WO2016173421A1 - 用于混合动力系统的冷却循环系统、汽车 - Google Patents

用于混合动力系统的冷却循环系统、汽车 Download PDF

Info

Publication number
WO2016173421A1
WO2016173421A1 PCT/CN2016/079563 CN2016079563W WO2016173421A1 WO 2016173421 A1 WO2016173421 A1 WO 2016173421A1 CN 2016079563 W CN2016079563 W CN 2016079563W WO 2016173421 A1 WO2016173421 A1 WO 2016173421A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
water pump
cycle
branch
Prior art date
Application number
PCT/CN2016/079563
Other languages
English (en)
French (fr)
Inventor
狄杰
梅近仁
薛剑波
Original Assignee
舍弗勒技术股份两合公司
狄杰
梅近仁
薛剑波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 狄杰, 梅近仁, 薛剑波 filed Critical 舍弗勒技术股份两合公司
Publication of WO2016173421A1 publication Critical patent/WO2016173421A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present invention relates to the field of vehicles, and in particular to a cooling cycle system and an automobile for a hybrid power system.
  • the power source includes an internal combustion engine and an electric motor.
  • the hybrid vehicle is usually equipped with a cooling circulation system that uses the coolant to flow through the internal combustion engine or the electric motor to dissipate the heat generated during its operation.
  • the cooling duct for cooling the motor is thinner, and the cooling duct for cooling the internal combustion engine is much coarser.
  • the existing method is to place the internal combustion engine and the electric motor in two cooling circulation systems respectively, and the two cooling circulation systems independently work without affecting each other, so that the heat generated by the internal combustion engine cannot be used for preheating the motor, and at the same time, the heat generated by the motor It cannot be used to preheat the internal combustion engine, resulting in waste of energy.
  • the invention provides a new cooling circulation system for a hybrid power system, in which the internal combustion engine and the motor are placed in the same cooling cycle system and the heat is realized while ensuring the thickness of the cooling pipe and without increasing the equipment and control costs. Effective use.
  • the present invention provides a cooling cycle system for a hybrid power system in which an internal combustion engine and an electric motor are provided;
  • the cooling circulation system includes a first water pump and a second water pump connected in parallel;
  • the cooling circulation system includes: a first cycle: a coolant flows out from the first water pump, sequentially flows through the motor, the internal combustion engine, and then returns to the first water pump; a second cycle: a coolant from the second water pump Flowing out, flowing back to the second water pump after flowing through the internal combustion engine.
  • the flow rate of the first water pump is smaller than the flow rate of the second water pump.
  • the cooling circulation system further includes a first heat sink located in the first cycle; in the first cycle, the coolant flowing through the motor flows through the first heat sink, back To the first water pump.
  • an output temperature of the first heat sink is adapted to an operating temperature of the motor.
  • the first heat sink is not located in the second loop.
  • the cooling circulation system further includes a second heat sink located in the second cycle; in the second cycle, the coolant flowing through the internal combustion engine flows through the second heat sink, back To the second water pump.
  • an output temperature of the second heat sink is adapted to an operating temperature of the internal combustion engine.
  • the second heat sink is further located in the first cycle; in the first cycle, the coolant flows through the second heat sink, the first heat sink, and then returns to the Said the first pump.
  • the second cycle has a first branch and a second branch connected in parallel between the internal combustion engine and the second water pump, and the coolant flows into the first branch or the first after flowing through the internal combustion engine a second branch, then returning to the second water pump; the second radiator is located in the first branch; the cooling circulation system further comprising means for controlling the first branch and the second branch An open/close thermostat for controlling the first branch to be closed and the second branch to open when the internal combustion engine is just started or closed.
  • the second cycle further includes a third branch between the internal combustion engine and the second water pump, in parallel with the first branch and the second branch, after the coolant flows through the internal combustion engine And flowing into the third branch and then returning to the second water pump; the third branch is provided with a heat exchanger for transferring heat in the coolant to the passenger compartment.
  • the hybrid system further includes a motor controller and/or a battery connected to the motor, and the first cycle of coolant also flows through the motor controller and/or the battery.
  • the coolant flows to the motor after flowing through the motor controller and/or the battery.
  • the present invention also provides an automobile comprising the cooling cycle system of any of the above.
  • a first water pump and a second water pump connected in parallel are arranged in the cooling circulation system, the flow rate of the first cycle is controlled by the first water pump for cooling the motor, and the flow rate of the second water pump is controlled by the second water pump for cooling the internal combustion engine.
  • the internal combustion engine and the electric motor are placed in the same cooling cycle system, and the heat generated by the motor can be used to preheat the internal combustion engine, and the heat generated by the internal combustion engine is used to preheat the motor so that the internal combustion engine and the motor can work at a suitable temperature.
  • the energy can be fully utilized; on the other hand, the pump with different flow rates can be selected according to the requirements of the internal combustion engine and the motor, and it is not necessary to thicken the cooling pipe passing through the motor due to excessive flow.
  • Figure 1 is a block diagram 1 of the cooling cycle system of the present invention, showing the flow direction of the coolant in the pure electric mode;
  • Figure 2 is a block diagram 2 of the cooling cycle system of the present invention, showing the flow direction of the coolant in the internal combustion engine mode;
  • Figure 3 is a block diagram 3 of the cooling cycle system of the present invention showing the flow direction of the coolant in the hybrid mode.
  • Embodiments of the present invention provide a cooling cycle system for a hybrid power system.
  • an internal combustion engine and an electric motor are disposed in the hybrid power system, and the cooling cycle system includes a first water pump and a second water pump connected in parallel.
  • the cooling cycle system mainly consists of two cycles:
  • the first cycle the first water pump is turned on, the coolant flows out from the first water pump, flows through the motor and the internal combustion engine in turn, and returns to the first water pump. That is to say, in the first cycle, in the direction of the coolant flow, the first water pump, the motor, and the internal combustion engine are connected in series.
  • the work of the first cycle and the second cycle is determined according to the working mode of the car.
  • the first water pump in the pure electric mode, the first water pump is turned on to run the first cycle; in the internal combustion engine mode, the second water pump is turned on to run the second cycle; in the hybrid mode, the first water pump and the second water pump are turned on, and the operation is performed.
  • the pure electric mode in the pure electric mode, the first water pump is turned on to run the first cycle; in the internal combustion engine mode, the second water pump is turned on to run the second cycle; in the hybrid mode, the first water pump and the second water pump are turned on, and the operation is performed.
  • the first water pump in the pure electric mode, the first water pump is turned on to run the first cycle; in the internal combustion engine mode, the second water pump is turned on to run the second cycle; in the hybrid mode, the first water pump and the second water pump are turned on, and the operation is performed.
  • the first water pump and the second water pump are connected in parallel in the cooling circulation system, and the flow rate of the first cycle is controlled by the first water pump, used to cool the motor, and the second water pump control
  • the flow of the second cycle is used to cool the internal combustion engine.
  • the internal combustion engine and the electric motor are placed in the same cooling cycle system, and the heat generated by the motor can be used to preheat the internal combustion engine, and the heat generated by the internal combustion engine is used to preheat the motor to make full use of energy; on the other hand, according to the internal combustion engine,
  • the motor needs to use pumps with different flow rates. It is not necessary to thicken the cooling pipes passing through the motor due to excessive flow.
  • the motor In the pure electric mode, as shown in Fig. 1, the motor is used as a power source to drive the vehicle, and the internal combustion engine does not work. At this time, only the motor needs to be cooled and cooled, so only the first cycle needs to be run. Correspondingly, the first water pump operates and the second water pump does not work.
  • the flow direction of the coolant is as shown by the hollow arrow in FIG.
  • the internal combustion engine is also in the first cycle, and although the internal combustion engine does not operate, the coolant flows through the internal combustion engine.
  • the advantage of this arrangement is that the coolant can bring the heat generated by the motor to the internal combustion engine through the coolant and preheat the internal combustion engine.
  • the wear of the internal combustion engine at low temperatures is very strong, mainly because the oil in the internal combustion engine will become thicker at low temperatures, the lubricity will be worse, and the fluidity will be poor. It takes a while for the oil to reach the part of the internal combustion engine that needs lubrication. During the period of time, the internal combustion engine will be in a dry friction state and the wear will be severe. Preheating can increase the temperature of the oil in the internal combustion engine, enhance its lubricity and fluidity, and reduce wear during starting of the internal combustion engine.
  • a battery for supplying electric power to the motor and a PEU (motor controller) for controlling the operation of the motor are generally provided.
  • the battery and the PEU are also disposed in the first cycle.
  • the coolant also flows through the battery and the PEU for cooling the two components.
  • the coolant flows through the battery and the PEU and then flows through the motor and the internal combustion engine. Therefore, the coolant can bring the heat generated by the battery and the PEU to the motor. And the internal combustion engine, participating in the preheating of the motor and the internal combustion engine. That is to say, in the first cycle, the battery and the PEU are located in series between the first water pump and the motor. In other embodiments, the battery and the PEU may also be connected in series between the motor and the internal combustion engine. At this time, the heat generated by the battery and the PEU will be transmitted to the internal combustion engine to participate in the warm-up of the internal combustion engine without participating in the preheating of the motor.
  • the internal combustion engine In the internal combustion engine mode, as shown in Fig. 2, the internal combustion engine is used as a power source for driving the vehicle to travel, and the motor does not work. At this time, only the internal combustion engine needs to be cooled and cooled, so only the second cycle needs to be operated. Correspondingly, the second water pump operates, the first water pump may not operate, and the coolant flows out of the second water pump, and the flow direction is indicated by a hatched arrow in FIG.
  • the vehicle For a hybrid vehicle, the vehicle is generally driven by a motor when it is started, and when the vehicle reaches a certain speed, it is driven by the internal combustion engine. Therefore, referring to FIG. 2, the hollow dotted arrow in FIG. 2 indicates that when the motor is turned off and the internal combustion engine is just started, it may be necessary to continue to preheat the internal combustion engine at this time, and the motor has remaining heat, so the first cycle will continue. Short run. When the internal combustion engine is started, it is not necessary to preheat it. When the first water pump stops working, the first cycle is closed.
  • the first water pump can be shut down immediately after the motor is turned off, first. The loop stops running.
  • the first water pump is also in an open state, and the first cycle is also operated.
  • the coolant can bring the heat generated by the internal combustion engine to the battery, the PEU and the motor through the first cycle when the internal combustion engine is operating.
  • the components such as the motor can be prevented from solidifying due to the temperature being too low, and the discharge current of the motor at the time of starting is too small, resulting in difficulty in starting.
  • the internal combustion engine mode may also be set, the first water pump is turned off, and the first cycle is stopped.
  • the hollow arrows in Fig. 3 indicate the flow direction of the coolant in the first cycle
  • the shaded arrows indicate the flow direction of the coolant in the second cycle.
  • the cooling circulation system further includes a first heat sink located in the first cycle.
  • the coolant flowing through the motor flows through the first radiator and returns to the first water pump.
  • the first cycle is running, the coolant passes through the motor, passes through the first radiator, and then returns to the first pump.
  • the cooling liquid is cooled to a suitable temperature by the heat dissipation of the first radiator, and is recycled.
  • the output temperature of the first heat sink is adapted to the operating temperature of the motor to ensure that the motor is at a suitable operating temperature to maintain its normal operation.
  • the first radiator may be connected in series to any position between the motor and the first water pump, which may be located in the second cycle or not in the second cycle.
  • the first heat sink is not placed in the second cycle. This is because the operating temperature of the internal combustion engine is generally much higher than the operating temperature of the motor, and the output temperature of the first radiator is adapted to the motor, in other words, lower than the operating temperature of the internal combustion engine, if the first radiator is placed in the second cycle. In this case, the temperature of the coolant in the second cycle is lowered, which in turn affects the operating temperature of the internal combustion engine.
  • the first radiator may also be in two cycles at the same time, and the coolant in the first cycle and the second cycle passes through the first radiator; If there are other measures to ensure the operating temperature of the motor, the first radiator can also be located in two cycles at the same time, in which case the output temperature of the first radiator can be set to be compatible with the operating temperature of the internal combustion engine.
  • the cooling circulation system further includes a second heat sink located in the second cycle.
  • the coolant flowing through the internal combustion engine flows through the second radiator and returns to the second water pump.
  • the second cycle is running, and the heat generated by the internal combustion engine is brought to the second radiator through the cooling liquid, and the temperature of the coolant is lowered by the heat dissipation of the second radiator, and then returned to the second water pump.
  • the output temperature of the second radiator is adapted to the operating temperature of the internal combustion engine to ensure that the internal combustion engine can operate at a suitable temperature.
  • the second radiator may be located in series at any position between the internal combustion engine and the second water pump.
  • the second heat sink is simultaneously disposed in the first cycle, and the coolant in the first cycle sequentially flows through the second heat sink and the first heat sink and returns to the first water pump. It can be seen that the coolant of the first cycle and the second cycle passes through the second radiator.
  • the coolant passes through the second radiator and returns to the second water pump, and then recirculates through the internal combustion engine to ensure the operating temperature of the internal combustion engine.
  • the coolant passes through the second radiator, the first radiator, and then returns to the first water pump, and then recirculates through the motor to ensure the operating temperature of the motor.
  • the internal combustion engine and the motor work at the same time, the generated heat is high, and the temperature of the coolant after passing through the internal combustion engine is also high.
  • the coolant returning to the first water pump sequentially passes through the second radiator and the first heat dissipation.
  • the device can improve the heat dissipation efficiency and ensure the return to the coolant temperature of the first water pump, thereby ensuring the operating temperature of the motor.
  • the second cycle in the flow direction of the coolant, has a first branch and a second branch connected in parallel between the internal combustion engine and the second water pump, and the coolant flows through the internal combustion engine and flows into the first branch. Road or second branch, then return to the second pump.
  • the second radiator is located in the first branch, and the second branch does not flow through the second radiator.
  • the cooling cycle system further includes a thermostat for controlling opening and closing of the first branch and the second branch, and the coolant flows into the first branch or the second branch after flowing through the internal combustion engine.
  • the first branch and the second branch have a common inlet end, and the thermostat is located at the common inlet end of the first branch and the second branch, thereby simultaneously controlling the first branch and the second branch through a thermostat The road is opened or closed.
  • the thermostats may be respectively disposed in the first branch and the second branch, and the on/off of the first branch and the second branch may be controlled by the respective thermostats.
  • the first control of the thermostat is controlled.
  • the coolant flows through the internal combustion engine and the thermostat in turn and returns directly to the second water pump without flowing through the second radiator.
  • the internal combustion engine is turned off, generally does not include the time when the internal combustion engine is normally operated for a certain period of time, just after the shutdown and has not stopped rotating. Because the temperature of the internal combustion engine is still high at this time, the internal combustion engine needs to be dissipated, and the thermostat causes the cooling water to flow through the second. Return to the second pump after the radiator (instead of flowing directly back to the second pump) to prevent the internal combustion engine from overheating.
  • the thermostat controls the first branch to open and the second branch to close, then the coolant flows through the internal combustion engine, the thermostat, and the second Return to the second pump after the radiator.
  • the second cycle further has a third branch between the internal combustion engine and the second water pump, and the third branch is connected in parallel with the first branch and the second branch to cool After flowing through the internal combustion engine, it also flows into the third branch and then returns to the second pump.
  • a heat exchanger is provided in the third branch for transferring heat from the coolant to the passenger compartment to provide heat to the passenger compartment for heating of the passenger compartment. It can be seen that a part of the coolant flowing through the internal combustion engine can sequentially pass through the internal combustion engine and the heat exchanger to return to the second water pump. At this time, the heat in the coolant may be either an electric motor or an internal combustion engine.
  • An embodiment of the present invention also provides an automobile comprising the cooling cycle system of any of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种用于混合动力系统的冷却循环系统、汽车,混合动力系统中设有内燃机、电机;冷却循环系统包括并联的第一水泵和第二水泵;冷却循环系统包括:第一循环:冷却液从第一水泵流出,依次流经电机、内燃机后回到第一水泵;第二循环:冷却液从第二水泵流出,流经内燃机后回到第二水泵。内燃机、电机置于同一冷却循环系统中,可以用电机产生的热量来预热内燃机,用内燃机产生的热量预热电机,使内燃机、电机都能在合适的温度下工作,同时能量能够得到充分利用;另一方面,可以根据内燃机、电机的需求选用具有不同流量的水泵,不需要因流量过大而加粗经过电机的冷却管道。

Description

用于混合动力系统的冷却循环系统、汽车
本申请要求2015年04月29日提交中国专利局、申请号为201510212543.4、发明名称为“用于混合动力系统的冷却循环系统、汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆领域,具体涉及一种用于混合动力系统的冷却循环系统、汽车。
背景技术
混合动力车中,动力源包括内燃机和电机。为了确保内燃机和电机能够在适宜的温度下工作,混合动力车中通常配备有冷却循环系统,利用冷却液流过内燃机或电机的方式,将其工作时产生的热量散发出去。
其中,由于电机工作产生的热量相对于内燃机来说要少很多,因此用于冷却电机的冷却管道较细,而用于冷却内燃机的冷却管道则粗得多。
现有一种做法是将内燃机和电机分别置于两个冷却循环系统中,两个冷却循环系统各自独立工作,互不影响,导致内燃机产生的热量不能用于预热电机,同时,电机产生的热量也不能用于预热内燃机,造成能量的浪费。
还有一些做法是将内燃机和电机置于一个冷却循环系统中,此时水泵的流量应当满足内燃机的要求。但由于水泵的流量一般不可调,那么例如在纯电动模式下,将会有大流量的冷却液流经电机,导致流经电机的冷却管道需要加粗,从而提高了成本。如果保持冷却管道粗细不变,则可能需要考虑增加分流管道,在需要分流时控制分流管道打开、以对冷却液进行分流,当不需要分流时控制分流管道关闭。但这一方面,由于需要设置控制管道通断的控制阀,从而增加了设备成 本;另一方面,由于需要控制器来控制管道的通断,从而也提高了控制复杂度和控制成本。
发明内容
本发明提供一种新的用于混合动力系统的冷却循环系统,在保证冷却管道粗细不变以及不增加设备和控制成本的前提下,将内燃机和电机置于同一冷却循环系统中,并实现热量的有效利用。
为解决上述问题,本发明提供一种用于混合动力系统的冷却循环系统,所述混合动力系统中设有内燃机、电机;所述冷却循环系统包括并联的第一水泵和第二水泵;所述冷却循环系统包括:第一循环:冷却液从所述第一水泵流出,依次流经所述电机、所述内燃机后回到所述第一水泵;第二循环:冷却液从所述第二水泵流出,流经所述内燃机后回到所述第二水泵。
可选的,第一水泵的流量小于第二水泵的流量。
可选的,所述冷却循环系统还包括第一散热器,位于所述第一循环中;所述第一循环中,流过所述电机的冷却液流经所述第一散热器后,回到所述第一水泵。
可选的,所述第一散热器的输出温度与所述电机的工作温度相适应。
可选的,所述第一散热器不位于所述第二循环中。
可选的,所述冷却循环系统还包括第二散热器,位于所述第二循环中;所述第二循环中,流过所述内燃机的冷却液流经所述第二散热器后,回到所述第二水泵。
可选的,所述第二散热器的输出温度与所述内燃机的工作温度相适应。
可选的,所述第二散热器还位于所述第一循环中;所述第一循环中,所述冷却液依次流经所述第二散热器、所述第一散热器后回到所 述第一水泵。
可选的,第二循环在所述内燃机和所述第二水泵之间具有并联的第一支路和第二支路,所述冷却液流过所述内燃机后、流入第一支路或第二支路,然后回到所述第二水泵;所述第二散热器位于所述第一支路中;所述冷却循环系统还包括用于控制所述第一支路、第二支路的开闭的节温器,所述节温器用于所述内燃机刚启动或关闭时、控制所述第一支路关闭、第二支路打开。
可选的,第二循环在所述内燃机和所述第二水泵之间还包括第三支路,与所述第一支路、第二支路并联,所述冷却液流过所述内燃机后、还流入第三支路,然后回到所述第二水泵;所述第三支路中设有换热器,用于将冷却液中的热量传递给乘员舱。
可选的,所述混合动力系统还包括与所述电机连接的电机控制器和/或蓄电池,所述第一循环的冷却液还流经所述电机控制器和/或蓄电池。
可选的,所述第一循环中,冷却液流经电机控制器和/或蓄电池后、流向所述电机。
本发明还提供一种汽车,其包括上述任一项所述的冷却循环系统。
与现有技术相比,本发明的技术方案具有以下优点:
冷却循环系统中设置并联的第一水泵和第二水泵,通过第一水泵控制第一循环的流量、用于冷却电机,第二水泵控制第二循环的流量、用于冷却内燃机。本发明一方面将内燃机、电机置于同一冷却循环系统中,可以用电机产生的热量来预热内燃机,用内燃机产生的热量预热电机,使内燃机、电机都能在合适的温度下工作,同时能量能够得到充分利用;另一方面,可以根据内燃机、电机的需求选用具有不同流量的水泵,不需要因流量过大而需要加粗经过电机的冷却管道。
附图说明
图1是本发明冷却循环系统的模块图一,其中示出了纯电动模式下的冷却液流向;
图2是本发明冷却循环系统的模块图二,其中示出了内燃机模式下的冷却液流向;
图3是本发明冷却循环系统的模块图三,其中示出了混合动力模式下的冷却液流向。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供一种用于混合动力系统的冷却循环系统,参照图1,混合动力系统中设有内燃机、电机,冷却循环系统包括并联的第一水泵和第二水泵。
冷却循环系统主要包括两个循环:
(1)第一循环:第一水泵打开、冷却液从第一水泵流出,依次流经电机、内燃机后回到第一水泵。也就是说,第一循环中,沿冷却液流动方向,第一水泵、电机、内燃机依次串联。
(2)第二循环:第二水泵打开、冷却液从第二水泵流出,流经内燃机后回到第二水泵。也就是说,在第二循环中,沿冷却液流动方向,第二水泵、内燃机依次串联。
使用时,根据汽车的工作模式来确定第一循环、第二循环的工作。本实施例中,纯电动模式下,打开第一水泵,运行第一循环;内燃机模式下,打开第二水泵,运行第二循环;混合动力模式下,打开第一水泵、第二水泵,运行第一循环和第二循环。
本实施例中,冷却循环系统中设置并联的第一水泵和第二水泵,通过第一水泵控制第一循环的流量、用于冷却电机,第二水泵控制第 二循环的流量、用于冷却内燃机。本发明一方面将内燃机、电机置于同一冷却循环系统中,可以用电机产生的热量来预热内燃机,用内燃机产生的热量预热电机,使能量得到充分利用;另一方面,可以根据内燃机、电机的需求选用具有不同流量的水泵,不需要因流量过大而需要加粗经过电机的冷却管道。
由此,可以设置第一水泵的流量小于第二水泵的流量。
下面针对不同的运行模式对冷却循环系统的工作原理进行详细的说明。
纯电动模式下,如图1,电机作为动力源用于驱动车辆行驶,内燃机不工作,此时只需要对电机进行冷却散热,因此只需要运行第一循环。对应地,第一水泵工作,第二水泵不工作,第一循环运行时,冷却液的流动方向如图1中空心箭头所示。
此时,内燃机也处于第一循环中,虽然内燃机不工作,但冷却液还是流经内燃机。这样设置的好处在于,冷却液可以将电机产生的热量通过冷却液带给内燃机,并对内燃机进行预热。内燃机在低温下启动造成的磨损很厉害,主要是由于低温下内燃机内的机油会变得比较粘稠,润滑性变差,流动性也差,机油要一段时间才能到达内燃机需要润滑的部位,这段时间内燃机将处于干摩擦状态,磨损比较厉害。而预热可以提高内燃机内的机油温度,增强了其润滑性和流动性,以减少内燃机启动时的磨损。
如图1所示,对于电机作为动力源的动力系统,一般还设有向电机提供电能的蓄电池以及用于控制电机工作的PEU(电机控制器)。当电机工作时,这两个部件也在工作,也会产生热量。因此,本实施例将这蓄电池和PEU也设置在第一循环中,第一循环运行时,冷却液还流经蓄电池和PEU,用于冷却这两个部件。
具体地,在第一循环中,冷却液流经蓄电池、PEU后再流经电机和内燃机,因此,冷却液可以将蓄电池、PEU产生的热量也带给电机 和内燃机,参与电机和内燃机的预热。也就是说,第一循环中,蓄电池、PEU串联地位于第一水泵和电机之间。在其他实施例中,蓄电池、PEU也可以串联在电机和内燃机之间,此时,蓄电池、PEU产生的热量将传递给内燃机,参与内燃机的预热,而不参与电机的预热。
内燃机模式下,如图2,内燃机作为动力源用于驱动车辆行驶,而电机不工作,此时只需要对内燃机进行冷却散热,因此只需要运行第二循环。对应地,第二水泵工作,第一水泵可以不工作,冷却液从第二水泵中流出,流动方向如图2中带阴影的箭头所示。
对于混合动力车而言,车辆启动时一般用电机驱动,等到车辆到达一定速度时,转由内燃机驱动。因此参照图2,图2中的空心虚线箭头表示,当电机关闭、内燃机刚启动时,此时可能还需要继续对内燃机进行预热,而电机还有剩余的热量,因此第一循环仍旧会持续短时间的运行。当内燃机启动完成后,不需要再对其预热,第一水泵停止工作,则第一循环关闭。
在其他实施例中,如果第一循环工作时已经给内燃机提供了足够的预热时间,内燃机的温度也达到了相应的温度,那么也可以设置当电机关闭后,马上关闭第一水泵,第一循环即停止运行。
进一步地,还可以设置在内燃机模式下,第一水泵也处于打开状态,第一循环也运行。这样的好处在于,当内燃机工作时,冷却液可以将内燃机产生的热量通过第一循环带给蓄电池、PEU以及电机。特别是在外界环境处于低温的情况下,可以使得电机等部件不会由于温度太低而导致其内部的电解质固化,造成电机在启动时的放电电流过小,导致启动困难。
在其他实施例中,在保证电机的运行温度时,也可以设置内燃机模式下,第一水泵关闭,第一循环停止运行。
混合动力模式下,如图3,电机和内燃机同时工作,那么同时需要对这两个动力源进行冷却散热,因此需要第一循环和第二循环一并 运行。
其中,图3中空心箭头表示第一循环中冷却液的流动方向,带阴影的箭头表示第二循环中冷却液的流动方向。
进一步地,如图1-3,冷却循环系统中还包括第一散热器,位于第一循环中。第一循环中,流过电机的冷却液流经第一散热器后,回到第一水泵。当第一循环运行时,冷却液经过电机后,再经过第一散热器,然后再回到第一水泵中。通过第一散热器的散热作用,将冷却液冷却至适宜的温度,并进行再循环。
本实施例中,第一散热器的输出温度与电机的工作温度相适应,以保证电机处于合适的工作温度下,以维持其正常工作。
其中,沿第一循环中冷却液的流动方向,第一散热器可以串联于电机和第一水泵之间的任何位置,其可以同时位于第二循环中或不位于第二循环中。本实施例中,不将第一散热器放置在第二循环中。这是由于,内燃机的工作温度一般比电机的工作温度高很多,而第一散热器的输出温度与电机相适应,换言之则低于内燃机的工作温度,如果将第一散热器放置在第二循环中,则会降低第二循环的冷却液温度,进而影响内燃机的工作温度。
在其他实施例中,如果有其他措施来保证内燃机的工作温度,则第一散热器也可以同时位两个循环中,第一循环、第二循环中的冷却液都经过第一散热器;或者如果有其他措施来保证电机的工作温度,则第一散热器也可以同时位于两个循环中,此时则可以设置第一散热器的输出温度与内燃机的工作温度相适应。
进一步地,如图1-3,冷却循环系统中还包括第二散热器,位于第二循环中。第二循环中,流过内燃机的冷却液流经第二散热器后,回到第二水泵。当内燃机运行时,第二循环运行,内燃机产生的热量通过冷却液带至第二散热器,通过第二散热器的散热作用使得冷却液的温度降低,然后再回到第二水泵。
其中,第二散热器的输出温度与内燃机的工作温度相适应,以保证内燃机能够在适宜的温度下工作。
其中,沿第二循环中冷却液的流动方向,第二散热器可以串联地位于内燃机和第二水泵之间的任何位置。本实施例将第二散热器同时设于第一循环中,第一循环中的冷却液依次流经第二散热器、第一散热器后回到第一水泵。可见,第一循环、第二循环的冷却液都经过第二散热器。
在内燃机模式下,冷却液经过第二散热器后回到第二水泵,然后再循环经过内燃机,以保证内燃机的工作温度。
在纯电动模式或混合动力模式下,冷却液依次经过第二散热器、第一散热器后回到第一水泵,然后再循环经过电机,以保证电机的工作温度。特别在混合动力模式下,内燃机、电机同时工作,产生的热量较高,经过内燃机后的冷却液温度也较高,此时回流至第一水泵的冷却液依次经过第二散热器、第一散热器,可以提高散热效率,保证回到第一水泵的冷却液温度,进而保证电机的工作温度。
进一步地,如图1-3,沿冷却液流动方向,第二循环在内燃机和第二水泵之间具有并联的第一支路和第二支路,冷却液流过内燃机后、流入第一支路或第二支路,然后回到第二水泵。其中,第二散热器位于第一支路中,第二支路不流经第二散热器。
冷却循环系统还包括用于控制第一支路、第二支路的开闭的节温器,冷却液流过内燃机后流入第一支路或第二支路中。第一支路、第二支路具有共同的入口端,节温器位于第一支路、第二支路的共同入口端,以此通过一个节温器同时控制第一支路、第二支路的打开或关闭。在其他实施例中,也可以在第一支路、第二支路中分别设置节温器,通过各自的节温器来控制第一支路、第二支路的通断。
内燃机刚启动或关闭时,产生的热量较少,为保证再循环到达内燃机的冷却液的温度与内燃机的工作温度相适应,节温器控制第一支 路关闭,第二支路打开,则冷却液依次流经内燃机、节温器后直接回到第二水泵,不流经第二散热器。此处,内燃机关闭,一般不包括内燃机正常运转一段时间,刚关闭、尚未停止转动的时刻,因为此时内燃机的温度仍然很高,需要对内燃机进行散热,节温器会使得冷却水流过第二散热器后再回到第二水泵(而不是直接流回第二水泵),以防止内燃机温度过高。
如果内燃机处于正常运转状态,产生的热量较高,需要对内燃机进行散热,则节温器控制第一支路打开、第二支路关闭,则冷却液依次流经内燃机、节温器、第二散热器后回到第二水泵。
进一步地,如图1-3,沿冷却液流动方向,第二循环在内燃机和第二水泵之间还具有第三支路,第三支路与第一支路、第二支路并联,冷却液流过内燃机后、还流入第三支路,然后回到第二水泵。第三支路中设有换热器,用于将冷却液中的热量传递给乘员舱,以向乘员舱提供热量,实现乘员舱的供暖。可见,流经内燃机的冷却液中有一部分可以依次经过内燃机、换热器后回到第二水泵。此时冷却液中的热量可以是电机的,也可以是内燃机的。
本发明实施例还提供一种汽车,其包括上述任一项的冷却循环系统。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (13)

  1. 一种用于混合动力系统的冷却循环系统,所述混合动力系统中设有内燃机、电机;其特征在于,所述冷却循环系统包括并联的第一水泵和第二水泵;
    所述冷却循环系统包括:
    第一循环:冷却液从所述第一水泵流出,依次流经所述电机、所述内燃机后回到所述第一水泵;
    第二循环:冷却液从所述第二水泵流出,流经所述内燃机后回到所述第二水泵。
  2. 如权利要求1所述的冷却循环系统,其特征在于,第一水泵的流量小于第二水泵的流量。
  3. 如权利要求1所述的冷却循环系统,其特征在于,所述冷却循环系统还包括第一散热器,位于所述第一循环中;
    所述第一循环中,流过所述电机的冷却液流经所述第一散热器后,回到所述第一水泵。
  4. 如权利要求3所述的冷却循环系统,其特征在于,所述第一散热器的输出温度与所述电机的工作温度相适应。
  5. 如权利要求3所述的冷却循环系统,其特征在于,所述第一散热器不位于所述第二循环中。
  6. 如权利要求3所述的冷却循环系统,其特征在于,所述冷却循环系统还包括第二散热器,位于所述第二循环中;
    所述第二循环中,流过所述内燃机的冷却液流经所述第二散热器后,回到所述第二水泵。
  7. 如权利要求6所述的冷却循环系统,其特征在于,所述第二散热器的输出温度与所述内燃机的工作温度相适应。
  8. 如权利要求6所述的冷却循环系统,其特征在于,所述第二散热器还位于所述第一循环中;
    所述第一循环中,所述冷却液依次流经所述第二散热器、所述第一散热器后回到所述第一水泵。
  9. 如权利要求6所述的冷却循环系统,其特征在于,第二循环在所述内燃机和所述第二水泵之间具有并联的第一支路和第二支路,所述冷却液流过所述内燃机后、流入第一支路或第二支路,然后回到所述第二水泵;
    所述第二散热器位于所述第一支路中;
    所述冷却循环系统还包括用于控制所述第一支路、第二支路的开闭的节温器,所述节温器用于所述内燃机刚启动或关闭时、控制所述第一支路关闭、第二支路打开。
  10. 如权利要求9所述的冷却循环系统,其特征在于,第二循环在所述内燃机和所述第二水泵之间还包括第三支路,与所述 第一支路、第二支路并联,所述冷却液流过所述内燃机后、还流入第三支路,然后回到所述第二水泵;
    所述第三支路中设有换热器,用于将冷却液中的热量传递给乘员舱。
  11. 如权利要求1所述的冷却循环系统,其特征在于,所述混合动力系统还包括与所述电机连接的电机控制器和/或蓄电池,所述第一循环的冷却液还流经所述电机控制器和/或蓄电池。
  12. 如权利要求11所述的冷却循环系统,其特征在于,所述第一循环中,冷却液流经电机控制器和/或蓄电池后、流向所述电机。
  13. 一种汽车,其特征在于,包括权利要求1-12任一项所述的冷却循环系统。
PCT/CN2016/079563 2015-04-29 2016-04-18 用于混合动力系统的冷却循环系统、汽车 WO2016173421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510212543.4 2015-04-29
CN201510212543.4A CN106183786B (zh) 2015-04-29 2015-04-29 用于混合动力系统的冷却循环系统、汽车

Publications (1)

Publication Number Publication Date
WO2016173421A1 true WO2016173421A1 (zh) 2016-11-03

Family

ID=57198972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079563 WO2016173421A1 (zh) 2015-04-29 2016-04-18 用于混合动力系统的冷却循环系统、汽车

Country Status (2)

Country Link
CN (1) CN106183786B (zh)
WO (1) WO2016173421A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327917A (zh) * 2018-04-16 2018-07-27 中电科芜湖通用航空产业技术研究院有限公司 串联式混合动力飞机冷却系统
CN109398156A (zh) * 2018-11-08 2019-03-01 北汽福田汽车股份有限公司 汽车冷却控制方法、装置、处理器及汽车
CN109927534A (zh) * 2019-03-20 2019-06-25 天津大学 一种混合动力重型载货汽车的热管理系统及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106184444B (zh) 2016-09-21 2019-08-27 苏州瑞得恩光能科技有限公司 履带张紧装置及履带式行进装置
CN106864253B (zh) * 2017-01-12 2019-08-06 北京信息科技大学 一种轻型货车电动化辅助系统
CN107472002B (zh) * 2017-08-16 2023-05-26 合肥凯斯迪尔电子科技有限公司 一种混合动力散热系统
CN108263202B (zh) * 2017-12-14 2020-12-01 浙江吉利新能源商用车有限公司 一种多增程器发动机冷却装置
JP2019127201A (ja) * 2018-01-26 2019-08-01 トヨタ自動車株式会社 車両の冷却装置
CN108859736B (zh) * 2018-05-30 2020-05-19 吉利汽车研究院(宁波)有限公司 一种基于混动车辆的控制方法及控制系统
CN109398061B (zh) * 2018-12-19 2020-09-01 海马汽车有限公司 混合动力汽车热管理系统及控制方法以及混合动力汽车
CN112277608A (zh) * 2020-09-24 2021-01-29 东风汽车集团有限公司 一种轮毂电机散热系统及车辆
CN112377349B (zh) * 2020-11-17 2022-07-22 无锡职业技术学院 一种基于混合动力汽车的双向预热装置
CN115059535B (zh) * 2022-06-27 2023-07-04 东风汽车集团股份有限公司 一种混合动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106181A1 (de) * 2008-02-26 2009-09-03 Robert Bosch Gmbh Diagnoseverfahren und antriebssteuerung
CN201914075U (zh) * 2010-12-20 2011-08-03 浙江吉利汽车研究院有限公司 混合动力汽车的冷却系统
CN104340048A (zh) * 2013-07-24 2015-02-11 比亚迪股份有限公司 混合动力汽车
EP2853711A1 (en) * 2013-09-30 2015-04-01 McLaren Automotive Limited Coolant circuit for a hybrid vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147028A (ja) * 2003-11-18 2005-06-09 Nissan Motor Co Ltd ハイブリッド車の冷却装置及び冷却方法
JP2010090729A (ja) * 2008-10-03 2010-04-22 Denso Corp 車両用冷却システム
FR2962380B1 (fr) * 2010-07-07 2013-03-15 Peugeot Citroen Automobiles Sa Installation de refroidissement
JP5527896B2 (ja) * 2010-12-28 2014-06-25 日立建機株式会社 ハイブリッド式作業機の冷却システム
JP2012154092A (ja) * 2011-01-26 2012-08-16 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械
GB2489016B (en) * 2011-03-16 2013-08-21 Land Rover Uk Ltd Hybrid electric vehicle cooling circuit and method of cooling
JP2013119259A (ja) * 2011-12-06 2013-06-17 Toyota Industries Corp 車載用バッテリ温度調整装置
JP2014121228A (ja) * 2012-12-19 2014-06-30 Toyota Motor Corp 車両
US10046617B2 (en) * 2013-02-01 2018-08-14 Ford Global Technologies, Llc Electric vehicle multi-loop thermal management system
CN103670659A (zh) * 2013-12-31 2014-03-26 苏州市职业大学 一种公交车混合动力冷却系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106181A1 (de) * 2008-02-26 2009-09-03 Robert Bosch Gmbh Diagnoseverfahren und antriebssteuerung
CN201914075U (zh) * 2010-12-20 2011-08-03 浙江吉利汽车研究院有限公司 混合动力汽车的冷却系统
CN104340048A (zh) * 2013-07-24 2015-02-11 比亚迪股份有限公司 混合动力汽车
EP2853711A1 (en) * 2013-09-30 2015-04-01 McLaren Automotive Limited Coolant circuit for a hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327917A (zh) * 2018-04-16 2018-07-27 中电科芜湖通用航空产业技术研究院有限公司 串联式混合动力飞机冷却系统
CN108327917B (zh) * 2018-04-16 2024-02-23 中电科芜湖通用航空产业技术研究院有限公司 串联式混合动力飞机冷却系统
CN109398156A (zh) * 2018-11-08 2019-03-01 北汽福田汽车股份有限公司 汽车冷却控制方法、装置、处理器及汽车
CN109398156B (zh) * 2018-11-08 2024-02-02 北汽福田汽车股份有限公司 汽车冷却控制方法、装置、处理器及汽车
CN109927534A (zh) * 2019-03-20 2019-06-25 天津大学 一种混合动力重型载货汽车的热管理系统及控制方法
CN109927534B (zh) * 2019-03-20 2023-04-25 天津大学 一种混合动力重型载货汽车的热管理系统及控制方法

Also Published As

Publication number Publication date
CN106183786B (zh) 2020-11-03
CN106183786A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2016173421A1 (zh) 用于混合动力系统的冷却循环系统、汽车
KR101899221B1 (ko) 차량 냉각 시스템
US8555826B2 (en) Cooler arrangement for a drive train in a motor vehicle
KR101144078B1 (ko) 하이브리드 차량의 열 관리 시스템 및 방법
CN109383221B (zh) 车辆的hvac系统
US20120186775A1 (en) Cooling system
CN205477882U (zh) 冷却循环装置
US20100218916A1 (en) Plug-in hybrid electric vehicle secondary cooling system
CN108995552A (zh) 一种用于增程式车辆的热管理系统及增程式车辆
CN105604675B (zh) 发动机冷却系统的配置和控制方法
CN109578126B (zh) 用于混合动力车辆的高低温双循环冷却系统
JP2012081949A (ja) ハイブリッド車両の冷却システム
US11318814B2 (en) Cooling apparatus
JP2014092160A (ja) エンジン作動型ユニット用の統合冷却システム及び方法
JP2011179421A (ja) 内燃機関の冷却装置
US10875381B2 (en) Thermal management system in a vehicle and method for operation of the system
CN108979811B (zh) 一种混合动力汽车动力源散热及废热利用系统及控制方法
US20210332740A1 (en) Cooling system
RU155350U1 (ru) Двигатель внутреннего сгорания с жидкостным охлаждением со вторичным контуром
CN111022141A (zh) 增程式热管理系统、热管理方法及车辆
JP6271314B2 (ja) 車両用暖房装置
JP2013148244A (ja) 冷却システム
CN107762612B (zh) 电机的多个变流器的符合需求的冷却
JP7118523B2 (ja) 車両の熱交換系
KR102518738B1 (ko) 하이브리드 차량용 통합 열관리 시스템의 밸브 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16785852

Country of ref document: EP

Kind code of ref document: A1