unit 102. .
  • the sequence number added to the Null frame is 3 (11) b obtained by incrementing the sequence number added to the received data frame.
  • the terminal 100-1 that transmits the PS-WUP frame also temporarily returns to the normal mode.
  • the terminal 100-1 that transmits the PS-WUP frame is in the first sleep mode.
  • the normal mode may be completely restored.
  • the terminal 100-1 receives a frame using human body communication, and transmits a frame using human body communication during a predetermined frame transmission period of the own terminal. Send. Further, the terminal 100-1 controls whether or not to receive a frame while continuing frame transmission for each frame transmission period. For this reason, by stopping frame reception while frame transmission continues, it is possible to reduce the power consumption of at least one of the own device or the communication partner while maintaining the communication connection for human body communication.
  • the terminal 100-1 stops frame reception when the first frame exchange is performed. For this reason, when the transition to the first sleep mode is clearly indicated, for example, only one terminal 100-1 shifts to the sleep mode, and there is an inconsistency between the terminals regarding the transition to the sleep mode. Can be suppressed.
  • the first frame exchange includes a transition notification frame related to a frame reception stop notification and a transition notification response frame serving as a response to the transition notification frame. For this reason, the transition to the first sleep mode is notified by a dedicated frame, so that the transition to the first sleep mode can be easily determined. As a result, it is possible to simplify the transition process to the first sleep mode.
  • the terminal 100-1 receives the frame for a predetermined period, and based on the second frame exchange performed in the predetermined period. Start frame reception. For this reason, it is possible to resume communication at an appropriate timing by performing the return determination to the normal mode during the first sleep mode.
  • the second frame exchange includes exchange of a return notification frame related to a notification of frame reception start and a return notification response frame serving as a response to the return notification frame. For this reason, the return to the normal mode is notified by a dedicated frame, thereby making it easy to determine whether to return to the normal mode. As a result, the process for returning to the normal mode can be simplified.
  • the frame exchange that triggers the transition to the first sleep mode as the first frame exchange may be a continuous exchange of Null frames.
  • the control unit 108 stops the operations of the reception unit 104 and the processing unit 106 when Null frames are continuously exchanged for a predetermined number of times.
  • FIG. 6 is a sequence diagram conceptually illustrating an example of the transition process to the first sleep mode of the terminal 100-1 according to the first modification of the present embodiment. Note that description of processing that is substantially the same as the processing of the first embodiment is omitted.
  • the terminal 100-1A transmits a data frame when there is data to be transmitted (step S211), and the terminal 100-1B that has received the data frame transmits a null frame when there is no data frame to be transmitted (step S211). Step S212).
  • step S212 since there is no data frame to be transmitted in both the terminals 100-1A and 100-1B, as shown in FIG. 6, Null frames are continuously transmitted and received.
  • the terminals 100-1A and 100-1B count the number of transmissions and receptions of the Null frame, and when the number of times reaches a predetermined number, shifts to the first sleep mode.
  • the control unit 108 counts up each time a Null frame is transmitted by the transmission unit 102 or a Null frame is received by the reception unit 104, and when the number reaches the predetermined number of times, The operations of the receiving unit 104 and the processing unit 106 are stopped.
  • terminal 100-1A As for terminal 100-1A, as shown in FIG. 6, Null frames are exchanged four times in succession from the reception of the Null frame in step S212 to the transmission of the Null frame in step S215. Therefore, terminal 100-1A shifts to the first sleep mode after transmitting the Null frame in step S215.
  • the terminal 100-1B transmits / receives a null frame four times in succession from the transmission of the null frame in step S212 to the reception of the null frame in step S215. Therefore, the terminal 100-1B shifts to the first sleep mode after receiving the Null frame in step S215.
  • the example has been described in which the terminal 100-1 shifts to the first sleep mode when the Null frame is continuously exchanged a predetermined number of times.
  • the terminal 100-1 has the Null frame continued for a predetermined time. May be changed to the first sleep mode.
  • the predetermined time may be determined at the time of connection processing, or may be a fixed value held by the terminal 100-1.
  • the first frame exchange includes continuous exchange of frames to be transmitted when there is no data to be transmitted. For this reason, the terminal 100-1 is shifted to the first sleep mode using a frame prepared in the existing human body communication standard, thereby reducing the amount of repairs in the terminal operating in accordance with the existing human body communication standard. And it becomes possible to reduce the cost concerning application of the first sleep mode to the existing terminal. Further, it is possible to shift to the first sleep mode at a timing when there is no data to be transmitted.
  • the transition to the first sleep mode is performed based on the arrival of a predetermined time (hereinafter also referred to as a first transition timing) as the first time.
  • the return to the normal mode may be performed based on the arrival of a predetermined time (hereinafter also referred to as a first return timing) as the second time.
  • the control unit 108 causes the reception unit 104 to stop frame reception.
  • the control unit 108 causes the reception unit 104 to start frame reception.
  • FIG. 7 is a sequence diagram conceptually illustrating an example of a periodic mode change process of the terminal 100-1 according to the second modification example of the present embodiment. Note that description of processing that is substantially the same as the processing of the first embodiment is omitted.
  • the terminals 100-1A and 100-1B transmit data frames to each other when there is data to be transmitted (steps S401 to S404). If there is no data to be transmitted, a Null frame is transmitted.
  • the terminal 100-1 switches the mode according to the elapsed time from the reference time point. Specifically, when the elapsed time from the reference time is a predetermined time, that is, when it is the first transition timing or the first return timing, the control unit 108 determines the operation of the receiving unit 104 and the processing unit 106. Switch presence / absence.
  • the reference time is the time when the connection process is performed
  • the predetermined time may be a predetermined multiple of the time segment.
  • the terminals 100-1A and 100-1B shift to the first sleep mode after (N + 1) time segments have elapsed from the reference time point, that is, after frame transmission in step S404. Then, the terminals 100-1A and 100-1B return to the normal mode after (N + 3) time segment has elapsed from the reference time point, that is, after the frame transmission in step S408.
  • the number of elapsed time segments from the reference time is counted by the control unit 108.
  • the reference time is the time of connection processing.
  • the reference time may be a mode switching time.
  • the transition time point to the first sleep mode after the process of step S404 as shown in FIG. 7 becomes the reference time point, and the terminal 100-1 returns to the normal mode 2 time segments after the reference time point. Then, the return time point to the normal mode becomes the next reference time point.
  • the unit of the elapsed time from the reference time is the time segment
  • the unit of the elapsed time may be another unit such as TDS.
  • the period during which each mode is maintained may be determined in advance. For example, in the connection process or the like, each of the period during which the first sleep mode is maintained and the period during which the normal mode is maintained may be determined, and the duty ratio of the first sleep mode and the normal mode may be determined. Good.
  • the transition to the first sleep mode and the return to the normal mode are performed based on the arrival of a predetermined time.
  • the transition to the first sleep mode and the normal mode have been described. Only one of the return to the mode may be performed based on the arrival of a predetermined time.
  • the transition to the first sleep mode may be performed based on the exchange of the PS-REQ frame and the PS-ACK frame, and the return to the normal mode may be performed based on the first return timing.
  • the terminal 100-1 stops frame reception when the first time determined in advance arrives. Further, terminal 100-1 starts frame reception when a predetermined second time comes after frame reception is stopped. For this reason, by switching the mode of the terminal 100-1 without performing special processing such as frame exchange, it is possible to suppress complication of processing due to the addition of the first sleep mode.
  • the frame exchange that triggers the return to the normal mode includes the frame transmitted during the temporary restoration period and the frame exchange information included in the frame. It may be a frame exchange including frame exchange information obtained by updating. Specifically, the control unit 108 transmits a frame including a sequence number obtained by updating a frame transmitted in the temporary return period (hereinafter also referred to as a preceding frame) and a sequence number added to the preceding frame.
  • a preceding frame a sequence number obtained by updating a frame transmitted in the temporary return period
  • FIG. 8 is a sequence diagram conceptually illustrating an example of the return process of the terminal 100-1 to the normal mode according to the third modification example of the present embodiment.
  • the terminals 100-1A and 100-1B in the first sleep mode transmit Null frames to each other (Steps S311 and S312), and temporarily return to the normal mode when the temporary return timing arrives.
  • the terminal 100-1A transmits a Null frame in the same manner as in step S311 (step S313).
  • the transmitting unit 102 transmits the same Null frame as the Null frame transmitted during the first sleep mode.
  • the sequence number added to the Null frame is 0 (00) b, which is the same as the sequence number added to the previously transmitted frame.
  • the terminal 100-1B that has received the Null frame transmits a Null frame as a response to the received Null frame, and returns to the normal mode (Step S314). Specifically, when the Null frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a Null frame as a response to the received Null frame, and the generated Null frame is transmitted to the transmitting unit. 102. Then, after the transmission of the Null frame, the operations of the receiving unit 104 and the processing unit 106 are resumed. For example, the sequence number added to the Null frame is 1 (01) b obtained by incrementing the sequence number added to the received Null frame.
  • the terminal 100-1A that has received the Null frame returns to the normal mode, and when there is no data to be transmitted, transmits the Null frame (step S315). Specifically, when the Null frame to which the incremented sequence number is added is received by the receiving unit 104, the control unit 108 restarts the operations of the receiving unit 104 and the processing unit 106. Then, when there is no data to be transmitted, the processing unit 106 generates a Null frame, and the generated Null frame is transmitted by the transmission unit 102. For example, the sequence number added to the Null frame is 2 (10) b obtained by incrementing the sequence number added to the received Null frame.
  • the terminal 100-1B that has received the Null frame transmits a data frame (step S316).
  • terminal 100-1 that transmits a sequence number that is later in sequence than the sequence number added to the frame transmitted by the communication partner can indicate the return to the normal mode to the communication partner by incrementing the sequence number.
  • the second frame exchange is obtained by updating the frame transmitted in the temporary return period and the frame exchange information included in the frame. Includes frame exchange including frame exchange information. For this reason, the terminal 100-1 is returned to the normal mode using the information prepared in the existing human body communication standard, thereby reducing the amount of repair in the terminal operating in accordance with the existing human body communication standard. The cost for applying the first sleep mode to an existing terminal can be reduced.
  • Second Embodiment (Second Sleep Mode)> The terminal 100-1 according to the first embodiment of the present disclosure has been described above. Subsequently, the terminal 100-2 according to the second embodiment of the present disclosure will be described.
  • FIG. 9 is a sequence diagram illustrating an example of processing of the terminal 100-2 according to the second embodiment of the present disclosure.
  • the terminal 100-2 has a second sleep mode different from the first sleep mode as the sleep mode.
  • the second sleep mode is a mode in which one terminal 100-2 performs frame transmission of the other terminal 100-2 and the other terminal 100-2 stops frame transmission / reception.
  • the terminal 100-2A transmits a null frame in the frame transmission period of the terminal 100-2B in addition to transmitting a null frame in the frame transmission period of the terminal 100-2B. Therefore, as shown in FIG. 9, unilateral frame transmission is performed.
  • terminal 100-2B stops frame transmission, reception, and sequence number increment. In the second sleep mode, since the frame transmission from one terminal 100-1 is unilaterally performed, the transmission of frames including the same sequence number is repeated.
  • the functional configuration of the terminal 100-2 according to the second embodiment of the present disclosure is substantially the same as the functional configuration in the first embodiment, but part of the functions is different.
  • a terminal that performs transmission hereinafter also referred to as a proxy terminal
  • a terminal that stops transmission hereinafter also referred to as a stop terminal
  • the control unit 108 sets the role of its own terminal to either the substitute terminal or the stop terminal based on information shared with the communication partner. Specifically, the control unit 108 transmits a frame including information such as a flag indicating whether the proxy terminal has been accepted (hereinafter also referred to as proxy information) to the communication partner via the transmission unit 102 and the processing unit 106. To do.
  • proxy information can be stored in an RFU (Reserved for Future Use) bit of Association Request 1 or Association Response 2 exchanged in the connection process.
  • the proxy information may be information indicating the degree of possibility of proxy.
  • the proxy information may be information determined according to the capacity or remaining amount of the battery of the terminal 100-2. Then, when the value related to the proxy information of the own terminal is larger than the value related to the proxy information of the communication partner, the control unit 108 causes the terminal to operate as the proxy terminal. On the other hand, when the value related to the proxy information of the own terminal is smaller than the value related to the proxy information of the communication partner, the control unit 108 operates the host terminal as a stop terminal. If the values related to the proxy information are the same, the role of the terminal is set in advance in the terminal 100-2 such that the terminal notifying the transition to the second sleep mode operates as the proxy terminal. Also good.
  • proxy information may be shared using a frame transmitted after the start of connection.
  • the proxy information may be included in the PS-REQ frame and the PS-ACK frame, and may be included in a Null frame or a data frame.
  • the transmission unit 102 of the proxy terminal 100-2 performs frame transmission (hereinafter also referred to as second frame transmission) in the frame transmission period of the communication partner in addition to the first frame transmission. .
  • the transmission unit 102 of the stop terminal 100-2 stops the first frame transmission while the second frame transmission is performed in the frame transmission period of the own terminal by the communication partner.
  • the transmission unit 102 of the proxy terminal 100-2 transmits the transition notification frame related to the notification of the start of the second frame transmission as the first frame exchange and the transition notification serving as a response to the transition notification frame.
  • the second frame transmission is started.
  • the transmission unit 102 of the stop terminal 100-2 exchanges the transition notification frame and the transition notification response frame as the first frame exchange, or transmits a frame serving as a response to the transition notification response frame and the transition notification response frame.
  • the first frame transmission is stopped.
  • the control unit 108 of the proxy terminal 100-2 transmits a PS-REQ frame via the transmission unit 102 and the processing unit 106 when the terminal itself shifts to the second sleep mode. Then, when a PS-ACK frame indicating permission to enter the second sleep mode is received from the communication counterpart, the control unit 108 receives the incremented sequence number via the transmission unit 102 and the processing unit 106. An arbitrary frame including, for example, a null frame is transmitted. Thereafter, the control unit 108 stops the operations of the reception unit 104 and the processing unit 106 and causes the transmission unit 102 to start the second frame transmission.
  • the control unit 108 of the stop terminal 100-2 receives the PS-REQ frame from the communication partner, A PS-ACK frame indicating permission of transition to the sleep mode is transmitted via the transmission unit 102 and the processing unit 106. Then, the control unit 108 stops the operations of the transmission unit 102, the reception unit 104, and the processing unit 106 after receiving an arbitrary frame including an incremented sequence number that becomes a response to the PS-ACK frame, for example, a Null frame. .
  • the stop terminal 100-2 shifts to the second sleep mode after the proxy terminal 100-2 shifts to the second sleep mode. This is to continue frame transmission, that is, to maintain a communication connection. For example, when only the stop terminal 100-2 shifts to the second sleep mode without the proxy terminal 100-2 shifting to the second sleep mode, that is, without starting the second frame transmission, the stop terminal 100-2 -2 frame transmission period is not performed. As a result, communication collision may occur when another terminal starts frame transmission during the frame transmission period. Therefore, the stop terminal 100-2 shifts to the second sleep mode after confirming that the proxy terminal 100-2 shifts to the second sleep mode.
  • the control unit 108 of the stop terminal 100-2 transmits a PS-REQ frame via the transmission unit 102 and the processing unit 106 when the terminal itself shifts to the second sleep mode. Then, when a PS-ACK frame indicating permission to enter the second sleep mode is received from the communication counterpart, the control unit 108 receives the incremented sequence number via the transmission unit 102 and the processing unit 106. An arbitrary frame including, for example, a Null frame is transmitted. Thereafter, the control unit 108 stops the operations of the transmission unit 102, the reception unit 104, and the processing unit 106.
  • the control unit 108 of the proxy terminal 100-2 receives the PS-REQ frame from the communication partner, A PS-ACK frame indicating permission of transition to the sleep mode is transmitted via the transmission unit 102 and the processing unit 106. Then, after transmitting the PS-ACK frame, the control unit 108 stops the operations of the reception unit 104 and the processing unit 106 and causes the transmission unit 102 to start the second frame transmission.
  • the transmission unit 102 of the proxy terminal 100-2 after starting the second frame transmission, responds to the return notification frame related to the notification of the stop of the second frame transmission and the response to the return notification frame as the second frame exchange.
  • the second frame transmission is stopped.
  • the transmission unit 102 of the stop terminal 100-2 performs the first frame transmission when the return notification frame and the return notification response frame are exchanged as the second frame exchange after the first frame transmission is stopped. To start.
  • the control unit 108 of the proxy terminal 100-2 and the stop terminal 100-2 returns its own terminal to the normal mode only during the temporary return period.
  • the control unit 108 of the proxy terminal 100-2 transmits the PS-WUP frame via the transmission unit 102 and the processing unit 106 during the temporary recovery period when the terminal itself returns to the normal mode. Then, when the Null frame including the incremented sequence number serving as a response to the PS-WUP frame is received from the communication partner, the control unit 108 resumes the operations of the receiving unit 104 and the processing unit 106.
  • the control unit 108 of the stop terminal 100-2 receives the PS-WUP frame.
  • a Null frame serving as a response is transmitted via the transmission unit 102 and the processing unit 106. Then, the control unit 108 restarts the operations of the transmission unit 102, the reception unit 104, and the processing unit 106 after the transmission of the Null frame.
  • the control unit 108 of the stop terminal 100-2 transmits a return notification frame to the transmission unit 102 in the frame transmission period specified based on information obtained by communication with the communication partner. Let For example, the control unit 108 transmits a PS-WUP frame via the transmission unit 102 and the processing unit 106 during the temporary return period. Then, when the Null frame including the incremented sequence number serving as a response to the PS-WUP frame is received from the communication partner, the control unit 108 resumes the operations of the transmission unit 102, the reception unit 104, and the processing unit 106. .
  • the control unit 108 of the proxy terminal 100-2 transmits the second frame transmission during the frame transmission period in which the return notification frame is transmitted from the communication partner. Is stopped by the transmission unit 102. For example, the control unit 108 stops the second frame transmission at the transmission timing of the PS-WUP frame in the temporary return period. Then, when a PS-WUP frame is received from the communication partner, a Null frame serving as a response to the PS-WUP frame is transmitted via the transmission unit 102 and the processing unit 106. Then, the control unit 108 restarts the operations of the receiving unit 104 and the processing unit 106 after transmitting the Null frame.
  • information obtained by communication with a communication partner includes a frame transmission period determined based on communication.
  • the frame transmission period determined based on the communication is a frame transmission period (hereinafter also referred to as a proxy stop period) after a predetermined time has elapsed since the connection process.
  • the proxy stop period comes every 100 time segments.
  • the proxy stop period may be shared with each other using a frame related to communication such as connection processing.
  • FIG. 10 is a sequence diagram conceptually showing an example of the transition process when the transition to the second sleep mode is notified from the proxy terminal 100-2 according to the present embodiment.
  • FIG. 11 is a sequence diagram showing the present embodiment.
  • FIG. 10 is a sequence diagram conceptually illustrating an example of a transition process when a transition to a second sleep mode is notified from the stop terminal 100-2 according to FIG.
  • the terminal 100-2A transmits a PS-REQ frame (step S221).
  • the sequence number added to the PS-REQ frame is 0 (00) b.
  • the terminal 100-2B that has received the PS-REQ frame transmits a PS-ACK frame (step S222).
  • the sequence number added to the PS-ACK frame is 1 (01) b obtained by incrementing the sequence number added to the received PS-REQ frame.
  • the terminal 100-2A that has received the PS-ACK frame transmits a Null frame and shifts to the second sleep mode (step S223). Specifically, when the PS-ACK frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a Null frame, and the generated Null frame is transmitted by the transmitting unit 102. Then, after transmitting the Null frame, the control unit 108 stops the operations of the reception unit 104 and the processing unit 106 and causes the transmission unit 102 to start the second frame transmission. For example, the sequence number added to the Null frame is 2 (10) b obtained by incrementing the sequence number added to the received PS-ACK frame.
  • the terminal 100-2B that has received the Null frame shifts to the second sleep mode. Specifically, when a Null frame serving as a response to the PS-ACK frame is received, control unit 108 stops the operations of transmitting unit 102, receiving unit 104, and processing unit 106. Note that the frame serving as a response to the PS-ACK frame may be a data frame or any other frame instead of the Null frame.
  • step S224 that is, during the second sleep mode, the terminal 100-2A serving as the substitute terminal transmits a frame in each of the frame transmission periods of the terminal 100-2B. Specifically, the transmission unit 102 of the terminal 100-2A continues to retransmit the same frame as the frame immediately before the transition of both terminals.
  • the frame transmitted during the frame transmission period of terminal 100-2B which is the stop terminal, is the same frame as the frame received immediately before the terminal 100-2A enters the second sleep mode.
  • the frame for which terminal 100-2A performs transmission can be a copy of the frame immediately before the transition of terminal 100-2B.
  • the stop terminal fails to receive a frame, there is a possibility that a frame transmitted on behalf of the proxy terminal that has first shifted to the second sleep mode may collide with a frame to be retransmitted by the stop terminal. Because. For example, if the contents of both frames are different, signals related to the frames collide, and there is a possibility that the error frame, for example, a CRC (Cyclic Redundancy Check) of the frame does not match with another terminal, is regarded as a P-PDU frame. Then, the other terminal may determine that the period in which the frame collision has occurred is a period during which frame transmission is possible and perform frame transmission. Therefore, as described above, it is desirable that the proxy terminal transmits the frame received in the frame immediately before the transition as a proxy.
  • CRC Cyclic Redundancy Check
  • the polarity of the signal related to the frame for which terminal 100-2A performs transmission be the same as the polarity of the signal related to the frame immediately before the transition of terminal 100-2B.
  • the terminal 100-2A is in a state in which the operations of the receiving unit 104 and the processing unit 106 are stopped, so that the reception of the frame and the increment of the sequence number are not performed.
  • the terminal 100-2B since the operations of the transmission unit 102, the reception unit 104, and the processing unit 106 are stopped, the terminal 100-2B does not perform frame transmission / reception and sequence number increment.
  • Transition pattern B Notification of transition from the stopped terminal to the second sleep mode
  • the terminal 100-2B transmits a PS-REQ frame (step S231).
  • the sequence number added to the PS-REQ frame is 0 (00) b.
  • the terminal 100-2A that has received the PS-REQ frame transmits the PS-ACK frame and shifts to the second sleep mode (step S232). Specifically, when the PS-REQ frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a PS-ACK frame, and the generated PS-ACK frame is transmitted by the transmitting unit 102. Then, after transmitting the PS-ACK frame, the control unit 108 stops the operations of the reception unit 104 and the processing unit 106 and causes the transmission unit 102 to start the second frame transmission. For example, the sequence number added to the PS-ACK frame is 1 (01) b obtained by incrementing the sequence number added to the received PS-REQ frame.
  • the terminal 100-2B that has received the PS-ACK frame transmits a Null frame and shifts to the second sleep mode (step S233). Specifically, when the PS-ACK frame is received by the receiving unit 104, the control unit 108 causes the processing unit 106 to generate a Null frame, and the generated Null frame is transmitted by the transmitting unit 102. And the control part 108 stops operation
  • the sequence number added to the Null frame is 2 (10) b obtained by incrementing the sequence number added to the received PS-ACK frame.
  • step S224 that is, during the second sleep mode, the terminal 100-2A serving as the substitute terminal transmits a frame in each of the frame transmission periods of the terminal 100-2B.
  • terminal 100-2A since terminal 100-2A is in a state where operations of receiving section 104 and processing section 106 are stopped, frame reception and sequence number incrementing are not performed.
  • the terminal 100-2B since the operations of the transmission unit 102, the reception unit 104, and the processing unit 106 are stopped, the terminal 100-2B does not perform frame transmission / reception and sequence number increment.
  • FIG. 12 is a sequence diagram conceptually illustrating an example of the return process when the stop terminal 100-2 according to the present embodiment is notified of the return to the normal mode.
  • Return pattern A Notification of return to normal mode from the proxy terminal
  • the process of the return pattern A is substantially the same as the return process to the normal mode in the first embodiment except that the frame transmission in the sleep mode is performed only by the proxy terminal 100-2A. Is omitted.
  • the terminal 100-2A in the second sleep mode transmits a Null frame (steps S321 and S322). Specifically, terminal 100-2A transmits a Null frame during the frame transmission period of the terminal 100-2B.
  • the terminals 100-2A and 100-2B temporarily return to the normal mode.
  • the terminal 100-2B transmits a PS-WUP frame during the proxy stop period (step S323).
  • the control unit 108 of the terminal 100-2B sends a PS-WUP frame to the processing unit 106 so that a PS-WUP frame is transmitted during the proxy stop period when the terminal 100-2B completely returns to the normal mode.
  • Generate a WUP frame Generate a WUP frame.
  • the generated PS-WUP frame is transmitted by the transmission unit 102 during the proxy stop period.
  • the sequence number added to the PS-WUP frame is 0 (00) b.
  • the control unit 108 of the terminal 100-2A stops the second frame transmission by the transmitting unit 102 during the proxy stop period.
  • the terminal 100-2A that has received the PS-WUP frame transmits a null frame and returns to the normal mode (step S324).
  • the sequence number added to the Null frame is 1 (01) b obtained by incrementing the sequence number added to the PS-WUP frame.
  • the terminal 100-2B that has received the Null frame returns to the normal mode and transmits a data frame (step S325).
  • the terminal 100-2A that has received the data frame transmits a null frame when there is no data to be transmitted (step S326).
  • the proxy stop period may be indirectly presented from proxy terminal 100-2. Specifically, the proxy terminal 100-2 changes the sequence number added to the frame transmitted after the start of the second frame transmission in a predetermined pattern, and the stop terminal 100-2 sets the predetermined sequence number. The proxy stop period is estimated based on the change in the pattern. Further, the processing of the return pattern B2 will be described in detail with reference to FIG. FIG. 13 is a sequence diagram conceptually illustrating another example of the return process when the stop terminal 100-2 according to the present embodiment is notified of the return to the normal mode.
  • the terminal 100-2A in the second sleep mode transmits a Null frame including a sequence number that changes in a predetermined pattern (steps S331 to S337). Specifically, terminal 100-2A assigns the sequence number added to the Null frame transmitted during the frame transmission period of its own terminal and terminal 100-2B to 0 (00) b, 3 (11) b, 0 ( 00) b, 3 (11) b, 0 (00) b, 1 (01) b, 2 (10) b.
  • the operation of the receiving unit 104 is continued until the change of the predetermined pattern is confirmed. Specifically, the terminal 100-2B stops the operation of the receiving unit 104 after the predetermined pattern change is performed for one cycle after the transition to the second sleep mode.
  • the terminal 100-2A and the terminal 100-2B temporarily return to the normal mode.
  • the terminal 100-2 may temporarily return at the end of the predetermined pattern, or may temporarily return at some timing of the end of the predetermined pattern. Further, the partial timing can be determined using a timer.
  • the terminal 100-2A stops frame transmission in the frame transmission period between the end and start of the predetermined pattern, and the terminal 100-2B transmits the PS-WUP frame (step S338). Specifically, frame transmission in the frame transmission period following the last 2 (10) b in the predetermined pattern is stopped. Then, the SP-WUP frame is transmitted from the terminal 100-2B during the frame transmission period. For example, the sequence number added to the PS-WUP frame is 3 (11) b.
  • the terminal 100-2A that has received the PS-WUP frame transmits a null frame and returns to the normal mode (step S339).
  • the terminal 100-2B that has received the null frame returns to the normal mode and transmits a data frame. Transmit (step S340).
  • the terminal 100-2 determines the frame transmission period of its own terminal, which is determined in advance, regardless of the presence / absence of data to be transmitted while the communication is continued.
  • the first frame transmission is performed using human body communication.
  • terminal 100-2 performs the second frame transmission in the frame transmission period of the communication partner in addition to the first frame transmission.
  • the terminal 100-2 stops the first frame transmission while the second frame transmission in the frame transmission period of the own terminal is performed by the communication partner. For this reason, the frame transmission of the stop terminal 100-2 is performed by the proxy terminal 100-2, so that the power consumption in the sleep mode of the stop terminal 100-2 compared to the first sleep mode is maintained while maintaining the communication state. Can be further reduced.
  • the proxy terminal 100-2 starts the second frame transmission, and the stop terminal 100-2 stops the first frame transmission. For this reason, by clearly indicating the transition to the second sleep mode, it is possible to suppress the occurrence of a situation in which inconsistency occurs between terminals regarding the transition to the sleep mode.
  • the first frame exchange includes a transition notification frame related to a notification of the start of the second frame transmission and a transition notification response frame serving as a response to the transition notification frame.
  • the stop terminal 100-2 stops the first frame transmission when the transition notification response frame and the frame serving as a response to the transition notification response frame are exchanged. For this reason, the transition to the second sleep mode can be easily determined by notifying the transition to the second sleep mode using a dedicated frame. As a result, it is possible to simplify the transition process to the second sleep mode.
  • the proxy terminal 100-2 stops the second frame transmission, and stops the terminal 100-2. Starts the first frame transmission. For this reason, by clearly indicating the return to the normal mode, it is possible to suppress the occurrence of a situation in which inconsistency occurs between terminals regarding the transition to the normal mode.
  • the second frame exchange includes exchange of a return notification frame related to a notification of stop of the second frame transmission and a return notification response frame serving as a response to the return notification frame. For this reason, the return to the normal mode is notified by a dedicated frame, thereby making it easy to determine whether to return to the normal mode. As a result, the process for returning to the normal mode can be simplified.
  • the proxy terminal 100-2 does not transmit the second frame in the frame transmission period in which the return notification frame is transmitted from the communication partner, and the stop terminal 100-2 is based on information obtained by communication with the communication partner.
  • the return notification frame is transmitted in the frame transmission period specified in the above. Therefore, the return notification frame is normally received by avoiding the collision between the return notification frame transmitted by the stop terminal 100-2 and the frame related to the second frame transmission of the proxy terminal 100-2. As a result, it is possible to return to the normal mode based on the desire of the stop terminal 100-2.
  • the proxy terminal 100-2 stops frame reception when the second frame transmission is started, and the stop terminal 100-2 stops frame reception while the first frame is stopped. Stop. For this reason, although the proxy terminal 100-2 performs frame transmission as a proxy, the increase in power consumption can be suppressed by stopping the frame reception. Also, the stop terminal 100-2 can further reduce power consumption by stopping frame reception in addition to frame transmission.
  • the frame exchange that triggers the transition to the second sleep mode as the first frame exchange may be a continuous exchange of Null frames. Specifically, when the Null frame is continuously exchanged for a predetermined number of times, proxy terminal 100-2 starts the second frame transmission and stops the operations of receiving unit 104 and processing unit 106. In addition, when the Null frame is continuously exchanged for a predetermined number of times, the stop terminal 100-2 stops the operations of the transmission unit 102, the reception unit 104, and the processing unit 106. Furthermore, with reference to FIG. 14, the process of this modification is demonstrated in detail.
  • FIG. 14 is a sequence diagram conceptually illustrating an example of the transition process to the second sleep mode of the terminal 100-2 according to the first modification of the present embodiment. Note that description of processing that is substantially the same as the processing of the first or second embodiment is omitted.
  • the terminal 100-2B transmits a data frame when there is data to be transmitted (step S241), and the terminal 100-2A that has received the data frame transmits a null frame when there is no data frame to be transmitted (step S241). Step S242).
  • the terminals 100-2A and 100-2B count the number of transmissions and receptions of the Null frame, and when the number of times reaches a predetermined number, shifts to the second sleep mode. It should be noted that the predetermined number of times for terminal 100-2B, which is a stop terminal, is larger than the predetermined number of times for terminal 100-2A, which is a substitute terminal.
  • the terminal 100-2A shifts to the second sleep mode after transmitting the Null frame in step S245.
  • the terminal 100-2B transmits / receives a null frame continuously five times from the reception of the null frame in step S242 to the reception of the null frame in step S246. Therefore, the terminal 100-2B shifts to the second sleep mode after receiving the Null frame in step S246.
  • the first frame exchange includes continuous exchange of frames to be transmitted when there is no data to be transmitted. For this reason, the terminal 100-2 is shifted to the second sleep mode using a frame prepared in the existing human body communication standard, thereby reducing the amount of renovation in the terminal operating in accordance with the existing human body communication standard. In addition, the cost for applying the second sleep mode to the existing terminal can be reduced.
  • the transition to the second sleep mode may be performed based on the arrival of the second transition timing, and the return to the normal mode is the second return timing. May be performed based on the arrival of.
  • control unit 108 of proxy terminal 100-2 causes transmission unit 102 to start the second frame transmission and stops the operations of reception unit 104 and processing unit 106.
  • the control unit 108 of the stop terminal 100-2 stops the operations of the transmission unit 102, the reception unit 104, and the processing unit 106.
  • the control unit 108 of the proxy terminal 100-2 causes the transmission unit 102 to stop the second frame transmission and start the first frame transmission, and to perform the reception unit 104 and processing.
  • the operation of the unit 106 is started.
  • the control unit 108 of the stop terminal 100-2 causes the transmission unit 102 to start the first frame transmission and starts the operations of the reception unit 104 and the processing unit 106. Note that the details of the processing of the present modification are substantially the same as the processing in the second modification of the first embodiment except that the sleep mode is different, and thus the description thereof is omitted.
  • the proxy terminal 100-2 when the first time determined in advance arrives, the proxy terminal 100-2 starts the second frame transmission, and the stop terminal 100-2 The first frame transmission is stopped.
  • the proxy terminal 100-1 stops the second frame transmission and stops the terminal 100. -2 starts the first frame transmission. For this reason, since the mode is switched without performing special processing such as frame exchange, it is possible to suppress complication of processing due to the addition of the second sleep mode.
  • the proxy terminal 100-2 switches to the normal mode based on the exchange of a series of frames transmitted every time the temporary return timing arrives and a frame serving as a response to the series of frames. You may return. Further, the stop terminal 100-2 may return to the normal mode based on the reception of the series of frames.
  • the proxy terminal 100-2 performs a second frame exchange based on a series of frames transmitted at the arrival of the temporary return timing after the start of the second frame transmission and the series of frames.
  • the second frame transmission is stopped.
  • the proxy terminal 100-2 does not perform the second frame transmission in a frame transmission period in which frames serving as a response to the series of frames are transmitted.
  • the stop terminal 100-2 starts the first frame when a series of frames are received from the proxy terminal 100-2 after stopping the first frame transmission.
  • FIG. 15 is a sequence diagram conceptually showing an example of the return process of the terminal 100-2 to the normal mode according to the third modification of the present embodiment. Note that description of processing that is substantially the same as in the first or second embodiment is omitted.
  • the terminal 100-2A in the second sleep mode transmits a Null frame (steps S341 and S342), and when the temporary return timing arrives, the terminals 100-2A and 100-2B temporarily return to the normal mode. .
  • Terminal 100-2B keeps the operations of transmitting section 102 and processing section 106 stopped, and starts only the operation of receiving section 104.
  • the terminal 100-2A which is the proxy terminal, transmits a series of frames during the temporary return period (steps S343 to S347). Specifically, terminal 100-2A transmits a series of frames each including a sequence number updated with a predetermined pattern during the temporary return period. For example, the terminal 100-2A sets the sequence number added to the Null frame transmitted during the frame transmission period of the terminal 100-2B to 0 (00) b, 1 (01) b, 2 (10) b 3 (11) b, 0 (00) b.
  • terminal 100-2B which is a stop terminal, returns to the normal mode and transmits a Null frame as a response to the series of frames (step S348).
  • the sequence number added to the Null frame is 1 (01) b obtained by incrementing the sequence number added to the Null frame which is the end of a series of received frames.
  • the proxy terminal 100-2A does not perform the second frame transmission in the frame transmission period in which the Null frame is transmitted after the transmission of a series of frames.
  • the stop terminal 100-2B may determine the return to the normal mode based on reception of a part of the series of frames. For example, the stop terminal 100-2B estimates the entire series of frames from a part of the series of frames, and determines whether the sequence number changes in a predetermined pattern for the estimated series of frames. .
  • the terminal 100-2A that has received a Null frame as a response to a series of frames returns to the normal mode and transmits a data frame (step S349).
  • the terminal 100-2B that has received the data frame transmits a null frame when there is no data to be transmitted (step S350).
  • the proxy terminal 100-2 is transmitted every time the predetermined third time arrives after the start of the second frame transmission.
  • the second frame transmission is stopped based on the exchange of a series of frames and a frame serving as a response to the series of frames.
  • the stop terminal 100-2 starts the first frame transmission based on the reception of the series of frames. For this reason, compared with the case where mode switching is performed based on a single frame, tolerance to frame reception failure is improved, and the reliability of the return process can be improved.
  • Each of the series of frames includes frame exchange information updated with a predetermined pattern. For this reason, the terminal 100-2 is returned to the normal mode by using the frame information prepared in the existing human body communication standard, thereby reducing the amount of modification in the terminal operating in accordance with the existing human body communication standard. Thus, the cost for applying the second sleep mode to the existing terminal can be reduced.
  • the functional configuration of the terminal 100-3 according to the second embodiment of the present disclosure is substantially the same as the functional configuration in the first embodiment, but the function of the control unit 108 is partially different. Note that description of functions that are substantially the same as the functions in the first or second embodiment is omitted.
  • the control unit 108 selects one of the first sleep mode and the second sleep mode. Specifically, the terminal 100-3 that is neither the substitute terminal nor the stop terminal, and the control unit 108 of the substitute terminal 100-3 perform frame transmission to be performed by the transmission unit 102 in a state where frame reception is stopped. Switching to only one frame transmission, or to both the first frame transmission and the second frame transmission. Further, the control unit 108 of the stop terminal 100-3 switches the presence / absence of the first frame transmission in a state where the frame reception is stopped.
  • control unit 108 switches the selected frame transmission when the temporary return timing reaches a predetermined number of times. For example, the control unit 108 switches the sleep mode to the second sleep mode when the temporary return timing reaches a predetermined number of times while the terminal 100-3 is in the first sleep mode. Note that the control unit 108 may initialize the count of the arrival times of the temporary return timing when the return to the normal mode occurs, or may maintain the count.
  • the sleep mode is switched when the number of arrivals of the temporary return timing reaches a predetermined number of times.
  • the time length in the sleep mode has reached the predetermined time length.
  • the sleep mode may be switched. For example, when the elapsed time from the transition to any one of the sleep modes reaches a predetermined time length, the control unit 108 switches the sleep mode after the next temporary return timing to another sleep mode.
  • the period during which sleep is continued may be different depending on the type of sleep mode.
  • the predetermined number of times or time length for the second sleep mode may be greater or longer than the first sleep mode.
  • the proxy terminal 100-3 performs frame transmission performed in a state in which frame reception is stopped, as the first frame transmission in the frame transmission period of the terminal itself. Or the first frame transmission and the second frame transmission in the frame transmission period of the communication partner.
  • the stop terminal 100-3 switches presence / absence of the first frame transmission in a state where frame reception is stopped. For this reason, the power consumption can be more effectively reduced by switching to the sleep mode according to the situation of the terminal and the communication partner.
  • the terminal 100-3 switches the frame transmission when the third time has reached a predetermined number of times. For this reason, by periodically switching the sleep mode, it is possible to prevent an unfavorable situation due to one sleep mode being continued longer than the other sleep mode. For example, in the above situation, the second sleep mode is continued for a long time, and the power consumption of one terminal 100-3 is larger than the power consumption of the other terminal 100-3.
  • the terminal 100-3 may switch frame transmission based on a frame communicated during the temporary return period. Specifically, when a request for switching the sleep mode occurs in the own terminal, the control unit 108 transmits a specific frame such as a PS-REQ frame via the processing unit 106 and the transmission unit 102 in the temporary return period. . Then, when a frame such as a PS-ACK frame, which is a response to the specific frame, is received, the control unit 108 switches the sleep mode. Note that information indicating the sleep mode to be switched to may be included in the specific frame.
  • the terminal 100-3 switches the selected frame transmission based on the frame communicated in the temporary return period. Therefore, by explicitly notifying the switching of the sleep mode, a sleep mode suitable for the situation of the terminal 100-3 is selected, and the power consumption can be more effectively reduced.
  • FIG. 16 is an explanatory diagram illustrating a hardware configuration of the human body communication device 100 according to an embodiment of the present disclosure.
  • the human body communication apparatus 100 includes a CPU (Central Processing Unit) 132, a ROM (Read Only Memory) 134, a RAM (Random Access Memory) 136, a bridge 138, a bus 140, and an interface. 142, an input device 144, an output device 146, a storage device 148, a drive 150, a connection port 152, and a communication control device 154.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 132 functions as an arithmetic processing unit and realizes part of the operations of the processing unit 106 and the control unit 108 in the human body communication device 100 in cooperation with various programs.
  • the CPU 132 may be a microprocessor.
  • the ROM 134 stores programs or calculation parameters used by the CPU 132.
  • the RAM 136 temporarily stores programs used in the execution of the CPU 132 or parameters that change as appropriate during the execution.
  • a part of the storage unit in the human body communication device 100 is realized by the ROM 134 and the RAM 136.
  • the CPU 132, the ROM 134, and the RAM 136 are connected to each other by an internal bus including a CPU bus.
  • the input device 144 generates an input signal based on an input by the user, such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever, and input by the user, and outputs the input signal to the CPU 132. It consists of a control circuit.
  • the user of the human body communication device 100 can input various data and instruct a processing operation to the human body communication device 100 by operating the input device 144.
  • the output device 146 performs output to devices such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and a lamp. Further, the output device 146 may output sound such as a speaker and headphones.
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diode
  • the storage device 148 is a device for storing data.
  • the storage device 148 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 148 stores programs executed by the CPU 132 and various data.
  • the drive 150 is a storage medium reader / writer, and is built in or externally attached to the human body communication device 100.
  • the drive 150 reads information recorded on a mounted removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 134.
  • the drive 150 can also write information to a removable storage medium.
  • connection port 152 is, for example, a bus for connecting to an information processing device or peripheral device outside the human body communication device 100.
  • the connection port 152 may be a USB (Universal Serial Bus).
  • the communication control device 154 is a communication interface including communication devices for performing human body communication as an example of the transmission unit 102, the reception unit 104, and the processing unit 106 of the human body communication device 100. Further, the communication control device 154 may be a wireless LAN (Local Area Network) compatible communication device, an LTE (Long Term Evolution) compatible communication device, or a wire communication compatible device that performs wired communication. Good.
  • LAN Local Area Network
  • LTE Long Term Evolution
  • the frame reception is stopped while the frame transmission is continued, so that the power consumption of at least one of the own device or the communication partner is maintained while maintaining the communication connection of the human body communication. Can be reduced.
  • the frame transmission of the stop terminal 100-2 is performed by the proxy terminal 100-2, so that the communication state is maintained and compared with the first sleep mode. It is possible to further reduce power consumption in the sleep mode of the stop terminal 100-2.
  • the third embodiment of the present disclosure it is possible to more effectively reduce power consumption by switching to the sleep mode according to the situation of the own terminal and the communication partner.
  • the specific frame transmitted during the temporary return period such as the PS-WUP frame is used for notification of the cancellation of the sleep mode.
  • the present technology is not limited to such an example.
  • a specific frame transmitted during the temporary return period may be used to notify the continuation of the sleep mode.
  • the sequence number change pattern in the third modification of the second embodiment may be different between the sleep mode release notification and the continuation notification. For example, when the continuation of the sleep mode is notified, the sequence number is changed to 0 (00) b, 3 (11) b, 0 (00) b, 3 (11) b.
  • the example in which the transition to the sleep mode and the return to the normal mode are notified using only human body communication has been described.
  • the notification is performed using communication using another communication method.
  • the terminal 100 can perform the above notification using communication using Bluetooth (registered trademark), BLE (Bluetooth Low Energy), Wi-Fi (registered trademark), or the like.
  • the following configurations also belong to the technical scope of the present disclosure.
  • a transmission unit that performs first frame transmission using human body communication during a frame transmission period of its own device determined in advance regardless of the presence or absence of data to be transmitted,
  • the transmission unit is a human body communication device that performs second frame transmission in the frame transmission period of the communication partner in addition to the first frame transmission.
  • the human body communication device according to (1) wherein the transmission unit starts the second frame transmission when the first frame exchange is performed.
  • the first frame exchange includes the exchange of a transition notification frame related to a notification of the start of the second frame transmission and a transition notification response frame serving as a response to the transition notification frame.
  • the human body communication device includes continuous exchange of frames transmitted when there is no data to be transmitted.
  • the human body communication device includes continuous exchange of frames transmitted when there is no data to be transmitted.
  • the transmission unit starts the second frame transmission when a predetermined first time arrives.
  • the transmission unit stops or continues the second frame transmission based on the second frame exchange performed after the start of the second frame transmission.
  • the second frame exchange includes exchange of a return notification frame related to the notification of stop of the second frame transmission and a return notification response frame serving as a response to the return notification frame.
  • the human body communication device wherein the transmission unit does not perform the second frame transmission in the frame transmission period in which the return notification frame is transmitted from the communication partner.
  • the second frame exchange includes a series of frames transmitted at the arrival of a predetermined third time after the start of the second frame transmission and a response to the series of frames.
  • the transmission unit does not perform the second frame transmission in the frame transmission period in which a frame serving as a response to the series of frames is transmitted.
  • the human body communication device according to any one of the above.
  • the frame transmitted by the transmission unit includes frame exchange information that is updated when a frame based on a received frame is transmitted, and each of the series of frames is updated with a predetermined pattern.
  • the human body communication device including frame exchange information.
  • the human body communication device includes a transmission unit that performs first frame transmission using human body communication during a predetermined frame transmission period of the own device, The transmission unit stops the first frame transmission while the second frame transmission is performed in the frame transmission period of the own device by the communication partner.
  • the human body communication device stops the first frame transmission when the first frame exchange is performed.
  • the first frame exchange is performed by exchanging a transition notification frame related to the notification of the start of the second frame transmission and a transition notification response frame serving as a response to the transition notification frame, or the transition notification response frame and The human body communication device according to (14), including exchange of a frame serving as a response to the transition notification response frame.
  • the human body communication device includes continuous exchange of frames transmitted when there is no data to be transmitted.
  • the human body communication device stops the transmission of the first frame when a first time determined in advance arrives.
  • the transmission unit starts the first frame transmission or continues to stop the first frame transmission based on the second frame exchange performed after the first frame transmission is stopped.
  • the human body communication device according to any one of (13) to (17).
  • the second frame exchange includes exchange of a return notification frame related to the notification of stop of the second frame transmission and a return notification response frame serving as a response to the return notification frame.
  • the transmission unit starts the first frame transmission based on reception of a series of frames after the first frame transmission is stopped, or continues the first frame transmission.
  • the human body communication device according to any one of (13) to (19).
  • the frame transmitted by the transmission unit includes frame exchange information that is updated when a frame based on the received frame is transmitted, and each of the series of frames is updated with a predetermined pattern.
  • the human body communication device 21), each including frame exchange information.
  • the transmission unit starts the first frame transmission when a predetermined second time comes after the second frame transmission is stopped, and any one of (13) to (17)
  • the reception unit that receives a frame using human body communication, and the control unit that stops the first frame transmission by the transmission unit and stops frame reception of the reception unit.
  • the human body communication device according to any one of (1) to (23).
  • the human body communication device (24), wherein the control unit switches presence / absence of the first frame transmission in a state where frame reception of the reception unit is stopped.
  • a receiving unit that receives a frame using human body communication, a transmitting unit that transmits a frame using human body communication during a predetermined frame transmission period of its own device, and a transmission unit that transmits a frame for each frame transmission period.
  • a human body communication device comprising: a control unit that controls whether or not the receiving unit can receive a frame while continuing frame transmission.
  • the human body communication device (26), wherein when the first frame exchange is performed, the control unit causes the reception unit to stop frame reception.
  • the first frame exchange includes exchange of a transition notification frame related to a notification of frame reception stop of the reception unit and a transition notification response frame serving as a response to the transition notification frame.
  • the human body communication device described.
  • the control unit causes the reception unit to stop frame reception when a first time determined in advance arrives.
  • the control unit causes the reception unit to perform frame reception only for a predetermined period, and the second period is performed in the predetermined period.
  • the human body communication device according to any one of (26) to (30), wherein the reception unit starts frame reception or continues frame stoppage based on frame exchange.
  • the second frame exchange includes exchange of a return notification frame related to a notification of start of frame reception by the receiving unit and a return notification response frame serving as a response to the return notification frame.
  • the frame transmitted by the transmission unit includes frame exchange information that is updated when a frame based on the received frame is transmitted, and the second frame exchange includes a frame transmitted in the predetermined period,
  • the human body communication device according to (31) or (32), including exchange of a frame including frame exchange information obtained by updating the frame exchange information included in a frame transmitted in the predetermined period.
  • the control unit according to any one of (26) to (33), wherein when the second predetermined time comes after stopping frame reception, the control unit causes the reception unit to start frame reception.
  • the human body communication device described. The control unit performs frame transmission to be performed by the transmission unit while frame reception is stopped, first frame transmission in the frame transmission period of the own device, or the first frame transmission and communication.
  • (36) The human body communication device according to (35), wherein the control unit switches frame transmission when the third time comes a predetermined number of times.
  • the human body communication device wherein the control unit switches frame transmission based on a frame communicated in the predetermined period.
  • the first frame transmission is performed using the human body communication during the predetermined frame transmission period of the own device regardless of the presence or absence of the data to be transmitted. And performing a second frame transmission in the frame transmission period of the communication partner in addition to the first frame transmission.
  • the reception unit receives a frame using human body communication, the transmission unit transmits a frame using human body communication during a predetermined frame transmission period of the own device, and the control unit Controlling whether or not the receiving unit can receive a frame while continuing frame transmission for each frame transmission period.
  • the first frame transmission is performed using human body communication during the frame transmission period of the own apparatus, which is determined in advance, regardless of the presence or absence of data to be transmitted. And stopping the first frame transmission while the second frame transmission in the frame transmission period of the device is being performed by the communication partner.
  • a transmission function for performing a first frame transmission using human body communication during a predetermined frame transmission period of the own device The program for making a computer implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能な人体通信装置、人体通信方法およびプログラムを提供する。 【解決手段】通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信部を備え、前記送信部は、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する、人体通信装置。

Description

人体通信装置、人体通信方法およびプログラム
 本開示は、人体通信装置、人体通信方法およびプログラムに関する。
 近年、人体を介した通信(以下、人体通信とも称する。)の技術についての研究開発が行われている。このような人体通信を行う装置は、概して継続的な給電が困難であるため、動作の継続性向上のために消費電力の低減が望まれる。
 例えば、特許文献1では、電界を検知すると移行される通信モードにおいてユーザ認証のための人体通信を行い、当該ユーザ認証の終了後に戻される省電力モードにおいては人体通信を行わない人体通信装置に係る発明が開示されている。
特開2014-103523号公報
 しかし、特許文献1で開示される発明では、消費電力は低減されるが、通信接続を維持することが困難である。例えば、省電力モードでは通信相手との通信が行われないため、他の人体通信装置が当該通信相手との通信を開始する場合がある。この場合には、当該他の人体通信装置との通信が終了するまでの間の待機時間が生じる。また、通信を再開する際に再度接続処理が行われるため、通信のオーバヘッドが増加する。
 そこで、本開示では、人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能な、新規かつ改良された人体通信装置、人体通信方法およびプログラムを提案する。
 本開示によれば、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信部を備え、前記送信部は、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する、人体通信装置が提供される。
 また、本開示によれば、人体通信を用いてフレームを受信する受信部と、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信部と、前記送信部に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御する制御部と、を備える、人体通信装置が提供される。
 また、本開示によれば、送信部によって、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行うことと、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止することと、を含む人体通信方法が提供される。
 また、本開示によれば、受信部によって、人体通信を用いてフレームを受信することと、送信部によって、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信することと、制御部によって、前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御することと、を含む人体通信方法が提供される。
 また、本開示によれば、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信機能と、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する送信機能と、をコンピュータに実現させるためのプログラムが提供される。
 また、本開示によれば、人体通信を用いてフレームを受信する受信機能と、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信機能と、前記送信機能に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信機能のフレーム受信可否を制御する制御機能と、をコンピュータに実現させるためのプログラムが提供される。
 以上説明したように本開示によれば、人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能な人体通信装置、人体通信方法およびプログラムが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
従来の人体通信装置の処理の例を示すシーケンス図である。 本開示の第1の実施形態に係る端末の処理の例を示すシーケンス図である。 同実施形態に係る端末の概略的な機能構成の例を示すブロック図である。 同実施形態に係る端末の第1のスリープモードへの移行処理の例を概念的に示すシーケンス図である。 同実施形態に係る端末の通常モードへの復帰処理の例を概念的に示すシーケンス図である。 同実施形態の第1の変形例に係る端末の第1のスリープモードへの移行処理の例を概念的に示すシーケンス図である。 同実施形態の第2の変形例に係る端末の周期的なモード変更処理の例を概念的に示すシーケンス図である。 同実施形態の第3の変形例に係る端末の通常モードへの復帰処理の例を概念的に示すシーケンス図である。 本開示の第2の実施形態に係る端末の処理の例を示すシーケンス図である。 同実施形態に係る代行端末から第2のスリープモードへの移行が通知される場合の移行処理の例を概念的に示すシーケンス図である。 同実施形態に係る停止端末から第2のスリープモードへの移行が通知される場合の移行処理の例を概念的に示すシーケンス図である。 同実施形態に係る停止端末から通常モードへの復帰が通知される場合の復帰処理の例を概念的に示すシーケンス図である。 同実施形態に係る停止端末から通常モードへの復帰が通知される場合の復帰処理の他の例を概念的に示すシーケンス図である。 同実施形態の第1の変形例に係る端末の第2のスリープモードへの移行処理の例を概念的に示すシーケンス図である。 同実施形態の第3の変形例に係る端末の通常モードへの復帰処理の例を概念的に示すシーケンス図である。 本開示の一実施形態に係る人体通信装置のハードウェア構成を示した説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.従来技術の課題
 2.第1の実施形態(第1のスリープモード)
 3.第2の実施形態(第2のスリープモード)
 4.第3の実施形態(スリープモードの切り替え)
 5.本開示の一実施形態に係る人体通信装置のハードウェア構成
 6.むすび
 <1.従来技術の課題>
 まず、従来の人体通信装置の課題について説明する。
 人体通信装置(以下、端末とも称する。)は概して、送信機能および受信機能を有する。送信機能は人体通信を用いてフレームの送信処理を行い、受信機能は人体通信を用いてフレームの受信処理を行う。このため、端末は、他の端末との双方向通信が可能である。
 さらに、従来の端末には、人体通信に係る既存の通信規格に基づいて動作する端末が存在する。例えば、人体通信に係る通信規格としては、ECMA-401がある。ECMA-401では、時間軸がTDS(Time Division Slot)と呼ばれるタイムスロットに分割され、1つのTDSにおいて1つのP-PDU(PHY Protocol Data Unit)(以下、フレームとも称する。)が送信される。当該フレームは、通信を行う端末の各々によって交互に送信される。
 また、上記のフレームには、シーケンスナンバ(Sequence Number)と呼ばれる情報が付加される。当該シーケンスナンバはフレームが正しく受信されるとインクリメントされ、インクリメントされたシーケンスナンバが次に送信されるフレームに付加される。例えば、シーケンスナンバは、2進数の2ビット情報であり得る。
 また、上記のフレームには概してデータが含まれるが、送信すべきデータが存在しない場合は、データを含まないフレーム(以下、Nullフレームとも称する。)が送信される。なお、当該Nullフレームにもシーケンスナンバが付加される。
 さらに、図1を参照して、従来の人体通信装置である端末Aおよび端末BがECMA-401に従った通信を行う例を説明する。図1は、従来の人体通信装置の処理の例を示すシーケンス図である。
 まず、端末Aからデータフレームが送信され、端末Bにて当該データフレームが受信される(ステップS11)。具体的には、当該データフレームは2番目のTDSで送信され、当該データフレームに付加されるシーケンスナンバは2すなわち(10)b(以下、2(10)bのような形式で示す。)である。当該データフレームが、端末Aから送信され、端末Bによって受信される。
 次に、端末Bからデータフレームが送信され、端末Aにて当該データフレームが受信される(ステップS12)。具体的には、端末Bは、受信されたデータフレームに付加されるシーケンスナンバをインクリメントすることによって得られるシーケンスナンバ3(11)bを送信すべきデータフレームに付加する。そして、当該シーケンスナンバが付加されたデータフレームが、端末Bから送信され、端末Aによって受信される。
 次に、端末AからNullフレームが送信され、端末Bにて当該Nullフレームが受信される(ステップS13)。具体的には、端末Aにおいて送信すべきデータが存在しない場合、端末Aはデータを含まないNullフレームを生成する。端末Aは、生成されるNullフレームに、受信されたデータフレームに付加されるシーケンスナンバをインクリメントすることによって得られるシーケンスナンバ0(00)bを付加する。そして、そして、当該シーケンスナンバが付加されたNullフレームが、端末Aから送信され、端末Bによって受信される。
 そして、ステップS13以降(ステップS14~S16)では、ステップS13と同様に、各端末において送信すべきデータがないため、図1に示したように、インクリメントされるシーケンスナンバが付加されたNullフレームの送受信が繰り返される。
 ここで、送信すべきデータがない場合であっても通信接続を維持するためにNullフレームの送受信が繰り返される。例えば、通信のビットレートよりもデータレートが低い音声等のストリーミング通信では、送信すべきデータがないTDSが連続して生じ得るため、Nullフレームの送受信が繰り返し発生し得る。しかし、このような場合においても、上述したように、Nullフレームについて、送信処理、受信処理ならびにシーケンスナンバの取得および取得されるシーケンスナンバのインクリメント等の処理が行われる。そのため、Nullフレームであっても、通信接続の維持のためにデータフレームの通信と同等の電力が消費されることになる。
 これに対し、送信すべきデータがない場合には通信接続を切断することが考えられる。しかし、通信接続の切断後に、同じ通信相手との通信を再開するのに時間がかかる場合がある。例えば、通信接続の切断後に、通信相手であった端末が他の端末との通信を開始した場合、当該他の端末との通信が終了するまでの間の待機時間が生じる。また、通信を再開する際に再度接続処理が行われるため、通信のオーバヘッドが増加する。
 また、同一のNullフレームを送信し、フレームの受信処理を停止することが考えられる。しかし、ECMA-401では、フレームに付加されるシーケンスナンバについて更新すなわちインクリメントが行われない場合、当該フレームは再送フレームとして扱われる。そのため、インクリメントされないシーケンスナンバが付加されたNullフレームが複数送信されると、通信相手の端末にて、再送の頻発すなわち通信環境の悪化が生じていると判断され、通信の停止すなわち通信接続の切断が行われる可能性がある。
 なお、人体通信と異なる無線通信における省電力に係る機能を適用することも考えられる。例えば、Bluetooth(登録商標)通信では、Park Mode、Hold ModeおよびSniff Modeといった省電力モードが用意されている。しかし、人体通信にこのような省電力に係る機能をそのまま適用することは困難である。
 例えば、Bluetooth等の無線通信の省電力モードでは概して、フレームの送受信を停止することによって消費電力が低減される。他方、ECMA-401では、フレームの送信が行われていない場合、TDSが空いていると判断され、当該TDSが他の端末によって使用される可能性がある。そのため、TDSを確保するために、少なくともフレームの送信が継続されることが望ましい。
 また、Bluetooth通信では、端末はMasterおよびSlaveのいずれかの役割を持ち、省電力モードがHold Mode以外である場合、Masterとなる端末は省電力モードに移行しない仕様となっている。他方、ECMA-401では、端末はTalkerおよびListenerのいずれかの役割を持ち、いずれの役割を担う端末であっても省電力モードに移行可能であることが望ましい。
 そこで、本開示では、人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能な人体通信装置を提案する。以下、本開示の各実施形態に係る人体通信装置100についてそれぞれ詳細に説明する。また、説明の便宜上、第1~第3の実施形態に係る人体通信装置100の各々を、人体通信装置100-1~人体通信装置100-3のように、末尾に実施形態に対応する番号を付することにより区別する。
 <2.第1の実施形態(第1のスリープモード)>
 以上、従来の人体通信装置の課題について説明した。次に、本開示の第1の実施形態に係る人体通信装置100-1(以下、端末100-1とも称する。)について説明する。
 まず、図2を参照して、第1の実施形態に係る端末100-1の概要について説明する。図2は、本開示の第1の実施形態に係る端末100-1の処理の例を示すシーケンス図である。
 第1の実施形態では、端末100-1は、通常モードと省電力モード(以下、スリープモードとも称する。)と有し、当該スリープモードとして、第1のスリープモードを有する。当該第1のスリープモードは、フレームの送信処理が継続されながら、フレームの受信処理が停止されるモードである。
 例えば、第1のスリープモードでは、図2に示したように、通信を行う端末100-1Aおよび100-1Bが交互にフレームを送信しているが、送信されるフレームは受信されない。そのため、通常モードではシーケンスナンバがフレーム送信の度にインクリメントされるが、第1のスリープモードでは受信処理が行われないため、同じシーケンスナンバを含むフレームの送信が繰り返される。
 なお、同じシーケンスナンバのフレームが連続して送信されると、通信相手である端末がフレームの再送が頻発している、すなわち通信環境が悪化していると判断し、通信を停止し得る。そのため、第1のスリープモードへの移行の際または当該移行前に、端末間で第1のスリープモードのサポート有無および第1のスリープモード中の動作をエラーとして扱わない旨の確認を行うことが望ましい。
 このように、第1のスリープモードでは、送信処理が継続されながら、受信処理が停止されるため、例えば送信すべきデータがなくNullフレームが送信される場合に第1のスリープモードが選択されると、Nullフレームが送信されている間の電力消費を低減することが可能となる。以下に、第1の実施形態について詳細に説明する。
  <2-1.装置の構成>
 続いて、図3を参照して、本開示の第1の実施形態に係る端末100-1の機能構成について説明する。図3は、本開示の第1の実施形態に係る端末100-1の概略的な機能構成の例を示すブロック図である。
 端末100-1は、図3に示したように、送信部102、受信部104、処理部106および制御部108を備える。
 送信部102は、人体通信を用いてフレームの送信を行う。具体的には、送信部102は、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自端末のフレーム送信期間に人体通信を用いてフレーム送信(以下、第1のフレーム送信とも称する。)を行う。例えば、第1のフレーム送信は、ECMA-401に従って行われる。この場合、フレーム送信期間はTDSに相当し、端末の各々のTDSは接続開始の際すなわちアソシエーションの際に端末間で決定される。なお、送信部102が送信するフレームは、後述する処理部106によって生成される。
 また、送信されたフレームが受信されない場合すなわち通信相手によってフレーム受信が失敗される場合、送信部102は、同一のフレームを再送する。例えば、送信部102は、フレーム送信後に通信相手から受信されたフレームに付加されるシーケンスナンバが自端末の送信したフレームに付加されたシーケンスナンバをインクリメントして得られる値でない場合、フレームの再送を行う。
 受信部104は、人体通信を用いてフレームの受信を行う。具体的には、受信部104は、人体通信を用いて送信されるフレームを待ち受ける。例えば、受信部104は、フレームが通信相手となる端末から送信されると、送信されるフレームを受信し、受信されるフレームを処理部106に提供する。
 処理部106は、フレームの生成および分析を行う。具体的には、処理部106は、制御部108からの指示に基づいて、後述するPS-REQフレームおよびPS-ACKフレーム等のフレームを生成し、生成されるフレームを送信部102に提供する。
 また、処理部106は、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報の取得、更新および利用を行う。より具体的には、処理部106は、受信部104によって受信されるフレームからフレーム交換情報を取得し、取得されるフレーム交換情報を更新する。そして、処理部106は、更新されたフレーム交換情報を生成されるフレームに付加する。例えば、フレーム交換情報は、上述のシーケンスナンバであり、処理部106は、受信されたフレームから取得されるシーケンスナンバをインクリメントする。そして、処理部106は、インクリメント後のシーケンスナンバを生成されるフレームに付加する。
 制御部108は、端末100-1の動作を全体的に制御する。具体的には、制御部108は、端末100-1の動作モードを選択する。例えば、端末100-1の動作モードには、上述したような通常モードおよび第1のスリープモードがある。
 制御部108は、第1のスリープモードにおいては、送信部102に自端末のフレーム送信期間毎のフレーム送信を継続させながら、受信部104のフレーム受信可否を制御する。より具体的には、制御部108は、第1のフレーム交換としての、受信部104のフレーム受信の停止の通知に係るフレーム(以下、移行通知フレームまたはPS-REQフレームとも称する。)および当該移行通知フレームへの応答となるフレーム(以下、移行通知応答フレームまたはPS-ACKフレームとも称する。)の交換が行われると、受信部104にフレーム受信を停止させる。なお、PS-REQフレームおよびPS-ACKフレームはPHY(Physical)層に相当する階層のフレームであってもよく、MAC(Media Access Control)層に相当する階層のフレームであってもよい。
   (第1のスリープモードへの移行)
 例えば、制御部108は、自端末が自ら第1のスリープモードに移行する場合、送信部102および処理部106を介してPS-REQフレームを通信相手に送信する。そして、制御部108は、第1のスリープモードへの移行の許可を示すPS-ACKフレームが当該通信相手から受信されると、受信部104の動作すなわちフレーム受信および処理部106の動作すなわちシーケンスナンバのインクリメントを停止させる。なお、制御部108は、アプリケーションからのスリープ要求に応じてスリープモードへの移行処理を行う。
 また、制御部108は、自端末が通信相手からの通知に応じて第1のスリープモードに移行する場合、当該通信相手からPS-REQフレームが受信されると、第1のスリープモードへの移行の許可を示すPS-ACKフレームを送信部102および処理部106を介して送信する。そして、制御部108は、PS-ACKフレームの送信後に、受信部104および処理部106の動作を停止させる。
 なお、上記では、第1のスリープモードへの移行の許可または不許可を示すPS-ACKフレームが用いられる例を説明したが、不許可を示す応答が行われない場合、PS-ACKフレームの代わりにNullフレーム等の他のフレームが用いられてもよい。
 また、上記では、PS-ACKフレームが受信され、またはPS-ACKフレームが送信されると、端末100-1が第1のスリープモードに移行する例を説明したが、第1のスリープモードへの移行タイミングが指示され、または共有されてもよい。具体的には、PS-REQフレームまたはPS-ACKフレームに受信部104のフレーム受信の停止タイミングを示す情報が付加され、制御部108は、当該情報に基づいて受信部104のフレーム受信を停止させる。
 例えば、フレーム受信の停止タイミングは、PS-ACKフレームの受信からの経過時間(time segmentまたはTDSの数)、または接続処理(Association Request1、Association Response1またはAssociation Request2の送信または受信)からの経過時間を用いて、通信を行う各端末が同じタイミングで第1のスリープモードへ移行するように、決定され得る。なお、time segmentは複数のTDS、例えば8つのTDSを含む。
 PS-REQフレームおよびPS-ACKフレームがP-DUフレームである場合には、当該PS-REQフレーム等は、少なくとも2つのPHYフレームすなわちP-PDUフレームに分割され、少なくとも2つのTDSに跨って送信される。この場合、一方の端末100-1がP-DUフレームの一部の受信に基づいて第1のスリープモードに移行すると、他方の端末100-1が第1のスリープモードに移行することが困難となり得る。しかし、上記のように第1のスリープモードへの移行タイミングが揃えられることにより、そのような状況の発生を防止することが可能となる。
 また、制御部108は、端末100-1の各部、特に送信部102、受信部104および処理部106への給電制御を行うことによって当該各部の動作の有無を制御する。あるいは、制御部108は、給電制御以外のハードウェアまたはソフトウェアの処理によって端末100-1の各部の動作の有無を制御してもよい。
   (通常モードへの復帰)
 制御部108は、第1のスリープモード中に、第3の時間として、予め決定される時間(以下、一時復帰タイミングとも称する。)が到来すると、所定の期間(以下、一時復帰期間とも称する。)だけ受信部104にフレーム受信を行わせる。そして、制御部108は、当該一時復帰期間において第2のフレーム交換が行われると、受信部104にフレーム受信を開始させる。
 具体的には、制御部108は、上記の一時復帰期間において、第2のフレーム交換としての、受信部104のフレーム受信の開始の通知に係るフレーム(以下、復帰通知フレームまたはPS-WUPフレームとも称する。)および当該復帰通知フレームへの応答となるフレーム(以下、復帰通知応答フレームとも称する。)の交換が行われると、受信部104のフレーム受信を開始させる。
 例えば、制御部108は、一時復帰タイミングとして、接続処理からの経過時間等の予め決定される時間が到来する度に、一時復帰期間だけ自端末を通常モードに復帰させる。なお、当該一時復帰期間は、フレーム受信の失敗の可能性を考慮した長さに設定されることが望ましい。
 そして、制御部108は、自端末が自ら通常モードに復帰する場合、上記の一時復帰期間において、送信部102および処理部106を介してPS-WUPフレームを通信相手に送信する。そして、制御部108は、PS-WUPフレームへの応答となるNullフレームが当該通信相手から受信されると、受信部104および処理部106の動作を再開させる。ここで、動作の再開は、一時復帰期間の経過後も動作を継続させることを意味する。
 また、制御部108は、自端末が通信相手からの通知に応じて通常モードに復帰する場合、当該通信相手からPS-WUPフレームが受信されると、当該PS-WUPフレームへの応答となるNullフレームを送信部102および処理部106を介して送信する。そして、制御部108は、当該Nullフレームの送信後に、受信部104および処理部106の動作を再開させる。受信されるNullフレームがPS-WUPフレームに対する応答であるかは、シーケンスナンバに基づいて判定される。例えば、制御部108は、Nullフレームに付加されるシーケンスナンバがPS-WUPフレームに付加されるシーケンスナンバをインクリメントすることによって得られる値であるかを判定する。
 なお、上記では、PS-WUPフレームに対する応答となるフレームは、Nullフレームである例を説明したが、当該応答となるフレームは、別途用意される特定のフレームまたはデータフレーム等の他のフレームであってもよい。
 また、制御部108は、PS-WUPフレームへの応答となるNullフレームが受信されるまで送信部102および処理部106に当該PS-WUPフレームの再送を継続させてもよい。さらに、再送回数の上限が設けられ、制御部108は、再送回数が上限に達すると送信部102等に再送を停止させてもよい。
  <2-2.装置の処理>
 次に、本実施形態に係る端末100-1の処理について説明する。
   (第1のスリープモードへの移行処理)
 まず、図4を参照して、本実施形態に係る端末100-1の第1のスリープモードへの移行処理について説明する。図4は、本実施形態に係る端末100-1の第1のスリープモードへの移行処理の例を概念的に示すシーケンス図である。
 端末100-1Aは、第1のスリープモードへの移行が決定されると、PS-REQフレームを送信する(ステップS201)。具体的には、制御部108は、処理部106にPS-REQフレームを生成させ、生成されるPS-REQフレームが送信部102によって送信される。例えば、当該PS-REQフレームに付加されるシーケンスナンバは0(00)bである。
 PS-REQフレームを受信した端末100-1Bは、PS-ACKフレームを送信すると共に、第1のスリープモードへ移行する(ステップS202)。具体的には、制御部108は、PS-REQフレームが受信部104によって受信されると、処理部106にPS-ACKフレームを生成させ、生成されるPS-ACKフレームが送信部102によって送信される。そして、制御部108は、PS-ACKフレームの送信後に、受信部104および処理部106の動作を停止させる。例えば、当該PS-ACKフレームに付加されるシーケンスナンバは、受信されたPS-REQフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 PS-ACKフレームを受信した端末100-1Aは、Nullフレームを送信すると共に、第1のスリープモードへ移行する(ステップS203)。具体的には、制御部108は、PS-ACKフレームが受信部104によって受信されると、処理部106にNullフレームを生成させ、生成されるNullフレームが送信部102によって送信される。そして、制御部108は、Nullフレームの送信後に、受信部104および処理部106の動作を停止させる。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたPS-ACKフレームに付加されたシーケンスナンバをインクリメントすることにより得られる2(10)bである。
 ステップS204以降すなわち第1のスリープモード中は、端末100-1Aおよび端末100-1Bの各々は、各々のフレーム送信期間において、それぞれ第1のスリープモードへの移行前であっていずれの他のフレームよりも後に送信されたフレーム(以下、移行直前のフレームとも称する。)と同一のフレームの再送を続ける。また、端末100-1Aおよび端末100-1Bの各々は、第1のスリープモード、すなわち受信部104および処理部106の動作が停止している状態であるため、フレームの受信およびシーケンスナンバのインクリメントが行われない。
   (通常モードへの復帰処理)
 続いて、図5を参照して、本実施形態に係る端末100-1の通常モードへの復帰処理について説明する。図5は、本実施形態に係る端末100-1の通常モードへの復帰処理の例を概念的に示すシーケンス図である。
 第1のスリープモード中の端末100-1Aおよび100-1Bは、互いにNullフレームを送信する(ステップS301、S302)。具体的には、送信部102は、自端末のフレーム送信期間毎に同じフレームを再送する。受信部104および処理部106は動作を停止しているため、フレームの受信は行われない。
 次に、一時復帰タイミングが到来すると、端末100-1Aおよび100-1Bは、一時的に通常モードに復帰する。具体的には、制御部108は、第1のスリープモード中において、例えば接続処理から所定の時間経過毎に、図5のドットハッチングで示したような一時復帰期間だけ受信部104および処理部106に動作を再開させる。
 次に、端末100-1Aが通常モードに完全に復帰する場合、端末100-1Aは、PS-WUPフレームを送信する(ステップS303)。具体的には、制御部108は、端末100-1Aが通常モードに完全に復帰する場合、処理部106にPS-WUPフレームを生成させ、生成されるPS-WUPフレームが送信部102によって送信される。例えば、当該PS-WUPフレームに付加されるシーケンスナンバは0(00)bである。
 PS-WUPフレームを受信した端末100-1Bは、Nullフレームを送信すると共に、通常モードに復帰する(ステップS304)。具体的には、制御部108は、PS-WUPフレームが受信部104によって受信されると、処理部106にPS-WUPフレームへの応答となるNullフレームを生成させ、生成されるNullフレームが送信部102によって送信される。例えば、当該Nullフレームに付加されるシーケンスナンバは、PS-WUPフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 Nullフレームを受信した端末100-1Aは、通常モードに復帰し、データフレームを送信する(ステップS305)。具体的には、制御部108は、インクリメントされたシーケンスナンバが付加されたNullフレームが受信部104によって受信されると、受信部104および処理部106の動作を継続させる。そして、処理部106は、送信すべきデータがある場合、データフレームを生成し、生成されるデータフレームが送信部102によって送信される。例えば、当該データフレームに付加されるシーケンスナンバは、受信されたNullフレームに付加されたシーケンスナンバをインクリメントすることにより得られる2(10)bである。
 データフレームを受信した端末100-1Bは、送信すべきデータがない場合、Nullフレームを送信する(ステップS306)。具体的には、処理部106は、データフレームが受信部104によって受信されると、送信すべきデータフレームがない場合、Nullフレームを生成し、生成されるNullフレームが送信部102によって送信される。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたデータフレームに付加されたシーケンスナンバをインクリメントすることにより得られる3(11)bである。
 なお、上記では、PS-WUPフレームを送信する端末100-1も通常モードに一時的に復帰する例を説明したが、PS-WUPフレームを送信する端末100-1は、第1のスリープモード中に一時復帰タイミングが到来すると、通常モードに完全に復帰してもよい。
 このように、本開示の第1の実施形態によれば、端末100-1は、人体通信を用いてフレームを受信し、予め決定される自端末のフレーム送信期間に人体通信を用いてフレームを送信する。また、端末100-1は、フレーム送信期間毎のフレーム送信を継続しながら、フレーム受信可否を制御する。このため、フレーム送信が継続されながらフレーム受信が停止されることにより、人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能となる。
 また、端末100-1は、第1のフレーム交換が行われると、フレーム受信を停止する。このため、第1のスリープモードへの移行が明示されることにより、例えば片方の端末100-1のみがスリープモードへ移行する等のスリープモードへの移行について端末間で不整合が生じるような事態の発生を抑制することが可能となる。
 また、上記の第1のフレーム交換は、フレーム受信の停止の通知に係る移行通知フレームおよび当該移行通知フレームへの応答となる移行通知応答フレームの交換を含む。このため、第1のスリープモードへの移行が専用のフレームで通知されることにより、第1のスリープモードへの移行判定が容易となる。その結果、第1のスリープモードへの移行処理を簡素化することが可能となる。
 また、端末100-1は、フレーム受信の停止後に、予め決定される第3の時間が到来すると、所定の期間だけフレーム受信を行い、上記の所定の期間において行われる第2のフレーム交換に基づいてフレーム受信を開始する。このため、第1のスリープモード中に通常モードへの復帰判定が行われることにより、適したタイミングで通信を再開させることが可能となる。
 また、上記の第2のフレーム交換は、フレーム受信の開始の通知に係る復帰通知フレームおよび当該復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む。このため、通常モードへの復帰が専用のフレームで通知されることにより、通常モードへの復帰判定が容易となる。その結果、通常モードへの復帰処理を簡素化することが可能となる。
  <2-3.変形例>
 以上、本開示の第1の実施形態について説明した。なお、本実施形態は、上述の例に限定されない。以下に、本実施形態の第1~第3の変形例について説明する。
   (第1の変形例)
 本実施形態の第1の変形例として、第1のフレーム交換としての、第1のスリープモードへの移行のトリガとなるフレーム交換は、Nullフレームの連続的な交換であってもよい。具体的には、制御部108は、Nullフレームが所定の回数にわたって連続的に交換されると、受信部104および処理部106の動作を停止する。さらに、図6を参照して、本変形例の処理について詳細に説明する。図6は、本実施形態の第1の変形例に係る端末100-1の第1のスリープモードへの移行処理の例を概念的に示すシーケンス図である。なお、第1の実施形態の処理と実質的に同一である処理については説明を省略する。
 端末100-1Aは、送信すべきデータがある場合、データフレームを送信し(ステップS211)、データフレームを受信した端末100-1Bは、送信すべきデータフレームがない場合、Nullフレームを送信する(ステップS212)。
 ステップS212以降は、端末100-1Aおよび100-1Bの双方において送信すべきデータフレームがないため、図6に示したように、Nullフレームの送受信が連続して行われる。
 ここで、端末100-1Aおよび100-1Bは、Nullフレームの送信および受信の回数をカウントし、カウントされる回数が所定の回数に達すると、第1のスリープモードに移行する。具体的には、制御部108は、Nullフレームが送信部102によって送信され、またはNullフレームが受信部104によって受信される度に、回数をカウントアップし、当該回数が所定の回数に達すると、受信部104および処理部106の動作を停止する。
 例えば、上記の所定の回数が4回である場合を考える。端末100-1Aについては、図6に示したように、ステップS212におけるNullフレームの受信からステップS215におけるNullフレームの送信までに4回連続してNullフレームが交換される。そのため、端末100-1Aは、ステップS215におけるNullフレームの送信後に、第1のスリープモードに移行する。
 また、端末100-1Bについては、図6に示したように、ステップS212におけるNullフレームの送信からステップS215におけるNullフレームの受信までに4回連続してNullフレームが送受信される。そのため、端末100-1Bは、ステップS215におけるNullフレームの受信後に、第1のスリープモードに移行する。
 なお、上記では、端末100-1はNullフレームが所定の回数連続的に交換されると第1のスリープモードへ移行する例を説明したが、端末100-1はNullフレームが所定の時間連続して交換されると第1のスリープモードに移行してもよい。また、当該所定の時間は、接続処理の際に決定されてもよく、端末100-1が保持する固定値であってもよい。
 このように、本実施形態の第1の変形例によれば、上記の第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む。このため、既存の人体通信の規格で用意されているフレームを用いて端末100-1が第1のスリープモードに移行されることにより、既存の人体通信の規格に従って動作する端末における改修量を削減し、当該既存の端末への第1のスリープモードの適用にかかるコストを低減することが可能となる。また、送信すべきデータが無くなったタイミングで第1のスリープモードに移行することが可能となる。
   (第2の変形例)
 本実施形態の第2の変形例として、第1のスリープモードへの移行は、第1の時間として、予め決定される時間(以下、第1の移行タイミングとも称する。)の到来に基づいて行われてもよく、通常モードのへの復帰は、第2の時間として、予め決定される時間(以下、第1の復帰タイミングとも称する。)の到来に基づいて行われてもよい。具体的には、制御部108は、第1の移行タイミングが到来すると、受信部104にフレーム受信を停止させる。また、制御部108は、第1の復帰タイミングが到来すると、受信部104にフレーム受信を開始させる。さらに、図7を参照して、本変形例の処理について詳細に説明する。図7は、本実施形態の第2の変形例に係る端末100-1の周期的なモード変更処理の例を概念的に示すシーケンス図である。なお、第1の実施形態の処理と実質的に同一である処理については説明を省略する。
 端末100-1Aおよび端末100-1Bは、送信すべきデータがある場合、互いにデータフレームを送信する(ステップS401~S404)。なお、送信すべきデータがない場合はNullフレームが送信される。
 ここで、端末100-1は、基準時点からの経過時間に応じてモードを切り替える。具体的には、制御部108は、基準時点からの経過時間が所定の時間である場合、すなわち第1の移行タイミングまたは第1の復帰タイミングである場合、受信部104および処理部106の動作の有無を切り替える。
 例えば、基準時点は接続処理が行われた時点であり、所定の時間はtime segmentの所定の倍数であり得る。図7に示したように、端末100-1Aおよび100-1Bは、基準時点から(N+1)time segmentの経過後すなわちステップS404のフレーム送信の後に、第1のスリープモードへ移行する。そして、端末100-1Aおよび100-1Bは、基準時点から(N+3)time segmentの経過後すなわちステップS408のフレーム送信の後に、通常モードへ復帰する。基準時点からの経過time segment数は制御部108によってカウントされる。
 なお、上記では、基準時点が接続処理の時点である例を説明したが、基準時点はモードの切り替え時点であってもよい。例えば、図7に示したようなステップS404の処理後の第1のスリープモードへの移行時点が基準時点となり、端末100-1は、当該基準時点から2time segment後に通常モードに復帰する。そして、当該通常モードへの復帰時点が次の基準時点となる。
 また、上記では、基準時点からの経過時間の単位がtime segmentである例を説明したが、当該経過時間の単位はTDS等の他の単位であってもよい。
 また、各モードが維持される期間は、予め決定されてもよい。例えば、接続処理等において、第1のスリープモードが維持される期間および通常モードが維持される期間の各々が決定されてもよく、第1のスリープモードおよび通常モードのデューティー比が決定されてもよい。
 また、上記では、第1のスリープモードへの移行および通常モードへの復帰の両方が予め決定される時間の到来に基づいて行われる例を説明したが、第1のスリープモードへの移行および通常モードへの復帰のうちのいずれか一方のみが予め決定される時間の到来に基づいて行われてもよい。例えば、第1のスリープモードへの移行がPS-REQフレームおよびPS-ACKフレームの交換に基づいて行われ、通常モードへの復帰は第1の復帰タイミングに基づいて行われるとしてもよい。
 このように、本実施形態の第2の変形例によれば、端末100-1は、予め決定される第1の時間が到来すると、フレーム受信を停止する。また、端末100-1は、フレーム受信の停止後に、予め決定される第2の時間が到来すると、フレーム受信を開始する。このため、フレーム交換等の特別な処理が行われることなく端末100-1のモードが切り替えられることにより、第1のスリープモードの追加による処理の複雑化を抑制することが可能となる。
   (第3の変形例)
 本実施形態の第3の変形例として、第2のフレーム交換としての、通常モードへの復帰のトリガとなるフレーム交換は、一時復帰期間に送信されるフレームおよび当該フレームに含まれるフレーム交換情報を更新することにより得られるフレーム交換情報を含むフレームの交換であってもよい。具体的には、制御部108は、一時復帰期間において送信されるフレーム(以下、先行フレームとも称する。)および当該先行フレームに付加されるシーケンスナンバを更新することにより得られるシーケンスナンバを含むフレームの交換が行われると、受信部104および処理部106の動作を開始する。さらに、図8を参照して、本変形例の処理について詳細に説明する。図8は、本実施形態の第3の変形例に係る端末100-1の通常モードへの復帰処理の例を概念的に示すシーケンス図である。
 第1のスリープモード中の端末100-1Aおよび100-1Bは、互いにNullフレームを送信し(ステップS311、S312)、一時復帰タイミングが到来すると、一時的に通常モードに復帰する。
 次に、端末100-1Aは、ステップS311と同様に、Nullフレームを送信する(ステップS313)。具体的には、送信部102は、第1のスリープモード中に送信していたNullフレームと同一のNullフレームを送信する。例えば、当該Nullフレームに付加されるシーケンスナンバは、これまで送信されていたフレームに付加されていたシーケンスナンバと同一の0(00)bである。
 Nullフレームを受信した端末100-1Bは、受信されたNullフレームへの応答となるNullフレームを送信すると共に、通常モードに復帰する(ステップS314)。具体的には、制御部108は、Nullフレームが受信部104によって受信されると、処理部106に受信されたNullフレームへの応答となるNullフレームを生成させ、生成されるNullフレームが送信部102によって送信される。そして、Nullフレームの送信後に、受信部104および処理部106の動作が再開される。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたNullフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 Nullフレームを受信した端末100-1Aは、通常モードに復帰し、送信すべきデータがない場合、Nullフレームを送信する(ステップS315)。具体的には、制御部108は、インクリメントされたシーケンスナンバが付加されたNullフレームが受信部104によって受信されると、受信部104および処理部106の動作を再開させる。そして、処理部106は、送信すべきデータがない場合、Nullフレームを生成し、生成されるNullフレームが送信部102によって送信される。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたNullフレームに付加されたシーケンスナンバをインクリメントすることにより得られる2(10)bである。
 Nullフレームを受信した端末100-1Bは、送信すべきデータがある場合、データフレームを送信する(ステップS316)。
 なお、通信相手の送信するフレームに付加されるシーケンスナンバよりも順序が後のシーケンスナンバを送信する端末100-1のみがシーケンスナンバのインクリメントによって通常モードへの復帰を通信相手に示すことができる。
 このように、本実施形態の第3の変形例によれば、上記の第2のフレーム交換は、一時復帰期間において送信されるフレームおよび当該フレームに含まれるフレーム交換情報を更新することにより得られるフレーム交換情報を含むフレームの交換を含む。このため、既存の人体通信の規格で用意されている情報を用いて端末100-1が通常モードに復帰されることにより、既存の人体通信の規格に従って動作する端末における改修量を削減し、当該既存の端末への第1のスリープモードの適用にかかるコストを低減することが可能となる。
 <3.第2の実施形態(第2のスリープモード)>
 以上、本開示の第1の実施形態に係る端末100-1について説明した。続いて、本開示の第2の実施形態に係る端末100-2について説明する。
 まず、図9を参照して、第2の実施形態に係る端末100-2の概要について説明する。図9は、本開示の第2の実施形態に係る端末100-2の処理の例を示すシーケンス図である。
 第2の実施形態では、端末100-2は、スリープモードとして、第1のスリープモードと異なる第2のスリープモードを有する。具体的には、第2のスリープモードは、一方の端末100-2が他方の端末100-2のフレーム送信を代行し、当該他方の端末100-2はフレームの送受信を停止するモードである。
 例えば、端末100-2Aは、第2のスリープモードでは、自端末のフレーム送信期間におけるNullフレームの送信に加えて、端末100-2Bのフレーム送信期間におけるNullフレームの送信を行う。そのため、図9に示したように、一方的なフレーム送信が行われる。他方で、端末100-2Bは、第2のスリープモードでは、フレームの送信、受信およびシーケンスナンバのインクリメントを停止する。なお、第2のスリープモードでは一方の端末100-1からのフレーム送信が一方的に行われるため、同じシーケンスナンバを含むフレームの送信が繰り返される。
  <2-2.装置の構成>
 本開示の第2の実施形態に係る端末100-2の機能構成は、第1の実施形態における機能構成と実質的に同一であるが、機能の一部が異なる。以下では、送信を代行する端末(以下、代行端末とも称する。)100-2および送信を停止する端末(以下、停止端末とも称する。)100-2についてそれぞれ説明する。なお、第1の実施形態における機能と実質的に同一である機能については説明を省略する。
   (代行端末および停止端末の決定)
 制御部108は、通信相手と共有される情報に基づいて自端末の役割を代行端末または停止端末のいずれかに設定する。具体的には、制御部108は、代行端末の引き受けの有無を示すフラグ等の情報(以下、代行情報とも称する。)が含まれるフレームを送信部102および処理部106を介して通信相手に送信する。例えば、当該代行情報は、接続処理において交換されるAssociation Request1、またはAssociation Response2のRFU(Reserved for Future Use)ビット内に格納され得る。
 なお、上記では、代行情報がフラグである例を説明したが、代行情報は代行の可能性の度合を示す情報であってもよい。例えば、代行情報は、端末100-2の有するバッテリの容量または残量等に応じて決定される情報であり得る。そして、制御部108は、通信相手の代行情報に係る値よりも自端末の代行情報に係る値が大きい場合、自端末を代行端末として動作させる。反対に、通信相手の代行情報に係る値よりも自端末の代行情報に係る値が小さい場合、制御部108は、自端末を停止端末として動作させる。なお、代行情報に係る値が同一である場合は、第2のスリープモードへの移行を通知する端末が代行端末として動作する等のように、端末の役割が端末100-2に予め設定されてもよい。
 また、上記では、代行情報が接続処理の際に交換されるフレームを用いて共有される例を説明したが、代行情報は、接続開始後に送信されるフレームを用いて共有されてもよい。例えば、代行情報は、上記のPS-REQフレームおよびPS-ACKフレームに含まれてもよく、Nullフレームまたはデータフレームに含まれてもよい。
   (第2のスリープモードへの移行)
 代行端末100-2の送信部102は、第2のスリープモードにおいては、第1のフレーム送信に加えて通信相手のフレーム送信期間におけるフレーム送信(以下、第2のフレーム送信とも称する。)を行う。また、停止端末100-2の送信部102は、通信相手によって自端末のフレーム送信期間における第2のフレーム送信が行われている間、第1のフレーム送信を停止する。
 具体的には、代行端末100-2の送信部102は、第1のフレーム交換としての、第2のフレーム送信の開始の通知に係る移行通知フレームおよび当該移行通知フレームへの応答となる移行通知応答フレームの交換が行われると、第2のフレーム送信を開始する。また、停止端末100-2の送信部102は、第1のフレーム交換としての、移行通知フレームおよび移行通知応答フレームの交換、または当該移行通知応答フレームおよび移行通知応答フレームへの応答となるフレームの交換が行われると、第1のフレーム送信を停止する。
    (移行パターンA:代行端末から第2のスリープモードへの移行を通知)
 代行端末100-2の制御部108は、自端末が自ら第2のスリープモードに移行する場合、送信部102および処理部106を介してPS-REQフレームを送信する。そして、制御部108は、第2のスリープモードへの移行の許可を示すPS-ACKフレームが当該通信相手から受信されると、送信部102および処理部106を介して、インクリメントされたシーケンスナンバを含む任意のフレーム、例えばNullフレームを送信する。その後、制御部108は、受信部104および処理部106の動作を停止させ、送信部102に第2のフレーム送信を開始させる。
 また、停止端末100-2の制御部108は、自端末が通信相手からの通知に応じて第2のスリープモードに移行する場合、当該通信相手からPS-REQフレームが受信されると、第2のスリープモードへの移行の許可を示すPS-ACKフレームを送信部102および処理部106を介して送信する。そして、制御部108は、PS-ACKフレームへの応答となるインクリメントされたシーケンスナンバを含む任意のフレーム、例えばNullフレームの受信後に、送信部102、受信部104および処理部106の動作を停止させる。
 上記のように、停止端末100-2は、代行端末100-2の第2のスリープモードへの移行後に、第2のスリープモードへ移行する。これは、フレーム送信を継続するため、すなわち通信接続を維持するためである。例えば、代行端末100-2が第2のスリープモードに移行することなく、すなわち第2のフレーム送信を開始することなく、停止端末100-2のみが第2のスリープモードに移行すると、停止端末100-2のフレーム送信期間におけるフレーム送信が行われなくなる。その結果、当該フレーム送信期間に他の端末がフレーム送信を開始することによって通信の衝突が発生する可能性がある。そのため、停止端末100-2は代行端末100-2の第2のスリープモードへの移行を確認した後に第2のスリープモードへ移行する。
    (移行パターンB:停止端末から第2のスリープモードへの移行を通知)
 停止端末100-2の制御部108は、自端末が自ら第2のスリープモードに移行する場合、送信部102および処理部106を介してPS-REQフレームを送信する。そして、制御部108は、第2のスリープモードへの移行の許可を示すPS-ACKフレームが当該通信相手から受信されると、送信部102および処理部106を介して、インクリメントされたシーケンスナンバを含む任意のフレーム、例えばNullフレームを送信する。その後、制御部108は、送信部102、受信部104および処理部106の動作を停止させる。
 また、代行端末100-2の制御部108は、自端末が通信相手からの通知に応じて第2のスリープモードに移行する場合、当該通信相手からPS-REQフレームが受信されると、第2のスリープモードへの移行の許可を示すPS-ACKフレームを送信部102および処理部106を介して送信する。そして、制御部108は、PS-ACKフレームの送信後に、受信部104および処理部106の動作を停止させ、送信部102に第2のフレーム送信を開始させる。
   (通常モードへの復帰)
 代行端末100-2の送信部102は、第2のフレーム送信の開始後に、第2のフレーム交換としての、第2のフレーム送信の停止の通知に係る復帰通知フレームおよび当該復帰通知フレームへの応答となる復帰通知応答フレームの交換が行われると、第2のフレーム送信を停止する。また、停止端末100-2の送信部102は、第1のフレーム送信の停止後に、第2のフレーム交換としての、復帰通知フレームおよび復帰通知応答フレームの交換が行われると、第1のフレーム送信を開始する。
 まず、代行端末100-2および停止端末100-2の制御部108は、第2のスリープモード中に一時復帰タイミングが到来すると、一時復帰期間だけ自端末を通常モードに復帰させる。
    (復帰パターンA:代行端末から通常モードへの復帰を通知)
 代行端末100-2の制御部108は、自端末が自ら通常モードに復帰する場合、一時復帰期間において、送信部102および処理部106を介してPS-WUPフレームを送信する。そして、制御部108は、PS-WUPフレームへの応答となるインクリメントされたシーケンスナンバを含むNullフレームが通信相手から受信されると、受信部104および処理部106の動作を再開させる。
 停止端末100-2の制御部108は、自端末が通信相手からの通知に応じて通常モードに復帰する場合、当該通信相手からPS-WUPフレームが受信されると、当該PS-WUPフレームへの応答となるNullフレームを送信部102および処理部106を介して送信する。そして、制御部108は、当該Nullフレームの送信後に、送信部102、受信部104および処理部106の動作を再開させる。
    (復帰パターンB:停止端末から通常モードへの復帰を通知)
 停止端末100-2の制御部108は、自端末が自ら通常モードに復帰する場合、通信相手との通信により得られる情報に基づいて特定されるフレーム送信期間において復帰通知フレームを送信部102に送信させる。例えば、制御部108は、一時復帰期間において、送信部102および処理部106を介してPS-WUPフレームを送信する。そして、制御部108は、PS-WUPフレームへの応答となるインクリメントされたシーケンスナンバを含むNullフレームが通信相手から受信されると、送信部102、受信部104および処理部106の動作を再開させる。
 また、代行端末100-2の制御部108は、自端末が通信相手からの通知に応じて通常モードに復帰する場合、通信相手から復帰通知フレームが送信されるフレーム送信期間において第2のフレーム送信を送信部102に停止させる。例えば、制御部108は、一時復帰期間におけるPS-WUPフレームの送信タイミングで第2のフレーム送信を停止する。そして、通信相手からPS-WUPフレームが受信されると、当該PS-WUPフレームへの応答となるNullフレームを送信部102および処理部106を介して送信する。そして、制御部108は、当該Nullフレームの送信後に、受信部104および処理部106の動作を再開させる。
 なお、通信相手との通信により得られる情報は、通信に基づき決定されるフレーム送信期間を含む。具体的には、通信に基づき決定されるフレーム送信期間は、接続処理から所定の時間経過後のフレーム送信期間(以下、代行停止期間とも称する。)である。例えば、代行停止期間は100time segment毎に到来する。なお、代行停止期間は、接続処理等の通信に係るフレームを用いて互いに共有されてもよい。
  <2-3.装置の処理>
 次に、本実施形態に係る端末100-2の処理について説明する。なお、第1の実施形態の処理と実質的に同一である処理については説明を省略する。また、以下では、端末100-2Aが代行端末となり、端末100-2Bが停止端末となることが予め決定されている場合が想定される。
   (第2のスリープモードへの移行処理)
 まず、図10および図11を参照して、本実施形態に係る端末100-2の第2のスリープモードへの移行処理について説明する。図10は、本実施形態に係る代行端末100-2から第2のスリープモードへの移行が通知される場合の移行処理の例を概念的に示すシーケンス図であり、図11は、本実施形態に係る停止端末100-2から第2のスリープモードへの移行が通知される場合の移行処理の例を概念的に示すシーケンス図である。
    (移行パターンA:代行端末から第2のスリープモードへの移行を通知)
 端末100-2Aは、第2のスリープモードへの移行が決定されると、PS-REQフレームを送信する(ステップS221)。例えば、当該PS-REQフレームに付加されるシーケンスナンバは0(00)bである。
 PS-REQフレームを受信した端末100-2Bは、PS-ACKフレームを送信する(ステップS222)。例えば、当該PS-ACKフレームに付加されるシーケンスナンバは、受信されたPS-REQフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 PS-ACKフレームを受信した端末100-2Aは、Nullフレームを送信すると共に、第2のスリープモードへ移行する(ステップS223)。具体的には、制御部108は、PS-ACKフレームが受信部104によって受信されると、処理部106にNullフレームを生成させ、生成されるNullフレームが送信部102によって送信される。そして、制御部108は、Nullフレームの送信後に、受信部104および処理部106の動作を停止させ、送信部102に第2のフレーム送信を開始させる。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたPS-ACKフレームに付加されたシーケンスナンバをインクリメントすることにより得られる2(10)bである。
 Nullフレームを受信した端末100-2Bは、第2のスリープモードに移行する。具体的には、制御部108は、PS-ACKフレームへの応答となるNullフレームが受信されると、送信部102、受信部104および処理部106の動作を停止する。なお、当該PS-ACKフレームへの応答となるフレームは、Nullフレームの代わりに、データフレームまたはその他の任意のフレームであってもよい。
 ステップS224以降すなわち第2のスリープモード中は、代行端末である端末100-2Aは、自端末および端末100-2Bのフレーム送信期間の各々において、フレームを送信する。具体的には、端末100-2Aの送信部102は、両端末の移行直前のフレームと同一のフレームの再送を続ける。
 このように、停止端末である端末100-2Bのフレーム送信期間に送信されるフレームは、端末100-2Aが第2のスリープモードへの移行直前に受信したフレームと同一のフレームであることが望ましい。例えば、端末100-2Aが送信を代行するフレームは端末100-2Bの移行直前のフレームの複製であり得る。
 これは、停止端末がフレームの受信に失敗した場合に、先に第2のスリープモードに移行した代行端末によって代行的に送信されるフレームと停止端末の再送するフレームとが衝突する可能性があるためである。例えば、両フレームの内容が異なると、フレームに係る信号が衝突し、他の端末によってエラーフレーム、例えばフレームのCRC(Cyclic Redundancy Check)が一致しないP-PDUフレームとみなされる可能性がある。そして、当該他の端末は、当該フレームの衝突が発生した期間をフレーム送信可能な期間であると判断し、フレーム送信を行う場合がある。そのため、上記のように代行端末は、移行直前のフレームに受信されたフレームを代行的に送信することが望ましい。
 さらに、端末100-2Aが送信を代行するフレームに係る信号の極性も端末100-2Bの移行直前のフレームに係る信号の極性と同一であることが望ましい。
 また、第2のスリープモード中は、端末100-2Aは、受信部104および処理部106の動作が停止している状態であるため、フレームの受信およびシーケンスナンバのインクリメントが行われない。また、端末100-2Bは、送信部102、受信部104および処理部106の動作が停止されているため、フレームの送信および受信ならびにシーケンスナンバのインクリメントが行われない。
    (移行パターンB:停止端末から第2のスリープモードへの移行を通知)
 端末100-2Bは、第2のスリープモードへの移行が決定されると、PS-REQフレームを送信する(ステップS231)。例えば、当該PS-REQフレームに付加されるシーケンスナンバは0(00)bである。
 PS-REQフレームを受信した端末100-2Aは、PS-ACKフレームを送信すると共に、第2のスリープモードへ移行する(ステップS232)。具体的には、制御部108は、PS-REQフレームが受信部104によって受信されると、処理部106にPS-ACKフレームを生成させ、生成されるPS-ACKフレームが送信部102によって送信される。そして、制御部108は、PS-ACKフレームの送信後に、受信部104および処理部106の動作を停止させ、送信部102に第2のフレーム送信を開始させる。例えば、当該PS-ACKフレームに付加されるシーケンスナンバは、受信されたPS-REQフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 PS-ACKフレームを受信した端末100-2Bは、Nullフレームを送信すると共に、第2のスリープモードへ移行する(ステップS233)。具体的には、制御部108は、PS-ACKフレームが受信部104によって受信されると、処理部106にNullフレームを生成させ、生成されるNullフレームが送信部102によって送信される。そして、制御部108は、Nullフレームの送信後に、送信部102、受信部104および処理部106の動作を停止させる。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信されたPS-ACKフレームに付加されたシーケンスナンバをインクリメントすることにより得られる2(10)bである。
 ステップS224以降すなわち第2のスリープモード中は、代行端末である端末100-2Aは、自端末および端末100-2Bのフレーム送信期間の各々において、フレームを送信する。また、端末100-2Aは、受信部104および処理部106の動作が停止している状態であるため、フレームの受信およびシーケンスナンバのインクリメントが行われない。また、端末100-2Bは、送信部102、受信部104および処理部106の動作が停止されているため、フレームの送信および受信ならびにシーケンスナンバのインクリメントが行われない。
   (通常モードへの復帰処理)
 続いて、本実施形態に係る端末100-2の通常モードへの復帰処理について説明する。図12は、本実施形態に係る停止端末100-2から通常モードへの復帰が通知される場合の復帰処理の例を概念的に示すシーケンス図である。
    (復帰パターンA:代行端末から通常モードへの復帰を通知)
 復帰パターンAの処理については、スリープモード中におけるフレーム送信が代行端末100-2Aのみによって行われること以外は、第1の実施形態における通常モードへの復帰処理と実質的に同一であるため、説明を省略する。
    (復帰パターンB1:停止端末から通常モードへの復帰を通知)
 第2のスリープモード中の端末100-2Aは、Nullフレームを送信する(ステップS321、S322)。具体的には、端末100-2Aは、自端末および端末100-2Bのフレーム送信期間においてNullフレームを送信する。
 次に、一時復帰タイミングが到来すると、端末100-2Aおよび100-2Bは、一時的に通常モードに復帰する。
 次に、端末100-2Bが通常モードに完全に復帰する場合、端末100-2Bは、代行停止期間にPS-WUPフレームを送信する(ステップS323)。具体的には、端末100-2Bの制御部108は、端末100-2Bが通常モードに完全に復帰する場合、代行停止期間にPS-WUPフレームが送信されるように、処理部106にPS-WUPフレームを生成させる。そして、生成されるPS-WUPフレームが送信部102によって代行停止期間に送信される。例えば、当該PS-WUPフレームに付加されるシーケンスナンバは0(00)bである。また、端末100-2Aの制御部108は、代行停止期間中は送信部102による第2のフレーム送信を停止させる。
 PS-WUPフレームを受信した端末100-2Aは、Nullフレームを送信すると共に、通常モードに復帰する(ステップS324)。例えば、当該Nullフレームに付加されるシーケンスナンバは、PS-WUPフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。
 Nullフレームを受信した端末100-2Bは、通常モードに復帰し、データフレームを送信する(ステップS325)。データフレームを受信した端末100-2Aは、送信すべきデータがない場合、Nullフレームを送信する(ステップS326)。
    (復帰パターンB2:停止端末から通常モードへの復帰を通知)
 なお、代行停止期間は、代行端末100-2から間接的に提示されてもよい。具体的には、代行端末100-2は、第2のフレーム送信の開始後に送信されるフレームに付加されるシーケンスナンバを所定のパターンで変化させ、停止端末100-2は、シーケンスナンバの当該所定のパターンの変化に基づいて代行停止期間を推定する。さらに、図13を参照して復帰パターンB2の処理について詳細に説明する。図13は、本実施形態に係る停止端末100-2から通常モードへの復帰が通知される場合の復帰処理の他の例を概念的に示すシーケンス図である。
 例えば、第2のスリープモード中の端末100-2Aは、所定のパターンで変化するシーケンスナンバを含むNullフレームを送信する(ステップS331~S337)。具体的には、端末100-2Aは、自端末および端末100-2Bのフレーム送信期間において送信されるNullフレームに付加されるシーケンスナンバを、0(00)b、3(11)b、0(00)b、3(11)b、0(00)b、1(01)b、2(10)bというように変化させる。
 また、端末100-2Bは、第2のスリープモードに移行した際に、上記の所定のパターンの変化が確認されるまでの間、受信部104の動作を継続させる。具体的には、端末100-2Bは、第2のスリープモードへの移行後、上記の所定のパターンの変化が1サイクル行われた後に、受信部104の動作を停止させる。
 次に、上記の所定のパターンの終了後に、端末100-2Aおよび端末100-2Bは、一時的に通常モードに復帰する。なお、端末100-2は、当該所定のパターンの終了毎に一時復帰してもよく、所定のパターンの終了のうちの一部のタイミングで一時復帰してもよい。また、当該一部のタイミングは、タイマを用いて判断され得る。
 次に、端末100-2Aは、所定のパターンの終了と開始との間のフレーム送信期間におけるフレーム送信を停止し、端末100-2Bは、PS-WUPフレームを送信する(ステップS338)。具体的には、上記の所定のパターンにおける末尾の2(10)bの次のフレーム送信期間におけるフレーム送信が停止される。そして、当該フレーム送信期間に、端末100-2BからSP-WUPフレームが送信される。例えば、当該PS-WUPフレームに付加されるシーケンスナンバは3(11)bである。
 PS-WUPフレームを受信した端末100-2Aは、Nullフレームを送信すると共に、通常モードに復帰し(ステップS339)、Nullフレームを受信した端末100-2Bは、通常モードに復帰し、データフレームを送信する(ステップS340)。
 このように、本開示の第2の実施形態によれば、端末100-2は、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自端末のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う。そして、端末100-2は、代行端末として、第1のフレーム送信に加えて通信相手のフレーム送信期間における第2のフレーム送信を行う。また、端末100-2は、停止端末として、通信相手によって自端末のフレーム送信期間における第2のフレーム送信が行われている間、第1のフレーム送信を停止する。このため、停止端末100-2のフレーム送信が代行端末100-2によって代行されることにより、通信状態を維持しながら、第1のスリープモードに比べて停止端末100-2のスリープモードにおける消費電力をさらに低下させることが可能となる。
 また、第1のフレーム交換が行われると、代行端末100-2は、上記の第2のフレーム送信を開始し、停止端末100-2は、第1のフレーム送信を停止する。このため、第2のスリープモードへの移行が明示されることにより、スリープモードへの移行について端末間で不整合が生じるような事態の発生を抑制することが可能となる。
 また、上記の第1のフレーム交換は、第2のフレーム送信の開始の通知に係る移行通知フレームおよび移行通知フレームへの応答となる移行通知応答フレームの交換を含む。また、停止端末100-2は、移行通知応答フレームおよび前記移行通知応答フレームへの応答となるフレームの交換が行われると、第1のフレーム送信を停止する。このため、第2のスリープモードへの移行が専用のフレームで通知されることにより、第2のスリープモードへの移行判定が容易となる。その結果、第2のスリープモードへの移行処理を簡素化することが可能となる。
 また、第2のフレーム送信の開始後にすなわち第1のフレーム送信の停止後に行われる第2のフレーム交換に基づいて、代行端末100-2は第2のフレーム送信を停止し、停止端末100-2は第1のフレーム送信を開始する。このため、通常モードへの復帰が明示されることにより、通常モードへの移行について端末間で不整合が生じるような事態の発生を抑制することが可能となる。
 また、第2のフレーム交換は、第2のフレーム送信の停止の通知に係る復帰通知フレームおよび復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む。このため、通常モードへの復帰が専用のフレームで通知されることにより、通常モードへの復帰判定が容易となる。その結果、通常モードへの復帰処理を簡素化することが可能となる。
 また、代行端末100-2は、通信相手から復帰通知フレームが送信されるフレーム送信期間において第2のフレーム送信を行わず、停止端末100-2は、通信相手との通信により得られる情報に基づいて特定されるフレーム送信期間において復帰通知フレームを送信する。このため、停止端末100-2の送信する復帰通知フレームと代行端末100-2の第2のフレーム送信に係るフレームとの衝突が回避されることにより、復帰通知フレームが正常に受信される。その結果、停止端末100-2の希望に基づいて通常モードへの復帰が可能となる。
 また、代行端末100-2は、上記の第2のフレーム送信が開始されると共に、フレーム受信を停止し、停止端末100-2は、上記の第1のフレームが停止されると共に、フレーム受信を停止する。このため、代行端末100-2では、フレーム送信を代行するものの、フレーム受信が停止されることにより、消費電力の増加を抑制することが可能となる。また、停止端末100-2では、フレーム送信に加えてフレーム受信が停止されることにより、さらに消費電力を低減することが可能となる。
  <2-4.変形例>
 以上、本開示の第2の実施形態について説明した。なお、本実施形態は、上述の例に限定されない。以下に、本実施形態の第1~第3の変形例について説明する。
   (第1の変形例)
 本実施形態の第1の変形例として、第1のフレーム交換としての、第2のスリープモードへの移行のトリガとなるフレーム交換は、Nullフレームの連続的な交換であってもよい。具体的には、代行端末100-2は、Nullフレームが所定の回数にわたって連続的に交換されると、第2のフレーム送信を開始すると共に、受信部104および処理部106の動作を停止する。また、停止端末100-2は、Nullフレームが所定の回数にわたって連続的に交換されると、送信部102、受信部104および処理部106の動作を停止する。さらに、図14を参照して、本変形例の処理について詳細に説明する。図14は、本実施形態の第1の変形例に係る端末100-2の第2のスリープモードへの移行処理の例を概念的に示すシーケンス図である。なお、第1または第2の実施形態の処理と実質的に同一である処理については説明を省略する。
 端末100-2Bは、送信すべきデータがある場合、データフレームを送信し(ステップS241)、データフレームを受信した端末100-2Aは、送信すべきデータフレームがない場合、Nullフレームを送信する(ステップS242)。
 ステップS242~S245においては、端末100-2Aおよび100-2Bの双方において送信すべきデータフレームがないため、図14に示したように、Nullフレームの送受信が連続して行われる。
 ここで、端末100-2Aおよび100-2Bは、Nullフレームの送信および受信の回数をカウントし、カウントされる回数が所定の回数に達すると、第2のスリープモードに移行する。なお、停止端末である端末100-2Bにとっての所定の回数は、代行端末である端末100-2Aにとっての所定の回数よりも多い。
 例えば、端末100-2Aにとっての所定の回数が4回であり、端末100-2Bにとっての所定の回数が5回である場合を考える。端末100-2Aについては、図14に示したように、ステップS242におけるNullフレームの送信からステップS245におけるNullフレームの送信までに4回連続してNullフレームが交換すなわち送受信される。そのため、端末100-2Aは、ステップS245におけるNullフレームの送信後に、第2のスリープモードに移行する。
 また、端末100-2Bについては、図14に示したように、ステップS242におけるNullフレームの受信からステップS246におけるNullフレームの受信までに5回連続してNullフレームが送受信される。そのため、端末100-2Bは、ステップS246におけるNullフレームの受信後に、第2のスリープモードに移行する。
 このように、本実施形態の第1の変形例によれば、上記の第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む。このため、既存の人体通信の規格で用意されているフレームを用いて端末100-2が第2のスリープモードに移行されることにより、既存の人体通信の規格に従って動作する端末における改修量を削減し、当該既存の端末への第2のスリープモードの適用にかかるコストを低減することが可能となる。
   (第2の変形例)
 本実施形態の第2の変形例として、第2のスリープモードへの移行は、第2の移行タイミングの到来に基づいて行われてもよく、通常モードのへの復帰は、第2の復帰タイミングの到来に基づいて行われてもよい。具体的には、代行端末100-2の制御部108は、第2の移行タイミングが到来すると、送信部102に第2のフレーム送信を開始させ、受信部104および処理部106の動作を停止させる。停止端末100-2の制御部108は、第2の移行タイミングが到来すると、送信部102、受信部104および処理部106の動作を停止させる。
 また、代行端末100-2の制御部108は、第2の復帰タイミングが到来すると、送信部102に第2のフレーム送信の停止および第1のフレーム送信の開始を行わせ、受信部104および処理部106の動作を開始させる。また、停止端末100-2の制御部108は、第2の復帰タイミングが到来すると、送信部102に第1のフレーム送信を開始させ、受信部104および処理部106の動作を開始させる。なお、本変形例の処理の詳細については、スリープモードが異なる以外は、第1の実施形態の第2の変形例における処理と実質的に同一であるため説明を省略する。
 このように、本実施形態の第2の変形例によれば、予め決定される第1の時間が到来すると、代行端末100-2は第2のフレーム送信を開始し、停止端末100-2は第1のフレーム送信を停止する。また、第2のフレーム送信の開始後にすなわち第1のフレーム送信の停止後に、予め決定される第2の時間が到来すると、代行端末100-1は第2のフレーム送信を停止し、停止端末100-2は第1のフレーム送信を開始する。このため、フレーム交換等の特別な処理が行われることなくモードが切り替えられることにより、第2のスリープモードの追加による処理の複雑化を抑制することが可能となる。
   (第3の変形例)
 本実施形態の第3の変形例として、代行端末100-2は、一時復帰タイミングの到来毎に送信される一連のフレームおよび当該一連のフレームへの応答となるフレームの交換に基づいて通常モードに復帰してもよい。また、停止端末100-2は、当該一連のフレームの受信に基づいて通常モードに復帰してもよい。
 具体的には、代行端末100-2は、第2のフレーム交換として、第2のフレーム送信の開始後であって一時復帰タイミングの到来毎に送信される一連のフレームおよび当該一連のフレームに基づくフレームの交換が行われると、第2のフレーム送信を停止する。なお、代行端末100-2は、当該一連のフレームへの応答となるフレームが送信されるフレーム送信期間において第2のフレーム送信を行わない。また、停止端末100-2は、第1のフレーム送信の停止後に、代行端末100-2から一連のフレームが受信されると、第1のフレームを開始する。さらに、図15を参照して、本変形例の処理について詳細に説明する。図15は、本実施形態の第3の変形例に係る端末100-2の通常モードへの復帰処理の例を概念的に示すシーケンス図である。なお、第1または第2の実施形態と実質的に同一である処理については説明を省略する。
 第2のスリープモード中の端末100-2Aは、Nullフレームを送信し(ステップS341、S342)、一時復帰タイミングが到来すると、端末100-2Aおよび100-2Bは、一時的に通常モードに復帰する。なお、端末100-2Bは、送信部102および処理部106の動作を停止したままにしておき、受信部104の動作のみを開始する。
 次に、代行端末である端末100-2Aは、一時復帰期間において一連のフレームを送信する(ステップS343~S347)。具体的には、端末100-2Aは、一時復帰期間に、予め決定されるパターンで更新されたシーケンスナンバをそれぞれ含む一連のフレームを送信する。例えば、端末100-2Aは、自端末および端末100-2Bのフレーム送信期間において送信されるNullフレームに付加されるシーケンスナンバを、0(00)b、1(01)b、2(10)b、3(11)b、0(00)bというように変化させる。
 次に、停止端末である端末100-2Bは、一時復帰期間において一連のフレームが受信されると、通常モードに復帰し、当該一連のフレームへの応答となるNullフレームを送信する(ステップS348)。例えば、当該Nullフレームに付加されるシーケンスナンバは、受信された一連のフレームの末尾となるNullフレームに付加されたシーケンスナンバをインクリメントすることにより得られる1(01)bである。また、代行端末100-2Aは、一連のフレームの送信後であって上記のNullフレームが送信されるフレーム送信期間において第2のフレーム送信を行わない。
 なお、停止端末100-2Bは、一連のフレームのうちの一部のフレームの受信に基づいて通常モードへの復帰を判定してもよい。例えば、停止端末100-2Bは、一連のフレームのうちの一部のフレームから一連のフレームの全体を推定し、推定される一連のフレームについて所定のパターンでシーケンスナンバが変化しているかを判定する。
 一連のフレームへの応答となるNullフレームを受信した端末100-2Aは、通常モードに復帰し、データフレームを送信する(ステップS349)。当該データフレームを受信した端末100-2Bは、送信すべきデータがない場合、Nullフレームを送信する(ステップS350)。
 このように、本実施形態の第3の変形例によれば、代行端末100-2は、第2のフレーム送信の開始後であって予め決定される第3の時間の到来毎に送信される一連のフレームおよび当該一連のフレームへの応答となるフレームの交換に基づいて第2のフレーム送信を停止する。また、停止端末100-2は、当該一連のフレームの受信に基づいて第1のフレーム送信を開始する。このため、単一のフレームに基づいてモード切り替えが行われる場合よりも、フレームの受信失敗に対する耐性が向上され、復帰処理の確実性を向上させることが可能となる。
 また、上記の一連のフレームの各々は、予め決定されるパターンで更新されたフレーム交換情報をそれぞれ含む。このため、既存の人体通信の規格で用意されているフレームの情報を用いて端末100-2が通常モードに復帰されることにより、既存の人体通信の規格に従って動作する端末における改修量を削減し、当該既存の端末への第2のスリープモードの適用にかかるコストを低減することが可能となる。
 <4.第3の実施形態(スリープモードの切り替え)>
 以上、本開示の第2の実施形態に係る端末100-2について説明した。続いて、本開示の第3の実施形態に係る端末100-3について説明する。第3の実施形態では、スリープモードが第1のスリープモードおよび第2のスリープモードのいずれかに切り替えられる。
  <4-1.装置の構成>
 本開示の第2の実施形態に係る端末100-3の機能構成は、第1の実施形態における機能構成と実質的に同一であるが、制御部108の機能が一部異なる。なお、第1または第2の実施形態における機能と実質的に同一である機能については説明を省略する。
 制御部108は、第1のスリープモードおよび第2のスリープモードのうちのいずれかのスリープモードを選択する。具体的には、代行端末および停止端末のいずれでもない端末100-3ならびに代行端末100-3の制御部108は、フレーム受信が停止されている状態において送信部102に行わせるフレーム送信を、第1のフレーム送信のみ、または当該第1のフレーム送信および第2のフレーム送信の両方、のうちのいずれかに切り替える。また、停止端末100-3の制御部108は、フレーム受信が停止されている状態における第1のフレーム送信の有無を切り替える。
 より具体的には、制御部108は、一時復帰タイミングが予め決定される回数だけ到来すると、選択されるフレーム送信を切り替える。例えば、制御部108は、端末100-3が第1のスリープモード中である状態において一時復帰タイミングが予め決定される回数だけ到来すると、スリープモードを第2のスリープモードに切り替える。なお、制御部108は、通常モードへの復帰が発生した場合に一時復帰タイミングの到来回数のカウントを初期化してもよく、カウントを維持してもよい。
 なお、上記では、一時復帰タイミングの到来回数が予め決定される回数に達した際に、スリープモードが切り替えられる例を説明したが、スリープモードであった時間長が予め決定される時間長に達した際に、スリープモードが切り替えられてもよい。例えば、いずれかのスリープモードへの移行からの経過時間が予め決定される時間長に達した場合、制御部108は、次の一時復帰タイミング後のスリープモードを別のスリープモードに切り替える。
 また、スリープモードの種類に応じてスリープが継続される期間が異なってもよい。例えば、第2のスリープモードについての上記の予め決定される回数または時間長は、第1のスリープモードよりも多くまたは長くあり得る。
  <4-2.装置の処理>
 本実施形態に係る端末100-3の処理については、スリープモードの切り替え処理以外は、第1または第2の実施形態の処理と実質的に同一であるため説明を省略する。
 このように、本開示の第3の実施形態によれば、代行端末100-3は、フレーム受信が停止されている状態において行われるフレーム送信を、自端末のフレーム送信期間における第1のフレーム送信、または当該第1のフレーム送信および通信相手のフレーム送信期間における第2のフレーム送信の両方のうちのいずれかに切り替える。また、停止端末100-3は、フレーム受信が停止されている状態における第1のフレーム送信の有無を切り替える。このため、自端末および通信相手の状況に応じたスリープモードに切り替えられることにより、より効果的な消費電力の低減が可能となる。
 また、端末100-3は、上記の第3の時間が予め決定される回数だけ到来すると、フレーム送信を切り替える。このため、定期的にスリープモードが切り替えられることにより、一方のスリープモードが他方のスリープモードよりも長く継続されることによる好ましくない状況の発生を防止することが可能となる。例えば、上記の状況には、第2のスリープモードが長期間継続され、一方の端末100-3の消費電力が他方の端末100-3の消費電力よりも多くなるといった状況がある。
  <4-3.変形例>
 以上、本開示の第3の実施形態について説明した。なお、本実施形態は、上述の例に限定されない。以下に、本実施形態の変形例について説明する。
 本実施形態の変形例として、端末100-3は、一時復帰期間において通信されるフレームに基づいてフレーム送信を切り替えてもよい。具体的には、制御部108は、自端末においてスリープモードの切り替え要求が発生した場合、一時復帰期間において、PS-REQフレーム等の特定のフレームを処理部106および送信部102を介して送信する。そして、制御部108は、当該特定のフレームへの応答となる、PS-ACKフレームのようなフレームが受信されると、スリープモードを切り替える。なお、切り替え先のスリープモードを示す情報が当該特定のフレームに含まれてもよい。
 このように、本実施形態の変形例によれば、端末100-3は、一時復帰期間において通信されるフレームに基づいて、選択されるフレーム送信を切り替える。このため、スリープモードの切り替えが明示的に通知されることにより、端末100-3の状況に適したスリープモードが選択され、より効果的な消費電力の低減が可能となる。
 <5.本開示の一実施形態に係る人体通信装置のハードウェア構成>
 以上、本開示の各実施形態に係る人体通信装置100について説明した。上述した人体通信装置100の処理は、ソフトウェアと、以下に説明する人体通信装置100のハードウェアとの協働により実現される。
 図16は、本開示の一実施形態に係る人体通信装置100のハードウェア構成を示した説明図である。図16に示したように、人体通信装置100は、CPU(Central Processing Unit)132と、ROM(Read Only Memory)134と、RAM(Random Access Memory)136と、ブリッジ138と、バス140と、インターフェース142と、入力装置144と、出力装置146と、ストレージ装置148と、ドライブ150と、接続ポート152と、通信制御装置154とを備える。
 CPU132は、演算処理装置として機能し、各種プログラムと協働して人体通信装置100内の処理部106および制御部108の動作の一部を実現する。また、CPU132は、マイクロプロセッサであってもよい。ROM134は、CPU132が使用するプログラムまたは演算パラメータ等を記憶する。RAM136は、CPU132の実行にいて使用するプログラムまたは実行において適宜変化するパラメータ等を一時記憶する。ROM134およびRAM136により、人体通信装置100内の記憶部の一部を実現する。CPU132、ROM134およびRAM136は、CPUバスなどから構成される内部バスにより相互に接続されている。
 入力装置144は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロホン、スイッチおよびレバーなどユーザが情報を入力するための入力手段、およびユーザによる入力に基づいて入力信号を生成し、CPU132に出力する入力制御回路などから構成されている。人体通信装置100のユーザは、入力装置144を操作することにより、人体通信装置100に対して各種のデータを入力したり処理動作を指示したりすることができる。
 出力装置146は、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置、ランプなどの装置への出力を行う。さらに、出力装置146は、スピーカおよびヘッドフォンなどの音声出力を行ってもよい。
 ストレージ装置148は、データ格納用の装置である。ストレージ装置148は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されるデータを削除する削除装置等を含んでもよい。ストレージ装置148は、CPU132が実行するプログラムや各種データを格納する。
 ドライブ150は、記憶媒体用リーダライタであり、人体通信装置100に内蔵され、または外付けされる。ドライブ150は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM134に出力する。また、ドライブ150は、リムーバブル記憶媒体に情報を書込むこともできる。
 接続ポート152は、例えば、人体通信装置100の外部の情報処理装置または周辺機器と接続するためのバスである。また、接続ポート152は、USB(Universal Serial Bus)であってもよい。
 通信制御装置154は、例えば、人体通信装置100の送信部102、受信部104および処理部106の一例として、人体通信を行うための通信デバイスで構成される通信インターフェースである。さらに、通信制御装置154は、無線LAN(Local Area Network)対応通信装置であっても、LTE(Long Term Evolution)対応通信装置であっても、有線による通信を行うワイヤー通信対応装置であってもよい。
 <6.むすび>
 以上、本開示の第1の実施形態によれば、フレーム送信が継続されながらフレーム受信が停止されることにより、人体通信の通信接続を維持しながら、自装置または通信相手の少なくとも一方の消費電力を低減することが可能となる。
 また、本開示の第2の実施形態によれば、停止端末100-2のフレーム送信が代行端末100-2によって代行されることにより、通信状態を維持しながら、第1のスリープモードに比べて停止端末100-2のスリープモードにおける消費電力をさらに低下させることが可能となる。
 また、本開示の第3の実施形態によれば、自端末および通信相手の状況に応じたスリープモードに切り替えられることにより、より効果的な消費電力の低減が可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、PS-WUPフレーム等の一時復帰期間中に送信される特定のフレームはスリープモードの解除の通知のために用いられるとしたが、本技術はかかる例に限定されない。例えば、一時復帰期間中に送信される特定のフレームは、スリープモードの継続を通知するために用いられてもよい。また、この場合、第2の実施形態の第3の変形例におけるシーケンスナンバの変化のパターンは、スリープモードの解除の通知と継続の通知とで異なるパターンであってもよい。例えば、スリープモードの継続が通知される場合、シーケンスナンバは、0(00)b、3(11)b、0(00)b、3(11)bのように変化される。
 また、上記実施形態では、人体通信のみを用いてスリープモードへの移行および通常モードへの復帰が通知される例を説明したが、当該通知は、他の通信方式による通信を用いて行われてもよい。例えば、端末100は、Bluetooth(登録商標)もしくはBLE(Bluetooth Low Energy)またはWi-Fi(登録商標)等による通信を用いて上記の通知を行い得る。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信部を備え、前記送信部は、前記第1のフレーム送信に加えて通信相手の前記フレーム送信期間における第2のフレーム送信を行う、人体通信装置。
(2)前記送信部は、第1のフレーム交換が行われると、前記第2のフレーム送信を開始する、前記(1)に記載の人体通信装置。
(3)前記第1のフレーム交換は、前記第2のフレーム送信の開始の通知に係る移行通知フレームおよび前記移行通知フレームへの応答となる移行通知応答フレームの交換を含む、前記(2)に記載の人体通信装置。
(4)前記第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む、前記(2)または(3)に記載の人体通信装置。
(5)前記送信部は、予め決定される第1の時間が到来すると、前記第2のフレーム送信を開始する、前記(1)に記載の人体通信装置。
(6)前記送信部は、前記第2のフレーム送信の開始後に行われる第2のフレーム交換に基づいて、前記第2のフレーム送信を停止し、または継続する、前記(1)~(5)のいずれか1項に記載の人体通信装置。
(7)前記第2のフレーム交換は、前記第2のフレーム送信の停止の通知に係る復帰通知フレームおよび前記復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む、前記(6)に記載の人体通信装置。
(8)前記送信部は、前記通信相手から前記復帰通知フレームが送信される前記フレーム送信期間において前記第2のフレーム送信を行わない、前記(7)に記載の人体通信装置。
(9)前記第2のフレーム交換は、前記第2のフレーム送信の開始後であって予め決定される第3の時間の到来毎に送信される一連のフレームおよび前記一連のフレームへの応答となるフレームの交換を含み、前記送信部は、前記一連のフレームへの応答となるフレームが送信される前記フレーム送信期間において前記第2のフレーム送信を行わない、前記(6)~(8)のいずれか1項に記載の人体通信装置。
(10)前記送信部によって送信されるフレームは、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報を含み、前記一連のフレームの各々は、予め決定されるパターンで更新された前記フレーム交換情報をそれぞれ含む、前記(9)に記載の人体通信装置。
(11)前記送信部は、前記第2のフレーム送信の開始後に、予め決定される第2の時間が到来すると、前記第2のフレーム送信を停止する、前記(1)~(5)のいずれか1項に記載の人体通信装置。
(12)人体通信を用いてフレームを受信する受信部と、前記送信部によって前記第2のフレーム送信が開始されると共に、前記受信部のフレーム受信を停止させる制御部と、をさらに備える、前記(1)~(11)のいずれか1項に記載の人体通信装置。
(13)通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信部を備え、前記送信部は、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する、人体通信装置。
(14)前記送信部は、第1のフレーム交換が行われると、前記第1のフレーム送信を停止する、前記(13)に記載の人体通信装置。
(15)前記第1のフレーム交換は、前記第2のフレーム送信の開始の通知に係る移行通知フレームおよび前記移行通知フレームへの応答となる移行通知応答フレームの交換、または前記移行通知応答フレームおよび前記移行通知応答フレームへの応答となるフレームの交換を含む、前記(14)に記載の人体通信装置。
(16)前記第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む、前記(14)または(15)に記載の人体通信装置。
(17)前記送信部は、予め決定される第1の時間が到来すると、前記第1のフレーム送信を停止する、前記(13)~(16)のいずれか1項に記載の人体通信装置。
(18)前記送信部は、前記第1のフレーム送信の停止後に行われる第2のフレーム交換に基づいて、前記第1のフレーム送信を開始し、または前記第1のフレーム送信の停止を継続する、前記(13)~(17)のいずれか1項に記載の人体通信装置。
(19)前記第2のフレーム交換は、前記第2のフレーム送信の停止の通知に係る復帰通知フレームおよび前記復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む、前記(18)に記載の人体通信装置。
(20)前記送信部は、前記通信相手との通信により得られる情報に基づいて特定される前記フレーム送信期間において前記復帰通知フレームを送信する、前記(19)に記載の人体通信装置。
(21)前記送信部は、前記第1のフレーム送信の停止後における一連のフレームの受信に基づいて、前記第1のフレーム送信を開始し、または前記第1のフレーム送信の停止を継続する、前記(13)~(19)のいずれか1項に記載の人体通信装置。
(22)前記送信部によって送信されるフレームは、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報を含み、前記一連のフレームの各々は、予め決定されるパターンで更新された前記フレーム交換情報をそれぞれ含む、前記(21)に記載の人体通信装置。
(23)前記送信部は、前記第2のフレーム送信の停止後に、予め決定される第2の時間が到来すると、前記第1のフレーム送信を開始する、前記(13)~(17)のいずれか1項に記載の人体通信装置。
(24)人体通信を用いてフレームを受信する受信部と、前記送信部によって前記第1のフレーム送信が停止されると共に、前記受信部のフレーム受信を停止させる制御部をさらに備える、前記(13)~(23)のいずれか1項に記載の人体通信装置。
(25)前記制御部は、前記受信部のフレーム受信が停止されている状態における前記第1のフレーム送信の有無を切り替える、前記(24)に記載の人体通信装置。
(26)人体通信を用いてフレームを受信する受信部と、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信部と、前記送信部に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御する制御部と、を備える、人体通信装置。
(27)前記制御部は、第1のフレーム交換が行われると、前記受信部にフレーム受信を停止させる、前記(26)に記載の人体通信装置。
(28)前記第1のフレーム交換は、前記受信部のフレーム受信の停止の通知に係る移行通知フレームおよび前記移行通知フレームへの応答となる移行通知応答フレームの交換を含む、前記(27)に記載の人体通信装置。
(29)前記第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む、前記(27)または(28)に記載の人体通信装置。
(30)前記制御部は、予め決定される第1の時間が到来すると、前記受信部にフレーム受信を停止させる、前記(29)に記載の人体通信装置。
(31)前記制御部は、フレーム受信の停止後に、予め決定される第3の時間が到来すると、所定の期間だけ前記受信部にフレーム受信を行わせ、前記所定の期間において行われる第2のフレーム交換に基づいて、前記受信部にフレーム受信を開始させ、またはフレーム受信の停止を継続させる、前記(26)~(30)のいずれか1項に記載の人体通信装置。
(32)前記第2のフレーム交換は、前記受信部のフレーム受信の開始の通知に係る復帰通知フレームおよび前記復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む、前記(31)に記載の人体通信装置。
(33)前記送信部によって送信されるフレームは、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報を含み、前記第2のフレーム交換は、前記所定の期間において送信されるフレームおよび前記所定の期間において送信されるフレームに含まれる前記フレーム交換情報を更新することにより得られるフレーム交換情報を含むフレームの交換を含む、前記(31)または(32)に記載の人体通信装置。
(34)前記制御部は、フレーム受信の停止後に、予め決定される第2の時間が到来すると、前記受信部にフレーム受信を開始させる、前記(26)~(33)のいずれか1項に記載の人体通信装置。
(35)前記制御部は、フレーム受信が停止している間に前記送信部に行わせるフレーム送信を、自装置の前記フレーム送信期間における第1のフレーム送信、または前記第1のフレーム送信および通信相手の前記フレーム送信期間における第2のフレーム送信の両方のうちのいずれかに切り替える、前記(31)~(33)のいずれか1項に記載の人体通信装置。
(36)前記制御部は、前記第3の時間が予め決定される回数だけ到来すると、フレーム送信を切り替える、前記(35)に記載の人体通信装置。
(37)前記制御部は、前記所定の期間において通信されるフレームに基づいてフレーム送信を切り替える、前記(35)に記載の人体通信装置。
(38)送信部によって、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行うことと、前記第1のフレーム送信に加えて通信相手の前記フレーム送信期間における第2のフレーム送信を行うことと、を含む人体通信方法。
(39)受信部によって、人体通信を用いてフレームを受信することと、送信部によって、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信することと、制御部によって、前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御することと、を含む人体通信方法。
(40)送信部によって、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行うことと、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止することと、を含む人体通信方法。
(41)通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信機能と、前記第1のフレーム送信に加えて通信相手の前記フレーム送信期間における第2のフレーム送信を行う送信機能と、をコンピュータに実現させるためのプログラム。
(42)人体通信を用いてフレームを受信する受信機能と、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信機能と、前記送信機能に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信機能のフレーム受信可否を制御する制御機能と、をコンピュータに実現させるためのプログラム。
(43)通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信機能と、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する送信機能と、をコンピュータに実現させるためのプログラム。
 100  人体通信装置、端末
 102  送信部
 104  受信部
 106  処理部
 108  制御部

Claims (29)

  1.  通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信部を備え、
     前記送信部は、通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する、人体通信装置。
  2.  前記送信部は、第1のフレーム交換が行われると、前記第1のフレーム送信を停止する、請求項1に記載の人体通信装置。
  3.  前記第1のフレーム交換は、前記第2のフレーム送信の開始の通知に係る移行通知フレームおよび前記移行通知フレームへの応答となる移行通知応答フレームの交換、または前記移行通知応答フレームおよび前記移行通知応答フレームへの応答となるフレームの交換を含む、請求項2に記載の人体通信装置。
  4.  前記第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む、請求項2に記載の人体通信装置。
  5.  前記送信部は、予め決定される第1の時間が到来すると、前記第1のフレーム送信を停止する、請求項1に記載の人体通信装置。
  6.  前記送信部は、前記第1のフレーム送信の停止後に行われる第2のフレーム交換に基づいて、前記第1のフレーム送信を開始し、または前記第1のフレーム送信の停止を継続する、請求項1に記載の人体通信装置。
  7.  前記第2のフレーム交換は、前記第2のフレーム送信の停止の通知に係る復帰通知フレームおよび前記復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む、請求項6に記載の人体通信装置。
  8.  前記送信部は、前記通信相手との通信により得られる情報に基づいて特定される前記フレーム送信期間において前記復帰通知フレームを送信する、請求項7に記載の人体通信装置。
  9.  前記送信部は、前記第1のフレーム送信の停止後における一連のフレームの受信に基づいて、前記第1のフレーム送信を開始し、または前記第1のフレーム送信の停止を継続する、請求項1に記載の人体通信装置。
  10.  前記送信部によって送信されるフレームは、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報を含み、
     前記一連のフレームの各々は、予め決定されるパターンで更新された前記フレーム交換情報をそれぞれ含む、請求項9に記載の人体通信装置。
  11.  前記送信部は、前記第1のフレーム送信の停止後に、予め決定される第2の時間が到来すると、前記第1のフレーム送信を開始する、請求項1に記載の人体通信装置。
  12.  人体通信を用いてフレームを受信する受信部と、
     前記送信部によって前記第1のフレーム送信が停止されると共に、前記受信部のフレーム受信を停止させる制御部をさらに備える、請求項1に記載の人体通信装置。
  13.  前記制御部は、前記受信部のフレーム受信が停止されている状態における前記第1のフレーム送信の有無を切り替える、請求項12に記載の人体通信装置。
  14.  人体通信を用いてフレームを受信する受信部と、
     予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信部と、
     前記送信部に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御する制御部と、
     を備える、人体通信装置。
  15.  前記制御部は、第1のフレーム交換が行われると、前記受信部にフレーム受信を停止させる、請求項14に記載の人体通信装置。
  16.  前記第1のフレーム交換は、前記受信部のフレーム受信の停止の通知に係る移行通知フレームおよび前記移行通知フレームへの応答となる移行通知応答フレームの交換を含む、請求項15に記載の人体通信装置。
  17.  前記第1のフレーム交換は、送信すべきデータがない場合に送信されるフレームの連続的な交換を含む、請求項15に記載の人体通信装置。
  18.  前記制御部は、予め決定される第1の時間が到来すると、前記受信部にフレーム受信を停止させる、請求項17に記載の人体通信装置。
  19.  前記制御部は、フレーム受信の停止後に、予め決定される第3の時間が到来すると、所定の期間だけ前記受信部にフレーム受信を行わせ、
     前記所定の期間において行われる第2のフレーム交換に基づいて、前記受信部にフレーム受信を開始させ、またはフレーム受信の停止を継続させる、請求項14に記載の人体通信装置。
  20.  前記第2のフレーム交換は、前記受信部のフレーム受信の開始の通知に係る復帰通知フレームおよび前記復帰通知フレームへの応答となる復帰通知応答フレームの交換を含む、請求項19に記載の人体通信装置。
  21.  前記送信部によって送信されるフレームは、受信フレームに基づくフレームの送信の際に更新されるフレーム交換情報を含み、
     前記第2のフレーム交換は、前記所定の期間において送信されるフレームおよび前記所定の期間において送信されるフレームに含まれる前記フレーム交換情報を更新することにより得られるフレーム交換情報を含むフレームの交換を含む、請求項19に記載の人体通信装置。
  22.  前記制御部は、フレーム受信の停止後に、予め決定される第2の時間が到来すると、前記受信部にフレーム受信を開始させる、請求項14に記載の人体通信装置。
  23.  前記制御部は、フレーム受信が停止している間に前記送信部に行わせるフレーム送信を、自装置の前記フレーム送信期間における第1のフレーム送信、または前記第1のフレーム送信および通信相手の前記フレーム送信期間における第2のフレーム送信の両方のうちのいずれかに切り替える、請求項19に記載の人体通信装置。
  24.  前記制御部は、前記第3の時間が予め決定される回数だけ到来すると、フレーム送信を切り替える、請求項23に記載の人体通信装置。
  25.  前記制御部は、前記所定の期間において通信されるフレームに基づいてフレーム送信を切り替える、請求項23に記載の人体通信装置。
  26.  受信部によって、人体通信を用いてフレームを受信することと、
     送信部によって、予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信することと、
     制御部によって、前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信部のフレーム受信可否を制御することと、
     を含む人体通信方法。
  27.  送信部によって、通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行うことと、
     通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止することと、
     を含む人体通信方法。
  28.  人体通信を用いてフレームを受信する受信機能と、
     予め決定される自装置のフレーム送信期間に人体通信を用いてフレームを送信する送信機能と、
     前記送信機能に前記フレーム送信期間毎のフレーム送信を継続させながら、前記受信機能のフレーム受信可否を制御する制御機能と、
     をコンピュータに実現させるためのプログラム。
  29.  通信が継続される間は、送信すべきデータの有無によらず、予め決定される自装置のフレーム送信期間に人体通信を用いて第1のフレーム送信を行う送信機能と、
     通信相手によって自装置の前記フレーム送信期間における第2のフレーム送信が行われている間、前記第1のフレーム送信を停止する送信機能と、
     をコンピュータに実現させるためのプログラム。
PCT/JP2016/059569 2015-05-07 2016-03-25 人体通信装置、人体通信方法およびプログラム WO2016178343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017516570A JP6624198B2 (ja) 2015-05-07 2016-03-25 人体通信装置、人体通信方法およびプログラム
EP16789479.9A EP3293896B1 (en) 2015-05-07 2016-03-25 Intra-body communication device, intra-body communication method, and program
CN201680025898.5A CN107534496B (zh) 2015-05-07 2016-03-25 体内通信设备、体内通信方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094665 2015-05-07
JP2015-094665 2015-05-07

Publications (1)

Publication Number Publication Date
WO2016178343A1 true WO2016178343A1 (ja) 2016-11-10

Family

ID=57217684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059569 WO2016178343A1 (ja) 2015-05-07 2016-03-25 人体通信装置、人体通信方法およびプログラム

Country Status (4)

Country Link
EP (1) EP3293896B1 (ja)
JP (1) JP6624198B2 (ja)
CN (1) CN107534496B (ja)
WO (1) WO2016178343A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040274A (zh) * 2020-09-10 2020-12-04 杭州叙简科技股份有限公司 一种基于webrtc的网页视频单帧播放方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005787A (ja) * 2003-06-09 2005-01-06 Sony Corp 通信システム、および通信装置
JP2014146955A (ja) * 2013-01-29 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 通信システム、親局、子局、およびスリープ制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230319A1 (en) * 2009-11-02 2012-09-13 Nec Corporation Communication device, communication system, communication device control method, and communication device control program
JP5958177B2 (ja) * 2012-08-22 2016-07-27 ソニー株式会社 電子機器起動制御装置、電子機器起動制御システム、および電子機器起動制御方法、並びにプログラム
JP6192284B2 (ja) * 2012-10-15 2017-09-06 キヤノン株式会社 通信装置及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005787A (ja) * 2003-06-09 2005-01-06 Sony Corp 通信システム、および通信装置
JP2014146955A (ja) * 2013-01-29 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 通信システム、親局、子局、およびスリープ制御方法

Also Published As

Publication number Publication date
JP6624198B2 (ja) 2019-12-25
CN107534496A (zh) 2018-01-02
EP3293896B1 (en) 2021-03-17
EP3293896A4 (en) 2019-01-09
CN107534496B (zh) 2021-07-16
EP3293896A1 (en) 2018-03-14
JPWO2016178343A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
US9154312B2 (en) Power save proxy in communication networks
JP6388943B2 (ja) Wlan対応リモートコントロールデバイス
US8203981B2 (en) Wireless sensor network with linear structure being capable of bidirectional communication and method thereof
KR102134445B1 (ko) 무선 개인 영역 네트워크에서 로우 레이턴시 결정성 네트워크에 대한 전력 절약
KR20220123331A (ko) 2 스테이지 역할 전환
JP5504322B2 (ja) 通信方法、発信及び受信局並びに関連するコンピュータプログラム
JP2007296127A (ja) 通信装置、ゲーム装置、無線ゲームコントローラおよびゲームシステム
WO2010093757A1 (en) Negotiable and adaptable periodic link status monitoring
JP2009060559A (ja) 間欠動作通信装置及び通信システム
WO2011036701A1 (ja) 無線通信装置および通信プログラム
US20110310859A1 (en) Basic service set scheduling based on media access controller states
WO2016189933A1 (ja) 通信装置および通信方法
WO2016178343A1 (ja) 人体通信装置、人体通信方法およびプログラム
TWI577162B (zh) 維持傳輸控制協定連線的方法及電腦系統
US11917543B2 (en) Bluetooth-based data transmission method and data receiving method, communicating apparatus and computer storage medium
JP2010098494A (ja) 無線通信システム及びその省電力制御方法、並びに、無線通信装置及びその制御方法
JP2005115901A (ja) 通信装置および通信システム
WO2024001790A1 (zh) 一种非连续接收的配置方法及装置
CN114615729B (zh) 数据交互方法、耳机设备及计算机可读取存储介质
JP7449521B2 (ja) 無線デバイスの通信方法、無線デバイス及びコンピュータ読み取り可能な記憶媒体
JP2012129655A (ja) 通信装置、および、その制御方法及びプログラム
JP3533419B2 (ja) 通信装置
JP2006279435A (ja) 無線端末装置、無線モジュール、および無線モジュール制御方法
JP4996713B2 (ja) 無線通信端末、無線通信方法および無線通信システム
KR102252094B1 (ko) 단말 및 단말의 전력 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016789479

Country of ref document: EP