WO2016175128A1 - アリル置換ビスフェノール化合物の製造方法 - Google Patents

アリル置換ビスフェノール化合物の製造方法 Download PDF

Info

Publication number
WO2016175128A1
WO2016175128A1 PCT/JP2016/062654 JP2016062654W WO2016175128A1 WO 2016175128 A1 WO2016175128 A1 WO 2016175128A1 JP 2016062654 W JP2016062654 W JP 2016062654W WO 2016175128 A1 WO2016175128 A1 WO 2016175128A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol compound
reaction
group
carbon atoms
allyl
Prior art date
Application number
PCT/JP2016/062654
Other languages
English (en)
French (fr)
Inventor
健太 市村
黒瀬 幹彦
Original Assignee
日華化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日華化学株式会社 filed Critical 日華化学株式会社
Priority to EP16786405.7A priority Critical patent/EP3290402B1/en
Priority to US15/569,298 priority patent/US9963426B1/en
Priority to CN201680011380.6A priority patent/CN107406377B/zh
Priority to JP2017515521A priority patent/JP6315871B2/ja
Publication of WO2016175128A1 publication Critical patent/WO2016175128A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing an allyl-substituted bisphenol compound.
  • allyl-substituted bisphenol compounds are useful substances as color developers and polymer additives for heat-sensitive recording materials, and various production methods have been attempted.
  • a production method for example, a method of producing an allyl-substituted bisphenol compound by subjecting a diallyl etherified bisphenol compound to a heat rearrangement reaction is known.
  • Patent Document 1 4,4′-dihydroxydiphenylsulfone or an alkali metal salt thereof is reacted with allyl halide to obtain 4,4′-diallyloxydiphenylsulfone, which is a diallyl etherified bisphenol compound, and then obtained.
  • a method for producing 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which is an allyl-substituted bisphenol compound, by subjecting the obtained 4,4′-diallyloxydiphenylsulfone to a rearrangement reaction by heating is described.
  • Patent Document 2 discloses a method of performing a Claisen rearrangement reaction in the presence of a base compound such as an aniline derivative.
  • Patent Document 3 discloses a method for performing a thermal rearrangement reaction in the presence of a chelating agent.
  • JP 60-169456 A Japanese Patent Laid-Open No. 5-65240 Japanese Patent Laying-Open No. 2005-075757
  • the reaction product obtained by the reaction has a strong tendency to be colored black or brown, and it is a by-product of coloring impurities. It was not satisfactory in terms of restraining. Therefore, when decolorizing or removing impurities from the reaction product, it is necessary to perform a decoloring process using an adsorbent or the like, a refining process using recrystallization using an organic solvent, etc. There was a problem of being disadvantaged.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of producing a high-quality allyl-substituted bisphenol compound with high yield and suppressed coloring and impurity by-products.
  • the inventors of the present invention have reduced the coloration and impurity by-product by causing the rearrangement reaction of the diallyl-etherified bisphenol compound in the presence of a specific phosphine compound. It has been found that an allyl-substituted bisphenol compound can be obtained in a yield, and the present invention has been completed.
  • the present invention comprises a step of subjecting a diallyl etherified bisphenol compound represented by the following general formula (I) to a thermal rearrangement reaction in the presence of a phosphine compound represented by the following general formula (II), A method for producing a bisphenol compound is provided.
  • A is a single bond, —SO 2 —, —S—, —O—, a divalent group represented by the following formula (i-1), or —CY 1 Y 2 —.
  • Y 1 and Y 2 are each independently hydrogen, a linear, branched or cyclic alkyl group having 6 or less carbon atoms, a phenyl group, or an aralkyl having 7 or 8 carbon atoms.
  • B 1 and B 2 are each independently a linear, branched or cyclic alkyl group having 6 or less carbon atoms, an allyl group, a phenyl group, or an aralkyl having 7 or 8 carbon atoms.
  • n 1 and n 2 each independently represents an integer of 0 to 2.
  • R 1 , R 2 and R 3 each independently represents a linear, branched or cyclic alkyl group having 6 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 7 carbon atoms. Or 8 aralkyl groups.
  • an antioxidant is further present.
  • a production method capable of suppressing coloring and impurities by-product during the thermal rearrangement reaction of a diallyl etherified bisphenol compound, and obtaining a high-quality allyl-substituted bisphenol compound in a high yield.
  • the allyl-substituted bisphenol compound obtained by the production method of the present invention is less colored and can reduce the amount of adsorbent used in the subsequent decolorization step or can omit the decolorization step itself.
  • the allyl-substituted bisphenol compound obtained by the production method of the present invention has a low impurity content, and can more easily carry out the purification step of the reaction product, reduce the production loss of the target product, Can be shortened.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment.
  • a diallyl etherified bisphenol compound represented by the following general formula (I) is subjected to a heat rearrangement reaction in the presence of a phosphine compound represented by the following general formula (II).
  • A is a single bond, —SO 2 —, —S—, —O—, a divalent group represented by the following formula (i-1), or —CY 1 Y 2 —.
  • a divalent group (Y 1 and Y 2 are each independently hydrogen, a linear, branched or cyclic alkyl group having 6 or less carbon atoms, a phenyl group, or an aralkyl group having 7 or 8 carbon atoms;
  • B 1 and B 2 are each independently a linear, branched, or cyclic alkyl group having 6 or less carbon atoms, an allyl group, a phenyl group, or an aralkyl group having 7 or 8 carbon atoms.
  • N 1 and n 2 each independently represents an integer of 0 to 2.
  • each of R 1 , R 2 and R 3 independently represents a linear, branched or cyclic alkyl group having 6 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 7 or 7 carbon atoms 8 represents an aralkyl group.
  • A is preferably —SO 2 — or —CY 1 Y 2 — from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product formation of impurities.
  • —SO 2 — is more preferable.
  • Y 1 and Y 2 are each independently hydrogen or hydrogen from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product formation of impurities.
  • It is preferably a linear, branched or cyclic alkyl group having 6 or less carbon atoms, more preferably a linear, branched or cyclic alkyl group having 6 or less carbon atoms, and a carbon number of 2 or less. More preferably, it is a linear alkyl group.
  • B 1 and B 2 are each independently an alkyl group or an allyl group having 6 or less carbon atoms from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and impurity by-product.
  • n 1 and n 2 are each independently preferably 0 to 1, more preferably 0, from the viewpoint of further improving the yield of the reaction product. From the viewpoint of further improving the yield of the reaction product, it is preferable that the bonding positions of B 1 and B 2 are not independently of the ortho position or the para position, and not the ortho position, with respect to the allyloxy group. Is more preferable.
  • the diallyl etherified bisphenol compound represented by the general formula (I) according to this embodiment can be selected in a timely manner according to the allyl-substituted bisphenol compound to be obtained.
  • 4,4'-diallyloxydiphenylsulfone can be selected as the diallyl etherified bisphenol compound.
  • diallyl etherified bisphenol compound represented by the general formula (I) include 4,4′-diallyloxydiphenylsulfone, 4,4′-diallyloxydiphenylmethane, 2,2 ′-(4,4′- Diallyloxydiphenyl) propane, 3,3 ′-(4,4′-diallyloxydiphenyl) pentane, 4,4′-diallyloxybiphenyl, 4,4′-diallyloxydiphenyl ether, 4,4′-diallyloxydiphenylthioether 1,1 ′-(4,4′-diallyloxydiphenyl) cyclohexane, 2,4′-diallyloxydiphenylsulfone, 2,4′-diallyloxydiphenylmethane, 2,2 ′-(2,4′-diallyloxy) Diphenyl) propane, 2,4'-diallyloxybiphenyl, 2,4'-di Riloxydiphenyl ether
  • diallyl etherified bisphenol compounds represented by the general formula (I) can be synthesized by those skilled in the art using available raw materials in combination with ordinary reactions.
  • the diallyl etherified bisphenol compound represented by the general formula (I) can be easily produced by a method of reacting the corresponding bisphenol compound and allyl halide under alkaline conditions.
  • the phosphine compound represented by the general formula (II) according to the present embodiment is present in the heat rearrangement reaction system of the diallyl etherified bisphenol compound represented by the general formula (I), thereby coloring the reaction product. And reaction can be advanced, suppressing the byproduct of an impurity.
  • R 1 , R 2 and R 3 each independently represent from 6 to 6 carbon atoms from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product formation of impurities. It is preferably a linear, branched or cyclic alkyl group having 8 or an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, and having 6 to 8 carbon atoms. More preferably, it is an aryl group.
  • phosphine compound represented by the general formula (II) include triphenylphosphine, tri-n-octylphosphine, tri-p-tolylphosphine, tri-3,5-xylylphosphine, diphenylcyclohexylphosphine, triphenylphosphine, Examples thereof include benzylphosphine.
  • These phosphine compounds represented by the general formula (II) can be used alone or in combination of two or more.
  • the amount of the phosphine compound represented by the general formula (II) is not particularly limited.
  • the compounding amount of the phosphine compound represented by the general formula (II) is based on 100 parts by mass of the diallyl etherified bisphenol compound from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product of impurities. On the other hand, it is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, and still more preferably 0.08 to 2 parts by mass.
  • an antioxidant is further present in the step of subjecting the diallyl etherified bisphenol compound represented by the general formula (I) to a thermal rearrangement reaction in the presence of the phosphine compound represented by the general formula (II). You may let them. When using antioxidant, there exists a tendency which can suppress the coloring accompanying progress of reaction more.
  • the antioxidant according to the present embodiment is not particularly limited, and generally used antioxidants can be used.
  • the antioxidant include hydroquinone monomethyl ether, hydroquinone monoethyl ether, 3,5-di-tert-butyl-4-hydroxytoluene, 2,2′-methylenebis (6-tert-butyl-3-methylphenol) Phenol antioxidants such as 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, didodecyl 3,3′-thiodipropionate, 3,3′-thio General formulas such as sulfur-based antioxidants such as ditetradecyl dipropionate and dioctadecyl 3,3′-thiodipropionate, triphenyl phosphite, diphenylisodecyl phosphite, tris (nonylphenyl) phosphite, etc.
  • antioxidants examples thereof include phosphorus-based antioxidants excluding the phosphine compound represented by (II).
  • a phenolic antioxidant is preferable from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product generation of impurities, and hydroquinone monomethyl ether, 3,5-di- -T-Butyl-4-hydroxytoluene is more preferred, and 3,5-di-t-butyl-4-hydroxytoluene is still more preferred.
  • These antioxidants can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the blending amount of the antioxidant is 0.01 to 10 with respect to 100 parts by mass of the diallyl etherified bisphenol compound from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and impurity by-products.
  • the amount is preferably part by mass, more preferably 0.05 to 5 parts by mass, and still more preferably 0.08 to 2 parts by mass.
  • an acid may be added to the reaction step to perform a thermal rearrangement reaction.
  • an acid By adding an acid to the reaction step, the alkaline substance in the system is neutralized, impurity by-products are further suppressed, and the allyl-substituted bisphenol compound tends to be obtained in a higher yield.
  • alkaline substance examples include, for example, alkali metal or alkaline earth metal hydroxide or carbonate, bisphenol compound as a raw material in the production of diallyl etherified bisphenol compound, or alkali metal of monoallyl etherified bisphenol compound as intermediate, or Examples include alkaline earth metal salts.
  • the acid according to the present embodiment is not particularly limited, and a commonly used acid can be used.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, phosphorous acid, and nitric acid, formic acid, acetic acid, butyric acid, oxalic acid, citric acid, malic acid, tartaric acid, benzoic acid, benzenesulfonic acid, and p-toluene.
  • organic acids such as sulfonic acid.
  • sulfuric acid or phosphoric acid is preferable from the viewpoint of further improving the yield of the reaction product and further suppressing by-product impurities. These acids can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the compounding amount of the acid is not particularly limited, and can be appropriately designed by those skilled in the art.
  • the blending amount is preferably 0.5 to 20 molar equivalents, more preferably 0.9 to 10 molar equivalents with respect to the alkaline substance contained in the diallyl etherified bisphenol compound. More preferably, it is equivalent.
  • the heat rearrangement reaction of the diallyl etherified bisphenol compound according to this embodiment may be performed under solvent-free conditions or in an organic solvent.
  • the heat rearrangement reaction is preferably performed under solvent-free conditions from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product formation of impurities.
  • the heat rearrangement reaction under solvent-free conditions means that in the reaction step, without adding an organic solvent or the like, the diallyl etherified bisphenol compound is melted by heating, and this is used as a solvent to dissolve the phosphine compound, etc. Is what you do.
  • the organic solvent used is not particularly limited as long as it is liquid at the reaction temperature, can dissolve the diallyl etherified bisphenol compound as a raw material, and does not inhibit the reaction.
  • the organic solvent preferably has a boiling point of 160 ° C. or higher, more preferably has a boiling point of 180 ° C. or higher, and further preferably has a boiling point of 200 ° C. or higher in relation to the reaction temperature.
  • inert water-insoluble organic solvents such as saturated aliphatic hydrocarbon solvents, unsaturated hydrocarbon solvents, and aromatic hydrocarbon solvents are preferable.
  • An organic solvent can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the saturated aliphatic hydrocarbon solvent may be any of linear, branched or cyclic saturated aliphatic hydrocarbons. Specific examples of the saturated aliphatic hydrocarbon solvent include tridecane, hexadecane, octadecane, eicosan, docosan, triacontane, squalane, isodecane, isododecane, isotridecane, isohexadecane, cyclopentane, cyclohexane and the like. As the saturated aliphatic hydrocarbon solvent, a mixture generally called paraffinic hydrocarbon, isoparaffinic hydrocarbon or naphthenic hydrocarbon can also be used.
  • Examples of commercially available saturated aliphatic hydrocarbons include IP solvent series (trade name, manufactured by Idemitsu Kosan Co., Ltd.), Diana Fresia series (trade name, manufactured by Idemitsu Kosan Co., Ltd.), and the like.
  • the unsaturated hydrocarbon solvent may be any of linear, branched or cyclic unsaturated hydrocarbons. Specific examples of the unsaturated aliphatic hydrocarbon solvent include eicosene, heicoscene, dococene, tricosene, squalene and the like.
  • aromatic hydrocarbon solvent examples include n-dodecylbenzene, n-tridecylbenzene, n-tetradecylbenzene, n-pentadecylbenzene, n-hexadecylbenzene, diisopropylnaphthalene and the like.
  • the organic solvent as described above may be a single component or a mixture of a plurality of components, using a mixture of commercially available mineral oil, lubricating oil, kerosene, light oil, etc. having a certain standard. Also good.
  • the organic solvent is preferably a paraffinic hydrocarbon or an isoparaffinic hydrocarbon from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product generation of impurities.
  • the allyl-substituted bisphenol compound according to this embodiment is obtained by mixing a diallyl etherified bisphenol compound represented by the formula (I) and a phosphine compound represented by the formula (II) and heating the mixture to a predetermined temperature. Can be manufactured.
  • a diallyl etherified bisphenol compound represented by the formula (I) and a phosphine compound represented by the formula (II) are used, these are diallyl etherified bisphenol compounds represented by the formula (I) and phosphine compounds represented by the formula (II). And then mixed and then heated.
  • the heating method is not particularly limited as long as the temperature can be controlled.
  • Examples of the heating method include a heating method using heat conduction using a heat medium, an electric heater, or the like, and a heating method using microwave irradiation using a microwave reactor or the like. These heating methods may be used in combination.
  • the reaction temperature of the heat rearrangement reaction may be at least the temperature at which the diallyl etherified bisphenol compound represented by formula (I) melts or dissolves.
  • the reaction temperature is preferably 160 to 220 ° C., more preferably 180 to 210 ° C., from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and impurity by-product. More preferably, the temperature is 200 to 210 ° C.
  • the reaction time varies depending on the reaction scale, the reaction temperature, the reactivity of the material used, etc., and can be appropriately set by those skilled in the art.
  • the reaction time is, for example, preferably 5 to 36 hours, more preferably 5.5 to 18 hours, more preferably 6 to 6 hours from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and by-product formation of impurities. 9 hours is more preferable.
  • the pressure condition during the reaction may be under normal pressure, under reduced pressure, or under pressure. Although it does not specifically limit as pressure conditions, From a viewpoint of improving the yield of a reaction product more and suppressing the coloring and the byproduct of an impurity more, it is preferable under a normal pressure or pressurization.
  • the atmosphere during the reaction may be in the air or may be replaced with an inert gas such as nitrogen or argon.
  • the atmosphere is preferably replaced with an inert gas from the viewpoint of further improving the yield of the reaction product and further suppressing coloring and impurity by-products.
  • the target allyl-substituted bisphenol compound is preferably 75% or more, more preferably 80% or more, and still more preferably 90% or more, while suppressing coloring associated with the progress of the reaction. In a high yield.
  • the reaction product after the thermal rearrangement reaction can be confirmed to be the target allyl-substituted bisphenol compound by a method such as nuclear magnetic resonance (NMR) or high performance liquid chromatography (HPLC).
  • NMR nuclear magnetic resonance
  • HPLC high performance liquid chromatography
  • the concentration (ppm, weight ratio) of the alkaline substance remaining in 4,4′-diallyloxydiphenylsulfone used as a raw material was obtained by dissolving 30 g of 4,4′-diallyloxydiphenylsulfone in 450 g of dimethyl sulfoxide, and adding 20 mmol / L hydrochloric acid. After adding 10 mL, neutralization titration was performed using a 20 mmol / L sodium hydroxide aqueous solution, and compared with a blank test, the concentration of the remaining alkaline substance was measured by converting it to the weight of sodium hydroxide. As a result of the measurement, the concentration of the alkaline substance remaining in 4,4′-diallyloxydiphenylsulfone was 50 ppm.
  • Example 1 A four-necked flask was charged with 250 g of 4,4′-diallyloxydiphenylsulfone and 0.5 g of triphenylphosphine, and subjected to a heat rearrangement reaction at 205 to 210 ° C. for 7 hours in a nitrogen stream. After completion of the reaction, the temperature was cooled to 185 ° C., and the reaction product was taken out into a metal container and allowed to cool to room temperature. When the obtained reaction product was diluted to a predetermined concentration and analyzed by HPLC, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 87.2%. It was. The color of the reaction product in the molten state was yellow.
  • Example 2 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 89.2%. The color of the reaction product in the molten state was white to yellowish white.
  • Example 3 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 90.9%. The color of the reaction product in the molten state was white to yellowish white.
  • Example 4 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 92.2%. The color of the reaction product in the molten state was white to yellowish white.
  • Example 5 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 82.3%. The color of the reaction product in the molten state was yellow.
  • Example 6 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 77.0%. The color of the reaction product in the molten state was white to yellowish white.
  • Example 1 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 0.2%. The color of the reaction product in the molten state was brown.
  • Example 2 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 92.2%. The color of the reaction product in the molten state was black.
  • Example 3 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 82.8%. The color of the reaction product in the molten state was brown.
  • Example 4 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 6.2%. The color of the reaction product in the molten state was brown.
  • Example 5 The reaction was performed under the same conditions as in Example 1 except that the raw materials were charged with the composition shown in Table 1, and the reaction product was analyzed by HPLC. As a result, the yield of 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone, which was the target product, was 3.9%. The color of the reaction product in the molten state was black.
  • the allyl-substituted bisphenol compound obtained in a high yield by the production method of the present invention is less colored and can reduce the amount of adsorbent used in the subsequent decolorization process or not perform the decolorization process itself.
  • the allyl-substituted bisphenol compound according to the present invention contains less impurities, can easily perform the purification process, and can reduce the production loss and production time of the target product. That is, the allyl-substituted bisphenol compound can be produced easily and easily as compared with the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、下記一般式(I)で表されるジアリルエーテル化ビスフェノール化合物を、下記一般式(II)で表されるホスフィン化合物の存在下で加熱転位反応させる工程、を備える、アリル置換ビスフェノール化合物の製造方法に関する。 [式(I)中、Aは、単結合、-SO-、-S-、-O-、下記式(i-1)で表される2価の基、又は、-CY-で表される2価の基を示し(Y及びYは、それぞれ独立に、水素、炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示す。)、B及びBは、それぞれ独立に、炭素数6以下の直鎖状、分岐状、若しくは環状のアルキル基、アリル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示し、n及びnは、それぞれ独立に、0~2の整数を示す。 [式(II)中、R、R及びRは、それぞれ独立に、炭素数6~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~14のアリール基、又は、炭素数7若しくは8のアラルキル基を示す。]

Description

アリル置換ビスフェノール化合物の製造方法
 本発明は、アリル置換ビスフェノール化合物の製造方法に関する。
 従来からアリル置換ビスフェノール化合物は、感熱記録材料の顕色剤、ポリマー添加剤等として有用な物質であり、さまざまな製造方法が試みられている。製造方法としては、例えば、ジアリルエーテル化ビスフェノール化合物を加熱転位反応させて、アリル置換ビスフェノール化合物を製造する方法が知られている。
 例えば、特許文献1には、4,4’-ジヒドロキシジフェニルスルホン又はそのアルカリ金属塩と、アリルハライドとを反応させ、ジアリルエーテル化ビスフェノール化合物である4,4’-ジアリルオキシジフェニルスルホンとし、次いで得られた4,4’-ジアリルオキシジフェニルスルホンを加熱転位反応させることにより、アリル置換ビスフェノール化合物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンを製造する方法が記載されている。
 また、不純物の副生を抑制し、高収率でアリル置換ビスフェノール化合物を得ることを目的とした方法も検討されている。例えば、特許文献2には、アニリン誘導体等の塩基化合物存在下でクライゼン転位反応を行う方法が開示されている。特許文献3には、キレート剤存在下で加熱転位反応を行う方法等が開示されている。
特開昭60-169456号公報 特開平5-65240号公報 特開2005-075757号公報
 しかしながら上記の製造方法では、一定の収率で目的物を得ることは可能であるが、反応で得られる反応生成物は黒色又は褐色に着色する傾向が強く見られ、着色性の不純物の副生を抑制するという点で満足できるものではなかった。そのため、反応生成物から脱色又は不純物の除去を行う場合、吸着剤等による脱色処理、有機溶剤を用いた再結晶による精製処理等を行う必要があり、工程の増加又は長期化等により経済的に不利になるといった課題があった。
 本発明は、上記事情を鑑みてなされたものであり、高収率で、着色及び不純物の副生が抑制された高品質のアリル置換ビスフェノール化合物を製造することができる方法を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、ジアリルエーテル化ビスフェノール化合物を、特定のホスフィン化合物存在下で加熱転位反応させることにより、着色及び不純物の副生が抑制され、高収率でアリル置換ビスフェノール化合物を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記一般式(I)で表されるジアリルエーテル化ビスフェノール化合物を、下記一般式(II)で表されるホスフィン化合物の存在下で加熱転位反応させる工程、を備える、アリル置換ビスフェノール化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000004
[式中、Aは、単結合、-SO-、-S-、-O-、下記式(i-1)で表される2価の基、又は、-CY-で表される2価の基を示し(Y及びYは、それぞれ独立に、水素、炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示す。)、B及びBは、それぞれ独立に、炭素数6以下の直鎖状、分岐状、若しくは環状のアルキル基、アリル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示し、n及びnは、それぞれ独立に、0~2の整数を示す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[式中、R、R及びRは、それぞれ独立に、炭素数6~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~14のアリール基、又は、炭素数7若しくは8のアラルキル基を示す。]
 上記工程において、酸化防止剤を更に存在させることが好ましい。ジアリルエーテル化ビスフェノール化合物を、上記特定のホスフィン化合物及び酸化防止剤の併存下で加熱転位反応させることにより、反応の進行に伴う反応生成物の着色を更に抑制することができる。
 本発明によれば、ジアリルエーテル化ビスフェノール化合物の加熱転位反応時の着色及び不純物の副生を抑制することができ、高収率で、高品質のアリル置換ビスフェノール化合物を得ることができる製造方法を提供することができる。すなわち、本発明の製造方法により得られるアリル置換ビスフェノール化合物は、着色が少なく、後に続く脱色工程に用いる吸着剤の使用量を低減できたり、脱色工程そのものを省略したりすることができる。また、本発明の製造方法により得られるアリル置換ビスフェノール化合物は、不純物の含有量も少なく、反応生成物の精製工程をより簡便に行うことができ、目的物の製造ロスを減少させたり、製造時間を短縮したりすることが可能である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
 本実施形態のアリル置換ビスフェノール化合物の製造方法は、下記一般式(I)で表されるジアリルエーテル化ビスフェノール化合物を、下記一般式(II)で表されるホスフィン化合物の存在下で加熱転位反応させる工程、を備える。
Figure JPOXMLDOC01-appb-C000007
 式中、Aは、単結合、-SO-、-S-、-O-、下記式(i-1)で表される2価の基、又は、-CY-で表される2価の基を示し(Y及びYは、それぞれ独立に、水素、炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示す。)、B及びBは、それぞれ独立に、炭素数6以下の直鎖状、分岐状、若しくは環状のアルキル基、アリル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示し、n及びnは、それぞれ独立に、0~2の整数を示す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式中、R、R及びRは、それぞれ独立に、炭素数6~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~14のアリール基、又は、炭素数7若しくは8のアラルキル基を示す。
 一般式(I)において、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制するという観点から、Aは-SO-又は-CY-であることが好ましく、-SO-であることがより好ましい。Aが-CY-である場合、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制するという観点から、Y及びYは、それぞれ独立に、水素又は炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基であることが好ましく、炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基であることがより好ましく、炭素数2以下の直鎖状のアルキル基であることが更に好ましい。
 B及びBは、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制するという観点から、それぞれ独立に、炭素数6以下のアルキル基若しくはアリル基であることが好ましい。n及びnは、反応生成物の収率をより向上させるという観点から、それぞれ独立に、0~1であることが好ましく、0であることがより好ましい。B及びBの結合位は、反応生成物の収率をより向上させるという観点から、それぞれ独立に、アリルオキシ基に対して、オルト位又はパラ位ではないことが好ましく、オルト位ではないことがより好ましい。
 本実施形態に係る一般式(I)で表されるジアリルエーテル化ビスフェノール化合物は、得ようとするアリル置換ビスフェノール化合物に合わせて適時選択することができる。例えば、3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンを製造する場合、ジアリルエーテル化ビスフェノール化合物としては4,4’-ジアリルオキシジフェニルスルホンを選択することができる。
 一般式(I)で表されるジアリルエーテル化ビスフェノール化合物の具体例としては、4,4’-ジアリルオキシジフェニルスルホン、4,4’-ジアリルオキシジフェニルメタン、2,2’-(4,4’-ジアリルオキシジフェニル)プロパン、3,3’-(4,4’-ジアリルオキシジフェニル)ペンタン、4,4’-ジアリルオキシビフェニル、4,4’-ジアリルオキシジフェニルエーテル、4,4’-ジアリルオキシジフェニルチオエーテル、1,1’-(4,4’-ジアリルオキシジフェニル)シクロヘキサン、2,4’-ジアリルオキシジフェニルスルホン、2,4’-ジアリルオキシジフェニルメタン、2,2’-(2,4’-ジアリルオキシジフェニル)プロパン、2,4’-ジアリルオキシビフェニル、2,4’-ジアリルオキシジフェニルエーテル、2,4’-ジアリルオキシジフェニルチオエーテル、1,1’-(2,4’-ジアリルオキシジフェニル)シクロヘキサン、3,3’-ジアリル-4,4’-ジアリルオキシジフェニルスルホン、2,2’-(3,3’-ジアリル-4,4’-ジアリルオキシジフェニル)プロパン、3,3’-メチル-4,4’-ジアリルオキシジフェニルスルホン等が挙げられる。一般式(I)で表されるジアリルエーテル化ビスフェノール化合物としては、中でも、加熱転位反応を無溶剤条件で行う場合、ジアリルエーテル化ビスフェノール化合物自体が熱による分解を起こしにくいという観点から、例えば、4,4’-ジアリルオキシジフェニルスルホン、4,4’-ジアリルオキシジフェニルメタン、2,2’-(4,4’-ジアリルオキシジフェニル)プロパン、1,1’-(4,4’-ジアリルオキシジフェニル)シクロヘキサン、2,4’-ジアリルオキシジフェニルスルホンが好ましく、4,4’-ジアリルオキシジフェニルスルホン、2,2’-(4,4’-ジアリルオキシジフェニル)プロパンがより好ましい。
 これらの一般式(I)で表されるジアリルエーテル化ビスフェノール化合物は、当業者であれば、入手可能な原料を用い、通常の反応を組み合わせて合成することができる。例えば、一般式(I)で表されるジアリルエーテル化ビスフェノール化合物は、対応するビスフェノール化合物とアリルハライドとを、アルカリ条件下で反応させる方法により容易に製造することができる。
 本実施形態に係る一般式(II)で表されるホスフィン化合物は、一般式(I)で表されるジアリルエーテル化ビスフェノール化合物の加熱転位反応の系内に存在することにより、反応生成物の着色及び不純物の副生を抑制しながら、反応を進行させることができる。
 一般式(II)において、R、R及びRは、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制するという観点から、それぞれ独立に、炭素数6~8の直鎖状、分岐状若しくは環状のアルキル基、又は炭素数6~14のアリール基であることが好ましく、炭素数6~14のアリール基であることがより好ましく、炭素数6~8のアリール基であることが更に好ましい。
 一般式(II)で表されるホスフィン化合物の具体例としては、トリフェニルホスフィン、トリ-n-オクチルホスフィン、トリ-p-トリルホスフィン、トリ-3,5-キシリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリベンジルホスフィン等が挙げられる。これら上記一般式(II)で表されるホスフィン化合物は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 一般式(II)で表されるホスフィン化合物の配合量は、特に限定されることは無い。一般式(II)で表されるホスフィン化合物の配合量は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、ジアリルエーテル化ビスフェノール化合物100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.08~2質量部であることが更に好ましい。
 本実施形態としては、一般式(I)で表されるジアリルエーテル化ビスフェノール化合物を、一般式(II)で表されるホスフィン化合物の存在下で加熱転位反応させる工程において、酸化防止剤を更に存在させてもよい。酸化防止剤を用いる場合、反応の進行に伴う着色をより抑制できる傾向がある。
 本実施形態に係る酸化防止剤は特に制限されるものではなく、一般的に使用されるものを用いることができる。酸化防止剤としては、例えば、ヒドロキノンモノメチルエーテル、ヒドロキノンモノエチルエーテル、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、2,2’-メチレンビス(6-t-ブチル-3-メチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン等のフェノール系酸化防止剤、3,3’-チオジプロピオン酸ジドデシル、3,3’-チオジプロピオン酸ジテトラデシル、3,3’-チオジプロピオン酸ジオクタデシル等の硫黄系酸化防止剤、亜リン酸トリフェニル、亜リン酸ジフェニルイソデシル、亜リン酸トリス(ノニルフェニル)等の上記一般式(II)で表されるホスフィン化合物を除くリン系酸化防止剤等が挙げられる。酸化防止剤としては、中でも、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、フェノール系酸化防止剤が好ましく、ヒドロキノンモノメチルエーテル、3,5-ジ-t-ブチル-4-ヒドロキシトルエンがより好ましく、3,5-ジ-t-ブチル-4-ヒドロキシトルエンが更に好ましい。これらの酸化防止剤は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 酸化防止剤の配合量は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、ジアリルエーテル化ビスフェノール化合物100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.08~2質量部であることが更に好ましい。
 本実施形態の製造方法において、反応工程にアルカリ性物質が存在すると、加熱転位反応により、不純物の副生が促進されてしまう傾向にある。アルカリ性物質が存在する要因としては、製造過程でのアルカリ性物質の残留、混入等が挙げられる。例えば、本実施形態に係る一般式(I)で表されるジアリルエーテル化ビスフェノール化合物は、アルカリ条件下で製造されることがあるため、精製及び洗浄を行ったとしても、原料中にアルカリ性物質が少なからず残留してしまう場合が考えられる。本発明の一実施形態では、反応工程におけるアルカリ性物質の存在による上記影響を避けることを目的として、反応工程に酸を添加して加熱転位反応を行ってもよい。反応工程に酸を添加することで、系内のアルカリ性物質が中和され、不純物副生がより抑制され、更に高収率でアリル置換ビスフェノール化合物を得られる傾向にある。アルカリ性物質としては、例えば、アルカリ金属若しくはアルカリ土類金属の水酸化物又は炭酸塩、ジアリルエーテル化ビスフェノール化合物の製造における原料であるビスフェノール化合物若しくは中間物であるモノアリルエーテル化ビスフェノール化合物のアルカリ金属又はアルカリ土類金属の塩等が挙げられる。
 本実施形態に係る酸は特に制限されるものではなく、一般的に使用されるものを用いることができる。酸としては、例えば、塩酸、硫酸、リン酸、亜リン酸、硝酸等の無機酸、蟻酸、酢酸、酪酸、シュウ酸、クエン酸、リンゴ酸、酒石酸、安息香酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられる。酸としては、反応生成物の収率をより向上させ、不純物の副生をより抑制するという観点から、硫酸又はリン酸が好ましい。これらの酸は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 酸の配合量は、特に制限されるものではなく、当業者であれば適宜設計することができる。例えば、原料となるジアリルエーテル化ビスフェノール化合物にアルカリ性物質が存在することが予め分かっている場合には、反応生成物の収率をより向上させ、不純物副生をより抑制させるという観点から、酸の配合量は、ジアリルエーテル化ビスフェノール化合物に含有されるアルカリ性物質に対して、0.5~20モル当量であることが好ましく、0.9~10モル当量であることがより好ましく、1~3モル当量であることが更に好ましい。
 本実施形態に係るジアリルエーテル化ビスフェノール化合物の加熱転位反応は、無溶媒条件で行ってもよく、有機溶媒中で行ってもよい。加熱転位反応は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、無溶媒条件で行うことが好ましい。無溶媒条件での加熱転位反応とは、反応工程において、有機溶媒等を添加せずに、ジアリルエーテル化ビスフェノール化合物を加熱により溶融させ、これを溶媒としてホスフィン化合物等を溶解し、加熱転位反応を行うものである。
 有機溶媒を用いる場合、用いる有機溶剤としては、反応温度において液状であり、原料であるジアリルエーテル化ビスフェノール化合物を溶解させることができ、且つ反応を阻害しないものであれば特に限定されない。有機溶媒は、反応温度との関係から160℃以上の沸点を有することが好ましく、180℃以上の沸点を有することがより好ましく、200℃以上の沸点を有することが更に好ましい。有機溶媒としては、飽和脂肪族炭化水素溶剤、不飽和炭化水素溶剤、芳香族炭化水素溶剤等の不活性非水溶性有機溶媒が好ましい。有機溶媒は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
 飽和脂肪族炭化水素溶剤としては、直鎖状、分岐状又は環状の飽和脂肪族炭化水素のいずれでもよい。飽和脂肪族炭化水素溶剤の具体例としては、トリデカン、ヘキサデカン、オクタデカン、エイコサン、ドコサン、トリアコンタン、スクアラン、イソデカン、イソドデカン、イソトリデカン、イソヘキサデカン、シクロペンタン、シクロヘキサン等が挙げられる。飽和脂肪族炭化水素溶剤としては、一般的にパラフィン系炭化水素、イソパラフィン系炭化水素又はナフテン系炭化水素と呼ばれる混合物を用いることもできる。飽和脂肪族炭化水素の市販品としては、IPソルベントシリーズ(商品名、出光興産株式会社製)、ダイアナフレシアシリーズ(商品名、出光興産株式会社製)等が挙げられる。
 不飽和炭化水素溶剤としては、直鎖状、分岐状又は環状の不飽和炭化水素のいずれでもよい。不飽和脂肪族炭化水素溶剤の具体例としては、エイコセン、ヘンイコセン、ドコセン、トリコセン、スクアレン等が挙げられる。
 芳香族炭化水素溶剤の具体例としては、n-ドデシルベンゼン、n-トリデシルベンゼン、n-テトラデシルベンゼン、n-ペンタデシルベンゼン、n-ヘキサデシルベンゼン、ジイソプロピルナフタレン等が挙げられる。
 上記のような有機溶媒は、単一成分を用いてもよく、複数の成分の混合物でもよく、市販されている鉱油、潤滑油、灯油、軽油といった一定の規格を持ったものの混合物を使用してもよい。有機溶媒としては、中でも、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、パラフィン系炭化水素又はイソパラフィン系炭化水素であることが好ましい。
 本実施形態に係るアリル置換ビスフェノール化合物は、式(I)で表されるジアリルエーテル化ビスフェノール化合物と、式(II)で表されるホスフィン化合物と、を混合し、所定の温度に加熱することで製造することができる。本実施形態に係る製造方法において、酸化防止剤、酸、有機溶剤等を用いる場合は、これらを予め式(I)で表されるジアリルエーテル化ビスフェノール化合物及び式(II)で表されるホスフィン化合物とともに混合し、その後加熱すればよい。
 加熱方法は、温度を制御できるものであれば特に限定されない。加熱方法としては、例えば、熱媒体、電熱ヒータ等を用いた熱伝導による加熱方法、マイクロ波反応装置等を用いたマイクロ波照射による加熱方法が挙げられる。これらの加熱方法は併用してもよい。
 加熱転位反応の反応温度は、式(I)で表されるジアリルエーテル化ビスフェノール化合物が溶融又は溶解する温度以上であればよい。反応温度は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、160~220℃であることが好ましく、180~210℃であることがより好ましく、200~210℃であることが更に好ましい。
 反応時間は、反応規模、反応温度、用いる材料の反応性等によって異なるため、当業者が適宜設定することができる。反応時間は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、例えば、5~36時間が好ましく、5.5~18時間がより好ましく、6~9時間が更に好ましい。
 反応時の圧力条件は、常圧下であってもよく、減圧下であってもよく、加圧下であってもよい。圧力条件としては、特に限定されないが、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、常圧下又は加圧下であることが好ましい。
 反応時の雰囲気は、空気中であってもよく、窒素、アルゴン等の不活性ガスで置換してもよい。雰囲気は、反応生成物の収率をより向上させ、着色及び不純物の副生をより抑制させるという観点から、不活性ガスで置換されていることが好ましい。
 本実施形態の製造方法によれば、反応の進行に伴う着色を抑制しながら、目的物であるアリル置換ビスフェノール化合物を、好ましくは75%以上、より好ましくは80%以上、更に好ましくは90%以上の高収率で製造することができる。
 加熱転位反応後の反応生成物は、核磁気共鳴(NMR)、高速液体クロマトグラフィ法(HPLC)等の方法により、目的とするアリル置換ビスフェノール化合物であるかを確認することができる。
 上記のようにして得られた反応生成物から、アルカリ抽出、溶剤抽出、洗浄、酸析、再結晶等の操作を行い、精製することにより、更に高純度のアリル置換ビスフェノール化合物を得ることができる。
 以下、実施例を挙げて本発明について更に具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
<反応生成物の収率の算出>
 実施例及び比較例において、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンをHPLCに供し、これが検出されるピークのリテンションタイムを予め測定しておき、反応生成物をHPLCに供したときに、同じ時間で検出されるピークにより、目的物の有無を確認した。反応生成物の収率は、HPLCのチャートにおける全ピーク面積に対する目的物のピーク面積の百分率として示した。HPLCの測定は、以下の条件で行った。
(HPLCの測定条件)
カラム:Shim-pack HRC-ODS(内径4.6mm×長さ250mm、株式会社島津ジーエルシー製)
移動相:50%アセトニトリル水
カラム温度:40℃
流量:1.0mL/min
検出器:SPD-10Avp(株式会社島津製作所製)
検出波長:UV(254nm)
試料濃度:反応生成物/移動相=25mg/25mL
<反応生成物の着色の確認>
 実施例及び比較例において、加熱転位反応時の着色については、反応直後の溶融又は溶解状態の反応生成物の色を室内の3波長形昼白色蛍光灯の直下で目視により判定した。以下に着色の判定基準を示す。
(判定基準)
良 A:白色~黄白色
  B:黄色
  C:褐色
劣 D:黒色
<原料中に含まれるアルカリ性物質濃度の測定>
 原料に用いた4,4’-ジアリルオキシジフェニルスルホンに残存するアルカリ性物質の濃度(ppm、重量比)は、4,4’-ジアリルオキシジフェニルスルホン30gをジメチルスルホキシド450gに溶解し、20mmol/L塩酸10mLを添加した後、20mmol/L水酸化ナトリウム水溶液を用いて中和滴定し、ブランクテストと比較し、残存するアルカリ性物質の濃度を水酸化ナトリウムの重量に換算することで測定した。測定の結果、4,4’-ジアリルオキシジフェニルスルホンに残存するアルカリ性物質の濃度は50ppmだった。
(実施例1)
 四ツ口フラスコに、4,4’-ジアリルオキシジフェニルスルホン250g、トリフェニルホスフィン0.5gを仕込み、窒素気流下、205~210℃で7時間加熱転位反応した。反応終了後、温度を185℃まで冷却し、反応生成物を金属製の容器に取り出し、そのまま室温まで冷却した。得られた反応生成物を所定の濃度に希釈し、HPLCにて分析したところ、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が87.2%であった。溶融状態の反応生成物の色は黄色であった。
(実施例2)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が89.2%であった。溶融状態の反応生成物の色は白色~黄白色であった。
(実施例3)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が90.9%であった。溶融状態の反応生成物の色は白色~黄白色であった。
(実施例4)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が92.2%であった。溶融状態の反応生成物の色は白色~黄白色であった。
(実施例5)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が82.3%であった。溶融状態の反応生成物の色は黄色であった。
(実施例6)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が77.0%であった。溶融状態の反応生成物の色は白色~黄白色であった。
(比較例1)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が0.2%であった。溶融状態の反応生成物の色は褐色であった。
(比較例2)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が92.2%であった。溶融状態の反応生成物の色は黒色であった。
(比較例3)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が82.8%であった。溶融状態の反応生成物の色は褐色であった。
(比較例4)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が6.2%であった。溶融状態の反応生成物の色は褐色であった。
(比較例5)
 表1記載の組成で原料を仕込んだこと以外は、実施例1と同様の条件で反応し、反応生成物をHPLCで分析した。その結果、目的物である3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの収率が3.9%であった。溶融状態の反応生成物の色は黒色であった。
Figure JPOXMLDOC01-appb-T000010
 表1の結果から、本発明の製造方法によれば、ジアリルエーテル化ビスフェノール化合物の加熱転位反応時の着色及び不純物の副生を抑制することができるため、高品質のアリル置換ビスフェノール化合物を高収率で得ることができることが明らかである。
 本発明の製造方法により高収率で得られるアリル置換ビスフェノール化合物は着色が少なく、後に続く脱色工程に用いる吸着剤の使用量を低減できたり、脱色工程そのものを行わなかったりすることができる。また、本発明に係るアリル置換ビスフェノール化合物は、不純物の含有も少なく、精製工程を簡便に行うことができ、目的物の製造ロス及び製造時間を減少させることができる。つまり従来方法と比較して、簡単でかつ容易にアリル置換ビスフェノール化合物を製造することができる。

Claims (2)

  1.  下記一般式(I)で表されるジアリルエーテル化ビスフェノール化合物を、下記一般式(II)で表されるホスフィン化合物の存在下で加熱転位反応させる工程、を備える、アリル置換ビスフェノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは、単結合、-SO-、-S-、-O-、下記式(i-1)で表される2価の基、又は、-CY-で表される2価の基を示し(Y及びYは、それぞれ独立に、水素、炭素数6以下の直鎖状、分岐状若しくは環状のアルキル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示す。)、B及びBは、それぞれ独立に、炭素数6以下の直鎖状、分岐状、若しくは環状のアルキル基、アリル基、フェニル基、又は、炭素数7若しくは8のアラルキル基を示し、n及びnは、それぞれ独立に、0~2の整数を示す。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R及びRは、それぞれ独立に、炭素数6~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~14のアリール基、又は、炭素数7若しくは8のアラルキル基を示す。]
  2.  前記工程において、酸化防止剤を更に存在させる、請求項1記載の製造方法。
PCT/JP2016/062654 2015-04-27 2016-04-21 アリル置換ビスフェノール化合物の製造方法 WO2016175128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16786405.7A EP3290402B1 (en) 2015-04-27 2016-04-21 Process for producing allyl-substituted bisphenol compound
US15/569,298 US9963426B1 (en) 2015-04-27 2016-04-21 Process for producing allyl-substituted bisphenol compound
CN201680011380.6A CN107406377B (zh) 2015-04-27 2016-04-21 烯丙基取代双酚化合物的制造方法
JP2017515521A JP6315871B2 (ja) 2015-04-27 2016-04-21 アリル置換ビスフェノール化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015090605 2015-04-27
JP2015-090605 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016175128A1 true WO2016175128A1 (ja) 2016-11-03

Family

ID=57198590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062654 WO2016175128A1 (ja) 2015-04-27 2016-04-21 アリル置換ビスフェノール化合物の製造方法

Country Status (5)

Country Link
US (1) US9963426B1 (ja)
EP (1) EP3290402B1 (ja)
JP (1) JP6315871B2 (ja)
CN (1) CN107406377B (ja)
WO (1) WO2016175128A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253290B (zh) * 2020-02-27 2022-02-22 潍坊大有生物化工有限公司 一种热敏显色剂4,4'-磺酰基双[2-(2-丙烯基)]苯酚的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014968A (en) * 1959-06-16 1961-12-26 Armour & Co Allyl derivatives of pinacolone-type compounds
JPH0565240A (ja) * 1991-01-08 1993-03-19 Toagosei Chem Ind Co Ltd メタリルフエノール類の製造方法
JPH0565239A (ja) * 1991-01-08 1993-03-19 Toagosei Chem Ind Co Ltd メタリルフエノール類の製造方法
JP2008110945A (ja) * 2006-10-31 2008-05-15 Api Corporation ジアリルビスフェノール化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154236B (en) * 1984-02-14 1987-05-20 Nippon Kayaku Kk Bis (3-allyl 4-hydroxyphenyl) sulfone
JPS60169456A (ja) 1984-02-14 1985-09-02 Nippon Kayaku Co Ltd フエノ−ル性化合物及びその製法
JP4248915B2 (ja) * 2003-04-03 2009-04-02 三光化学工業株式会社 3,3’−ジアリル−4,4’−ジヒドロキシジフェニルスルホンの製造法
JP2005075757A (ja) 2003-08-29 2005-03-24 Sanko Kagaku Kogyo Kk 3,3’−ジアリル−4,4’−ジヒドロキシジフェニルスルホンの製造法
WO2004089883A1 (ja) 2003-04-03 2004-10-21 Sanko Chemical Industry Co., Ltd. 3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホンの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014968A (en) * 1959-06-16 1961-12-26 Armour & Co Allyl derivatives of pinacolone-type compounds
JPH0565240A (ja) * 1991-01-08 1993-03-19 Toagosei Chem Ind Co Ltd メタリルフエノール類の製造方法
JPH0565239A (ja) * 1991-01-08 1993-03-19 Toagosei Chem Ind Co Ltd メタリルフエノール類の製造方法
JP2008110945A (ja) * 2006-10-31 2008-05-15 Api Corporation ジアリルビスフェノール化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NELSON, SCOTT G. ET AL.: "Catalyzed Olefin Isomerization Leading to Highly Stereoselective Claisen Rearrangements of Aliphatic Allyl Vinyl Ethers", J. AM. CHEM. SOC., vol. 125, no. 43, 2003, pages 13000 - 13001, XP001175511 *
TAKAI, KAZUHIKO ET AL.: "Aliphatic claisen rearrangement promoted by organoaluminium compounds", TETRAHEDRON LETTERS, vol. 22, no. 40, 1981, pages 3985 - 3988, XP055327087 *

Also Published As

Publication number Publication date
EP3290402A1 (en) 2018-03-07
EP3290402A4 (en) 2018-12-19
EP3290402B1 (en) 2019-11-20
US9963426B1 (en) 2018-05-08
JPWO2016175128A1 (ja) 2017-10-19
CN107406377A (zh) 2017-11-28
CN107406377B (zh) 2019-07-09
JP6315871B2 (ja) 2018-04-25
US20180118672A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP2014227388A (ja) ビナフタレン化合物の製造方法
CN111032606B (zh) 双酚组合物及其制造方法、以及聚碳酸酯树脂及其制造方法
DK2543662T3 (en) PROCEDURE FOR PREPARING ALKYL-METHANSULPHONATE SOLUTION
JP6315871B2 (ja) アリル置換ビスフェノール化合物の製造方法
AU2011263733B2 (en) Process for the iodination of phenolic derivatives
CN104254536B (zh) 用二取代碳二亚胺和二亚丙基三胺生产1,5,7‑三氮杂双环[4.4.0]癸‑5‑烯
TW201010987A (en) Method for producing 2,4,6-tris(hydroxyphenyl)-1,3,5-triazine compound
KR20220065770A (ko) 방향족 비스에테르 화합물의 제조방법
WO2010128649A1 (ja) ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法
ES2204819T3 (es) Procedimiento mejorado para la preparacion de mercaptometilfenoles.
US3642866A (en) Process for the preparation of substituted diaryl ethers
JP6190256B2 (ja) 新規なビス(ヒドロキシフェニル)ベンゾオキサゾール化合物
JP2013525328A (ja) 4,4’−ジクロロジフェニルスルホンの製造方法
EP1116714B1 (en) Improved process for the preparation of mercaptomethylphenols
JP4258695B2 (ja) O−(ペルフルオロアルキル)ジベンゾフラニウム塩誘導体、その製造中間体、その製造中間体の製造方法、ペルフルオロアルキル化剤、並びにペルフルオロアルキル化方法
ES2767675T3 (es) Procedimiento de producción de ciclodeshidrolinalool (II)
US11111358B2 (en) Stabilizer compounds
JP4757057B2 (ja) 10−ハロゲノ−10h−9−オキサ−10−ホスファフェナントレン化合物の製造方法
EP2877477B1 (en) Process for the preparation of phosphonium sulfonates
EP2383265A1 (en) Method for manufacturing trimellitic anhydride aryl ester
JP2003306461A (ja) 1,3,5−トリス(4−ヒドロキシフェニル)アダマンタン類及びその製造方法
KR101821796B1 (ko) 알킬화된 페놀의 제조방법
JP4010804B2 (ja) 縮合リン酸エステル化合物の製造方法
JP2023005689A (ja) ビスフェノール組成物及びポリカーボネート樹脂の製造方法
JP2014208635A (ja) トリスフェノール化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515521

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE