WO2016174782A1 - 電解装置 - Google Patents

電解装置 Download PDF

Info

Publication number
WO2016174782A1
WO2016174782A1 PCT/JP2015/073563 JP2015073563W WO2016174782A1 WO 2016174782 A1 WO2016174782 A1 WO 2016174782A1 JP 2015073563 W JP2015073563 W JP 2015073563W WO 2016174782 A1 WO2016174782 A1 WO 2016174782A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
electrode
unit
detection
electrolytic
Prior art date
Application number
PCT/JP2015/073563
Other languages
English (en)
French (fr)
Inventor
洗 暢俊
信広 林
渡邊 圭一郎
博之 阿久澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580079281.7A priority Critical patent/CN107849712A/zh
Priority to US15/570,293 priority patent/US20180135192A1/en
Publication of WO2016174782A1 publication Critical patent/WO2016174782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof

Definitions

  • the present invention relates to an electrolysis apparatus.
  • Electrolyzers can produce different substances by converting various electrolytes using electrochemical reactions. For example, by electrolytic decomposition of an aqueous solution containing chloride ions, an aqueous solution containing hypochlorous acid, so-called electrolyzed water, can be generated. Since electrolyzed water has a sterilizing effect, it is used for the purpose of preventing infectious diseases, maintaining the freshness of fresh food, and deodorizing laundry. In addition, electrolyzers that generate electrolyzed water are known (see, for example, Patent Documents 1 to 6).
  • Electrolyzers can generate functional substances easily and safely compared to ordinary chemical reactions such as chemical plants. However, if an unspecified electrolyte is supplied by mistake or the electrolyte is not supplied for some reason, an unexpected substance may be generated. For this reason, there is an electrolysis apparatus that monitors the voltage and current applied to the electrolysis electrode and has a mechanism for stopping electrolysis when it deviates from a predetermined value. For example, if a constant voltage is supplied and other conditions are the same, the current value is uniquely determined. Therefore, if the current value exceeds or falls below a certain current value, it can be determined that there is an abnormality.
  • the allowable fluctuation range of the current value needs to be relatively large.
  • the allowable current range is large in this way, when the supply of the stock solution is interrupted for some reason, the liquid temperature rises until the current value exceeds the allowable range and the electrolysis is stopped, and the heat resistance temperature of the electrolytic cell is increased.
  • the electrolytic cell holding the liquid or the electrode may be damaged to leak high-temperature electrolytic water, or the gas generated in the electrolytic cell may leak.
  • the heat-resistant temperature is relatively low, and the risk of deformation and breakage increases.
  • the present invention has been made in view of such circumstances, and includes a detection unit that detects an abnormality in the electrolytic cell so that the occurrence of the abnormality can be quickly detected and is in a normal state due to environmental changes.
  • a detection unit that detects an abnormality in the electrolytic cell so that the occurrence of the abnormality can be quickly detected and is in a normal state due to environmental changes.
  • the present invention includes an electrolysis unit provided to electrolyze a supplied electrolytic substance and discharge an electrolysis product, and a detection unit, the electrolysis unit includes an electrode for electrolysis, and the detection unit includes A detection electrode for measuring electrical characteristics of the electrolytic substance or the electrolysis product or a mixture of both, and a reduction in the supply amount of the electrolytic substance supplied to the electrolysis unit or discharge from the electrolysis unit An electrolysis apparatus is provided that detects a decrease in the amount of electrolysis product discharged. Further, the present invention provides an electrolysis apparatus, wherein the detection electrode is provided above the electrolysis electrode. Further, the present invention provides the electrolysis apparatus, wherein the detection electrode is provided upstream of the electrolysis electrode.
  • the detection electrode is provided on the downstream side of the electrolysis electrode and is provided in the electrolysis unit or in a pipe connected to the electrolysis unit. Furthermore, the detection electrode includes at least one set of electrode pairs, and one electrode of the detection electrode pair is electrically connected to the electrolysis electrode. The detection electrode further includes at least one electrode pair, and one electrode of the detection electrode pair is formed integrally with the electrolysis electrode. Further, the electrolysis apparatus is characterized in that the electrolysis electrode and the detection electrode are provided so as to be inclined. Furthermore, the electrolytic substance is an electrolytic solution, and the electrolytic unit electrolyzes the electrolytic solution to generate electrolytic water containing hypochlorous acid.
  • the detection electrode provides an electrolysis apparatus characterized in that it measures the electrical characteristics of a gas-liquid mixed fluid of gas and electrolyzed water generated by electrolysis of the electrolyte. Further, the detection unit detects a decrease in the supply amount of the electrolytic substance supplied to the electrolysis unit based on a change amount with time of a current-voltage characteristic applied to the detection electrode. An apparatus is also provided. Furthermore, the detection unit supplies the electrolytic substance supplied to the electrolysis unit based on the differential value of the change amount of the voltage applied to the detection electrode or the differential value of the change amount of the current flowing through the detection electrode. There is also provided an electrolyzer characterized by detecting a decrease in.
  • the present invention also includes an electrolysis unit that electrolyzes an electrolytic substance, and a detection unit, the electrolysis unit includes an electrolysis electrode, and the detection unit is a time-dependent current-voltage characteristic applied to the electrolysis electrode.
  • an electrolyzer characterized by detecting a decrease in the amount of electrolyte supplied to the electrolysis unit based on the amount of change.
  • the detection unit is configured to supply an electrolytic substance supplied to the electrolysis unit based on a differential value of a change amount of a voltage applied to the electrolysis electrode or a differential value of a change amount of a current flowing through the electrolysis electrode.
  • an electrolyzer characterized by detecting a decrease in.
  • the detection unit can detect a decrease in the amount of electrolytic substance supplied to the electrolysis unit, and can stop application of voltage to the electrode for electrolysis early. it can. For this reason, it is possible to prevent a voltage from being applied to the electrode for electrolysis in a state where the electrode for electrolysis is not in contact with the electrolytic substance. As a result, the electrode for electrolysis can be prevented from abnormally overheating, and the safety of the electrolyzer can be improved. Moreover, it can suppress that the electrode for electrolysis is damaged, and can improve the lifetime characteristic of an electrolyzer. Since the detector included in the electrolysis apparatus of the present invention can detect an abnormality more quickly than in the past, a safe and highly reliable electrolysis apparatus can be provided.
  • FIG. 1 It is explanatory drawing of the electrolysis apparatus of one Embodiment of this invention.
  • (A)-(e) is a schematic sectional drawing of a part of electrolyzer of one embodiment of the present invention. It is explanatory drawing of the detection system A.
  • (Second Embodiment) It is explanatory drawing of the detection system B.
  • FIG. (Third embodiment) It is explanatory drawing of the detection system B.
  • FIG. (Third embodiment) It is explanatory drawing of the detection system B.
  • FIG. (Third embodiment) It is explanatory drawing of the detection system.
  • (Fourth embodiment) It is explanatory drawing of the detection system.
  • (Fourth embodiment) It is explanatory drawing of the detection system D.
  • FIG. (Fifth embodiment) It is explanatory drawing of the detection system D.
  • FIG. (Fifth embodiment) It is explanatory drawing of the inclination angle of an electrolysis part, and a detection system. It is a schematic sectional drawing of a part of electrolyzer of one embodiment of the present invention.
  • (Sixth embodiment) It is a graph which shows the experimental result of an electrolyzed water detection experiment. It is a graph which shows the experimental result of an electrolyzed water detection experiment. It is a graph which shows the measurement result of effective chlorine concentration measurement.
  • the electrolysis apparatus of the present invention includes an electrolysis unit provided to electrolyze a supplied electrolytic substance and discharge an electrolysis product, and a detection unit, and the electrolysis unit includes an electrode for electrolysis,
  • the detection unit includes a detection electrode for measuring an electrical characteristic of the electrolytic substance or the electrolysis product, and detects a decrease in the supply amount of the electrolytic substance supplied to the electrolysis unit.
  • the electrolysis apparatus of the present invention includes an electrolysis unit for electrolyzing an electrolytic substance and a detection unit, the electrolysis unit includes an electrode for electrolysis, and the detection unit applies a current-voltage applied to the electrolysis electrode. A decrease in the supply amount of the electrolytic substance supplied to the electrolysis unit is detected based on a change amount of the change with time of the characteristic.
  • the electrolytic substance is an electrolytic solution
  • the electrolytic unit electrolyzes the electrolytic solution to generate electrolytic water containing hypochlorous acid.
  • the electrolytic solution that undergoes electrolysis in the electrolysis section is preferably an aqueous solution containing an acidic substance and an alkali metal chloride.
  • electrolyzed water containing hypochlorous acid can be generated.
  • the generated electrolyzed water can be made slightly acidic to neutral, and the sterilizing property of the electrolyzed water can be increased.
  • the acidic substance contained in the electrolytic solution electrolyzed in the electrolysis section is preferably hydrochloric acid, and the alkali metal chloride is preferably at least one of sodium chloride and potassium chloride.
  • electrolyzed water containing hypochlorous acid can be generated.
  • the generated electrolyzed water can be made slightly acidic to neutral, and the sterilizing property of the electrolyzed water can be increased.
  • the effective chlorine concentration of electrolyzed water can be made high.
  • the electrolyzed water generation unit included in the electrolysis apparatus of the present invention includes an electrolytic solution supply unit, an electrolytic unit that electrolyzes the electrolytic solution supplied from the electrolytic solution supply unit to generate electrolytic water, and an electrolysis generated by the electrolytic unit.
  • a dilution part for diluting water It is preferable to have a dilution part for diluting water. According to such a configuration, electrolyzed water having an appropriate effective chlorine concentration can be continuously generated. Moreover, the quantity of the electrolyzed water manufactured can be increased by diluting the electrolyzed water produced
  • the electrolytic solution supply unit is provided so as to supply the electrolytic solution stored in the tank to the electrolytic unit, and the electrolytic unit electrolyzes the electrolytic solution to generate electrolytic water.
  • the detection unit is provided on the downstream side of the electrode pair for electrolysis, and detects a decrease in the amount of electrolyte supplied from the electrolyte supply unit to the electrolysis unit. According to such a structure, it can detect that the tank became empty by the detection part, and can stop the application of the voltage to the electrode pair for electrolysis at an early stage. For this reason, it can suppress that the electrode pair for electrolysis is damaged.
  • the detection unit included in the electrolysis apparatus of the present invention includes a detection electrode, and the detection electrode measures an electrical characteristic of a gas-liquid mixed fluid of gas and electrolyzed water generated by electrolysis of the electrolytic solution. It is preferably provided. According to such a structure, it can be detected by the electrode for a detection whether the electrolyzed water is produced
  • the electrolysis apparatus of the present invention preferably further includes a cooling unit for cooling the electrolysis unit, and the cooling unit is preferably provided so as to cool the electrolysis unit with water for diluting the electrolyzed water.
  • the electrolysis apparatus of the present invention includes a detection unit, and the electrolyte supply unit is provided to supply the electrolyte stored in the tank to the electrolysis unit, and the electrolysis unit electrolyzes the electrolyte and generates electrolyzed water
  • An electrode pair for electrolysis and a detection unit is provided on the downstream side of the electrode pair for electrolysis and detects a decrease in the amount of electrolyte supplied from the electrolyte supply unit to the electrolysis unit Is preferred. According to such a configuration, it is possible to detect that the electrolytic solution is not supplied to the electrolytic cell for some reason or that the electrolytic cell is in an abnormal state due to liquid leakage or the like, and the detection unit can detect it. The voltage application can be stopped early.
  • the electrolysis unit can be stopped early and abnormalities can be notified by a lamp or buzzer. For this reason, it is possible to prevent sterilization with electrolyzed water different from the desired concentration and pH. For example, the supply amount of the electrolyte is too small, the concentration of the electrolyzed water becomes lower than desired, the pH becomes higher (more alkaline), the sterilization becomes insufficient, or the supply amount of the electrolyte is too large. Thus, it is possible to prevent the electrolyzed water concentration from becoming higher than desired or the pH from becoming lower (more acidic) to damage the fiber or cause discoloration.
  • the detection unit included in the electrolysis apparatus of the present invention includes a detection electrode, and the detection electrode measures an electrical characteristic of a gas-liquid mixed fluid of gas and electrolyzed water generated by electrolysis of the electrolytic solution. It is preferably provided. According to such a structure, it can be detected by the electrode for a detection whether the electrolyzed water is produced
  • the electrolysis apparatus of the present invention preferably further includes a cooling unit for cooling the electrolysis unit, and the cooling unit is preferably provided so as to cool the electrolysis unit with water for diluting the electrolyzed water.
  • the present invention can be applied not only to an electrolytic device for electrolyzing an aqueous solution, but also to various devices for generating another substance from a substance placed in a space between electrodes by applying a voltage between the electrodes.
  • a generation apparatus is a substance conversion apparatus
  • an electrode used for substance conversion is an electrode for substance conversion
  • a substance to be converted is a converted or unconverted substance
  • a generated substance is a generated substance or already converted. It is called a substance.
  • the substance conversion apparatus of the present invention is an apparatus that generates a substance (converted substance) different from the supplied substance by supplying a substance (unconverted substance) between the electrode pairs for substance conversion and applying a voltage. Apply a constant voltage to the electrode for substance conversion and monitor the current value flowing, or control the current to be constant and monitor the voltage value necessary to pass a predetermined current through the electrode, A detection system for detecting an abnormality by distinguishing between a normal time and an abnormal time using a value different from a voltage value and a current value applied to the conversion electrode is provided.
  • the present invention provides a detector and a detection system for detecting the state of an apparatus (substance conversion apparatus) that converts the substance into another substance by applying a voltage to the substance and discriminating between a normal state and an abnormal state.
  • a substance conversion device can generate various chemical reactions by applying electrical energy to various substances supplied between the substance conversion electrodes, thereby generating useful substances. Can detoxify harmful substances.
  • An electrolysis device is an example of a material conversion device that is easy to understand.
  • a constant voltage is applied to the substance conversion (electrolysis) electrode and the flowing current value is monitored. (Or a voltage value necessary to flow a predetermined current through the electrode by controlling the current). If the substance conversion status is constant, the voltage and current are constant if the external environment is constant. Therefore, the voltage or current value in a normal steady state can be set as a range, and when it deviates from the set value range (allowable range), it can be determined as abnormal.
  • the present invention provides a detector and a detection system that can determine an abnormality accurately and quickly when an abnormality occurs.
  • the detection system of the present invention detects an abnormality by distinguishing a second value other than the voltage value or the current value applied to the substance conversion electrode between a normal time and an abnormal time.
  • the detection electrode may also serve as a substance conversion electrode. In this case, since the number of parts is reduced and the cost is reduced, the practicality is enhanced.
  • the electrolytic cell is further preferably provided with a cooling system, particularly a water cooling system.
  • the electrolysis apparatus of the present embodiment includes the electrolysis apparatuses of the first to sixth embodiments.
  • FIG. 1 is a schematic cross-sectional view of the electrolysis apparatus of the first embodiment.
  • the electrolysis apparatus 60 of this embodiment includes an electrolysis unit 5 provided to electrolyze a supplied electrolytic substance and discharge an electrolysis product, and a detection unit 25.
  • the electrolysis unit 5 includes an electrode for electrolysis.
  • the detection unit 25 includes a detection electrode 26 that measures the electrical characteristics of the electrolytic substance or the electrolysis product, and detects a decrease in the supply amount of the electrolytic substance supplied to the electrolysis unit 5. It is characterized by doing. Therefore, the detection unit 25 is a detection circuit including the detection electrode 26 and other electronic components.
  • the electrolysis apparatus 60 of this embodiment is provided with the electrolysis part 5 and the detection part 25 which electrolyze electrolytic substance, the electrolysis part 5 is provided with the electrode 1 for electrolysis, and the detection part 25 is attached to the electrode 1 for electrolysis. It is characterized in that a decrease in the supply amount of the electrolytic substance supplied to the electrolysis unit 5 is detected on the basis of the change amount with time of the applied current-voltage characteristic.
  • the electrolytic substance may be any substance that is electrolyzed by the electrolysis unit 5 and may be an electrolytic solution.
  • the electrolytic substance may be a gas that is electrolyzed by the electrolysis unit 5.
  • an electrolytic apparatus 60 that generates the electrolytic water 18 from the electrolytic solution 12 in the electrolytic unit 5 will be described.
  • the electrolyzed water generating unit 2 is a part that generates electrolyzed water 18 from the electrolytic solution 12.
  • the electrolyzed water generation unit 2 includes an electrolytic solution supply unit 10, an electrolysis unit 5 that electrolyzes the electrolytic solution 12 supplied from the electrolytic solution supply unit 10 to generate electrolyzed water 18, and electrolyzed water generated by the electrolysis unit 5. And a dilution section 20 for diluting 18.
  • the electrolytic solution supply unit 10 can be provided so that the electrolytic solution 12 stored in the electrolytic solution tank 7 is supplied to the electrolytic unit 5 by the pump 8.
  • the electrolytic solution tank 7 may be built in the electrolytic device 60 or may be externally attached to the electrolytic device 60.
  • the electrolytic device 60 When the electrolytic solution tank 7 is externally attached to the electrolytic device 60, the electrolytic device 60 may have an electrolytic solution inlet 42. As a result, the electrolyte inlet 42 and the external electrolyte tank 7 can be connected by piping.
  • the electrolyte supply unit 10 can include at least one of a large capacity electrolyte tank 7 and a normal capacity electrolyte tank 7. Thereby, the capacity of the electrolyte tank 7 can be changed in accordance with the use of the electrolyzer 60.
  • a valve can be provided instead of the pump 8. FIG.
  • the electrolysis unit 5 is a part that electrolyzes the electrolytic solution 12 to generate electrolyzed water 18. Further, the electrolysis unit 5 can have an electrode 1 for electrolysis including an anode 3 and a cathode 4. Moreover, the electrolysis part 5 can be provided so that the electrolyte solution 12 is supplied between the electrode pair 1 by the electrolyte solution supply part 10. Thereby, the electrolyzed water 18 can be continuously produced from the electrolytic solution 12.
  • the electrolytic solution 12 supplied from the electrolytic solution supply unit 10 to the electrolytic unit 5 can be an aqueous solution containing an acidic substance and an alkali metal chloride. Further, the electrolytic solution 12 may be an aqueous solution containing hydrochloric acid and at least one of sodium chloride and potassium chloride. As a result, the electrolyzing unit 5 can generate electrolyzed water 18 containing hypochlorous acid (HClO), hypochlorite (NaClO, KClO, etc.) and alkali metal chloride.
  • an anodic reaction such as chemical reaction formulas (1) and (3) proceeds and a cathodic reaction such as chemical reaction formula (4) proceeds.
  • the reaction represented by the chemical reaction formula (2) proceeds in the electrolysis unit 5, the dilution unit 20, the electrolyzed water flow path, the stirring unit 19, and the like. Therefore, the electrolyzed water 18 immediately after the electrolytic solution is electrolytically generated in the electrolysis unit 5 becomes a gas-liquid mixed fluid in which bubbles such as chlorine gas and hydrogen gas are mixed with the electrolyzed water in which chlorine molecules and hydrogen molecules are dissolved.
  • Electrolysis of an aqueous solution containing an alkali metal chloride may produce hypochlorite such as sodium hypochlorite and potassium hypochlorite, and the electrolyzed water 18 may become alkaline. Since the liquid 12 contains an acidic substance, the electrolyzed water 18 is almost neutral.
  • the pH of the electrolyzed water 18 produced by the electrolyzer 60 can be set to 6.5 to 7.5, for example.
  • the ratio of the alkali metal chloride and the acidic substance of the electrolytic solution 12 can be adjusted so that the pH of the electrolytic water 18 is 6.5 to 7.5. Furthermore, when it is desired to make the pH more acidic, the ratio of the acidic substance contained in the electrolytic solution 12, the supply amount of the electrolytic solution 12 to the electrolysis unit 5, the voltage applied to the electrolysis electrode 1, By adjusting the amount of flowing current, the pH of the electrolyzed water 18 can be adjusted.
  • the electrolysis unit 5 may have an inflow port through which the electrolyte solution 12 supplied from the electrolyte solution supply unit 10 flows in, and an outflow port through which the electrolyzed water 18 generated by the electrolysis process using the electrode pair 1 for electrolysis flows out. .
  • the electrolyzed water 18 can be continuously produced by the electrolysis unit 5.
  • the electrolyzed water 18 that has flowed out of the outlet may flow into the dilution section 20.
  • the anode 3 and the cathode 4 can each be plate-shaped, and can be provided so that the anode 3 and the cathode 4 face each other with a non-transparent film. As a result, the distance between the electrodes can be shortened, and the electrolytic efficiency can be improved. Further, the anode 3 and the cathode 4 can be arranged so as to be substantially parallel and the distance between the electrodes is in the range of 1 mm to 5 mm.
  • the electrode pair 1 for electrolysis may be provided so that one anode 3 and one cathode 4 face each other, and the anode 3 and the cathode 4 are provided so as to be alternately stacked. Alternatively, a plurality of electrodes may be stacked so that one surface of the intermediate electrode becomes the anode 3 and the other surface becomes the cathode 4.
  • the electrode pair 1 may be inclined and arranged such that the anode 3 is on the upper side and the cathode 4 is on the lower side.
  • FIG. 11 is explanatory drawing of the inclined electrode pair 1 contained in the electrolyzed water generator 60 of this embodiment.
  • the electrolyte solution flow path formed between the electrode surface of the anode 3 and the electrode surface of the cathode 4 is provided so that the electrolyte solution 12 flows into the electrolyte solution channel from below, and the electrolyte solution 12
  • Electrolyzed water containing hypochlorous acid generated by electrolysis by the electrode pair 1 may be provided so as to flow out from the upper side of the electrolyte flow path.
  • the fluid in the vicinity of the cathode 4 and the fluid in the vicinity of the anode 3 can be agitated and mixed by the flow of fluid caused by the rising of bubbles generated on the electrode surface of the cathode 4, and the electrode reaction at the anode 3 can be promoted. It is thought that you can. For this reason, electrolyzed water with a high effective chlorine concentration can be produced. Further, by disposing the cathode 4 on the lower side and generating a flow from the cathode 4 to the anode 3, chlorine gas, an oxidizing substance, hypochlorous acid, etc. generated by the anode reaction oxidize the electrode surface of the cathode 4. It is considered that electrolyzed water containing hypochlorous acid can be efficiently generated.
  • a Ti electrode can be used for the cathode 4, and the manufacturing cost of the electrolyzer 60 can be reduced.
  • the hydrogen gas generated by the cathode reaction is easily desorbed from the electrode surface of the cathode 4 by arranging the cathode 4 on the lower side, a reduction in the effective cathode area due to bubbles remaining on the electrode surface of the cathode 4 is suppressed. And a reduction in electrolytic efficiency can be suppressed.
  • a Ti electrode when a Ti electrode is used for the cathode 4, it can be suppressed that hydrogen molecules are occluded in the Ti electrode and the cathode 4 is warped.
  • the electrode pair 1 may be arranged so that the inclination angle with respect to the vertical direction is not less than 10 degrees and not more than 85 degrees. Moreover, it is preferable that the electrode pair 1 is arrange
  • the anode 3 preferably has a substantially rectangular electrode surface, and is arranged so that one end in the longitudinal direction of the electrode surface is on the upper side and the other end is on the lower side.
  • the cathode 4 preferably has a substantially rectangular electrode surface, and is arranged so that one end in the longitudinal direction of the electrode surface is on the upper side and the other end is on the lower side.
  • the electrode pair 1 is preferably provided so that the ratio between the distance between the anode 3 and the cathode 4 and the length in the longitudinal direction of the electrode surface of the anode 3 or the electrode surface of the cathode 4 is 1: 100 to 1:10. .
  • bubbles generated by the cathodic reaction can float and approach the anode 3, and the electrolysis efficiency can be increased.
  • the electrode pair 1 for electrolysis can include an electrode made of a titanium plate (referred to as a Ti electrode) and an electrode obtained by coating the titanium plate with iridium or platinum by a sintering method (referred to as a Pt—Ir-coated Ti electrode). . Further, the power supply unit 6 and the electrode pair 1 for electrolysis can be connected so that the Ti electrode becomes the cathode 4 and the Pt—Ir-coated Ti electrode becomes the anode 3.
  • the detection unit 25 can be provided on the downstream side of the electrode pair 1 for electrolysis.
  • the detection unit 25 is provided so as to detect a decrease in the supply amount of the electrolytic solution 12 supplied from the electrolytic solution supply unit 10 to the electrolytic unit 5.
  • the detection unit 25 can be provided at a position higher than the electrode pair 1 for electrolysis.
  • the detection unit 25 may be a detection electrode 26 that measures the electrical characteristics (current, voltage, resistance, capacitance, etc.) of the electrolyzed water 18, and optical detection that optically detects the state of the electrolyzed water 18.
  • the detection electrode is preferable in a simple system.
  • the capacitance and optical detection methods are non-contact and do not need to consider the influence of electrolyzed water, they can be easily adopted as detection means, but require special parts and control circuits.
  • the conditions of appropriate voltage and current differ depending on the target.
  • detection by the electrode is considered to be difficult as a general knowledge of those skilled in the art. It was not converted.
  • the electrolytic solution is electrolyzed by the voltage or current for detection, the electrical characteristics of the electrolytic solution itself cannot be obtained, and the electrolytic water generated by electrolysis is a reactive liquid (for example, hypochlorous acid water).
  • the electrolytic solution 12 stored in the tank 7 When the electrolytic solution 12 stored in the tank 7 is supplied to the electrolysis unit 5 by the pump 8 to produce the electrolytic water 18, if the production of the electrolytic water 18 is continued, the electrolytic solution 12 stored in the tank 7 gradually decreases, 7 becomes empty. When the tank 7 is emptied, the electrolytic solution 12 is not supplied to the electrolysis unit 5, and the electrolytic solution 12 may decrease or disappear between the electrode pair 1 in some cases. Alternatively, even if the tank 7 is not empty, the pump 8 fails or a liquid leak occurs between the tank 7 and the electrolysis unit 5, so that the electrolyte 12 is not sufficiently supplied to the electrolysis unit 5, and the electrode pair 1 There may be a case where the electrolyte 12 decreases or disappears in the meantime.
  • the current value is monitored, and if the current value exceeds a certain value, it is determined that the state is overheated and voltage application can be stopped.
  • the voltage application can be stopped in advance by determining that an abnormal temperature rise has started if the current increase rate exceeds a certain level at which the amount of change in the current value can be calculated.
  • the voltage application can be stopped in advance by determining that an abnormal temperature rise has started if the voltage drop rate is equal to or higher than a certain voltage calculated amount of change in the voltage value.
  • the constant current is preferable because the concentration of the electrolyzed water is stable even when the external environment changes.
  • the detection unit 25 can detect that the tank 7 is emptied, the pump 8 is malfunctioning, or the pipe between the tank and the electrolysis unit is leaked or clogged. Application of voltage to can be stopped early. For this reason, it can suppress that the electrode pair 1 is damaged. In addition, when the tank 7 becomes empty and the electrolytic solution 12 is not sufficiently supplied to the electrolysis unit 5, the electrolytic solution 12 or the electrolytic water 18 disappears from a portion where the flow path is high. Therefore, by providing the detection unit 25 at a position higher than the electrode pair 1 for electrolysis, it can be detected at an early stage that the electrolytic solution 12 is not sufficiently supplied to the electrolysis unit 5.
  • FIGS. 2 (a) to 2 (e) are schematic cross-sectional views of a part of the electrolysis apparatus 60 of the present embodiment.
  • the detection electrode 26 may be, for example, an electrode pair provided in a pipe between the electrolysis unit 5 and the dilution unit 20 as shown in FIG. 2A, and the electrolysis unit 5 as shown in FIG. It may be an electrode pair provided in the inner flow path, or may be an electrode pair provided above the electrolysis electrode pair 1 as shown in FIG.
  • the detection part 25 measures the electrical property of the electrolyzed water 18 with one electrode included in the electrode pair 1 for electrolysis and the detection electrode 26 as shown in FIGS. May be.
  • the electrolytic water 18 generated by the electrode pair 1 is a gas-liquid mixed fluid. It becomes.
  • the electrical characteristics of the gas-liquid mixed fluid are measured by the detection electrode 26, when the bubble passes through the detection electrode 26, the electrical resistance between the electrodes increases and the current flowing between the electrodes increases. Further, when the liquid passes through the detection electrode 26, the electrical resistance between the electrodes becomes small and the current flowing between the electrodes becomes small. For this reason, when the electrolyzed water 18 is normally generated by the electrode pair 1 for electrolysis, the electrical resistance measured by the detection electrode 26 moves up and down.
  • the electrolyzed water 18 is normally generated by detecting this vertical movement. Also, by detecting that this vertical movement has been lost, it is possible to detect abnormalities such as whether the tank has been emptied, the liquid pump has failed, piping has been clogged, or liquid leakage has occurred. it can.
  • the width between the electrodes of the detection electrode 26 can be set to 1 mm to 5 mm, for example. Thereby, the flow of the electrolyzed water 18 can be confirmed.
  • the detection unit 25 may be a light detection unit that optically detects the flow of the electrolyzed water 18.
  • FIG. 3 is an explanatory diagram of a detection system A included in the electrolysis apparatus of the second embodiment.
  • the detection unit 25 may have a system that detects an abnormal time like the detection system A.
  • a permissible range is provided for the amount of change in the voltage or current of the electrolysis electrode 1 or both over time.
  • the detection unit 25 can detect an abnormal time based on a differential value of the voltage value or current value of the electrode 1 for electrolysis (here, the differential value indicates an average change amount per time). In this case, the detection unit 25 is included in the control unit 6.
  • the detection unit is included in the control unit because it can be integrated into one substrate circuit, and the size and cost can be reduced.
  • a constant current source or a constant voltage source is connected to the electrode for detection, and abnormalities are detected by distinguishing the amount of change in the voltage or current value within a certain period of time between normal and abnormal conditions.
  • An allowable range is provided for the amount of change with time of voltage and / or current. That is, the differential value of the voltage value or the current value (here, the differential value refers to an average change amount per time and can also be called a slope) is detected.
  • the voltage value or current value can be detected by a conventional method.
  • the differential value can be made a differential value by sampling the voltage value or the current value at a certain time interval and taking the difference.
  • the time is too short, an abnormality is erroneously detected due to the influence of noise or the like, and therefore it is preferable to calculate the difference in a time such as 10 seconds to 1 minute.
  • the detection electrode of this detection system utilizes the fact that the differential value is almost zero in a steady state. For example, if the detection electrode is provided at a position closer to the electrolytic solution supply port than the electrolytic electrode, the relationship between the voltage and the current according to the electrical characteristics of the electrolytic solution is maintained.
  • the electrode is provided in a position close to the electrolyte supply port in the electrolytic cell, the specific voltage and current of the electrolyzed water in which the electrolyte has been electrolyzed by the electrode for electrolysis Approaching the relationship. In this process, a state where the differential value is not 0 occurs, so that an abnormality can be detected. In the case where a detection electrode is provided in or near the electrolytic solution tank than the electrolytic tank, the differential value is not zero because the electrolytic solution in the vicinity of the detection electrode is electrolyzed by the detection electrode. Can be detected.
  • the detection electrode is provided at a position closer to the electrolyte outlet than the electrolysis electrode, the relationship between the voltage and the current according to the electrical characteristics of the electrolyzed water is maintained. For example, if the supply of electrolyte is abnormally stopped, if it is provided in the electrolytic cell and at a position close to the outlet of the electrolyte, the specific voltage of the electrolyzed water in which the electrolyte has been excessively electrolyzed by the electrode for electrolysis And approach the relationship of current. In this process, a state where the differential value is not 0 occurs, so that an abnormality can be detected.
  • the electrolysis water near the detection electrode is interrupted or the electrolysis proceeds further by the detection electrode. Abnormalities can be detected because a non-zero value occurs.
  • the detection electrode is provided at the same position as the electrode for electrolysis, the relationship between the voltage and the current according to the electrical characteristics of the electrolyte during electrolysis is maintained. For example, when the supply of the electrolyte is abnormally stopped, the relationship between the electrical specific voltage and current of the electrolyzed water in which the electrolysis of the electrolyte is excessively performed by the electrode for electrolysis approaches. In this process, a state where the differential value is not 0 occurs, so that an abnormality can be detected.
  • a part or all can be shared with the electrode for electrolysis, and it can also share the power supply also with the power supply for electrolysis.
  • the detection unit 25 can include a system that detects an abnormal time, such as the detection system B.
  • a detection electrode 26 different from the electrolysis electrode 1 is provided as the detection unit 25.
  • the detection electrode 26 is provided above the electrolysis electrode 1.
  • a pair of detection electrodes 26 may be provided, but if one of the electrolysis electrodes 1 is shared by the electrolysis electrode 1 and the detection electrode 26, the number of parts can be reduced. Furthermore, if the power supply unit is shared, the power supply for the detection unit can be omitted. Even in the electrode 1 for electrolysis, the effective area of the electrode decreases due to a decrease in the water level, so that the current value decreases or the voltage value increases. However, the rate of change (the rate of change relative to the overall value) and S / N value are small. There is a problem similar to the conventional method.
  • the electrolysis electrode 1 it is possible to detect an abnormality by providing a slit on the upper side of the electrolysis electrode 1 and partially separating it, and providing a separate wiring and measuring a current value flowing through the wiring.
  • the current value can be measured by various conventional methods such as measuring the voltage of the shunt resistor.
  • the detection unit 25 may have a system that detects an abnormal time like the detection system C.
  • the detection unit 25 similarly includes the detection electrode 26 as a detector, but is closer to the electrolyte substance (electrolyte solution) supply port (electrolyte solution supply port) than the electrolysis electrode 1.
  • the detection unit 25 similarly includes the detection electrode 26 as a detector, but is closer to the electrolyte substance (electrolyte solution) supply port (electrolyte solution supply port) than the electrolysis electrode 1.
  • the detection unit 25 may have a system that detects an abnormal time like the detection system D.
  • the detection unit 25 similarly includes the detection electrode 26 as a detector, but is closer to the discharge port of the electrolysis product than the electrode for electrolysis (discharge port of the electrolysis unit 5 in the case of electrolysis) or discharge. Prepared in the middle of the piping or piping connected to the outlet or outlet.
  • the detection electrode can also serve as at least a part of the electrode for electrolysis. In this case, since the number of parts is reduced and the cost is reduced, the practicality is increased, which is preferable. Furthermore, it is preferable to provide the detection electrode pair with an inclination because the detection sensitivity is improved. It is further preferred that the electrolytic cell comprises a cooling system, in particular a water cooling system. If the electrode section for detection and the electrode pair for electrolysis are provided in parallel in the electrolysis section, the holding section for holding the electrode pair for detection and the electrode pair for electrolysis can be simultaneously molded as the electrolysis section, so that the cost is low.
  • the electrolysis part having both the detection electrode pair and the electrolysis electrode pair in parallel, since the detection sensitivity can be improved and the electrolysis efficiency can be improved at the same time. Furthermore, since the temperature of the detection electrode and the electrode for electrolysis is stabilized by providing the water cooling system, a highly reliable detection system and electrolysis system can be realized. This is due to the fact that the electrical properties and chemical reactions of substances generally have temperature dependence. A detector using an electrode uses the electrical characteristics of a substance, and electrolysis uses an electrochemical reaction. Therefore, it is preferable that the temperature is stable, and it is preferable to provide a cooling system.
  • the dilution unit 20 is provided to dilute the electrolyzed water 18 generated by the electrolysis unit 5 with water.
  • the electrolyzed water 18 having an appropriate effective chlorine concentration can be generated, and the electrolyzed water 18 can be discharged from the discharge port 14. Further, by diluting the electrolyzed water 18 generated by the electrolyzing unit 5 with the diluting unit 20, the amount of the electrolyzed water 18 to be manufactured can be increased.
  • the water used for dilution is, for example, tap water.
  • the tap water can be supplied to the diluting unit 20 by the electromagnetic valve 23 connected to the faucet. It is possible to electrolyze after diluting the electrolyte, but mineral components etc.
  • the diluting water contained in the diluting water are deposited on the electrode for electrolysis and the electrolysis ability is reduced, or the components contained in the diluting water are electrolyzed.
  • concentration and pH of the electrolyzed water may vary. Therefore, it is preferable to dilute with a diluting water such as tap water after the electrolytic solution is electrolyzed in the electrolysis section as in this embodiment.
  • the dilution unit 20 may be provided so that the flow of the electrolyzed water 18 generated in the electrolysis unit 5 merges with the flow of water to be diluted.
  • the diluting unit 20 can be provided so that the flow of the electrolyzed water 18 generated by the electrolyzing unit 5 merges with the flow of water flowing in a substantially horizontal direction.
  • the dilution part 20 may be provided so that the electrolyzed water 18 produced
  • the dilution part 20 may be provided so that it may dilute in the dilution tank into which the electrolyzed water 18 produced
  • the electrolyzer 60 may be provided so that the amount of water diluted in the dilution unit 20 can be changed.
  • the electromagnetic valve 23 can be provided so that the amount of water supplied to the dilution unit 20 can be changed.
  • the electrolyzed water 18 having different effective chlorine concentrations can be generated, and the effective chlorine concentration of the electrolyzed water can be changed depending on the use of the electrolyzed water 18.
  • the control part 6 can be provided so that the normal concentration electrolyzed water 18 and the high concentration electrolyzed water 18 can be switched.
  • the controller 6 can switch the concentration of the electrolyzed water 18 by controlling the electromagnetic valve 23.
  • the effective chlorine concentration of the normal concentration electrolyzed water 18 can be 15 to 25 ppm, and the effective chlorine concentration of the high concentration electrolyzed water 18 can be 45 to 55 ppm.
  • the cooling part 54 which cools the electrolysis part 5 with the water which dilutes the electrolysis water 18 can be provided. As a result, it is possible to suppress the temperature of the electrolysis unit 5 from being increased due to heat generated by the electrical resistance of the electrode or the liquid resistance of the electrolytic solution or reaction heat of various chemical reactions occurring in the electrolysis unit. It is possible to suppress variations in concentration and a decrease in the life of the electrolysis unit and the electrode due to heat.
  • the cooling unit 54 can be, for example, a cooling water channel 53 through which water to be diluted flows. Thereby, the flow path through which the cooling water flows can be integrally manufactured as an electrolysis part, and an increase in extra parts and attachment work can be suppressed, which is preferable.
  • FIG. 12 is a schematic sectional view of a part of the electrolyzer 60 of the sixth embodiment.
  • the cooling water channel 53 for example, as shown in FIG. 12, tap water flows into the cooling water channel 53 from a cooling water inlet 56 provided upstream of the dilution unit 20, and the tap water flows around the electrode pair 1 for electrolysis. Can be provided so that the tap water flows out from the cooling water outlet 57 provided in the downstream part of the dilution part 20.
  • the cooling water channel 53 may be provided in the structural member 52 of the electrolysis unit 5 as shown in FIG. 12, or may be a pipe provided around the electrolysis unit 5.
  • the electrolyzer 60 can include a stirring unit 19.
  • the agitating unit 19 is provided such that the electrolyzed water 18 diluted by the diluting unit 20 flows into the agitating unit 19 and the electrolyzed water 18 flowing out from the agitating unit 19 is supplied to the discharge port 14.
  • the stirring unit 19 may be a water tank in which a turbulent flow is generated, or may be a stirring tank provided with a stirring bar.
  • the stirring unit 19 may not be provided, but the concentration is more stable when provided. Even if the chlorine part is not converted into hypochlorous acid in the electrolysis part 5, the dilution part 20 and the electrolysis water flow path for any reason, the hypothesis of chlorine molecules can be achieved by providing the stirring part 19. Since the conversion to chloric acids is promoted, there is an effect of suppressing the release of chlorine gas and increasing the concentration of hypochlorous acid. For example, when the chlorine gas generated in the electrolysis unit 5 is relatively large with respect to the aqueous solution in the electrolysis unit 5 and the electrolyzed water flow path from the dilution unit 20 to the discharge port is extremely short, unconverted chlorine gas is generated. It may be discharged.
  • the stirring section 19 is provided to increase the effective length of the electrolyzed water flow path, and the bubbles of chlorine gas are made fine bubbles by the turbulent flow of the stirring section 19 to reduce the bubble surface area per unit chlorine gas amount.
  • chlorine gas can be efficiently converted to hypochlorous acid. Thereby, it can suppress that chlorine gas is discharge
  • the discharge port 14 can be connected to the spout member 24.
  • the electrolyzed water 18 generated by the electrolyzer 60 can be supplied to the spout, and the electrolyzed water 18 is used for various purposes by pouring the electrolyzed water 18 into the bucket 51 or the like from the spout.
  • the spout member 24 can be a flexible hose.
  • the discharge port 14 may be a spout.
  • the control unit 6 controls the electrolyzed water generation unit 2.
  • the control unit 6 can be connected to the pump 8, the electrode pair 1 for electrolysis, the electromagnetic valve 23, or the detection electrode 26 by a signal line or a power supply line.
  • the control unit 6 may include a detection unit 25. Further, the control unit 6 may be connected to the detection electrode 25 or may constitute the detection unit 25 together with the detection electrode 25.
  • the control unit 6 is provided so that a signal from the operation unit 11 can be input.
  • the operation unit 11 may be an operation button or a touch panel. In addition, the operation unit 11 may be connected to the control unit 6 through a signal line, or may remotely operate the electrolysis apparatus 60.
  • Electrolyzed water detection experiment An electrolysis part 5 as shown in FIG. 2C and FIG. 10 was produced, and an experiment was conducted in which the electrolyzed water 18 generated by the electrolysis electrode 1 was detected by the detection electrode 26.
  • the size of the effective surface of the detection electrode is 3 mm ⁇ 3 mm, and the distance between the electrodes is 2 mm.
  • the same material as the electrode for electrolysis was used as an electrode material.
  • FIGS. FIG. 13 is a graph showing changes in the detection current of the detection electrode 26 when the electrolytic solution 12 supplied to the electrolysis unit 5 is electrolyzed by the electrolysis electrode 1 to generate the electrolyzed water 18.
  • the detection current of the detection electrode 26 moves up and down. Further, it was found that the time during which the detection current is small is 5 seconds or less. This is presumably because chlorine gas or hydrogen gas bubbles generated by electrolysis and electrolytic water alternately pass through the detection electrodes 26. Therefore, it has been found that whether or not the electrolyzed water 18 is normally generated can be detected by detecting whether or not such a vertical movement of the detection current occurs. Further, it was found that it is possible to detect that the electrolytic solution 12 is not supplied to the electrolysis unit 5 by detecting that the state where the detection current is small continues for 5 seconds or more.
  • FIG. 14 is a graph showing changes in the detection current of the detection electrode 26 when the supply of the electrolytic solution 12 to the electrolysis unit 5 is stopped.
  • the vertical movement of the detected current was not measured about 5 seconds after the supply stop. From this, it was found that the supply stop of the electrolyte solution 12 can be detected early by the detection electrode 26.
  • FIG. 2 (a) and FIG. 9 a structure in which a detection electrode is provided in the pipe from the electrolysis section to the discharge port may be used.
  • the lead terminal (post) of the detection electrode is preferably installed closer to the supply port.
  • the detection unit included in the electrolyzer of the present invention is particularly suitable for an electrolyzer that uses an electrode for electrolysis at an angle.
  • the electrode for electrolysis installed at an inclination improves the electrolysis efficiency, but the concentration of the electrolyzed water generated with respect to the change in the supply state of the electrolytic solution tends to change rapidly. Therefore, it is preferable to use the detection unit of the present invention that can detect an abnormality early. Furthermore, since the sensitivity is improved when the detection electrode is also inclined, the electrolysis apparatus including the inclined electrolysis electrode and the inclined detection electrode can increase safety and reliability as well as electrolysis performance.
  • the electrode pair 1 is made by sintering platinum and iridium on an electrode made of a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm (referred to as a Ti electrode) and a 1 mm thick titanium plate having a long side of 8 cm and a short side of 3 cm. (Hereinafter referred to as “Pt—Ir-coated Ti electrode”).
  • the electrode pair 1 was fixed to the structural member 20 made of vinyl chloride resin so that the Ti electrode and the Pt—Ir-coated Ti electrode were substantially parallel and the distance between the electrodes was in the range of 1 mm to 5 mm, thereby producing an electrolysis apparatus. Further, the power supply device and the electrode pair 1 were connected such that the Ti electrode became a cathode and the Pt—Ir-coated Ti electrode became an anode.
  • the inclination angle is 0 degree.
  • the electrode pair 1 is inclined so that the Pt—Ir-coated Ti electrode (anode) is on the upper side, the inclination angle is a positive angle.
  • the electrode pair 1 is tilted so that the Pt—Ir-coated Ti electrode is on the lower side, the tilt angle is a negative angle.
  • a constant current of 5 A was supplied to the electrode pair 1 by the power supply device, and the mixed aqueous solution of sodium chloride and hydrochloric acid was subjected to electrolytic treatment.
  • the applied voltage was between about 4 and 5V.
  • the effective chlorine concentration (mg / L) of the aqueous solution after electrolytic treatment was measured. Since the measurement method of the effective chlorine concentration was evaluated by a color reaction by oxidation, the effective chlorine concentration in the present example refers to a value obtained by evaluating the amount of all reactive substances having oxidizing power as the effective chlorine concentration.
  • the measurement result of the effective chlorine concentration experiment is shown in FIG.
  • the effective chlorine concentration shown in FIG. 15 is the effective chlorine concentration when normalized to 1 L dilution. According to this result, when the electrode pair 1 is tilted so that the Pt—Ir-coated Ti electrode as the anode is on the upper side, the effective chlorine concentration of the aqueous solution after electrolytic treatment is increased within the tilt angle range of 20 ° to 85 °. It was particularly high at 50 to 80 degrees. Conversely, when the electrode pair 1 was tilted so that the Pt—Ir-coated Ti electrode as the anode was on the lower side, the effective chlorine concentration of the aqueous solution after the electrolytic treatment decreased.
  • the effective chlorine concentration of the generated electrolyzed water can be increased by arranging the electrode pair 1 so that the anode is on the upper side and the cathode is on the lower side.
  • the effective chlorine concentration greatly decreases with a slight angle change on the minus side from around 0 degrees. Therefore, it is more stable against variation in the installation angle when the electrode pair 1 is arranged so that it is on the plus side from 0 degrees, that is, the anode is on the upper side and the cathode is on the lower side. Therefore, it is preferable for practical use, and more preferably 20 degrees or more and 80 degrees or less.
  • Electrode for electrolysis or electrode pair 2 Electrolyzed water generation part 3: Anode 4: Cathode 5: Electrolysis part 6: Control part / Power supply part 7: Electrolyte tank 8: Electrolyte pump 10: Electrolyte supply part 11: Operation unit 12: Electrolyte solution 14: Discharge port 18: Electrolytic water 19: Stirring unit 20: Dilution unit 23: Solenoid valve 24: Spout member 25: Detection unit 26: Electrode for detection 28: Housing 41: Tap water flow Inlet 42: Electrolyte inlet 51: Bucket 52: Structural member 53: Cooling water flow path 54: Cooling part 56: Cooling water inlet 57: Cooling water outlet 60: Electrolyzer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明は、電解槽内の異常を検出する検出器を備えて異常の発生を迅速に検出することができるとともに、環境変化によって正常状態であるのに誤って異常と判断して電解を停止してしまう誤動作を起こす事の少ない電解装置を提供する。本発明の電解装置は、供給される電解物質を電気分解し電気分解生成物を排出するように設けられた電解部と、検出部とを備え、前記電解部は、電解用電極を備え、前記検出部は、前記電解物質又は前記電気分解生成物又はその両方の混合物の電気的特性を測定する検出用電極を備え、かつ、前記電解部に供給される電解物質の供給量の減少又は前記電解部から排出される電気分解生成物の排出量の減少を検出することを特徴とする。

Description

電解装置
 本発明は、電解装置に関する。
 電解装置は電気化学反応を利用して様々な電解質を変換して別の物質を生成する事ができる。例えば、塩化物イオンを含む水溶液を電解分解する事で、次亜塩素酸類を含む水溶液、いわゆる電解水を生成する事ができる。電解水は除菌効果を有するため、感染症の予防、生鮮食品の鮮度維持、洗濯物の消臭などの目的で利用されている。
 また、電解水を生成する電解装置が知られている(例えば、特許文献1~6参照)。
特開平4-74879号公報 特開平5-237478号公報 特開平6-292892号公報 特開平9-253650号公報 特開2001-29955号公報 特開2001-48199号公報
 電解装置は化学プラントのような通常の化学反応に比べると手軽かつ安全に機能性の物質を生成する事ができる。ただし、誤って規定外の電解質を供給したり、何らかの理由で電解質の供給がなされなかったりする場合は、予想外の物質が生成する恐れがある。そのため、電解電極に印加する電圧や電流を監視し、所定値から外れると電解を停止する仕組みを設けている電解装置がある。例えば定電圧を供給し、その他の条件が同一であれば電流値は一意に決まるため、ある一定の電流値を上回ったり、下回ったりした場合は、異常と判断する事ができる。
 しかしながら、同一の電解質を用いていても、環境温度の変化つまり電解質の温度によって印加電圧が同じであっても電流値が異なったり、電解初期としばらく経った後では電流値が異なったりする。したがって、許容できる電流値の変動幅を比較的大きくとっておく必要がある。
 このように許容できる電流値の幅が大きい場合では、原液の供給が何らかの原因で途絶えた時に電流値が許容範囲を超えて電解を停止するまでに、液温が上昇し、電解槽の耐熱温度近くまで上昇して変形してしまったり、最悪の場合は液や電極を保持する電解槽を破損して高温の電解水が漏洩したり、電解槽で発生したガスが漏洩する危険性がある。
 特に次亜塩素酸を生成する電解槽の場合は、電解槽に樹脂を用いるため耐熱温度が比較的低く変形や破損の恐れが高くなる。
 また、電解槽に実質的に連続的に原液(電解質)を供給して連続的に電解水を生成する装置の場合は、いわゆる希薄な電解質を貯留して時間をかけて電解する貯留式に比べると、電解槽内の容積が小さく流す電流密度も高いため、原液供給が停止してからの液温上昇が早いために過熱状態になりやすい。
 特に、原液を節約するために電解槽に単位時間当たり供給される原液の量が少ない場合は、定常状態でも液温が比較的高い状態になるため、電解槽の耐熱温度を超え易く、安全性が十分でなかった。
 本発明は、このような事情に鑑みてなされたものであり、電解槽内の異常を検出する検出部を備えて異常の発生を迅速に検出することができるとともに、環境変化によって正常状態であるのに誤って異常と判断して電解を停止してしまう誤動作を起こす事の少ない電解装置を提供する。
 本発明は、供給される電解物質を電気分解し電気分解生成物を排出するように設けられた電解部と、検出部とを備え、前記電解部は、電解用電極を備え、前記検出部は、前記電解物質又は前記電気分解生成物又はその両方の混合物の電気的特性を測定する検出用電極を備え、かつ、前記電解部に供給される電解物質の供給量の減少又は前記電解部から排出される電気分解生成物の排出量の減少を検出することを特徴とする電解装置を提供する。
 更に前記検出用電極は、前記電解用電極の上方に設けられたことを特徴とする電解装置を提供する。
 更に前記検出用電極は、前記電解用電極よりも上流側に設けられたことを特徴とする電解装置を提供する。
 更に前記検出用電極は、前記電解用電極よりも下流側に設けられ、かつ、前記電解部中又は前記電解部に接続した配管中に設けられたことを特徴とする電解装置を提供する。
 更に前記検出用電極は、少なくとも一組の電極対を備え、前記検出用電極の電極対の一方の電極は、前記電解用電極と電気的に接続したことを特徴とする電解装置を提供する。
 更に前記検出用電極は、少なくとも一組の電極対を備え、前記検出用電極の電極対の一方の電極は、前記電解用電極と一体として成形されたことを特徴とする電解装置を提供する。
 更に前記電解用電極及び前記検出用電極は、傾斜して配置されるように設けられたことを特徴とする電解装置を提供する。
 更に前記電解物質は、電解液であり、前記電解部は、電解液を電気分解し次亜塩素酸類を含む電解水を生成することを特徴とする電解装置を提供する。
 更に前記検出用電極は、電解液の電気分解により生成した気体と電解水との気液混合流体の電気的特性を測定することを特徴とする電解装置を提供する。
 更に、前記検出部は、前記検出用電極に印加する電流―電圧特性の経時変化の変化量に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする電解装置も提供する。
 更に前記検出部は、前記検出用電極に印加された電圧の変化量の微分値又は前記検出用電極を流れる電流の変化量の微分値に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする電解装置も提供する。
 また、本発明は、電解物質を電気分解する電解部と検出部とを備え、前記電解部は、電解用電極を備え、前記検出部は、前記電解用電極に印加する電流―電圧特性の経時変化の変化量に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする電解装置も提供する。
 更に前記検出部は、前記電解用電極に印加された電圧の変化量の微分値又は前記電解用電極を流れる電流の変化量の微分値に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする電解装置も提供する。
 本発明の電解装置は検出部を備えるため、検出部により電解部に供給される電解物質の供給量の減少を検出することができ、電解用電極への電圧の印加を早期に停止することができる。このため、電解用電極が電解物質に接触していない状態で、電解用電極に電圧が印加されることを防止することができる。このことにより、電解用電極が異常過熱することを防止することができ、電解装置の安全性を向上させることができる。また、電解用電極が傷むことを抑制することができ、電解装置の寿命特性を向上させることができる。
 本発明の電解装置に含まれる検出器は、従来より素早く異常を検出できるので、安全で信頼性の高い電解装置を提供することができる。
本発明の一実施形態の電解装置の概略断面図である。(第1実施形態) (a)~(e)は、本発明の一実施形態の電解装置の一部の概略断面図である。 検出システムAの説明図である。(第2実施形態) 検出システムBの説明図である。(第3実施形態) 検出システムBの説明図である。(第3実施形態) 検出システムBの説明図である。(第3実施形態) 検出システムCの説明図である。(第4実施形態) 検出システムCの説明図である。(第4実施形態) 検出システムDの説明図である。(第5実施形態) 検出システムDの説明図である。(第5実施形態) 電解部の傾斜角度と検出システムとの説明図である。 本発明の一実施形態の電解装置の一部の概略断面図である。(第6実施形態) 電解水検出実験の実験結果を示すグラフである。 電解水検出実験の実験結果を示すグラフである。 有効塩素濃度測定の測定結果を示すグラフである。
 本発明の電解装置は、供給される電解物質を電気分解し電気分解生成物を排出するように設けられた電解部と、検出部とを備え、前記電解部は、電解用電極を備え、前記検出部は、前記電解物質又は前記電気分解生成物の電気的特性を測定する検出用電極を備え、かつ、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする。
 また、本発明の電解装置は、電解物質を電気分解する電解部と検出部とを備え、前記電解部は、電解用電極を備え、前記検出部は、前記電解用電極に印加する電流―電圧特性の経時変化の変化量に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする。
 本発明の電解装置において、前記電解物質は、電解液であり、前記電解部は、電解液を電気分解し次亜塩素酸類を含む電解水を生成することが好ましい。
 電解部において電気分解する電解液は、酸性物質及びアルカリ金属塩化物を含む水溶液であることが好ましい。
 このことにより、次亜塩素酸類を含む電解水を生成することができる。また、生成する電解水を微酸性~中性にすることができ、電解水の除菌性を高くすることができる。
 電解部において電気分解する電解液に含まれる酸性物質は塩酸であり、アルカリ金属塩化物は塩化ナトリウム及び塩化カリウムのうち少なくとも一方であることが好ましい。
 このことにより、次亜塩素酸類を含む電解水を生成することができる。また、生成する電解水を微酸性~中性にすることができ、電解水の除菌性を高くすることができる。また、電解水の有効塩素濃度を高くすることができる。
 本発明の電解装置に含まれる電解水生成部は、電解液供給部と、電解液供給部から供給された電解液を電気分解し電解水を生成する電解部と、電解部により生成された電解水を希釈する希釈部とを有することが好ましい。
 このような構成によれば、適切な有効塩素濃度を有する電解水を連続的に生成することができる。また、電解部により生成した電解水を希釈部で希釈することにより、製造する電解水の量を多くすることができる。
 本発明の電解装置は、電解液供給部は、タンクに貯留した電解液を前記電解部に供給するように設けられ、電解部は、電解液を電気分解し電解水を生成する電解用電極対を備え、検出部は、前記電解用電極対の下流側に設けられ、かつ、前記電解液供給部から前記電解部に供給される電解液の供給量の減少を検出することが好ましい。
 このような構成によれば、検出部によりタンクが空になったことを検出することができ、電解用電極対への電圧の印加を早期に停止することができる。このため、電解用電極対が傷むことを抑制することができる。
 本発明の電解装置に含まれる検出部は、検出用電極を備え、検出用電極は、電解液の電気分解により生成した気体と電解水との気液混合流体の電気的特性を測定するように設けられたことが好ましい。
 このような構成によれば、電解部において電解水が生成されているか否かを検出用電極により検出することができる。
 本発明の電解装置は、電解部を冷却する冷却部をさらに備えることが好ましく、冷却部は、電解水を希釈する水により電解部を冷却するように設けられたことが好ましい。
 このような構成によれば、電気分解反応の反応熱により電解部の温度が高くなることを抑制することができ、電解効率が変化して濃度ばらつきが生じたり、電解部が過熱して電解部の部材が変形や変質して液漏れ等の不具合が生じたりすることを抑制することができる。
 本発明の電解装置は、検出部を備え、電解液供給部は、タンクに貯留した電解液を前記電解部に供給するように設けられ、電解部は、電解液を電気分解し電解水を生成する電解用電極対を備え、検出部は、前記電解用電極対の下流側に設けられ、かつ、前記電解液供給部から前記電解部に供給される電解液の供給量の減少を検出することが好ましい。
 このような構成によれば、何らかの原因で電解槽に電解液が供給されないか、液漏れ等により電解槽内が異常状態になったことを検出部により検出することができ、電解用電極対への電圧の印加を早期に停止することができる。このため、電解用電極対が傷むことを抑制することができる。
 また、早期に電解部を停止及び異常をランプまたはブザーで知らせる事ができる。このため、所望の濃度やpHとは異なる電解水で、除菌処理してしまう事が防げる。例えば、電解液の供給量が少なすぎて電解水濃度が所望よりも低くなったりpHが高く(よりアルカリ性に)なったりして除菌不足になってしまったり、電解液の供給量が多すぎて電解水濃度が所望よりも高くなったりpHが低く(より酸性に)なったりして繊維を傷めたり色落ちしてしまったりする事を、防ぐ事ができる。
 本発明の電解装置に含まれる検出部は、検出用電極を備え、検出用電極は、電解液の電気分解により生成した気体と電解水との気液混合流体の電気的特性を測定するように設けられたことが好ましい。
 このような構成によれば、電解部において電解水が生成されているか否かを検出用電極により検出することができる。
 本発明の電解装置は、電解部を冷却する冷却部をさらに備えることが好ましく、冷却部は、電解水を希釈する水により電解部を冷却するように設けられたことが好ましい。
 このような構成によれば、電気分解反応の反応熱により電解部の温度が高くなることを抑制することができ、電解効率が変化して濃度ばらつきが生じたり、電解部が過熱変形して液漏れ等の問題が生じたりすることを抑制することができる。また万が一検出器が故障して過熱状態となっても冷却されていれば、電解部が発火、発煙したり電解部周辺の他の部材に熱が伝搬して不具合を生じたりする事を抑制できる。
 また、本発明は水溶液を電解する電解装置のみならず、電極間に電圧を印加して、電極間の空間におかれた物質から、別の物質を生成する様々な装置に応用できる。例えば液体のみならず、気体に対して電圧印加していわゆる放電によって別の物質を生成できる。本明細書中では、そのような生成装置を物質変換装置、物質変換に用いる電極を物質変換用電極、変換される物質を被変換物質または未変換物質、生成された物質を生成物質または既変換物質と称する。
 本発明の物質変換装置は、物質変換用電極対の間に物質(未変換物質)を供給し電圧を印加することで供給した物質とは異なる物質(既変換物質)を生成する装置であって、物質変換用電極に一定の電圧を印加し、流れる電流値を監視するか、電流を一定になるように制御して電極に所定の電流を流すのに必要な電圧値を監視するとともに、物質変換用の電極に印加される電圧値や電流値とは別の値を用いて正常時と異常時で区別する事で異常を検出する検出システムを備える。
 本発明は、物質に電圧を印加することで前記物質を他の物質に変換する装置(物質変換装置)の状態を検出し、正常状態と異常状態を判別するための検出器及び検出システムを提供する。例えば物質変換装置は、物質変換用電極の間の供給した様々な物質に電気的エネルギーを与える事により様々な化学反応を生じさせる事で、他の物質に変換し、有用な物質を生成したり、有害な物質を無害化したりすることができる。電解装置は分かり易い物質変換装置の一例である。
 従来は物質変換用(電解用)電極に一定の電圧を印加し、流れる電流値を監視する。(又は電流制御して電極に所定の電流を流すのに必要な電圧値)を監視する。物質変換状況が一定なら、外部環境が一定ならば電圧と電流一定となる。したがって、正常な定常状態での電圧または電流の値を範囲は設定し、その設定値の範囲(許容範囲)から逸脱した時を異常として判定する事ができる。この方法は従来から行われているが、課題として、あまりに設定値の範囲が狭い(プロセスウインドウが狭い)と、使用する環境(温度等の外部環境)や装置を構成する部品公差、物質変換の進行による条件変動によって、すぐに製品が動作しなくなるので実用的ではなく、許容範囲を大きくしていた。その反面、異常状態が始まっていても異常と判断するまでに時間がかかる場合があり、装置や製品(生成される物質)に問題を生じてしまう場合があった。
 本発明では、異常が発生した時に正確に素早く異常と判断できる検出器及び検出システムを提供する。
 本発明の検出システムは物質変換用の電極に印加される電圧値または電流値以外の第2の値を正常時と異常時で区別する事で異常を検出する。
 検出用電極は、物質変換用の電極が兼ねても良い場合がある。この場合、部品点数が少なくなりコストが安くなるので実用性が高まる。
 更に本願発明では、電解槽は傾けると検出感度が向上するので好ましい。
 更に本願発明では、電解槽は冷却システムの特に水冷システムを備えると更に好ましい。
 以下、図面を用いて本発明の一実施形態を説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
 本実施形態の電解装置は、第1~第6実施形態の電解装置を含む。また、図1は第1実施形態の電解装置の概略断面図である。
 本実施形態の電解装置60は、供給される電解物質を電気分解し電気分解生成物を排出するように設けられた電解部5と、検出部25とを備え、電解部5は、電解用電極1を備え、検出部25は、前記電解物質又は前記電気分解生成物の電気的特性を測定する検出用電極26を備え、かつ、電解部5に供給される電解物質の供給量の減少を検出することを特徴とする。よって検出部25は検出電極26やその他電子部品を含む検出用回路である。
 また、本実施形態の電解装置60は、電解物質を電気分解する電解部5と検出部25とを備え、電解部5は、電解用電極1を備え、検出部25は、電解用電極1に印加する電流―電圧特性の経時変化の変化量に基づき、電解部5に供給される電解物質の供給量の減少を検出することを特徴とする。
 電解物質は、電解部5により電気分解される物質であればよく、電解液であってもよい。また、電解物質は、電解部5により電気分解される気体であってもよい。ここでは、電解物質が、電解液12であり、電解部5において電解液12から電解水18を生成する電解装置60について説明する。
 電解水生成部2は、電解液12から電解水18を生成する部分である。
 電解水生成部2は、電解液供給部10と、電解液供給部10から供給された電解液12を電気分解し電解水18を生成する電解部5と、電解部5により生成された電解水18を希釈する希釈部20とを有することができる。
 電解液供給部10は、電解液タンク7に貯留した電解液12をポンプ8により電解部5に供給するように設けることができる。電解液タンク7は、電解装置60に内蔵されてもよく、電解装置60に外付けされてもよい。電解液タンク7が電解装置60に外付けされる場合、電解装置60は、電解液流入口42を有することができる。このことにより、電解液流入口42と外付け電解液タンク7とを配管で接続することができる。電解液供給部10は、大容量の電解液タンク7と通常容量の電解液タンク7とのうち少なくとも一方を備えることができる。このことにより、電解装置60の用途に合わせて電解液タンク7の容量を変更することができる。
 なお、電解液タンク7を電解部5よりも高い部分に配置し、重力により電解液12を電解部5に供給できる場合、ポンプ8の代わりに弁を設けることができる。
 電解部5は、電解液12を電気分解し電解水18を生成する部分である。また、電解部5は、陽極3と陰極4とを含む電解用電極1を有することができる。また、電解液供給部10により電極対1間に電解液12が供給されるように電解部5を設けることができる。このことにより、電解液12から電解水18を連続的に製造することができる。
 電解液供給部10が電解部5に供給する電解液12は、酸性物質及びアルカリ金属塩化物を含む水溶液とすることができる。また、電解液12は、塩酸と、塩化ナトリウム及び塩化カリウムのうち少なくとも一方とを含む水溶液であってもよい。このことにより、電解部5により、次亜塩素酸(HClO)、次亜塩素酸塩(NaClO、KClOなど)及びアルカリ金属塩化物を含む電解水18を生成することができる。
 例えば、電解部5における電解処理では、化学反応式(1)、(3)のような陽極反応が進行し、化学反応式(4)のような陰極反応が進行すると考えられる。また、化学反応式(2)のような反応が、電解部5内、希釈部20、電解水流路、攪拌部19などで進行すると考えられる。従って、電解部5で電解液が電解生成された直後の電解水18は、塩素ガス、水素ガスなどの気泡が塩素分子や水素分子が溶存した電解水に混合された気液混合流体となる。また、化学反応式(2)のような反応が進行すると、気泡は減少し電解水の次亜塩素酸類の濃度が高くなる。(2)の反応は比較的素早いので、生成した塩素分子の多くは電解部5の中で次亜塩素酸類に変換される。未変換の塩素分子は希釈部20で大量の水(H2O)に晒されるので電解水流路を流れる間に塩素ガスの気泡は殆ど消滅する。
 2Cl-→Cl2+2e-・・・(1)
 Cl2+H2O→HCl+HClO・・・(2)
 H2O→1/2O2+2H++2e-・・・(3)
 2H2O+2e-→H2+2OH-・・・(4)
 なお、アルカリ金属塩化物を含む水溶液を電気分解すると次亜塩素酸ナトリウム、次亜塩素酸カリウムなどの次亜塩素酸塩が生じ電解水18がアルカリ性となる場合があるが、本実施形態では電解液12が酸性物質を含むため、電解水18はほぼ中性となる。
 電解装置60により製造する電解水18のpHは、例えば、6.5~7.5とすることができる。また、電解水18のpHが6.5~7.5となるように電解液12のアルカリ金属塩化物と酸性物質との割合を調整することができる。
 更に、pHをより酸性にしたい場合は電解液12に含まれる酸性物質の割合や、電解部5への電解液12の供給量や、電解用電極1に印加する電圧や、電解用電極1を流れる電流量を、調整する事で、電解水18のpHを調整する事ができる。
 電解部5は、電解液供給部10から供給される電解液12が流入する流入口と、電解用電極対1による電解処理により生成された電解水18が流出する流出口とを有することができる。このことにより、電解部5により連続的に電解水18を製造することができる。この流出口から流出した電解水18は、希釈部20に流入してもよい。
 陽極3及び陰極4は、それぞれ板状とすることができ、陽極3と陰極4とが無隔膜で対向するように設けることができる。このことにより、電極間距離を短くすることができ、電解効率を向上させることができる。また、陽極3及び陰極4は、略平行で電極間距離が1mm~5mmの範囲内となるように配置することができる。
 電解用電極対1は、一枚の陽極3と一枚の陰極4とが対向するように設けられてもよく、陽極3と陰極4とが交互に間隔をおいて積層されるように設けられてもよく、複数の電極が積層され中間の電極の一方の面が陽極3となり他方の面が陰極4となるように設けられてもよい。
 電極対1は、陽極3が上側となり陰極4が下側となるように傾斜して配置されてもよい。なお、図11は、本実施形態の電解水生成器60に含まれる傾斜させた電極対1の説明図である。
 また、陽極3の電極面と陰極4の電極面との間に形成される電解液流路は、電解液12が下側から電解液流路に流入するように設けられ、かつ、電解液12が電極対1により電解され生成した次亜塩素酸類を含む電解水が電解液流路の上側から流出するように設けられてもよい。このことにより、陰極4の電極面で生じる気泡の浮上による流体の流れにより、陰極4付近の流体と陽極3付近の流体とを攪拌・混合することができ、陽極3における電極反応を促進することができると考えられる。このため、有効塩素濃度の高い電解水を生成することができる。
 また、陰極4を下側に配置し陰極4から陽極3に向かう流れを生じさせることにより、陽極反応により生じる塩素ガス、酸化性物質、次亜塩素酸などが陰極4の電極面を酸化することを抑制することができ、次亜塩素酸類を含む電解水を効率よく生成することができると考えられる。また、陰極4の電極面の酸化を抑制することができるため、陰極4にTi電極を利用することができ、電解装置60の製造コストを低減することができる。
 また、陰極4を下側に配置することにより陰極反応により生じる水素ガスが陰極4の電極面から脱離しやすくなるため、陰極4の電極面に気泡が滞留することによる陰極実効面積の低下を抑制でき、電解効率の低下を抑制することができる。また、陰極4にTi電極を用いた場合、Ti電極に水素分子が吸蔵され陰極4の反りが発生することを抑制することができる。
 電極対1は、鉛直方向に対する傾斜角度が10度以上85度以下となるように配置されてもよい。また、電極対1は、鉛直方向に対する傾斜角度が50度以上80度以下となるように配置されることが好ましい。このため、次亜塩素酸類を含む電解水を効率よく生成することができる。このことは、本発明者等が行った実験により実証された。また、電極対1を十分に傾斜して配置するため、電解装置60の高さを低くすることができ、安定して設置できる電解装置60を実現できる。このことにより、電解装置60の転倒などのリスクを低減することができる。
 陽極3は、実質的に長方形の電極面を有し、かつ、電極面の長手方向の一方の端が上側となり、他方の端が下側となるように配置されることが好ましい。また、陰極4は、実質的に長方形の電極面を有し、かつ、電極面の長手方向の一方の端が上側となり、他方の端が下側となるように配置されることが好ましい。このことにより、電解液流路を長くすることができ、電解効率を高くすることができる。
 電極対1は、陽極3と陰極4の間隔と、陽極3の電極面又は陰極4の電極面の長手方向の長さとの比が1:100~1:10となるように設けられることが好ましい。このことにより、陰極反応により生じた気泡が浮上して陽極3に近づくことができ、電解効率を高くすることができる。
 例えば、電解用電極対1は、チタン板からなる電極(Ti電極という)と、チタン板にイリジウムや白金を焼結法によりコーティングした電極(Pt-Ir被覆Ti電極という)とを含むことができる。また、Ti電極が陰極4となり、Pt-Ir被覆Ti電極が陽極3となるように電源部6と電解用電極対1とを接続することができる。
 電解用電極対1の下流側に検出部25を設けることができる。検出部25は、電解液供給部10から電解部5に供給される電解液12の供給量の減少を検出するように設けられる。また、検出部25は、電解用電極対1よりも高い位置に設けることができる。
 検出部25は、電解水18の電気的特性(電流、電圧、抵抗、静電容量など)を測定する検出用電極26であってもよく、電解水18の状態を光学的に検出する光検出部であってもよいが、検出用電極が簡単なシステムで好ましい。静電容量や光学的に検出する方法は非接触のため電解水による影響を考えなくてよいため検出手段として容易に採用できるが、別途特殊な部品や制御回路が必要になる。検出用電極の場合は、対象によって適切な電圧や電流の条件は異なり更に、本発明においては電解質を含む電解液が対象のため当業者の一般常識として電極による検出は困難と考えられており実用化されていなかった。つまり電解液が検出のための電圧または電流によって電解されてしまうので、電解液そのものの電気特性が得られない事、更に電解によって生成される電解水が反応性の液(例えば次亜塩素酸水や次亜塩素酸塩水のような酸化力のある液)の場合、電極自体が酸化されて変化すると考えられる事などから、安定性に欠けたり実用的な寿命が確保できなかったりすると考えられていた。そのため長期間常用するために生成器に搭載する用途として安価で長寿命な検出器を、電極を用いて実現する事は困難と考えられていた。実際に、発明者らの検討においても電極の設置位置と、設置位置の流路の大きさを適切に選ばなければならず、容易に発明には至らなかった。例えば流路中に電極を設置するために少し流路の断面積が大きな検出用エリアを設けた所、気液が分離されてしまい液膜が形成されずうまく液体(気泡と気泡の間の液膜)を検出できなかった)。また液膜が切れないように流路径を小さくしたり、電極間を狭めて設置したりした場合には、表面張力で電極間に液膜が張ったままになり、気泡を検出できなかった。いずれも明確な電流ピークが検出できず、定常状態と異常状態を早期に判別できなかった。
 タンク7に貯留した電解液12をポンプ8により電解部5に供給し電解水18を製造する場合、電解水18の製造を続けると、タンク7に貯留した電解液12が徐々に減少し、タンク7が空になる。タンク7が空になると、電解部5に電解液12が供給されなくなり、電極対1間に電解液12が減少したり、なくなったりする場合がある。または、タンク7が空でなくても、ポンプ8が故障したりタンク7と電解部5の間で液漏れが生じたりして、電解部5に電解液12が十分供給されなくなり、電極対1間に電解液12が減少したり、なくなったりする場合がある。このような状態において電極対1に電圧を印加すると、連続的に供給される電解液による冷却効果や生成した電解水と一緒に放出される熱がなくなるため電解部5内の熱が上昇したり、電極の一部にしか電流が流れないために定電流の場合は電流密度が高くなったりして、電解部5や電極対1が傷む場合がある。従って、電極対1間の電解液12の供給が不十分になったことを検出し、電極対1への電圧の印加を停止する必要がある。
 電極対1に供給する電圧や電流をモニタリングする事で電極対1間の電解液12の異常を検出し、供給が止まっているか不十分である事を検出できる。正常な供給が続いている通常の状態では、電圧と電流はその他の条件が一定であれば、おおよそ一定の状態を保つ。
 電極対1に共通電源また電解用電源から定電圧で電力を供給していれば供給が止まったり不十分だったりする場合には、温度上昇によって電解反応が促進されて電流値が上昇したのち、沸騰状態になって大量の気泡が発生する事で電流が流れにくくなって電流値が低下する。電極対1の間の電解液が蒸発すると電流が流れなくなる。したがって、電流値をモニタリングし、ある一定の電流値以上になれば過熱状態と判断して電圧印加を停止する事ができる。または、電流値の変化量を算出し得る一定以上の電流増大速度になれば異常な温度上昇が始まっていると判断してより事前に電圧印加を停止する事ができる。
 定電流で電力を供給していれば、供給が止まったり不十分だったりする場合には、温度上昇によって電解反応が促進されて電圧値が下降したのち、沸騰状態になって大量の気泡が発生する事で電流が流れにくくなって電圧値が上昇する。電極対1の間の電解液が蒸発すると定電流源が供給できる最大電圧でも電流が流れなくなる。したがって、電圧値をモニタリングし、ある一定の電圧値以下になれば過熱状態と判断して電圧印加を停止する事ができる。または、電圧値の変化量を算出し有る一定以上の電圧低下速度になれば異常な温度上昇が始まっていると判断してより事前に電圧印加を停止する事ができる。
 なお定電流の方が、外部環境が変化しても電解水の濃度が安定しており好ましい。
 検出部25を設けると、検出部25によりタンク7が空になったりポンプ8が不調だったりタンクと電解部の間の配管に漏れや詰まりが生じたことを検出することができ、電極対1への電圧の印加を早期に停止することができる。このため、電極対1が傷むことを抑制することができる。
 なお、タンク7が空になり電解部5に電解液12が十分に供給されなくなると、流路の高い箇所から電解液12又は電解水18がなくなっていく。従って、検出部25を電解用電極対1よりも高い位置に設けることにより、電解部5に電解液12が十分に供給されなくなったことを早期に検出することができる。
 図2(a)~(e)は、それぞれ本実施形態の電解装置60の一部の概略断面図である。検出用電極26は、例えば、図2(a)のように電解部5と希釈部20との間の配管に設けた電極対であってもよく、図2(b)のように電解部5内の流路に設けた電極対であってもよく、図2(c)のように電解用電極対1の上部に設けられた電極対であってもよい。また、検出部25は、図2(d)(e)のように、電解用電極対1に含まれる1つの電極と検出用電極26とで電解水18の電気的特性を測定するものであってもよい。
 電解用電極対1により電解液12を電気分解すると、化学反応式(1)~(4)のような化学反応が進行するため、電極対1により生成された電解水18は、気液混合流体となる。検出用電極26により気液混合流体の電気的特性を測定する場合、気泡が検出用電極26を通過すると電極間の電気抵抗は大きくなり電極間に流れる電流は大きくなる。また、液体が検出用電極26を通過すると電極間の電気抵抗は小さくなり電極間に流れる電流は小さくなる。このため、電解用電極対1により正常に電解水18が生成されている場合、検出用電極26で測定される電気抵抗などは、上下動する。従って、この上下動を検出することにより正常に電解水18が生成されていることを確認することができる。また、この上下動がなくなったことを検出することにより、タンクが空になったか、送液ポンプが故障したか、配管つまりが生じたか、液漏れを起こしているか等の異常を検出することができる。
 検出用電極26の電極間の幅は、例えば1mm~5mmとすることができる。このことにより、電解水18の流れを確認することができる。
 なお、ここでは検出用電極26を用いて電解水18の流れを検出しているが、検出部25は電解水18の流れを光学的に検出する光検出部であってもよい。
 図3は、第2実施形態の電解装置に含まれる検出システムAの説明図である。検出部25は、検出システムAのように異常時を検出するシステムを有することができる。検出システムAでは、電解用電極1の電圧または電流の許容範囲(設定値)に加えて、電解用電極1の電圧または電流またはその両方の経時変化の変化量に許容範囲を設ける。検出部25は、電解用電極1の電圧値または電流値の微分値(ここで微分値とは時間当りの平均変化量を指す)に基づき、異常時を検出することができる。なお、この場合、検出部25は、制御部6に含まれる。他の検出システムの検出部においても、制御部に含む方が一つの基板回路にまとめる事ができて、小型化及び低コスト化できるので好ましい。
 例えば、検知用の電極に定電流源または定電圧源が接続されており、その時の電圧値または電流値のある一定時間内での変化量を正常時と異常時で区別する事で異常を検出する。電圧または電流またはその両方の経時変化の変化量に許容範囲を設ける。つまり電圧値または電流値の微分値(ここで微分値とは時間当りの平均変化量を指し、傾きと言いかえる事もできる)を検出する。電圧値や電流値の検出方法は従来の方法で検出できる。微分値は、前記電圧値または電流値をある一定時間間隔でサンプリングし、差分を取る事で微分値とする事ができる。ただし、あまり短い時間だとノイズ等の影響で異常を誤検出してしまうので、例えば10秒~1分などの時間で差分を出す事が好ましい。
 本検出システムの検知用電極は、定常状態では微分値がほぼ0である事を利用している。例えば、電解用電極に比べて電解液の供給口に近い位置に検出用電極を備えていれば電解液の電気特性に応じた電圧と電流の関係が維持される。例えば電解液の供給が異常停止した場合、電解槽内でかつ電解液の供給口に近い位置に備えていれば、電解用電極により電解液の電解がすすんだ電解水の電気特定の電圧と電流の関係に近づいていく。この過程で、微分値が0でない状態が生じるので、異常を検出できる。電解槽よりもさらに電解液のタンクに近い配管内や配管途中に検知用電極を備える場合は、検知用電極付近の電解液が検知用電極によって電解が進む事で同様に微分値が0でない状態が生じるので異常を検出できる。
 電解用電極に比べて電解液の排出口に近い位置に検出用電極を備えていれば、電解水の電気特性に応じた電圧と電流の関係が維持される。例えば電解液の供給が異常停止した場合、電解槽内でかつ電解液の排出口に近い位置に備えていれば、電解用電極により電解液の電解が過剰にすすんだ電解水の電気特定の電圧と電流の関係に近づいていく。この過程で、微分値が0でない状態が生じるので、異常を検出できる。電解槽よりもさらに電解水の吐出口に近い配管内や配管途中に検知用電極を備える場合は、検知用電極付近の電解水が途切れるか、検知用電極によって電解が更に進む事で同様に微分値が0でない状態が生じるので異常を検出できる。
 電解用電極と同様の近い位置に検出用電極を備えていれば、電解中の電解液の電気特性に応じた電圧と電流の関係が維持される。例えば電解液の供給が異常停止した場合、電解用電極により電解液の電解が過剰にすすんだ電解水の電気特定の電圧と電流の関係に近づいていく。この過程で、微分値が0でない状態が生じるので、異常を検出できる。
 なお電解槽内に検知用電極を備える場合は、一部または全部を電解用電極と共用する事ができ、電源についても電解用電源と共用することもできる。
 図4~6は、第3実施形態の電解装置に含まれる検出システムBの説明図である。検出部25は、検出システムBのように異常時を検出するシステムを有することができる。検出システムBでは、電解用電極1とは別の検出用電極26を検出部25として備える。検出用電極26は電解用電極1より上方に備える。電解液の供給が途絶えたり不十分だったりする場合に検出用電極26付近の電気伝導度等の変化を検出する。具体的には電解部5内の電解液の水位が低下した時の電流値の低下を検出する。1対の検出用電極26を設けてもよいが、電解用電極1の片方を、電解用電極1と検出用電極26とで共用すると部品点数が少なくすむ。更に電源部も共用すると検出部用の電源を省く事ができる。電解用電極1でも水位低下によって、電極の有効面積が減るため電流値が下がったり、電圧値が上がったりするが、変化の割合(全体の値に対する変化値の割合)やS/N値が小さく、従来の方法と同様の問題ある。したがって、例えば電解用電極1の上の方にスリット設けて一部分離し、別途配線を設けてその配線を流れる電流値を測定することで異常を検出することができる。電流値は例えばシャント抵抗の電圧を測定するなど、従来の様々な方法で測定する事ができる。
 図7、8は、第4実施形態の電解装置に含まれる検出システムCの説明図である。検出部25は、検出システムCのように異常時を検出するシステムを有することができる。検出システムCでは、検出部25は、同様に検出用電極26を検出器として備えるが、電解用電極1より電解物質(電解液)の供給口(電解部の電解液供給口)に近い方に備える。これにより電解物質の電気特性と、電解生成物(電解水)の電気特性の違いを検出する事で、電解物質(電解液)の供給が途絶えたか不十分な事を検出できる。定常状態では電解物質(電解液)の電気特性に比較的近い値を得られるが、異常状態では電解生成物(電解水)の電気特性に比較的近い値となり、異常を検出できる。
 図9、10は、第5実施形態の電解装置に含まれる検出システムDの説明図である。検出部25は、検出システムDのように異常時を検出するシステムを有することができる。検出システムDでは、検出部25は、同様に検出用電極26を検出器として備えるが、電解用電極より電解生成物の排出口に近い方(電解の場合の電解部5の吐出口)または排出口、または排出口に繋がる配管または、配管の途中に備える。
 これにより電解生成物(電解水)が連続的に検出器に送られている正常時と、そうでない時(つまり電解水が送られていない時)の電気特性との違いを検出する事で、電解物質(電解液)の供給が途絶えた事を検出できる。また、電解液が送られていても、電解部が破損している等により、電解部から電解水が通常より排出されている量が少なかったり、全く排出されていなかったりするような異常も検出できる。
 更に電解生成物(電解水)が連続的に検出器に送られている正常時の電気特性と、電解物質(電解液)が送られている時の電気特性との、違いを検出する事で、電解物質(電解液)の供給が正常であっても、電解が不十分であったり電解できていなかったりするような異常を検出できる。
 また、検出用電極は、電解用の電極と少なくとも一部を兼ねる事ができる。この場合、部品点数が少なくなりコストが安くなるので実用性が高まり好ましい。更に検出用電極対は傾けて備えると検出感度が向上するので好ましい。更に電解槽は冷却システムの特に水冷システムを備えると更に好ましい。
 電解部内に、検出用電極対と電解用電極対が平行になるように備えるようにすると、検出用電極対と電解用電極対を保持するための保持部を電解部として同時に成型できるので低コスト化できる。更に検出用電極対と電解用電極対を共に平行に備える電解部を、傾けて設置する事で、検出感度の向上と電解効率の向上が同時に行えるので好ましい。更に水冷システムを備える事で、検出用電極と電解用電極の温度が安定化されるためと信頼性の高い検出システムと電解システムが実現される。これは物質の電気的特性や化学反応が一般に温度依存性を持つ事による。電極を用いる検出器は物質の電気的特性を利用し、電解は電気化学反応を利用しているため、温度が安定している方が好ましく、冷却システムを備える事が好ましい。
 希釈部20は、電解部5により生成した電解水18を水で希釈するように設けられる。このことにより、適切な有効塩素濃度を有する電解水18を生成することができ、この電解水18を吐出口14から吐出させることができる。
 また、電解部5により生成した電解水18を希釈部20で希釈することにより、製造する電解水18の量を多くすることができる。希釈に用いる水は例えば、水道水である。電解水18を水道水で希釈する場合、蛇口に接続した電磁弁23により水道水を希釈部20に供給することができる。電解液を希釈した後に電解する方法も可能であるが、希釈水の含まれるミネラル成分等が電解用電極に析出して電解能力が低下したり、希釈水に含まれる成分を電解してしまって電解水の濃度やpHがばらついたりする事がある。よって、本実施例のように電解部で電解液を電解した後に、水道水等の希釈水で希釈する事は好ましい。
 希釈部20は、電解部5で生成した電解水18の流れが希釈する水の流れに合流するように設けられてもよい。この場合、希釈部20は、実質的に水平方向に流れる水の流れに電解部5で生成した電解水18の流れが合流するように設けることができる。また、希釈部20は、希釈する水の流れにより生じるベンチュリー効果により電解部5で生成した電解水18が吸引されるように設けられてもよい。
 また、希釈部20は、電解部5で生成した電解水18及び希釈する水が流入する希釈槽において希釈するように設けられてもよい。
 希釈部20において希釈する水の量を変えることができるように電解装置60を設けてもよい。例えば、希釈部20に供給する水の量を変化させることができるように、電磁弁23を設けることができる。このことにより、有効塩素濃度の異なる電解水18を生成することができ、電解水18の用途により電解水の有効塩素濃度を変えることができる。
 また、通常濃度の電解水18と、高濃度の電解水18とを切り替えることができるように制御部6を設けることができる。制御部6は、電磁弁23を制御することにより電解水18の濃度を切り替えることができる。例えば、通常濃度の電解水18の有効塩素濃度は、15~25ppmとすることができ、高濃度の電解水18の有効塩素濃度は、45~55ppmとすることができる。
 更に切替式の電磁弁に替えて電動ニードルバルブを備える事は更に好ましい。電動ニードルバルブであれば、流量を連続的に変化させる事ができるので最大流量時の最低濃度から連続的に任意のより高い濃度の電解水を生成する事ができる。
 電解水18を希釈する水により電解部5を冷却する冷却部54を設けることができる。このことにより、電極の電気抵抗や電解液の液抵抗による発熱や電解部内で生じる各種化学反応の反応熱により電解部5の温度が高くなることを抑制することができ、電解効率が変化して濃度ばらつきを生じたり、熱によって電解部や電極の寿命が低下したりすることを抑制することができる。冷却部54は、例えば、希釈する水が流れる冷却水流路53とすることができる。これにより、冷却水が流れる流路を一体として電解部として製造する事ができ、余分な部品や取り付け作業が増える事を抑制できるので好ましい。
 図12は、第6実施形態の電解装置60の一部の概略断面図である。冷却水流路53は、例えば、図12のように、希釈部20の上流部に設けられた冷却水流入口56から水道水が冷却水流路53に流入し、電解用電極対1の周りを水道水が流れた後、希釈部20の下流部に設けられた冷却水流出口57から水道水が流出するように設けることができる。このように冷却水流路53を設けることにより、電解水18の希釈に用いる水道水を利用して電解部5を冷却することができる。
 冷却水流路53は、図12のように電解部5の構造部材52に設けられてもよく、電解部5の周りに設けられた配管であってもよい。
 電解装置60は、攪拌部19を備えることができる。攪拌部19は、希釈部20により希釈された電解水18が攪拌部19に流入し、攪拌部19から流出した電解水18が吐出口14に供給されるように設けられる。このような攪拌部19を備えることにより、電解部5及び希釈部20で次亜塩素酸類に転換しきれなかった塩素ガスを次亜塩素酸類に転換することができる。このことにより、吐出口14から吐出する電解水18のpHや有効塩素濃度を安定化することができ、安定した品質の電解水18を生成することができる。攪拌部19は、乱流が生じる水槽であってもよく、攪拌子を備えた攪拌槽であってもよい。
 攪拌部19はなくても構わないが、備える方が濃度がより安定する。また、万が一何らかの原因で、電解部5、希釈部20、電解水流路で、塩素分子が次亜塩素酸類に変換されないような事があっても、攪拌部19を備える事で塩素分子の次亜塩素酸類への変換が促進されるため塩素ガスの放出抑制及び次亜塩素酸濃度をより高める効果がある。例えば電解部5で生成される塩素ガスが電解部5内の水溶液に対して比較的大量であって希釈部20から吐出口までの電解水流路が極端に短い場合には未変換の塩素ガスが吐出される場合がある。このような場合には攪拌部19を備えて、電解水流路の実効長さを長くすると共に、塩素ガスの気泡を攪拌部19の乱流によって細かい気泡にして単位塩素ガス量当りの気泡表面積を増大するとともに、希釈水分子との接触回数を増やす事で、塩素ガスを効率よく次亜塩素酸類に変換できる。これにより塩素ガスが大気中に放出される事を抑制し、電解水の有効塩素濃度を高める事ができる。
 吐出口14は、注ぎ口部材24に接続することができる。このことにより、電解装置60で生成した電解水18を注ぎ口に供給することができ、この注ぎ口からバケツ51などに電解水18を注水することにより、電解水18をさまざまな用途に使用することが可能になる。例えば、注ぎ口部材24はフレキシブルホースとすることができる。なお、吐出口14が注ぎ口であってもよい。
 制御部6は、電解水生成部2を制御する。制御部6は、ポンプ8、電解用電極対1、電磁弁23又は検出用電極26と信号線又は電力供給線により接続することができる。また、制御部6は、検出部25を含んでもよい。また、制御部6は、検出用電極25に接続してもよく、検出用電極25と共に検出部25を構成してもよい。
 制御部6は、操作部11からの信号を入力できるように設けられる。操作部11は、操作ボタンであってもよく、タッチパネルであってもよい。また、操作部11は、制御部6と信号線で接続されてもよく、電解装置60を遠隔操作するものであってもよい。
電解水検出実験
 図2(c)かつ図10のような電解部5を作製し、電解用電極1で生成した電解水18を検出用電極26で検出する実験を行った。検出用電極の有効面の大きさは3mm×3mmで、電極間の距離は2mmである。また、電極の材料としては電解用の電極と同じものを使用した。実験結果を図13、14に示す。
 図13は、電解部5に供給された電解液12を電解用電極1により電気分解し電解水18を生成する際の検出用電極26の検出電流の変化を示したグラフである。電解水18が正常に生成されている場合、検出用電極26の検出電流は上下動することがわかった。また、検出電流が小さい状態が続く時間は5秒以下であることがわかった。これは、電気分解により生成した塩素ガスや水素ガスの気泡と、電解水とが交互に検出用電極26を通過するためと考えられる。従って、このような検出電流の上下動が生じているか否かを検出することにより、電解水18が正常に生成されているか否かを検出できることがわかった。また、検出電流が小さい状態が5秒以上続くことを検出することにより、電解部5に電解液12が供給されていないことを検出することができることがわかった。
 図14は、電解部5への電解液12の供給を停止した場合の検出用電極26の検出電流の変化を示したグラフである。電解液12の供給を停止すると、供給停止後約5秒で検出電流の上下動が測定されなくなった。このことから電解液12の供給停止を検出用電極26により早期に検出できることがわかった。
 同様に、図2(a)かつ図9のように電解部から吐出口までの配管中に検知用電極を備えた構造とする事もできる。配管の内径は約3mmとして実験を行った所、同様の結果が得られた。
 なお検出用の電極の引き出し端子(ポスト)は、供給口に近い方に設置する事が好ましい。このように設置すれば、端子部及び端子部近傍の電極は反応性の高い気体や濃度の高い電解水に晒される事が比較的少なくなるので端子及び端子と電極の接合部に不具合が生じにくい。
 本発明の電解装置に含まれる検出部は特に電解用電極を傾斜して用いる電解装置に適している。傾斜して設置した電解用電極は電解効率が向上する半面、電解液の供給状態の変化に対して生成される電解水の濃度が急激に変化しやすい。したがって、早期に異常検出できる本発明の検出部を用いる事は好ましい。更に、検知用電極も傾斜して備える方が感度が良くなるため、傾斜した電解用電極と傾斜した検知用電極を備える電解装置は、電解性能とともに安全性や信頼性を高くすることができる。
有効塩素濃度測定実験
 図1に示した電解装置60に含まれる電解部5のような電解装置を作製し電極対1の鉛直方向に対する傾斜角度を変化させて電解実験を行った。電極対1には、長辺8cm、短辺3cmの1mm厚のチタン板からなる電極(Ti電極という)と、長辺8cm、短辺3cmの1mm厚のチタン板に白金とイリジウムを焼結法によりコーティングした電極(Pt-Ir被覆Ti電極という)とを用いた。Ti電極とPt-Ir被覆Ti電極とが略平行で電極間距離が1mm~5mmの範囲内となるように電極対1を塩化ビニル樹脂製の構造部材20に固定し電解装置を作製した。また、Ti電極が陰極となり、Pt-Ir被覆Ti電極が陽極となるように電源装置と電極対1とを接続した。
 電極対1の鉛直方向に対する傾斜角度が約-80度~約+80度となるように、設置角度を変えて作製した電解装置を設置し、電解液流路7に2~4%の塩化ナトリウムと0.3~0.4%の塩酸の混合水溶液を下側から一定流量で供給した。なお、電極対1が鉛直であるとき傾斜角度は0度であり、Pt-Ir被覆Ti電極(陽極)が上側となるように電極対1を傾斜させたとき傾斜角度はプラスの角度であり、Pt-Ir被覆Ti電極が下側となるように電極対1を傾斜させたとき傾斜角度はマイナスの角度である。
 そして、電源装置により電極対1に5Aの定電流を供給し、塩化ナトリウムと塩酸の混合水溶液を電解処理した。また、印加電圧は、約4~5Vの間であった。また、電解処理後の水溶液の有効塩素濃度(mg/L)の測定を行った。有効塩素濃度の測定法は酸化による呈色反応により評価したので、本実施例における有効塩素濃度は、酸化力のある全反応性物質の量を有効塩素濃度として評価した値を指す。
 有効塩素濃度実験の測定結果を図15に示す。なお、図15に示した有効塩素濃度は、1L希釈に規格化した場合の有効塩素濃度である。本結果によると、陽極であるPt-Ir被覆Ti電極が上側となるように電極対1を傾けると、傾斜角度が20度~85度の範囲で電解処理後の水溶液の有効塩素濃度を高めることができ特に50度~80度が高かった。
 逆に、陽極であるPt-Ir被覆Ti電極が下側となるように電極対1を傾けると、電解処理後の水溶液の有効塩素濃度は低下した。
 従って、電極対1を陽極が上側となり陰極が下側となるように傾斜して配置することにより、生成する電解水の有効塩素濃度を高くすることができることがわかった。
 また、0度付近よりマイナス側では少しの角度変化で大きく有効塩素濃度が低下する。したがって0度よりプラス側、すなわち電極対1を陽極が上側となり陰極が下側となるように傾斜して配置しておいた方が、設置角度のばらつきに対して安定的であり、有効塩素濃度も高くできるので、実用上好ましく、特に20度以上80度以下が更に好ましい。
 1: 電解用電極又は電解用電極対  2:電解水生成部  3:陽極  4:陰極  5:電解部  6:制御部・電源部  7:電解液タンク  8:電解液用ポンプ  10:電解液供給部  11:操作部  12:電解液  14:吐出口  18:電解水  19:攪拌部  20:希釈部  23:電磁弁  24:注ぎ口部材  25:検出部  26:検出用電極  28:筐体  41:水道水流入口  42:電解液流入口  51:バケツ  52:構造部材  53:冷却水流路  54:冷却部  56:冷却水流入口  57:冷却水流出口  60:電解装置

Claims (17)

  1.  供給される電解物質を電気分解し電気分解生成物を排出するように設けられた電解部と、検出部とを備え、
    前記電解部は、電解用電極を備え、
    前記検出部は、前記電解物質又は前記電気分解生成物又はその両方の混合物の電気的特性を測定する検出用電極を備え、かつ、前記電解部に供給される電解物質の供給量の減少又は前記電解部から排出される電気分解生成物の排出量の減少を検出することを特徴とする電解装置。
  2.  前記検出用電極は、前記電解用電極の上方に設けられた請求項1に記載の電解装置。
  3.  前記検出用電極は、前記電解用電極よりも上流側に設けられた請求項1又は2に記載の電解装置。
  4.  前記検出用電極は、前記電解用電極よりも下流側に設けられ、かつ、前記電解部中又は前記電解部に接続した配管中に設けられた請求項1又は2に記載の電解装置。
  5.  前記検出用電極は、少なくとも一組の電極対を備え、
    前記検出用電極の電極対の一方の電極は、前記電解用電極と電気的に接続した請求項1~4のいずれか1つに記載の電解装置。
  6.  前記検出用電極は、少なくとも一組の電極対を備え、
    前記検出用電極の電極対の一方の電極は、前記電解用電極と一体として成形された請求項1~5のいずれか1つに記載の電解装置。
  7.  前記電解用電極及び前記検出用電極は、傾斜して配置されるように設けられた請求項1~6のいずれか1つに記載の電解装置。
  8.  前記電解物質は、電解液であり、
    前記電解部は、電解液を電気分解し次亜塩素酸類を含む電解水を生成する請求項1~7のいずれか1つに記載の電解装置。
  9.  前記検出用電極は、電解液の電気分解により生成した気体と電解水との気液混合流体の電気的特性を測定するように設けられた請求項8に記載の電解装置。
  10.  電解物質を電気分解する電解部と検出部とを備え、
    前記電解部は、電解用電極を備え、
    前記検出部は、前記電解用電極に印加する電流―電圧特性の経時変化の変化量に基づき、前記電解部に供給される電解物質の供給量の減少を検出することを特徴とする電解装置。
  11.  前記検出部は、前記電解用電極に印加された電圧の変化量の微分値又は前記電解用電極を流れる電流の変化量の微分値に基づき、前記電解部に供給される電解物質の供給量の減少を検出する請求項10に記載の電解装置。
  12.  前記電解物質は、電解液であり、
    前記電解部は、電解液を電気分解し次亜塩素酸類を含む電解水を生成する請求項10又は11に記載の電解装置。
  13.  電解液供給部をさらに備え、
    前記電解液供給部は、タンクに貯留した電解液を前記電解部に供給するように設けられた請求項8、9及び12のいずれか1つに記載の電解装置。
  14.  前記電解部により生成された電解水を希釈する希釈部をさらに備える請求項8、9、12及び13のいずれか1つに記載の電解装置。
  15.  前記電解部を冷却する冷却部をさらに備え、
    前記冷却部は、電解水を希釈する水により前記電解部を冷却するように設けられた請求項14に記載の電解装置。
  16.  前記電解液は、酸性物質及びアルカリ金属塩化物を含む水溶液である請求項8、9、12~15のいずれか1つに記載の電解装置。
  17.  前記酸性物質は、塩酸であり、
    前記アルカリ金属塩化物は、塩化ナトリウム及び塩化カリウムのうち少なくとも一方である請求項16に記載の電解装置。
PCT/JP2015/073563 2015-04-28 2015-08-21 電解装置 WO2016174782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580079281.7A CN107849712A (zh) 2015-04-28 2015-08-21 电解装置
US15/570,293 US20180135192A1 (en) 2015-04-28 2015-08-21 Electrolysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-091729 2015-04-28
JP2015091729A JP5980373B1 (ja) 2015-04-28 2015-04-28 電解装置

Publications (1)

Publication Number Publication Date
WO2016174782A1 true WO2016174782A1 (ja) 2016-11-03

Family

ID=56820030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073563 WO2016174782A1 (ja) 2015-04-28 2015-08-21 電解装置

Country Status (4)

Country Link
US (1) US20180135192A1 (ja)
JP (1) JP5980373B1 (ja)
CN (1) CN107849712A (ja)
WO (1) WO2016174782A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963869B2 (ja) * 2017-09-04 2021-11-10 マクセル株式会社 電解水生成装置
JP7129941B2 (ja) * 2019-04-12 2022-09-02 日立造船株式会社 水電解装置の性能回復方法及び水電解装置
CN110937666A (zh) * 2019-12-17 2020-03-31 中国科学院过程工程研究所 一种阳极保护式自动除垢的电解含盐有机废水装置
JP7340744B2 (ja) * 2020-02-10 2023-09-08 パナソニックIpマネジメント株式会社 携帯用電解水噴霧器
KR102598488B1 (ko) * 2023-05-10 2023-11-06 (주) 아큐스 차염발생기 안전시스템

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130386A (ja) * 1989-10-16 1991-06-04 Permelec Electrode Ltd 電気化学反応における電圧監視方法及び装置
JPH04247892A (ja) * 1990-12-28 1992-09-03 Japan Atom Energy Res Inst 固体電解質電解槽
JPH11128940A (ja) * 1997-10-30 1999-05-18 First Ocean Kk 水電気分解装置及び水電気分解方法
JP2000265289A (ja) * 1999-03-15 2000-09-26 Chlorine Eng Corp Ltd 次亜塩素酸塩の製造装置および製造方法
JP2003190998A (ja) * 2001-12-27 2003-07-08 Kitagawa Iron Works Co Ltd 生コンクリートスラッジ水の脱水処理方法
JP2003190953A (ja) * 2001-12-25 2003-07-08 Morinaga Milk Ind Co Ltd 電解殺菌水製造装置
JP2004010904A (ja) * 2002-06-03 2004-01-15 Permelec Electrode Ltd 過酸化水素製造用電解セル
JP2004223419A (ja) * 2003-01-23 2004-08-12 Fuji Electric Retail Systems Co Ltd 塩素濃度制御装置
JP2006150320A (ja) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd 排水加熱分解システム
JP2006349450A (ja) * 2005-06-15 2006-12-28 Atago:Kk 濃度測定装置
JP2007007632A (ja) * 2005-06-28 2007-01-18 Hokuetsu:Kk 電解水生成装置
JP2007313489A (ja) * 2006-05-23 2007-12-06 Hokuetsu:Kk 殺菌用水製造装置
JP2008127621A (ja) * 2006-11-20 2008-06-05 Nikka Micron Kk オゾン水生成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474879A (ja) * 1990-07-16 1992-03-10 Permelec Electrode Ltd 次亜塩素酸塩製造用電解装置
JP3491705B2 (ja) * 1994-11-11 2004-01-26 株式会社ブイエムシー オゾン水センサー
JPH111790A (ja) * 1997-06-06 1999-01-06 First Ocean Kk 水の電気分解用電極
JP2002119969A (ja) * 2000-10-16 2002-04-23 Hoshizaki Electric Co Ltd 電解水生成装置
JP3843450B2 (ja) * 2002-02-20 2006-11-08 株式会社モリタ東京製作所 電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置
JP4353772B2 (ja) * 2003-11-07 2009-10-28 三洋電機株式会社 電解水生成装置
CN102560532A (zh) * 2010-12-29 2012-07-11 中国瑞林工程技术有限公司 电解槽状态检测系统
JP2015054996A (ja) * 2013-09-12 2015-03-23 パナソニック株式会社 オゾン水生成装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130386A (ja) * 1989-10-16 1991-06-04 Permelec Electrode Ltd 電気化学反応における電圧監視方法及び装置
JPH04247892A (ja) * 1990-12-28 1992-09-03 Japan Atom Energy Res Inst 固体電解質電解槽
JPH11128940A (ja) * 1997-10-30 1999-05-18 First Ocean Kk 水電気分解装置及び水電気分解方法
JP2000265289A (ja) * 1999-03-15 2000-09-26 Chlorine Eng Corp Ltd 次亜塩素酸塩の製造装置および製造方法
JP2003190953A (ja) * 2001-12-25 2003-07-08 Morinaga Milk Ind Co Ltd 電解殺菌水製造装置
JP2003190998A (ja) * 2001-12-27 2003-07-08 Kitagawa Iron Works Co Ltd 生コンクリートスラッジ水の脱水処理方法
JP2004010904A (ja) * 2002-06-03 2004-01-15 Permelec Electrode Ltd 過酸化水素製造用電解セル
JP2004223419A (ja) * 2003-01-23 2004-08-12 Fuji Electric Retail Systems Co Ltd 塩素濃度制御装置
JP2006150320A (ja) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd 排水加熱分解システム
JP2006349450A (ja) * 2005-06-15 2006-12-28 Atago:Kk 濃度測定装置
JP2007007632A (ja) * 2005-06-28 2007-01-18 Hokuetsu:Kk 電解水生成装置
JP2007313489A (ja) * 2006-05-23 2007-12-06 Hokuetsu:Kk 殺菌用水製造装置
JP2008127621A (ja) * 2006-11-20 2008-06-05 Nikka Micron Kk オゾン水生成装置

Also Published As

Publication number Publication date
JP5980373B1 (ja) 2016-08-31
CN107849712A (zh) 2018-03-27
US20180135192A1 (en) 2018-05-17
JP2016204731A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5980373B1 (ja) 電解装置
KR101980383B1 (ko) 전기분해식 온-사이트 발전기
JP5913595B2 (ja) オゾン化水を生じさせて送り出すハブと取り外し可能なカートリッジ
US20110189302A1 (en) Electrochemical device
WO2012121270A1 (ja) 硫酸電解装置及び硫酸電解方法
JP6620321B2 (ja) 電解水生成器
EP3321234A1 (en) Method for controlling the operation of a salt water chlorinator and salt water chlorination system with control of the operating state of the chlorinator based on said method
WO2016174783A1 (ja) 電解水生成器
JP2007313489A (ja) 殺菌用水製造装置
TWI383956B (zh) 電解水生成/稀釋供給裝置
JP2000218271A (ja) 電解装置
CN208071826U (zh) 一种水溶液电解控制系统及水溶液电解系统
JP6521385B6 (ja) 電解水生成器
JP5244038B2 (ja) 電解水混合装置
CN208071825U (zh) 一种水溶液电解控制系统及水溶液电解系统
JP2016215123A (ja) 電解水生成器
WO2018100354A1 (en) Electrochemical cell assembly and method for operation of the same
TW201413059A (zh) 氟氣生成裝置及氟氣生成裝置之控制方法
JP3225980U (ja) 殺菌水の製造装置
JP2021066931A (ja) 電解装置
KR102705352B1 (ko) Tro 측정기기, 전기분해장치 및 이를 이용한 선박평형수 처리시스템
JP2018083132A (ja) 殺菌水の製造方法と製造装置
CN108541251B (zh) 电解水生成装置
JP4007322B2 (ja) 電解水生成装置
JP2023173329A (ja) オゾン水製造装置およびオゾン水の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570293

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890765

Country of ref document: EP

Kind code of ref document: A1