WO2016177352A2 - 设立吊钩姿态检测载体的吊钩总成及起重机 - Google Patents

设立吊钩姿态检测载体的吊钩总成及起重机 Download PDF

Info

Publication number
WO2016177352A2
WO2016177352A2 PCT/CN2016/098173 CN2016098173W WO2016177352A2 WO 2016177352 A2 WO2016177352 A2 WO 2016177352A2 CN 2016098173 W CN2016098173 W CN 2016098173W WO 2016177352 A2 WO2016177352 A2 WO 2016177352A2
Authority
WO
WIPO (PCT)
Prior art keywords
hook
assembly
pulley
hook assembly
lifting
Prior art date
Application number
PCT/CN2016/098173
Other languages
English (en)
French (fr)
Other versions
WO2016177352A3 (zh
Inventor
林汉丁
Original Assignee
林汉丁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林汉丁 filed Critical 林汉丁
Priority to EP16789346.0A priority Critical patent/EP3492421A4/en
Priority to JP2019504962A priority patent/JP6639731B2/ja
Priority to US15/514,824 priority patent/US9856118B1/en
Publication of WO2016177352A2 publication Critical patent/WO2016177352A2/zh
Publication of WO2016177352A3 publication Critical patent/WO2016177352A3/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/22Rigid members, e.g. L-shaped members, with parts engaging the under surface of the loads; Crane hooks
    • B66C1/34Crane hooks
    • B66C1/40Crane hooks formed or fitted with load measuring or indicating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/04Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage
    • B66D3/06Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage with more than one pulley
    • B66D3/08Arrangements of sheaves

Definitions

  • the utility model relates to a hook assembly and a crane for setting a hook posture detecting carrier, belonging to the technical field of cranes, and more specifically to a mobile crane for installing a hook assembly of a hook posture detecting carrier.
  • the unmanned aircraft has been in the sky, and the unmanned vehicle is on the road.
  • the mobile crane driver cannot judge whether the lifting pulley block in the hoisting is in a vertical and strong state. It must be provided by the hoisting conductor and the vertical hoist according to the hoisting weight. The information directs the driver to control, and there are both short-term and inaccurate ills.
  • the hoisting process of the crane should comply with “the hoisting angle of the hook should be less than 3° during the hoisting process”.
  • the lifting engineering construction specification 12.2.13 of the petrochemical engineering “the crane is used to lift the workpiece. When the hook angle should not exceed 3°.” The reason why the hook angle cannot be detected correctly is that there is no instrument to be tested, but the crane must be lifted by the lifting pulley block, so how to implement on the lifting pulley block The correct detection of the hook angle is the key to the problem.
  • the object of the present invention is to provide a hook assembly for receiving a hoisting weight and establishing a hook posture detecting carrier, and another object is to provide a mobile crane for installing a hook assembly for setting a hook posture detecting carrier, and at the same time
  • the hook assembly is also suitable for other cranes that have the correct detection of hook angles.
  • the detection of the yaw angle of the crane hook has been obtained from the sling (hook wire rope, the same below) to detect the swing angle of the sling or the vertical attitude of the hook by machine vision technology; because the machine vision technology is subject to the same vision, light, It is difficult to generally use the detection of the yaw angle of the mobile crane hook due to various conditions such as the surrounding environment; and the method of detecting the yaw angle of the hook from the sling is to select one sling from the plurality of slings of the pulley block as the detection.
  • the relative deflection between the pulley pulley and the moving pulley axis is about the lifting force acting line around the pulley block, so that the sling of the pulley block and the lifting force acting line as the rotating central axis are deflected, and the hook yaw angle should be
  • the lifting force line of the pulley block deviates from the vertical line angle; the sling angle of the sling which is deflected by the action line of the lifting force is detected, and the hoist angle of the lifting line of the lifting force of the pulley block is off the vertical line angle. This is relative to a mobile crane that only allows the hook yaw to operate within 3°.
  • the pulley assembly pulley assembly is coupled with the hook assembly, the lift point of the pulley block acting on the axis of the coaxial movable pulley is offset by the lifting and lowering operation of the pulley block, and the angle measuring instrument is installed on the angle measuring instrument.
  • the pulley block hook assembly detects a deviation of the hook yaw angle.
  • the lifting force action line of the pulley block is a working force line of lifting force of each pulley of the pulley block; the lifting force acting point of the pulley block is a working point of lifting force of each pulley of the pulley block.
  • the lifting and lowering operation of the pulley block acts on the axis of the coaxial movable pulley, and the lifting force acting point of the pulley block is offset, which is directly related to the number of pulleys of the pulley block pulley bearing and the number of pulleys of the pulley block.
  • the number of pulleys of the pulley block is multiplied, the shift caused by the lifting and lowering operation of the pulley block acting on the axis of the coaxial movable pulley to the lifting point of the pulley group will cause the hook assembly to detect the hook bias The deviation of the angle is too large.
  • the pulley group lifting and lowering operation acts on the axis of the coaxial movable pulley
  • the shifting force of the pulley block acts on the axis of the moving pulley assembly, so that the tilting angle of the moving pulley assembly along the axis of the moving pulley is changed.
  • the movable pulley assembly and the hook assembly are directly connected via the guard plate or the rocker plate, so that the tilting angle of the moving pulley in the axial direction will drive the hook assembly to move, and thus the angle measuring instrument installed in the hook assembly is changed for the non-pulley group yaw.
  • the response is wrong.
  • the hoist angle of the mobile crane hook is detected only within less than 3°, so excessive deviation will make the detection meaningless.
  • the offset is caused by the action of the gravity force acting on the hook, and the angle measuring instrument is also installed on the pulley assembly hook assembly to detect the deviation of the hook deflection angle.
  • the hoisting weight is attached to the hook by the wire rope buckle, even if there are a plurality of ropes, the gravity force acting on the hook crane is not necessarily on the axis of the hook shank, and the hook can rotate about the vertical axis.
  • the offset of the gravity force acting on the hook crane can occur in all directions, and also because the movable pulley assembly and the hook assembly are directly connected via the guard plate or the seesaw, thereby acting on the gravity joint force point of the hook crane
  • the movement of the hook assembly caused by the offset also causes the movement of the movable pulley assembly, so that the gravity of the hook and the working force of the hook is offset, so that the angle measuring instrument installed on the hook assembly is
  • the reaction to the eccentricity of the non-pulley group is erroneous.
  • a three-section hook assembly characterized by a series connection between a movable pulley assembly and a hook assembly a coupling member, the two ends of the coupling member are respectively coupled with the movable pulley assembly and the hook assembly by a hinged shaft, and the hinged shaft coupling the movable pulley assembly and the coupling member is disposed coaxially with the coupling member
  • the axis of the movable pulley is perpendicular to the orientation, and the hinged shaft connecting the hook assembly and the coupling member is disposed in a vertical orientation with the hook beam hinged shaft.
  • the movable pulley assembly c1 and the hook assembly c7 of the three-section hook assembly are coupled via the two side coupling plates c3, the movable pulley assembly c1 and the twisted shaft c2 of the two side coupling plates c3, and the two side coupling plates
  • the c3 and the splicing shaft c4 of the hook assembly c7 are both disposed at a direction perpendicular to the axis of the coaxial moving pulley, so that when the lifting pulley group is raised and lowered, the moving pulley axis is biased by the non-hook yaw.
  • the moving pulley assembly When the angle changes, the moving pulley assembly is self-adjusted along the splicing shaft under the lifting tension of the lifting pulley block. At this time, the moving pulley axis is slightly inclined, and the moving pulley assembly is only subjected to tension; and the hook beam is spliced at the same time.
  • the shaft c6 is disposed in parallel with the axis of the coaxial movable pulley, so that the offset of the gravity joint force point of the hook crane is rotated by the hooking shaft c6 and the hook assembly is coaxial with the hook beam
  • the rotation of the axis of the movable pulley is adjusted by the rotation of the vertical azimuth splicing shaft c4. At this time, the axis of the hook is slightly skewed, and the hook assembly c7 is only subjected to the pulling force.
  • the lifting pulley lifting force action line must pass through the coupling member, and if the platform is fixedly mounted on the coupling member and the lifting pulley group lifting force acting line is perpendicular to the platform surface, Lifting pulley block lifting force action line is always perpendicular to the platform surface; when the angle measuring instrument is fixedly mounted on the platform surface of the coupling member, the lifting and lifting pulley group lifting force action line vertical platform surface is the same as the horizontal plane clamp Angle, numerically equal to the real-time hook angle;
  • the real-time hook yaw angle detected on the platform surface of the coupling member is independent of the inclination change of the moving pulley axial direction caused by the lifting and lowering operation of the lifting pulley block, and is also combined with the gravity acting on the hook crane
  • the action point is independent of the offset and is determined only by the angle at which the real-time lift block lift force line is offset from the plumb line.
  • the three-section hook has always become a condition for the correct detection of the hook yaw posture:
  • the platform surface is horizontal
  • the surface of the lifting block, the lifting force action line is perpendicular to the plane of the platform surface, so that the hook surface yaw posture and the like can be correctly detected through the platform surface, such as installing a double shaft on the platform surface.
  • the inclinometer is used to detect the real-time hook yaw angle along the X and Y axial components, and the real-time hook yaw angle after the synthetic processing;
  • the lifting force of the pulley block acting on the axis of the coaxial moving pulley is offset, which is directly related to the number of pulleys of the pulley block.
  • the lifting and lowering operation of the pulley block acts on the offset of the lifting force of the pulley block on the axis of the coaxial moving pulley, so that the hook is detected from the hook assembly.
  • the deviation of the angle is a normal deviation, and thus there is: a two-section hook assembly, which is characterized in that the driven pulley assembly d1 and the hook assembly d5 are connected by the twisted shaft d2, and the twisted shaft d2 is set at It is perpendicular to the axis of the coaxial movable pulley, and simultaneously satisfies the hook beam hinged shaft d4 parallel to the axis of the coaxial moving pulley.
  • the rotation of the shaft d4 with the hook beam and the hook assembly d5 are spliced to the axis d4 perpendicular to the axis of the coaxial pulley
  • the rotation is self-adjusting, at which time the hook axis is slightly skewed, and the hook assembly d5 is only subjected to tension.
  • the real-time hook angle can be detected on the movable pulley pulley assembly, such as an angle measuring instrument on the guard plate. Regardless of the offset acting on the point of gravity action of the hook crane, and due to the small number of pulleys of the pulley block, the movement of the moving pulley in the axial direction may be omitted.
  • the three-section hook assembly or the two-section hook assembly is used for the mobile crane to take the hoisting weight and detect the yaw posture of the hook through the coupling member or the guard plate.
  • the three-section hook assembly or the two-section hook assembly is also applicable to other cranes that have the correct detection of the hook deflection angle requirements.
  • the utility model has the beneficial effects of the hook assembly and the crane for setting up the hook posture detecting carrier: one is benefiting from the hook assembly for setting the hook posture detecting carrier, thereby overcoming the lifting point of the lifting force of the pulley block and the The hook is biased on the hook angle of the gravity of the hook and the deviation of the hook angle detection
  • the large hook yaw detecting device is provided with a space, which is convenient for the device to install a large-capacity rechargeable battery and is convenient for protection; and three benefits from installing the hook for setting the hook posture detecting carrier on the mobile crane
  • the assembly performs the correct detection of the yaw angle of the hook, so that the steerable commander can control the driver's control according to the information provided by the vertical hoist of the hoisting heavy
  • Figure 1 is a structural view of a lifting pulley block
  • Figure 2 is a structural view of a hook assembly
  • Figure 3 is a schematic view showing the structure of a three-section hook assembly, in which the right side portion is a right side view of the left side portion;
  • Figure 4 is a schematic view showing the structure of a two-section hook assembly, wherein the right side portion of the figure is a right side view of the left side portion;
  • Figure 5 is an explanatory view of the hook yaw angle detected from the lifting force line of action.
  • the movable pulley assembly c1 and the hook assembly c7 of the three-section hook assembly are coupled via the two side coupling plates c3, the movable pulley assembly and the double-sided coupling plate of the two sides of the coupling plate c2, and the two sides of the coupling plate and the suspension
  • the splicing shaft c4 of the hook assembly is disposed perpendicular to the axis of the coaxial moving pulley, and the hook is supported by the locking bearing by the locking screw c5 on the splicing shaft (or the beam shaft) c6, and Rotating along the vertical axis of the hook handle (or the hook axis), so that the axis of the movable pulley can also rotate along the vertical axis of the hook handle with respect to the hook; since the lifting pulley is raised and lowered due to the non-hook yaw When the yaw angle of the hook is changed, the skein axis c2 is vertically adjusted by the axi
  • the tension-moving movable pulley assembly c1 and the tension-hooked hook assembly c7 are connected in series, and the coupling plate c3 is a hook yaw.
  • the correct detection of the attitude creates the condition that only the change of the inclination angle of the moving pulley axis caused by the lifting and lowering operation of the lifting pulley block can be made on the connecting plate c3 assembly, and the biasing force acting on the lifting hook of the lifting hook is biased.
  • the shift is irrelevant, so that the hook yaw posture is correctly detected.
  • the platform surface is a horizontal plane c8, and the double-axis dynamic inclinometer c9 is installed on the platform surface, and the synthetic processing is equal to The real-time hook angle of the angle between the platform surface and the horizontal plane.
  • the inside of the two side joint plates has a large hook angle detecting device installation space, which is convenient for the device to install a large-capacity rechargeable battery, and is advantageous for the protection of the device, so that the three-section hook assembly Then, it is a mechanism for accepting the hoisting weight, creating the correct detection condition of the hook yaw posture, and assembling the detection device.
  • Figure 4 is a two-section hook assembly, the movable pulley assembly d1 and the hook assembly d5 are coupled via a hinged shaft (d2), and the hinged shaft (d2) is disposed perpendicular to the axis of the coaxial movable pulley
  • the orientation, while satisfying the hook beam splicing shaft (d4), is parallel to the axis of the coaxial moving pulley.
  • the real-time hook angle can be detected on the movable pulley pulley assembly, such as on the guard plate, at this time
  • the hook force of the hook force is irrelevant to the offset point, and since the number of pulleys of the pulley block is small, the movement of the moving pulley in the axial direction may be omitted.
  • the angle measuring instrument can correctly detect the yaw attitude of the hook on the three-section hook assembly connecting plate;
  • the angle measuring instrument is mounted on the platform surface perpendicular to the lifting force of the lifting block, and the angle between the detected platform surface and the horizontal plane is equal to the real-time hook angle.
  • the angle of intersection of the lifting force acting line m passing through the point b of the hook and the vertical line n passing through the hook b point is ⁇ b
  • the platform surface W perpendicular to the lifting force acting line m of the pulley block is the same as the Z horizontal plane.
  • ⁇ CaD is the plane angle of the dihedral angle
  • the quadrilateral aCbD is coplanar with the m, n line
  • ⁇ a (complementary to ⁇ CbD) is equal to the acute angle mb where the m line intersects the n line;
  • the hook angle of the lifting pulley lifting force acting line deviating from the vertical line in real time is equal to the angle between the platform surface and the horizontal plane perpendicular to the lifting line action line of the lifting pulley block in real time, and the real-time hanging The hook angle is on the same plane as the dihedral angle between the platform surface and the horizontal plane perpendicular to the real-time lifting line of the lift block lifting force.
  • a parallel straight line with the lifting force line of the pulley block lifting force line or a parallel straight line with the lifting line of the lifting force of the pulley block can be set on the coupling member, so as to be parallel to the line of action on the platform surface or the lifting force of the pulley block.
  • an angle measuring instrument is installed to detect the hook yaw posture.

Abstract

本发明涉及一种设立吊钩姿态检测载体的吊钩总成及起重机,其特征是,在动滑轮组件(c1)与吊钩组件(c7)之间串联一节两侧联接板(c3)成为三节吊钩总成,所述联接板(c3)上可设立与滑轮组提升力作用线垂直平台面或设立与滑轮组提升力作用线平行直线,有益效果是:除了承接吊重,可通过所述平台面或所述平行直线以正确检测吊钩偏摆姿态。

Description

设立吊钩姿态检测载体的吊钩总成及起重机 技术领域
一种设立吊钩姿态检测载体的吊钩总成及起重机,属于起重机技术领域,确切地说它是一种装设吊钩姿态检测载体的吊钩总成的移动式起重机。
背景技术
无人飞机已上天,无人汽车上路也在试验之中,然而移动式起重机司机却无法判断吊装中提升滑轮组是否处于垂直壮态,要由吊装指挥者,依据监视被吊重物垂直吊装者提供的信息指挥司机操控,存在既不及时又不准确弊病。
据大型设备吊装工程施工工艺标准9.1.4吊车吊装工艺应符合“吊装过程中,吊钩偏角应小于3°”,据石油化工工程起重施工规范12.2.13规定“使用流动式起重机起吊工件时,吊钩偏角不应超过3°。”之所以无法正确检测吊钩偏角,理应不是没有可供检测的仪器,而是起重机必须通过提升滑轮组吊装,因而如何在所述提升滑轮组上实现吊钩偏角的正确检测,才是问题的关键。
发明内容
本发明的目的是提供一种承接吊重同设立吊钩姿态检测载体的吊钩总成,另一目的是提供装设设立吊钩姿态检测载体的吊钩总成的移动式起重机,同时上述吊钩总成也适用于有正确检测吊钩偏角等要求的其他起重机。
起重机吊钩偏角的检测,历来是从吊绳(吊钩钢丝绳,下同)检测吊绳的摆角得到或是通过机器视觉技术检测吊钩垂直姿态;由于机器视觉技术受同视、光线、周围环境等多种条件限制,难以普遍用于所述移动式起重机吊钩偏角的检测;而从吊绳检测吊钩偏角的方案是由滑轮组多根吊绳中选择一根吊绳作为检测对象,从吊装中可以观察到滑轮组的钢丝绳即使顺穿,钢丝绳或吊绳间并不平行,同轴的定滑轮与动滑轮轴线间也存在相对偏转,因为定滑轮轴线固定在吊臂上而动滑轮轴线方位要受吊钩运行方位与被吊重物力的趋使与制约而变动。
发现:滑轮组定滑轮与动滑轮轴线间是绕滑轮组提升力作用线相对偏转,致使所述滑轮组的吊绳与作为旋转中心轴的所述提升力作用线产生偏斜,而吊钩偏角应是所述滑轮组提升力作用线偏离铅垂线角度;以检测与所述提升力作用线产生偏斜的吊绳摆角,当作所述滑轮组提升力作用线偏离铅垂线角度的吊钩偏角,这相对只允许吊钩偏角在3°内运行的移动式起重机来说,其偏差有可能达 到失去检测意义,也许这正是虽然对吊钩偏角的检测早就得到重视,构思巧妙方案各异的从吊绳测量摆角的文献不断,但是迄今未能在起重机上得到应用的原因吧!
发现:由于所述滑轮组动滑轮组件与吊钩组件联接,因所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生偏移,而成为将角度测量仪装设于所述滑轮组吊钩总成检测所述吊钩偏角产生偏差。所述滑轮组提升力作用线,是通过滑轮组各滑轮提升力合力作用线;所述滑轮组提升力作用点,是通过滑轮组各滑轮提升力合力作用点。
所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生偏移,与滑轮组滑轮轴承摩擦糸数、所述滑轮组的滑轮个数直接相关。当所述滑轮组滑轮个数倍增时,所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生的偏移,将致使从吊钩总成检测所述吊钩偏角的偏差过大。
究其原因,由于滑轮组滑轮个数倍增的所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生的偏移,使得动滑轮组件沿动滑轮轴线方向倾角产生异动,由于动滑轮组件与吊钩组件经护板或扼板直接相连,故动滑轮轴线方向倾角异动将带动吊钩组件异动,因而装设于所述吊钩总成的角度测量仪对于非滑轮组偏摆而产生异动的反应是错误的。且所述移动式起重机吊钩偏角只在小于3°内检测,故过大的偏差,将使检测失去意义。
发现:因作用于所述吊钩吊重力合力作用点产生偏移,也成为将角度测量仪装设于所述滑轮组吊钩总成以检测所述吊钩偏角产生偏差。
由于吊重经钢丝绳扣系挂于吊钩上,甚至有多根绳索,故作用于所述吊钩吊重力合力不一定就在吊钩柄轴心线上,且吊钩可绕垂直轴线旋转,故作用于所述吊钩吊重力合力作用点偏移可在各个方向上出现,同样由于动滑轮组件与吊钩组件经护板或扼板直接相连,因而作用于所述吊钩吊重力合力作用点偏移所产生吊钩组件的异动,也会引起所述动滑轮组件的异动,故作用于所述吊钩吊重力合力作用点偏移,将使装设于所述吊钩总成的角度测量仪对于非滑轮组偏摆而产生异动的反应是错误的。
一种三节吊钩总成,其特点是,由动滑轮组件与吊钩组件之间串联一节 联接件组成,所述联接件二端分别用绞接轴同所述动滑轮组件以及吊钩组件联接,且将所述动滑轮组件与所述联接件联接的绞接轴,设在与所述同轴动滑轮轴线相垂直方位,同时将所述吊钩组件与所述联接件联接的绞接轴,设在与吊钩横梁绞接轴相垂直方位。
优选地,所述三节吊钩总成的动滑轮组件c1与吊钩组件c7经两侧联接板c3联接,将所述动滑轮组件c1与两侧联接板c3的绞接轴c2,以及两侧联接板c3与吊钩组件c7的绞接轴c4,均设在与所述同轴动滑轮轴线相垂直方位,从而当所述提升滑轮组升、降运行因非吊钩偏摆所产生动滑轮轴线方向吊钩偏角变动时,在所述提升滑轮组吊重张力作用下,所述动滑轮组件沿所述绞接轴而自行调整,此时动滑轮轴线微量倾斜,而动滑轮组件仅受拉力;同时将吊钩横梁绞接轴c6设在与同轴动滑轮轴线相平行方位,故所述吊钩吊重力合力作用点的偏移,经与所述吊钩横梁绞接轴c6的转动及所述吊钩组件绕与同轴动滑轮轴线相垂直方位绞接轴c4的转动自行调整,此时吊钩轴线微量偏斜,而吊钩组件c7仅受拉力。
由于所述联接件一端与所述动滑轮组件仅受拉力串联在一起,同时所述联接件的另一端与所述吊钩组件也仅受拉力串联在一起,因而:
其一,所述提升滑轮组提升力作用线必须通过所述联接件,若在所述联接件上固定装设与所述提升滑轮组提升力作用线垂直于平台面的平台,则吊重时所述提升滑轮组提升力作用线始终垂直于所述的平台面;当在所述联接件的所述平台面上固定装设角度测量仪,所检测与提升滑轮组提升力作用线垂直平台面同水平面间夹角,数值上等于实时吊钩偏角;
其二,在所述联接件的所述平台面上所检测实时吊钩偏角与所述提升滑轮组升、降运行所产生动滑轮轴线方向倾角变动无关,也与作用于所述吊钩吊重力合力作用点产生偏移无关,只由实时提升滑轮组提升力作用线偏离铅垂线的角度所确定。
因而三节吊钩总成为吊钩偏摆姿态等正确检测创造了条件:
(1)为吊钩偏摆姿态等检测提供了与所述提升滑轮组提升力作用线垂直平台面;
在所述吊钩总成联接件上固定装设满足吊钩偏角0°时,所述平台面为水平 面的平台,则所述提升滑轮组提升力作用线垂直于所述平台面的平面,因而可通过所述平台面进行吊钩偏摆姿态等的正确检测,如在所述平台面装设双轴倾角仪,所检测实时吊钩偏角沿X、Y轴向分量,合成处理后便是实时吊钩偏角;
(2)为吊钩偏摆姿态等检测提供了与提升滑轮组提升力作用线的平行直线;
在所述吊钩总成联接件上固定装设满足吊钩偏角0°时,所述平台面为水平面的平台,在所述平台面上固定与所述平台面垂直的直线,所述直线便是所述提升滑轮组提升力作用线的平行线。因而可在固定与所述平台面垂直的直线上装设检测仪进行吊钩偏摆姿态等的正确检测。
由于所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生偏移,与所述滑轮组的滑轮个数直接相关。当所述滑轮组滑轮个数很少时,所述滑轮组升、降运行作用于同轴动滑轮轴线上的所述滑轮组提升力作用点产生的偏移,致使从吊钩总成检测所述吊钩偏角的偏差属于正常偏差,从而有:一种二节吊钩总成,其特点是,由动滑轮组件d1与吊钩组件d5经绞接轴d2联接组成,并将所述绞接轴d2设在与同轴动滑轮轴线相垂直方位,同时满足吊钩横梁绞接轴d4与所述同轴动滑轮轴线相平行。
当所述作用于吊钩吊重力合力作用点的偏移,经与所述吊钩横梁绞接轴d4的转动及所述吊钩组件d5绕与同轴动滑轮轴线相垂直方位绞接轴d4的转动自行调整,此时吊钩轴线微量偏斜,而吊钩组件d5仅受拉力。
由于所述二节吊钩总成的动滑轮组件与吊钩组件同样是仅受拉力串联,故可在所述动滑轮滑轮组件上,如在护板上装设角度测量仪检测实时吊钩偏角,则与作用于所述吊钩吊重力合力作用点产生偏移无关,且由于所述滑轮组滑轮个数很少,所产生动滑轮轴线方向的异动甚微可略去。
所述三节吊钩总成或二节吊钩总成,用于移动式起重机承接吊重与通过所述联接件或护板检测吊钩偏摆姿态。
所述三节吊钩总成或二节吊钩总成,也适用于有正确检测吊钩偏角要求的其他起重机。
所述设立吊钩姿态检测载体的吊钩总成及起重机有益效果是:一得益于设立吊钩姿态检测载体的吊钩总成,从而克服了所述滑轮组提升力作用点偏移与所述作用于吊钩吊重力合力作用点偏移对吊钩偏角检测的制约,才实现了吊钩偏 摆姿态的正确检测;二得益于所述设立吊钩姿态检测载体的吊钩总成成为承接吊重与装设吊钩偏角检测装置一体化的机构,所述两侧联接板内侧有较大的吊钩偏角检测装置装设空间,既便于所述装置装设大容量充电电池又便于防护;三得益于在所述移动式起重机上装设所述设立吊钩姿态检测载体的吊钩总成进行吊钩偏角的正确检测,从而可改变由吊装指挥者,依据监视被吊重物垂直吊装者提供的信息指挥司机操控,存在既不及时又不准确弊病,并为所述移动式起重机进一步开发提供了不可或缺的条件。
附图说明
图1一种提升滑轮组结构图;
图1中标号:B1定滑轮,B2动滑轮,B3钢丝绳,B4护板,B5吊钩,B6吊臂;
图2一种吊钩总成结构图;
图2中标号:A1动滑轮,A2滑轮轴,A3轴承,A4护板,A5螺帽,A6轴承,A7横梁轴,A8扼板,A9吊钩;
图3一种三节吊钩总成结构示意图,图中右侧部分为左侧部分的右视图;
图4一种二节吊钩总成结构示意图,图中右侧部分为左侧部分的右视图;
图5从提升力作用线检测吊钩偏角说明图。
具体实施方式
一、一种三节吊钩总成;
如图3所述三节吊钩总成的动滑轮组件c1与吊钩组件c7经两侧联接板c3联接,将所述动滑轮组件与两侧联接板的绞接轴c2,以及两侧联接板与吊钩组件的绞接轴c4,均设在与所述同轴动滑轮轴线相垂直方位,吊钩用锁紧螺毋c5压住止推轴承支承在绞接轴(或称横梁轴)c6上,并可沿吊钩柄垂直轴线(或称吊钩轴线)旋转,因而动滑轮轴线相对于吊钩亦可沿吊钩柄垂直轴线旋转;由于当所述提升滑轮组升、降运行因非吊钩偏摆所产生吊钩偏角变动时,经与所述同轴动滑轮轴线相垂直方位绞接轴c2的自行调整,此时动滑轮轴线微量倾斜,而动滑轮组件c1仅受拉力,而作用于所述吊钩吊重力合力作用点的偏移,经与所述同轴动滑轮轴线相平行绞接轴c6的转动及所述吊钩组件绕与所述同轴动滑轮轴线相垂直方位绞接轴c4的转动自行调整,此时吊钩轴线微量偏斜,而吊钩 组件c7仅受拉力。
由于所述三节吊钩总成由二端设绞接轴的两侧联接板c3分别同受拉力的动滑轮组件c1与受拉力的吊钩组件c7三者串联,联接板c3则为吊钩偏摆姿态正确检测创造了条件,唯有在联接板c3组件上才能既与所述提升滑轮组升、降运行所产生动滑轮轴线方向倾角变动无关,又与作用于所述吊钩吊重力合力作用点产生偏移无关,从而进行吊钩偏摆姿态正确检测。如可在所述吊钩总成联接件上装设满足吊钩偏角0°时,平台面为水平面的平台c8,在所述平台面上装设双轴动态倾角仪c9,并合成处理为等于所述平台面同水平面间夹角的实时吊钩偏角。
同时所述两侧联接板内侧有较大的吊钩偏角检测装置装设空间,既便于所述装置装设大容量充电电池,又有利所述装置的防护,从而所述三节吊钩总成则成为承接吊重、创造吊钩偏摆姿态正确检测条件、装设所述检测装置一体化的机构。
二、一种二节吊钩总成;
图4是一种二节吊钩总成,由动滑轮组件d1与吊钩组件d5经绞接轴(d2)联接组成,并将所述绞接轴(d2)设在与同轴动滑轮轴线相垂直方位,同时满足吊钩横梁绞接轴(d4)与所述同轴动滑轮轴线相平行。
当所述吊钩吊重力合力作用点的偏移,经与所述吊钩横梁绞接轴d4的转动及所述吊钩组件绕与同轴动滑轮轴线相垂直方位绞接轴d2的转动自行调整,此时吊钩轴线微量偏斜,而吊钩组件d5仅受拉力。
由于所述二节吊钩总成的动滑轮组件与吊钩组件同样是仅受拉力串联,故可在所述动滑轮滑轮组件上,如在护板上检测实时吊钩偏角,此时与作用于所述吊钩吊重力合力作用点产生偏移无关,且由于所述滑轮组滑轮个数很少,所产生动滑轮轴线方向的异动甚微可略去。
三、在三节吊钩总成联接板上用角度测量仪可正确检测吊钩偏摆姿态;
将角度测量仪装设于所述联接件与所述提升滑轮组提升力垂直的平台面上,所检测平台面与水平面间夹角数值上等于实时的吊钩偏角。
如图5所示:设通过吊钩b点的提升力作用线m与通过吊钩b点铅垂线n的相交角为∠b,与滑轮组提升力作用线m垂直的平台面W同Z水平面夹角 为∠a;
如图5,由二面角内b点,向W、Z二平面作的垂线的垂足分别为C、D,过C点在面内作Ca垂直于W平面与Z平面交线L的a点,连结Da;
∵L⊥Ca,L⊥bC,∴L⊥面bCa,∴L⊥ba,又∵L⊥bD,∴L⊥面bDa,∴L⊥Da,
∴∠CaD为二面角的平面角,四边形aCbD与m,n直线共面,且∠C=∠D=90°
故∠a(与∠CbD互补而)等于m直线与n直线相交的锐角∠b;
上述表明:实时所述提升滑轮组提升力作用线偏离铅垂线的吊钩偏角,等于实时与所述提升滑轮组提升力作用线垂直的所述平台面同水平面间夹角,且所述实时吊钩偏角同所述实时与提升滑轮组提升力作用线垂直的所述平台面同水平面间夹角的二面角位于同一平面上。
因而可以在所述联接件上设立与滑轮组提升力作用线垂直平台面或设立与滑轮组提升力作用线的平行直线,从而在所述平台面上或在所述与滑轮组提升力作用线的平行直线上,装设角度测量仪以检测吊钩偏摆姿态。
应当说明以上所述是本发明的实施方式只是举例,对于本领域普通技术人员,按本发明所作出的若干更改和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种设立吊钩姿态检测载体的吊钩总成,其特征是,吊钩总成是三节吊钩总成,其由动滑轮组件与吊钩组件之间串联一节联接件组成,所述联接件二端分别用绞接轴同所述动滑轮组件以及吊钩组件联接,且将所述动滑轮组件与所述联接件联接的绞接轴,设在与所述同轴动滑轮轴线相垂直方位,同时将所述吊钩组件与所述联接件联接的绞接轴,设在与吊钩横梁绞接轴相垂直方位。
  2. 根据权利要求1所述设立吊钩姿态检测载体的吊钩总成,其特征是,所述三节吊钩总成的动滑轮组件(c1)与吊钩组件(c7)经两侧联接板(c3)联接,将所述动滑轮组件(c1)与两侧联接板(c3)的绞接轴(c2),以及两侧联接板(c3)与所述吊钩组件(c7)的绞接轴(c4),均设在与所述同轴动滑轮轴线相垂直方位;同时将吊钩横梁绞接轴(c6)设在与所述同轴动滑轮轴线相平行方位。
  3. 根据权利要求1所述设立吊钩姿态检测载体的吊钩总成,其特征是,所述联接件上可设立与滑轮组提升力作用线垂直平台面或设立与滑轮组提升力作用线的平行直线,以实现对吊钩偏摆姿态的正确检测。
  4. 根据权利要求3所述设立吊钩姿态检测载体的吊钩总成,其特征是,所述实时与滑轮组提升力作用线垂直平台面同水平面间夹角或实时与滑轮组提升力作用线的平行直线偏离铅垂线的角度,数值上均等于实时吊钩偏角。
  5. 一种设立吊钩姿态检测载体的吊钩总成,其特征是,吊钩总成是二节吊钩总成,其由动滑轮组件(d1)与吊钩组件(d5)经绞接轴(d2)联接组成,并将所述绞接轴(d2)设在与同轴动滑轮轴线相垂直方位,同时满足吊钩横梁绞接轴(d4)与所述同轴动滑轮轴线相平行。
  6. 一种移动式起重机,其特征是,包括权利要求1-4任一项所述的三节吊钩总成,或包括权利要求5所述的二节吊钩总成。
PCT/CN2016/098173 2016-08-27 2016-09-06 设立吊钩姿态检测载体的吊钩总成及起重机 WO2016177352A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16789346.0A EP3492421A4 (en) 2016-08-27 2016-09-06 LIFTING HOOK ASSEMBLY ESTABLISHING A LIFTING HOOK POSITION DETECTION SUPPORT, AND CRANE
JP2019504962A JP6639731B2 (ja) 2016-08-27 2016-09-06 フック姿態検出キャリアを設置するフックアセンブリ
US15/514,824 US9856118B1 (en) 2016-08-27 2016-09-06 Lifting hook assembly establishing lifting hook posture detection carrier, and crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610733240.1A CN106276587B (zh) 2016-08-27 2016-08-27 设立吊钩姿态检测载体的吊钩总成及起重机
CN201610733240.1 2016-08-27

Publications (2)

Publication Number Publication Date
WO2016177352A2 true WO2016177352A2 (zh) 2016-11-10
WO2016177352A3 WO2016177352A3 (zh) 2017-06-22

Family

ID=57218136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098173 WO2016177352A2 (zh) 2016-08-27 2016-09-06 设立吊钩姿态检测载体的吊钩总成及起重机

Country Status (5)

Country Link
US (1) US9856118B1 (zh)
EP (1) EP3492421A4 (zh)
JP (1) JP6639731B2 (zh)
CN (1) CN106276587B (zh)
WO (1) WO2016177352A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185627B (zh) * 2016-07-06 2020-09-08 林汉丁 吊钩偏角监测装置、垂直吊装监控装置及移动式起重机
CN108249337A (zh) * 2018-03-05 2018-07-06 苏州库力铁重工有限公司 吊钩滑轮组件
US11897733B2 (en) * 2018-05-04 2024-02-13 Thomas Bedgood Sensing device for a crane
US11312598B2 (en) * 2019-03-18 2022-04-26 Wenger Corporation Hoist fleet assembly
CN111498689B (zh) * 2020-04-03 2023-06-16 江西昌河汽车有限责任公司 一种冲压车间a线行车主钩滑轮组及其应用
CN111348544A (zh) * 2020-04-16 2020-06-30 林汉丁 吊重时显示实时吊钩偏角监控装置及起重机
CN112794202A (zh) * 2020-05-20 2021-05-14 林汉丁 显示实时吊钩偏角防斜吊监控装置及起重机
ES1255310Y (es) * 2020-07-24 2021-01-19 Hernandez Yoel Orlando Izquierdo Dispositivo para control de verticalidad
CN112193995B (zh) * 2020-09-25 2022-09-30 中国直升机设计研究所 一种直升机救生绞车快卸旋转吊钩
KR20240007160A (ko) 2021-04-12 2024-01-16 스트럭처럴 서비시스, 인크. 크레인 오퍼레이터를 지원하기 위한 시스템 및 방법
CN114162707A (zh) * 2021-11-22 2022-03-11 徐州建机工程机械有限公司 一种双层四组八滑轮吊钩

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414092A (en) * 1945-06-08 1947-01-14 Charwinsky John Hoisting indicator
US2772411A (en) * 1954-10-25 1956-11-27 Fishfader S Boom angle indicator for cranes
US3865265A (en) * 1973-08-20 1975-02-11 Brudi Equipment Lift truck safety accessory
SE436436B (sv) * 1981-06-18 1984-12-10 Eurotrade Machine Pool Ab Djupmetare vid grevmaskiner
RU2025445C1 (ru) * 1990-02-26 1994-12-30 Мариупольский концерн "Азовмаш" Крюковая подвеска
US5596826A (en) * 1995-10-18 1997-01-28 Caterpillar Inc. Level indicating mechanism for a work machine
US6549139B2 (en) * 1997-02-27 2003-04-15 Jack B. Shaw, Jr. Crane safety device and methods
DE10110302C1 (de) * 2001-02-26 2002-07-11 Atecs Mannesmann Ag Unterflaschensystem
US7856727B2 (en) * 2008-10-21 2010-12-28 Agatec Independent position sensor and a system to determine the position of a tool on a works machine using position sensors
US8768609B2 (en) * 2010-02-01 2014-07-01 Trimble Navigation Limited Sensor unit system
CN201647810U (zh) * 2010-02-02 2010-11-24 三一汽车制造有限公司 大吨位组合吊钩以及具有该装置的起重机械
CN102485632A (zh) * 2011-11-11 2012-06-06 林汉丁 吊车吊钩偏角激光动态显示设置
CN102431897B (zh) * 2011-11-25 2014-04-30 林汉丁 起重机吊装垂直度偏差测量显示装置及吊装法
CN103130098B (zh) * 2012-08-11 2016-02-24 林汉丁 一种吊钩偏角万向水平仪监测装置及起重机
CN102815614A (zh) * 2012-09-05 2012-12-12 林汉丁 显示实时吊钩偏角检测监视装置
JP6121670B2 (ja) * 2012-09-05 2017-04-26 株式会社タダノ 作業計画確認装置
CN103213902B (zh) * 2013-01-10 2015-10-07 林汉丁 吊钩偏角检监测、协同方监测、磁方位监测装置及起重机
CN103318765B (zh) * 2013-06-21 2015-01-07 林汉丁 吊重摆角、吊重载荷或吊重姿态的监测方法与装置及起重机
CN204384710U (zh) * 2014-11-26 2015-06-10 惠州市联电电线电缆有限公司 一种用于吊装电线的机械手
CN204265235U (zh) * 2014-12-01 2015-04-15 河南省矿山起重机有限公司 一种吊钩滑轮组
CN204675608U (zh) * 2015-04-29 2015-09-30 招商局重工(江苏)有限公司 一种浮吊及其多功能吊钩、多功能吊钩组
CN204751973U (zh) * 2015-06-23 2015-11-11 河南华北起重吊钩有限公司 一种吊钩垂直度偏差检测装置
CN105174035A (zh) * 2015-09-29 2015-12-23 河南蒲瑞精密机械有限公司 一种吊具及使用该吊具的起重机
CN106185627B (zh) * 2016-07-06 2020-09-08 林汉丁 吊钩偏角监测装置、垂直吊装监控装置及移动式起重机

Also Published As

Publication number Publication date
EP3492421A2 (en) 2019-06-05
WO2016177352A3 (zh) 2017-06-22
JP6639731B2 (ja) 2020-02-05
US9856118B1 (en) 2018-01-02
CN106276587B (zh) 2018-10-23
JP2019521934A (ja) 2019-08-08
EP3492421A4 (en) 2020-04-08
CN106276587A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016177352A2 (zh) 设立吊钩姿态检测载体的吊钩总成及起重机
US20180009640A1 (en) Lifting hook bias angle monitoring apparatus, vertical hoisting monitoring apparatus and mobile crane
US9446934B2 (en) Detecting, monitoring device of the hook angle and its crane
US20120255188A1 (en) Hook pose detecting equipment and crane
CN102363508B (zh) 基于刚度的塔身钢结构完好状态监测方法及装置
RU2709322C2 (ru) Кран, а также способ контроля устройства предохранения от перегрузок указанного крана
CN102692206B (zh) 起重装置的吊钩悬垂偏角及方位的测量装置和方法
WO2021115496A2 (zh) 显示实时吊钩偏角防斜吊防摇监控装置及起重机
US11136225B1 (en) Monitoring and measuring apparatuses able to display actual deflection angle of lifting-hook , and crane
CN102259792A (zh) 一种改进型正交式水平自动调节吊具及其水平调节方法
CN103588095A (zh) 摆角测量装置及起重机械
CN105060122A (zh) 起重机安全控制系统和方法、力矩限制器以及起重机
JP4522917B2 (ja) 大型構造物の運搬制御システム
WO2016177351A2 (zh) 吊钩偏角监测装置、垂直吊装监控装置及移动式起重机
CN105197767A (zh) 一种三索智能吊装装置
CN107673189A (zh) 装船智能化钢卷夹具
AU2017375856B2 (en) Apparatus and method for measuring rotational angle of sinking platform
CN211569845U (zh) 一种机械臂用吊装件
CN102795562B (zh) 一种起重机俯仰位置的监控装置及起重机
CN114441096A (zh) 一种无人机重心测量装置及方法
CN111943014B (zh) 航空发动机起动机的吊挂装置及其装配方法
CN214570192U (zh) 一种钢结构吊装固定装置
CN117807727A (zh) 变幅回转机构的上车等效回转角度精确计算方法及系统
US20210063260A1 (en) Device and method for measuring a load applied by an elongate member
JPS60135735A (ja) クレ−ン等に於けるロ−プの張力測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15514824

Country of ref document: US

ENP Entry into the national phase in:

Ref document number: 2019504962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2016789346

Country of ref document: EP

Effective date: 20190302

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789346

Country of ref document: EP

Kind code of ref document: A2