WO2016173263A1 - 一种降低阵列波导光栅非线性温度效应的装置 - Google Patents

一种降低阵列波导光栅非线性温度效应的装置 Download PDF

Info

Publication number
WO2016173263A1
WO2016173263A1 PCT/CN2015/097423 CN2015097423W WO2016173263A1 WO 2016173263 A1 WO2016173263 A1 WO 2016173263A1 CN 2015097423 W CN2015097423 W CN 2015097423W WO 2016173263 A1 WO2016173263 A1 WO 2016173263A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving rod
region
base
coefficient
thermal expansion
Prior art date
Application number
PCT/CN2015/097423
Other languages
English (en)
French (fr)
Inventor
胡家艳
李长安
凌九红
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US15/570,022 priority Critical patent/US10241265B2/en
Publication of WO2016173263A1 publication Critical patent/WO2016173263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • G02B6/1203Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • G02B6/12028Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence based on a combination of materials having a different refractive index temperature dependence, i.e. the materials are used for transmitting light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring

Definitions

  • the present invention relates to an arrayed waveguide grating for use in a wavelength division multiplexing/demultiplexing system and a device for reducing its nonlinear temperature effect, and the present invention belongs to the field of optical communication.
  • Arrayed Waveguide Gratings are key optical components of Dense Wavelength Division Multiplexing (OFDM) systems.
  • the AWG can easily realize multiplexing and demultiplexing of multiple optical signals, and is an important device for increasing the capacity of an optical communication system.
  • the AWG is a planar optical waveguide based optical device consisting of an input waveguide, an input slab waveguide, an arrayed waveguide, an output slab waveguide, and an output waveguide, wherein adjacent array waveguides have a fixed length difference.
  • the optical power is distributed to each port in the array waveguide by diffraction, and the length difference of the array waveguides may generate different transmission phase delays.
  • Coherent superposition in the output slab waveguide enables different wavelengths of light to be output to different output ports, thereby demultiplexing.
  • the multiplexing effect can be achieved at the input port.
  • Dense wavelength division multiplexing systems require high center wavelength stability for multiplexed/demultiplexed devices and need to be controlled within a certain range of channel spacing. For example, in a wavelength division multiplexing system with 100 GHz spacing, the center wavelength accuracy is often Need to be controlled within +/- (5%-10%) of the channel spacing, ie +/- (40-80) pm. For denser wavelength division multiplexing systems, such as 50G and 25G systems, the center wavelength accuracy requirements are higher, reaching +/- 40 pm and +/- 20 pm, respectively. For details, please refer to the following table:
  • AWG chips are generally based on silicon-based planar optical waveguide devices, the center wavelength of which varies greatly with ambient temperature, the sensitivity is about 12 pm / ° C, then within the operating temperature of the WDM system (-5 ° C to At 65 ° C), the center wavelength drift of the AWG chip will reach about 800 pm, which is obviously beyond the system requirements. Therefore, measures are needed to control the center wavelength of the AWG chip to work properly in the working environment temperature.
  • Athermal AWG can effectively control the center wavelength of AWG chips with temperature
  • the drift problem, and does not require power consumption, is a pure passive device and has received a lot of attention.
  • a conventional AAWG solution is described in the patent CN101019053B (PCT/US2004/0140842004.05.05). As shown in FIG. 10, the solution has a base, the chip is connected to the base, and the drive 301 of the base is driven by the slab waveguide of the split chip. The hinge 202 moves to cause relative waveguide movement of the chip above the base to compensate for changes in the center wavelength of the AWG chip with temperature.
  • Equation 1 shows the relationship between the relative displacement dx of the segmented slab waveguide of the AWG and the temperature change dT.
  • n s and n c are the effective refractive indices of the input/output planar waveguide and the arrayed waveguide of the AWG, respectively, n g is the group refractive index, d is the spacing of adjacent array waveguides on the circumference of the Roland, m is the diffraction order, R It is the Roland focal length, and d ⁇ is the central wavelength change value of the AWG.
  • k is the leverage factor between the displacement of the driver 301 and the relative displacement of the first and second regions of the base.
  • Equation 4 the variation of the center wavelength ⁇ of the AWG chip with temperature T is not a single linear relationship, but has a nonlinear relationship, as shown in Equation 4 below:
  • the existing scheme can only compensate for the primary term of the central wavelength as a function of temperature, and cannot compensate for the quadratic term.
  • the linearly compensated temperature/wavelength curve is shown in Figure 11, which is a parabola and is a reflection of residual wavelength/temperature nonlinear effects.
  • the existing first-order linear compensation scheme can no longer meet the requirements. It is necessary to propose a scheme for nonlinear compensation, which makes the AAWG's central wavelength precision control more accurate.
  • the patent US 7,539,368 B2 proposes a segmentation temperature compensation method, which divides the operating temperature into three different regions, each of which adopts a different linear compensation scheme, which can effectively reduce the second-order temperature effect.
  • the two parts after the chip is divided are relatively free states, which easily cause sliding and misalignment of one of the parts, which may lead to instability of wavelength accuracy and insertion loss.
  • No. 7,689,072 B2 describes a method for nonlinear temperature compensation by filling two different compensation materials, linear compensation by a first compensation material, and then addition of a second compensation material for second-order nonlinear compensation.
  • This kind of scheme directly adds multiple slots on the optical path of the chip, and fills the compensation materials in the slots, which is convenient to operate and can be small in size.
  • the compensation materials interfere with each other, and the second-order compensation effect may not be obvious.
  • a primary object of the present invention is to overcome the problems and deficiencies of the prior art and to provide an apparatus for reducing the nonlinear temperature effects of optical devices.
  • the driver of the present invention is composed of a plurality of rods, one of which is used for linear compensation of wavelength/temperature of the AWG, is fixed at both ends of the integrated optical path base, and is not divided; other rods are used to realize the wavelength of the AWG/
  • the nonlinear effect compensation of temperature is fixed at both ends of the integrated optical path, and the middle is divided and has a certain gap. This allows the two parts of the integrated optical path base to have different relative displacement/temperature coefficients in different temperature ranges, overcompensation in the temperature range above normal temperature, and under-compensation in the range below normal temperature, thus making the AWG
  • the center wavelength exhibits a multi-segment curve with temperature changes, which can effectively reduce the residual nonlinear temperature effect. The more segments, the easier it is to perform nonlinear temperature compensation.
  • a device for reducing the nonlinear temperature effect of an arrayed waveguide grating comprising an integrated optical path base for an arrayed waveguide grating chip, the driver, the integrated optical path base comprising a first area, a second area, and a connection between the first area and the second area a hinge, the hinge enables relative rotation and/or translation between the first region and the second region; the arrayed waveguide grating chip is fixedly disposed above the integrated optical path base, and the arrayed waveguide grating chip is divided into two parts.
  • the driver is composed of two or more driving rods,
  • the thermal expansion coefficient of the drive rod is different from the thermal expansion coefficient of the integrated optical path base, wherein: the first region and the second region are mainly driven by different drive rods to perform the relative rotation and/or translation in different temperature intervals, Therefore, the first region and the second region may generate nonlinear displacement with temperature change, thereby causing relative movement of the two divided portions of the arrayed waveguide grating chip, and accurately compensating the central wavelength drift amount in different temperature intervals.
  • a gapless fixed arrangement is adopted, and at least one of the driving rods is in the middle or the A gap is formed between the drive rod and the first or second region of the integrated optical path base, the gap being opened or closed by thermal expansion and contraction of the drive rod in different temperature regions.
  • the driving rod includes an over-compensation structure or an under-compensation structure or an over-compensation and under-compensation combination structure, wherein: a side of the driving rod on which the driving rod is provided with a slit is fixed in a groove provided in the base to form an over-compensation structure, The side of the drive rod on which the slit is provided is fixed to the provided boss to form an under-compensation structure.
  • the different drive rods have different effective lengths and/or lever coefficients and/or thermal expansion coefficients such that the product of the effective length, lever factor, and thermal expansion coefficient of the different drive rods is also different.
  • the thermal expansion coefficient of the driver differs from the thermal expansion coefficient of the integrated optical path base by 50% or more.
  • a gap between two portions of the arrayed waveguide grating chip is located at an arbitrary position of the input slab waveguide or the array waveguide or the output slab waveguide of the arrayed waveguide grating, and the slit is disposed at a hinge position on the integrated optical path base
  • the gap is 1 um to 50 um.
  • the slit of the arrayed waveguide grating chip is filled with an index matching material having a refractive index which is the same as or close to the refractive index of the waveguide material of the divided waveguide region of the arrayed waveguide grating.
  • the driver is composed of a first driving rod, a second driving rod and a fourth driving rod, and the first driving rod, the second driving rod and the fourth driving rod are fixedly connected with the first region and the second region of the integrated optical path base. a gap between the second driving rod, the middle of the fourth driving rod or the second driving rod and the fourth driving rod and the first region or the second region of the integrated optical path base; the second driving rod side is fixed An overcompensating structure is formed in the groove provided in the base; the side of the fourth driving rod is fixed on the boss provided on the base to form an under-compensation structure; the thermal expansion coefficient, the effective length and the lever coefficient of the above driving rod satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first drive rod, the coefficient of thermal expansion, the lever coefficient with the base, L 2 , k 2 is the effective length of the second drive rod, the coefficient of thermal expansion, the lever coefficient with the base, L 4 , k 4 is the effective length of the fourth drive rod, the coefficient of thermal expansion
  • the driver is composed of a first driving rod and a second driving rod, and the first driving rod and the second driving rod are fixedly connected to the first region and the second region of the integrated optical path base, and the middle or the second driving rod is a gap is formed between the second driving rod and the first area or the second area of the integrated optical path base; the second driving rod side is fixed in the groove provided in the base to form an overcompensating structure; the thermal expansion coefficient of the above driving rod is effective
  • the length and leverage factor satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first drive rod, the coefficient of thermal expansion, the lever coefficient with the base, L 2 , k 2 is the effective length of the second drive rod, the coefficient of thermal expansion, and the lever factor of the base.
  • the driver is composed of a first driving rod and a fourth driving rod, and the first driving rod and the fourth driving rod are fixedly connected to the first region and the second region of the integrated optical path base, and the middle or the fourth driving rod is a gap is formed between the fourth driving rod and the first area or the second area of the integrated optical path base; the fourth driving rod side is fixed on the boss provided on the base to form an under-compensation structure; the thermal expansion coefficient of the above driving rod is effective
  • the length and leverage factor satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first drive rod, the coefficient of thermal expansion, the lever coefficient with the base, L 4 , k 4 is the effective length of the fourth drive rod, the coefficient of thermal expansion, and the lever coefficient of the base.
  • the driver is composed of a first driving rod, a second driving rod, a third driving rod, a fourth driving rod and a fifth driving rod
  • the first driving rod is fixedly connected to the first region and the second region of the integrated optical path base , the middle of the second driving rod, the third driving rod, the fourth driving rod, the fifth driving rod or the second driving rod, the third driving rod, the fourth driving rod, the fifth driving rod and the integration a gap is formed between the first region or the second region of the optical path base;
  • the second driving rod and the third driving rod are fixed to the groove provided in the base to form an overcompensating structure;
  • the fourth driving rod and the fifth driving rod side are
  • the under-compensation structure is formed on the boss fixed on the base;
  • the thermal expansion coefficient, the effective length and the lever coefficient of the above driving rod satisfy the following conditions: Where: k i ,L i , (5 ⁇ i ⁇ 1) is the lever coefficient, effective length and thermal expansion coefficient of the i-th drive rod and the base, respectively.
  • the wavelength/temperature nonlinear effect of the AWG chip can be effectively reduced by using the device of the invention.
  • FIG. 1A is a schematic view showing the overall structure of the present invention.
  • Figure 1B is a schematic view showing the structure of the present invention in a high temperature section
  • Figure 1C is a schematic view showing the structure of the present invention in a low temperature section
  • Figure 2 is a schematic cross-sectional view showing the overall structure of the present invention.
  • FIG. 3 is a schematic view of an AWG chip of the present invention.
  • Figure 4 is a schematic view of the base and the drive of the present invention.
  • Figure 5 is a schematic structural view of a second embodiment of the present invention.
  • Figure 6 is a schematic structural view of a third aspect of the present invention.
  • Figure 7 is a schematic structural view of a fourth aspect of the present invention.
  • FIG. 8A is a comparison diagram of temperature curves of the first scheme of the present invention and a conventional linear compensation scheme
  • FIG. 8B is a comparison diagram of temperature curves of a second embodiment of the present invention and a conventional linear compensation scheme
  • FIG. 8C is a comparison diagram of temperature curves of the third scheme of the present invention and a conventional linear compensation scheme
  • Figure 8D is a comparison of temperature profiles of a fourth scheme of the present invention and a conventional linear compensation scheme
  • the present invention relates to an apparatus for reducing the nonlinear temperature effects of an arrayed waveguide grating.
  • 1A is a schematic view of the overall structure of the present invention, including an arrayed waveguide grating (AWG) chip 1, an integrated optical path base 2, and a driver 3.
  • 2 is a cross-sectional view of the overall structure of the present invention, and the AWG chip 1 is fixedly disposed on the base 2 by a suitable means.
  • a schematic diagram of the AWG chip 1 is shown in FIG. 3, which includes an input waveguide 101, an input slab waveguide 102, an array waveguide 103, an output slab waveguide 104, and an output waveguide 105, wherein the input waveguide 101 introduces input light into the input slab waveguide 102, and inputs the plate.
  • the waveguide 102 and the output slab waveguide 104 are connected at an angle through the array waveguide 103.
  • the input slab waveguide 102 distributes optical power of a plurality of different wavelength optical signals to each of the array waveguides 103 by diffraction, adjacent to the array waveguide 103.
  • the waveguide has a fixed length difference, and the array waveguide 103 produces different transmission phases for different wavelength optical signals due to the above difference in length.
  • the delays are coherently superimposed in the output slab waveguide 104 such that optical signals of different wavelengths are output through the output waveguides 105 of the different ports.
  • the AWG chip is divided into two parts, and the division may be located above the input slab waveguide 102, the output slab waveguide 104, or the arrayed waveguide 103.
  • FIG. 4 is a schematic view showing a typical structure of an integrated optical path base and a driver in an initial state, wherein the integrated optical path base 2 includes a first area 201, a second area 203, and a hinge 202 for connecting the first area 201 and the second area 203,
  • the hinge 202 is capable of rotating or otherwise relative displacement of the first region 201 relative to the second region 203.
  • the integrated optical path base 2 has a low first coefficient of thermal expansion and is not easily deformed with temperature, and may be made of glass, crystal, metal, alloy or other composite materials.
  • the AWG chip 1 is fixed to the first region 201 and the second region 203 of the integrated optical path base 2 such that the AWG chip 1 can be made by relative movement (rotation or displacement) between the first region 201 and the second region 203.
  • the light path has changed.
  • the driver 3 includes two or more drive rods connected between the first region 201 and the second region 203 of the integrated optical path base 2 for driving the first region 201 and the second region of the integrated optical path base 2
  • the relative movement between the 203s is different from the integrated optical path base 2
  • the thermal expansion coefficient of the driving rods is equal to or greater than 50% of the thermal expansion coefficient of the integrated optical path base.
  • the thermal expansion coefficients of the driving rods are larger than the integrated optical paths.
  • the thermal expansion coefficient of the base is large, so that the drive rods are easily deformed with temperature changes, thereby causing relative movement between the first region 201 and the second region 203 of the integrated optical path base 2.
  • the two ends of the first driving rod 301 of at least one of them are respectively fixed to the first region 201 and the second region 203 of the integrated optical path base 2, and there is no gap in the middle of the first driving rod 301; at least one second driving rod
  • the two ends of the 302/third drive lever 303 / the fourth drive lever 304 / the fifth drive lever 305 are respectively fixed to the first region 201 and the second region 203 of the integrated optical path base 2, and the second drive lever 302 / third a certain gap is left in the middle of the driving rod 303 / the fourth driving rod 304 / the fifth driving rod 305; or at least one second driving rod 302 / third driving rod 303 / fourth driving rod 304 / fifth driving rod
  • One end of the 305 is fixed to the first region 201 or the second region 203 of the integrated optical path base 2, and a gap is left between the other end of the integrated optical path base 2 and the second region 203 or the first region 201 of the integrated optical path base 2; It changes with the change of
  • each drive rod of the drive needs to have a different coefficient of thermal expansion or effective length, and a different lever factor, so that the displacements caused by the respective drive rods at the hinge 202 are different, so that overcompensation or undercompensation can occur.
  • the combination of the first drive rod 301 / the second drive rod 302 / the third drive rod 303 / the fourth drive rod 304 / the fifth drive rod 305 acts together, causing the first region 201 and the second region 203 of the base to wrap around the hinge 202
  • the occurrence of a nonlinear relative displacement causes relative movement of the divided two portions of the arrayed waveguide grating chip 1 for reducing the nonlinear effect of the center wavelength of the arrayed waveguide grating chip 1 with temperature.
  • 2-5 driving rods
  • the number of driving rods can be flexibly set according to actual needs, and is not limited to the embodiment of the present invention.
  • 2-5 for example, can also be 9 drive rods, 21 drive rods or more.
  • the AWG chip 1 and the base 2 are fixedly connected by fixing, soldering or the like.
  • the AWG chip 1 is divided into two parts, and the end face is divided.
  • the two parts after the division can be relatively moved, causing a change in the center wavelength of the AWG to compensate for the drift of the center wavelength of the AWG chip 1 with temperature changes.
  • the cutting end face 106 of the AWG chip 1 can be divided by laser cutting, water cutting, chemical etching, sawtooth cutting, etc.
  • the cutting shape can be a straight line, a curve or other shapes, and the cutting width is generally controlled within 1-50 um, so that The relative movement of the cut AWG chip 1 is ensured, and the collision of the cutting surface when the slit width is too small due to the slit width is too small, causing the chip to be broken, and the additional insertion due to the too large slit width can be avoided. The problem of excessive loss.
  • the cut end face should not be exposed to the air. It needs to be matched to the refractive index of the AWG chip 1. Usually, it is coated on the chip split end face 106 with a matching adhesive whose refractive index is close to that of the AWG core layer. All the gaps on the light path can also be index matched by means of coating or the like.
  • the first driving rod 301 is retained, and two other driving rods are introduced, which are a second driving rod 302 and a fourth driving rod 304, respectively, and a second driving rod.
  • the length of 302 is the largest, the first drive rod 301 is second, and the fourth drive rod 304 is the shortest.
  • the second driving rod 302 and the fourth driving rod 304 are divided into a certain gap for reducing the nonlinear temperature effect of the high temperature section (above normal temperature) and the low temperature section (below normal temperature).
  • the effective length of the first driving rod 301 is L 1 and the thermal expansion coefficient is The lever coefficient with the base 2 is k 1 ; the effective length of the second drive rod 302 is L 2 , and the coefficient of thermal expansion is The lever coefficient with the base 2 is k 2 ; the effective length of the fourth drive rod 304 is L 4 , and the coefficient of thermal expansion is The lever factor with the base is k 4 , and these parameters need to meet the following conditions:
  • lever coefficient k it can be understood as the relationship between the displacement of the driver and the displacement of the hinge 202.
  • the lever factor is determined by the base structure, the length of the drive rod, and the mounting position of the drive rod and the base.
  • the design of the base structure can be determined by simulation calculation software. Taking the first driving rod 301 as an example, when the temperature changes, the length of the first driving rod 301 changes due to thermal expansion and contraction, and the amount of change is 30 um, which causes the hinge 202 to be deformed, resulting in the first region 201 and the second of the base.
  • the relative displacement of the region 202 includes the change of the angle and the displacement.
  • the displacement change value is effective, and the angular change is unnecessary, so the angle change is ignored, and only the displacement change value is taken.
  • the displacement of the first region 201 and the second region 203 of the base is 15 um, so that the lever coefficient of the first driving rod 301 is 0.5. That is, the lever coefficient is equivalent to the ratio of the pitch change of the first region and the second region of the base under the action of the driving rod to the telescopic length of the driving rod, and the larger the lever coefficient indicates the effect of the driving rod on the variation of the distance between the first region and the second region of the base. The bigger, and vice versa.
  • the first driving rod 301 acts as a linear compensation, and the chip displacement caused by the base is
  • the three driving rods are thermally expanded, and the gap of the second driving rod 302 is filled by setting the slit width of the second driving rod 302 and the fourth driving rod 304, and the fourth driving rod is filled.
  • the gap of 304 still exists and cannot compensate for temperature, as shown in 1B. Then, in the high temperature section, the case where the first driving rod 301 and the second driving rod 302 act simultaneously occurs, and the larger displacement values introduced in the first driving rod 301 and the second driving rod 302 are accurate.
  • the driver shrinks, the second drive rod 302 shrinks the most, the gap widens, and does not have the temperature compensation effect; since the length of the first drive rod 301 is larger than the fourth drive rod 304, when When the first driving rod 301 contracts, the contraction amount is larger than that of the fourth driving rod 304, so that the gap of the fourth driving rod 304 is filled, and the fourth driving rod 304 starts to play a compensating role, and the first driving rod 301 is used.
  • the smaller displacement values introduced in the fourth drive rod 304 are accurate.
  • the number of drive rods of the drive can be increased, for example, from three to five, two in the high temperature section, two in the low temperature section, and one in the normal temperature section, so that the high temperature section and the low temperature section can be divided into more temperature sections. .
  • the relative displacement of the AWG chip 1 caused by the base 2 is
  • the lever coefficients of the different drive rods of the drive and the hinge 202 of the base 2 have at least two different values.
  • the entire operating temperature range is divided into three temperature zones, such as a low temperature section - 40 ⁇ 10°C, normal temperature range is -10 ⁇ 50°C, high temperature section 50 to 85 ° C
  • the first driving rod 301 is connected to the first region 201 and the second region 203 of the integrated optical path base without a gap therebetween, and the second driving rod 302 and the fourth driving rod 304 are divided. Each has a certain gap.
  • the first driving rod 301, the second driving rod 302, and the fourth driving rod 304 are respectively used for compensating for the normal temperature section, the high temperature section, and the low temperature section.
  • the three drive rods are made of metal copper and have a thermal expansion coefficient of 17.7*10 -6 /°C.
  • the length of each drive rod is different.
  • the length of the first drive rod 301 is 37.4 mm, and the length of the second drive rod 302 is 39.5mm, wherein the dotted line showing the contact portion of the second driving rod 302 with the base 203 on FIG.
  • 1A is the longer portion of the second driving rod 302 than the first driving rod 301, and the base 203 has a groove therein (for the figure)
  • the lower end of the second driving rod 302 is fixed in the groove;
  • the length of the fourth driving rod 304 is 25.7 mm, since the fourth driving rod 304 is shorter than the first driving rod 301, the base 203 and the
  • the four-drive contact portion requires a boss (indicated by a solid line in the figure) which is integral with the base 203 and has the same coefficient of thermal expansion for fixing the lowermost end of the fourth drive rod 304.
  • the thermal expansion coefficient, the effective length, and the lever coefficient of the above driving rod satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first drive rod 301, the coefficient of thermal expansion, the lever coefficient with the base, L 2 , k 2 is the effective length of the second drive rod 302, the coefficient of thermal expansion, the lever coefficient with the base, L 4 , k 4 is the effective length of the fourth drive rod 304, the coefficient of thermal expansion, and the lever coefficient of the base.
  • the lever coefficient of the first driving rod 301 and the base is 0.55
  • the lever coefficient of the second driving rod 302 and the base is 0.65
  • the lever coefficient of the fourth driving rod 304 and the base is 0.6.
  • the second drive rod 302 and the fourth drive rod 304 are divided to have a certain gap.
  • the first driving rod 301 serves as a compensation.
  • the second drive lever 302 and the fourth drive lever 304 have a gap and cannot function. At this time, the relative displacement of the chip cutting surface is
  • the relationship between the relative displacement of the chip's split plane and the wavelength change is 33 micrometers per micron.
  • the wavelength coefficient of the selected AWG chip 1 has a linear coefficient of 12 pm/° C. It can be seen that the first driving rod 301 can be linearly compensated in the normal temperature range.
  • the second driving rod 302 expands and the gap is filled, as shown in FIG. 1B. At this time, the first driving rod 301 and the second driving rod 302 are simultaneously compensated, and the displacement is preferred.
  • the second drive rod 302 causes a wavelength/temperature coefficient of 15 pm/° C., which is greater than the wavelength/temperature coefficient caused by the first drive rod 301, and plays a major role.
  • the linearly compensated temperature/wavelength change parabola to the right of the upward warped portion can be pulled down.
  • the fourth drive rod 304 has the smallest amount of contraction due to the length of the first drive rod 301. It is larger than the fourth driving rod 304.
  • the contraction amount is larger than that of the fourth driving rod 304, so that the gap of the fourth driving rod 304 is filled, and the fourth driving rod 304 starts to compensate.
  • the effect as shown in FIG. 1C, is calculated by Equation 13, and the wavelength/temperature coefficient caused by the fourth driving rod 304 is 9 pm/° C., which is smaller than the wavelength/temperature coefficient caused by the first driving rod 301, and plays a major role.
  • the wavelength/temperature curve of the AWG is shown in Figure 8A.
  • the wavelength drift can be reduced from 65pm to 20pm in the range of -40 to 85 °C.
  • the entire operating temperature range is divided into two temperature zones, such as a low temperature section of -40 to 50 ° C and a high temperature section of 50 to 85 ° C.
  • the driver includes a first drive rod 301 and a second drive rod 302, both of which are made of metallic copper and have a coefficient of thermal expansion of 17.7*10 -6 /°C.
  • the first driving rod 301 is connected to the first region 201 and the second region 203 of the integrated optical path base and has no gap therebetween.
  • the two ends of the second driving rod 302 are respectively connected to the first region 201 and the second region 203, and the second driving rod is respectively connected.
  • the partition on 302 has a certain gap.
  • the linear compensation uses an under-compensation structure.
  • the length of the first driving rod 301 is 31 mm, and the length of the second driving rod 302 is 42 mm.
  • the broken line of the portion where the second driving rod 302 is in contact with the base 203 in FIG. 5 is that the second driving rod 302 is longer than the first driving rod 301.
  • the base 203 has a groove therein, and the lowermost end of the second driving rod 302 is fixed in the groove; in this embodiment, the thermal expansion coefficient, the effective length and the lever coefficient of the above driving rod satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first drive rod 301, the coefficient of thermal expansion, the lever coefficient with the base, L 2 , k 2 is the effective length of the second drive rod 302, the coefficient of thermal expansion, and the lever coefficient of the base.
  • L 1 , k 1 is the effective length of the first drive rod 301
  • the coefficient of thermal expansion the lever coefficient with the base
  • L 2 , k 2 is the effective length of the second drive rod 302
  • the coefficient of thermal expansion, and the lever coefficient of the base By adjusting the mounting position of the driver, the lever coefficient of the first driving rod 301 and the base is 0.5, and the lever coefficient of the second driving rod 302 and the base is 0.6.
  • the first drive rod 301 acts as a compensation.
  • the second drive rod 302 has a gap and cannot function. At this point, the wavelength/temperature relationship can be derived:
  • the second drive rod 302 In the high temperature section, due to the effect of thermal expansion and contraction, the second drive rod 302 begins to expand, the effective length becomes larger, the gap is filled, and the compensation function begins to be exerted.
  • the compensated temperature profile is shown in Figure 8B.
  • the wavelength drift can be reduced from 110 pm to 30 pm.
  • the entire operating temperature range is divided into two temperature zones, such as a low temperature section of -40 to 0 °C and a high temperature section of 0 to 85 °C.
  • the driver includes a first drive rod 301 and a fourth drive rod 304, both of which are made of metallic copper and have a thermal expansion coefficient of 17.7*10 -6 /°C.
  • the first driving rod 301 is connected to the first region 201 and the second region 203 of the integrated optical path base and has no gap therebetween.
  • the two ends of the fourth driving rod 304 are respectively connected with the first region 201 and the second region 203, and are divided by the middle. A certain gap.
  • the first drive rod 301 is linearly compensated for using an overcompensation structure.
  • the length of the first driving rod 301 is 40 mm, and the length of the fourth driving rod 304 is 29 mm. Since the fourth driving rod 304 is shorter than the first driving rod 301, a contact portion of the base 203 and the fourth driver requires a boss. It is integral with the base 203 and has the same coefficient of thermal expansion for fixing the fourth drive rod 304.
  • the thermal expansion coefficient, the effective length, and the lever coefficient of the above driving rod satisfy the following conditions: Of which: L 1 , k 1 is the effective length of the first driving rod 301, the coefficient of thermal expansion, the lever coefficient with the base, L 4 , k 4 is the effective length of the fourth drive rod 304, the coefficient of thermal expansion, and the lever coefficient of the base.
  • the first drive rod 301 acts as a compensation.
  • the fourth drive rod 304 is short and has a gap and cannot function. At this point, the wavelength/temperature relationship can be derived:
  • the first driving rod 301 is contracted due to the expansion and contraction. Since the length of the first driving rod 301 is larger than that of the fourth driving rod 304, the amount of contraction is large, and the fourth driving rod 304 is driven to move. The gap of the fourth drive rod 304 is filled, and at this time, the fourth drive rod 304 starts to play a compensating role.
  • the compensated temperature profile is shown in Figure 8C.
  • the wavelength drift can be reduced from 105 pm to 28 pm.
  • the driver is composed of five drive rods.
  • the high temperature section and the low temperature section are divided into more segments, which are respectively compensated by two driving rods.
  • the temperature range of -40 to 85 °C is divided into five sections, which are the normal temperature section dT 1 and the temperature range is 10 to 30 ° C.
  • the first driving rod 301 plays a leading role for linear full compensation; the high temperature section dT 2 , temperature range It is 30 ⁇ 55 °C, and the second driving rod 302 plays a leading role to perform linear over-compensation; the high temperature section dT 3 has a temperature range of 55-85 ° C, and the third driving rod 303 plays a leading role, and the compensation coefficient is larger.
  • the five driving rods in the solution may be different materials and have different coefficients of thermal expansion.
  • the first driving rod 301 is metal copper
  • the second driving rod 302 and the third driving rod 303 are metal aluminum
  • the fifth drive rod 305 is stainless steel.
  • Each of the drive rods may have a different effective length, such as the second drive rod 302 and the third drive rod 303 being longer than the first drive rod 301, respectively, and the second drive rod 302 and the third drive rod are shown by broken lines in FIG.
  • the drive rods 305 are respectively shorter than the first drive rods 301.
  • the two bosses and the base 203 in FIG. 7 are integral and have the same thermal expansion coefficient for fixing the fourth drive rod 304 and the fifth drive rod 305, respectively.
  • the thermal expansion coefficient, effective length, and lever factor of the five drive rods must meet the following conditions:
  • k i ,L i , (5 ⁇ i ⁇ 1) is the lever coefficient, effective length and thermal expansion coefficient of the i-th driver and the base respectively.
  • the effective length of the first driving rod 301 is L 1
  • the thermal expansion coefficient is The lever coefficient with the base 2 is k 1 .
  • the effective wavelength/temperature relationship of the drive rods acting on the base is, in descending order, a third drive rod 303, a second drive rod 302, a first drive rod 301, a fourth drive rod 304 and a fifth drive rod 305.
  • the thermal expansion coefficient, effective length and lever coefficient of each drive rod By adjusting the thermal expansion coefficient, effective length and lever coefficient of each drive rod, the product of these three parameters of each drive rod satisfies the requirements of Equation 18, and two sections of over-compensation can occur in the high temperature section, and the low temperature section appears. Under-compensation of the two segments, so that the warped portions on the left and right sides of the linearly compensated temperature/wavelength change parabola can be flattened until a horizontal straight line is reached.
  • the compensated temperature profile is shown in Figure 8D.
  • the wavelength drift can be reduced from 65pm to 10pm in the range of -40 to 85 °C.
  • the present invention proposes a device for reducing the nonlinear temperature effect of an arrayed waveguide grating, specifically including an integrated optical path base 2 and a driver 3, which can effectively reduce the wavelength/temperature nonlinear effect of the AWG chip 1.
  • the integrated optical path base 2 includes a hinge 202 which divides the base 2 into two parts which allow an appropriate amount of relative movement about the hinge 202.
  • the AWG chip 1 is cut into two parts, and the cutting line can be located anywhere in the input slab waveguide, the array waveguide, or the output slab waveguide.
  • the hinge 202 is aligned with the cutting line of the AWG chip 1, and the cut two-part AWG chip is mounted on the base, and the two partial chips are respectively located on both sides of the base hinge.
  • the driver 3 is composed of a plurality of driving rods, has different effective lengths or thermal expansion coefficients, and is installed at both ends of the integrated optical path base 2, and has different lever coefficients. When the temperature changes, the driver 3 integrates due to thermal expansion and contraction. The two portions of the optical path base 2 are moved relative to each other about the hinge 202 to compensate for the drift of the center wavelength of the AWG chip 1 with temperature.
  • the operating temperature range is divided into multiple temperature segments, and the plurality of driving rods of the driver 3 can respectively achieve under-compensation or over-compensation, so that each temperature segment has different wavelength/temperature coefficient, which can effectively reduce the residual of the linear compensation scheme. Linear temperature effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种降低阵列波导光栅非线性温度效应的装置,包含用于阵列波导光栅芯片(1)的集成光路底座(2)、驱动器(3)。集成光路底座(2)包括第一区域(201)、第二区域(203)和连接第一区域(201)和第二区域(203)的铰链(202)。铰链(202)使得第一区域(201)和第二区域(203)之间能够发生相对转动和/或平移。驱动器(3)由两个或两个以上的驱动杆(301、302、303、304、305)组合而成。驱动杆(301、302、303、304、305)的热膨胀系数不同于集成光路底座(2)热膨胀系数。第一区域(201)和第二区域(203)在不同的温度区间主要受不同的驱动杆(301、302、303、304、305)的驱动来发生相对转动和/或平移,从而使得第一区域(201)和第二区域(203)会随温度变化产生非线性位移,从而带动阵列波导光栅芯片(1)的两个分割部分发生相对移动,在不同的温度区间内对其中心波长漂移量进行准确补偿。

Description

一种降低阵列波导光栅非线性温度效应的装置 技术领域
本发明涉及一种用于波分复用/解复用系统中的阵列波导光栅及降低其非线性温度效应的装置,本发明属于光通信领域。
背景技术
在光通信系统中,阵列波导光栅(Arrayed Waveguide Gratings,简称AWG)是密集波分复用系统的关键光器件。AWG可以轻松实现多路光信号的复用和解复用,是增加光通信系统容量的重要器件。AWG是基于平面光波导的光器件,由输入波导、输入平板波导、阵列波导、输出平板波导和输出波导组成,其中相邻阵列波导具有固定的长度差。当多个不同波长的光信号从同一个输入端口进入AWG,经过输入平板波导后,通过衍射把光功率分配到阵列波导中的每一个端口,阵列波导的长度差会产生不同的传输相位延迟,在输出平板波导中相干叠加,使不同波长的光输出到不同的输出端口,从而起到解复用的功效。反之,当多个光信号从不同的输出端口进入AWG,在输入端口可以实现复用的功效。
密集波分复用系统对复用/解复用器件的中心波长稳定性要求较高,需要控制在通道间隔的一定比例范围以内,例如在100GHz间隔的波分复用系统中,中心波长精度往往需要控制在通道间隔的+/-(5%-10%)以内,即+/-(40-80)pm。对于更密集的波分复用系统,如50G和25G系统,中心波长精度的要求更高,分别要达到+/-40pm和+/-20pm,甚至更高。具体可以参考下表:
Figure PCTCN2015097423-appb-000001
目前商用的AWG芯片一般是基于硅基的平面光波导器件,其中心波长随环境温度变化较大,敏感度约为12pm/℃,那么在波分复用系统工作环境温度内(-5℃至65℃),AWG芯片的中心波长漂移量会达到约800pm,明显超出了系统要求,因此,需要采用措施来控制AWG芯片的中心波长,使其能在工作环境温度内正常工作。
无热AWG(Athermal AWG,简称AAWG)可以有效控制AWG芯片的中心波长随温度 的漂移问题,而且不需要耗电,是纯无源器件,受到诸多关注。专利CN101019053B(PCT/US2004/0140842004.05.05)中介绍了一种常规的AAWG方案,如图10所示,该方案带有底座,芯片与底座相连,通过分割芯片的平板波导,底座的驱动器301带动铰链202发生移动,使底座上方的芯片发生相对的波导移动,用于补偿AWG芯片的中心波长随温度的变化。
公式1表明了AWG被分割的平板波导的相对位移dx与温度变化dT之间的关系
Figure PCTCN2015097423-appb-000002
                 公式1
其中ns和nc分别是AWG的输入/输出平面波导和阵列波导的有效折射率,ng是群折射率,d是相邻阵列波导在罗兰圆周上的间距,m是衍射级次,R是罗兰圆焦距,dλ是AWG的中心波长变化值。
设驱动器301的有效长度为L,线膨胀系数为
Figure PCTCN2015097423-appb-000003
那么由驱动器301的热胀冷缩引起的相对位移为:
Figure PCTCN2015097423-appb-000004
                 公式2
其中k是驱动器301的位移与底座的第一区域和第二区域的相对位移之间的杠杆系数。
结合公式1和公式2,可以得出如下关系:
Figure PCTCN2015097423-appb-000005
                 公式3
从公式3可以看出,该方案的中心波长变化值与温度的变化值是线性的关系。
实际上,AWG芯片的中心波长λ随温度T的变化值并不是单一的线性关系,而是具有非线性关系,如下公式4所示:
dλ=a*dT2+b*dT+c             公式4
现有的方案只能补偿中心波长随温度变化的一次项,不能补偿其二次项。经过线性补偿后的温度/波长变化曲线如图11所示,该曲线为抛物线,是残余的波长/温度非线性效应的体现。
近年来随着WDM-PON(Wavelength Division Multiplexing-Passive Optical Network)系统的不断发展,AWG的应用需要从室内扩展至室外,即工作环境温度会从-5℃~65℃扩展至-40℃~85℃,中心波长随温度的漂移量更大,对波长控制技术的要求更高,从图11中可以看到,当工作温度范围从-5-65度扩展到-40-85度时,中心波长精度将会从40pm上升至约70pm,很容易超标。
基于对更宽工作温度范围或更密集波分复用系统的应用需求,现有的一阶线性补偿方案已经不能满足要求,需要提出一种方案进行非线性补偿,使AAWG的中心波长精度控制更加精确。
对于非线性补偿,Furukawa和Gemfire等公司先后提出过不同的方案。如专利US7,539,368B2提出了分段温度补偿方法,将工作温度分为3个不同的区域,每个区域采用不同的线性补偿方案,可以有效减小二阶温度效应。该方案中芯片被分割后的两个部分是相对自由状态,容易引起其中一个部分发生滑动和错位,可能导致波长精度和插入损耗的不稳定性。
专利US7,689,072B2介绍了一种通过填充两种不同的补偿材料进行非线性温度补偿的方法,通过第一种补偿材料进行线性补偿,然后再增加第二种补偿材料进行二阶非线性补偿。这种方案直接在芯片光路上增加多个slots,并在slots里填充补偿材料,操作方便,可以做到小尺寸。但是存在两种补偿材料相互干扰影响的问题,二阶补偿效果可能不明显。
如何能提出一种方案既能解决非线性效应,又能保证光器件的稳定性和可靠性,是目前面临的一个问题。
发明内容
本发明的主要目的是克服现有技术存在的问题和不足,提供一种降低光器件非线性温度效应的装置。
本发明的基本原理:
本发明中的驱动器由多个杆组成,其中一个杆用于实现AWG的波长/温度的线性补偿,固定在集成光路底座的两端,是未经过分割的;其它杆用于实现AWG的波长/温度的非线性效应补偿,固定在集成光路的两端,中间经过分割,具有一定的缝隙。这样可以使集成光路底座的两个部分在不同的温度范围内出现不同的相对位移/温度系数,在高于常温的温度范围内出现过补偿,低于常温的范围内出现欠补偿,从而使AWG的中心波长随温度变化呈现多段曲线,可以有效降低残余的非线性温度效应。分段越多,越容易进行非线性温度补偿。
本发明的技术方案是:
一种降低阵列波导光栅非线性温度效应的装置,包含用于阵列波导光栅芯片的集成光路底座、驱动器,集成光路底座包括第一区域、第二区域和连接所述第一区域和第二区域的铰链,所述铰链使得所述第一区域和第二区域之间能够发生相对转动和/或平移;所述集成光路底座上方固定设置所述阵列波导光栅芯片,阵列波导光栅芯片分割为两部分,分别固定于集成光路底座的第一区域和第二区域;所述驱动器由两个或两个以上的驱动杆组合而成,所述 驱动杆的热膨胀系数不同于集成光路底座的热膨胀系数,其中:所述第一区域和第二区域在不同的温度区间主要受不同的驱动杆的驱动来发生所述的相对转动和/或平移,从而使得第一区域和第二区域会随温度变化产生非线性位移,从而带动阵列波导光栅芯片的两个分割部分发生相对移动,在不同的温度区间内对其中心波长漂移量进行准确补偿。
所述驱动杆中至少一个驱动杆的中间或者该驱动杆与所述集成光路底座的第一区域或第二区域之间采用无缝隙固定设置,所述驱动杆中至少一个驱动杆的中间或者该驱动杆与所述集成光路底座的第一区域或第二区域之间具有缝隙,该缝隙通过在不同的温度区域内由驱动杆的热胀冷缩引起开启或闭合。
所述驱动杆中包括过补偿结构或者欠补偿结构或者过补偿、欠补偿组合结构,其中:所述驱动杆设置缝隙的驱动杆一侧固定于底座设置的凹槽里形成过补偿结构,所述设置缝隙的驱动杆一侧固定于设置的凸台上形成欠补偿结构。
所述不同驱动杆具有不同的有效长度和/或杠杆系数和/或热膨胀系数,使得不同驱动杆的有效长度、杠杆系数、热膨胀系数之积也不相同。
所述驱动器的热膨胀系数与集成光路底座的热膨胀系数相差等于或者大于50%。
所述阵列波导光栅芯片分割的两个部分之间的缝隙位于阵列波导光栅的输入平板波导或阵列波导或输出平板波导的任意位置,并且所述缝隙设置于所述集成光路底座上的铰链位置处,所述缝隙为1um~50um。
所述阵列波导光栅芯片的缝隙内填充有折射率匹配材料,该材料的折射率与阵列波导光栅被分割区域的波导材料的折射率相同或接近。
所述驱动器由第一驱动杆、第二驱动杆、第四驱动杆组成,第一驱动杆、第二驱动杆、第四驱动杆与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆、第四驱动杆的中间或者所述第二驱动杆、第四驱动杆与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆一侧固定于底座设置的凹槽里形成过补偿结构;第四驱动杆一侧固定于底座设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000006
其中:L1
Figure PCTCN2015097423-appb-000007
k1为第一驱动杆的有效长度、热膨胀系数、与底座的杠杆系数,L2
Figure PCTCN2015097423-appb-000008
k2为第二驱动杆的有效长度、热膨胀系数、与底座的杠杆系数,L4
Figure PCTCN2015097423-appb-000009
k4为第四驱动杆的有效长度、热膨胀系数、与底座的杠杆系数。
所述驱动器由第一驱动杆、第二驱动杆组成,第一驱动杆、第二驱动杆与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆的中间或者所述第二驱动杆与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆一侧固定于底座设置的凹槽里形成过补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000010
Figure PCTCN2015097423-appb-000011
其中:L1
Figure PCTCN2015097423-appb-000012
k1为第一驱动杆的有效长度、热膨胀系数、与底座的杠杆系数,L2
Figure PCTCN2015097423-appb-000013
k2为第二驱动杆的有效长度、热膨胀系数、与底座的杠杆系数。
所述驱动器由第一驱动杆、第四驱动杆组成,第一驱动杆、第四驱动杆与集成光路底座的第一区域和第二区域固定相连,所述第四驱动杆的中间或者所述第四驱动杆与所述集成光路底座的第一区域或第二区域之间设置缝隙;第四驱动杆一侧固定于底座设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000014
Figure PCTCN2015097423-appb-000015
其中:L1
Figure PCTCN2015097423-appb-000016
k1为第一驱动杆的有效长度、热膨胀系数、与底座的杠杆系数,L4
Figure PCTCN2015097423-appb-000017
k4为第四驱动杆的有效长度、热膨胀系数、与底座的杠杆系数。
所述驱动器由第一驱动杆、第二驱动杆、第三驱动杆、第四驱动杆、第五驱动杆组成,所述第一驱动杆与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆、第三驱动杆、第四驱动杆、第五驱动杆的中间或者所述第二驱动杆、第三驱动杆、第四驱动杆、第五驱动杆与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆、第三驱动杆一侧固定于底座设置的凹槽里形成过补偿结构;第四驱动杆、第五驱动杆一侧固定于底座设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000018
其中:ki,Li
Figure PCTCN2015097423-appb-000019
(5≥i≥1)分别为所述第i个驱动杆的与底座的杠杆系数、有效长度和热膨胀系数。
本发明具有如下的优点:
采用本发明装置可以有效降低AWG芯片的波长/温度非线性效应。
附图说明
图1A、本发明总体结构示意图;
图1B、本发明在高温段的结构示意图;
图1C、本发明在低温段的结构示意图;
图2、本发明总体结构截面示意图;
图3、本发明AWG芯片示意图;
图4、本发明底座和驱动器示意图;
图5、本发明第二种方案结构示意图;
图6、本发明第三种方案结构示意图;
图7、本发明第四种方案结构示意图;
图8A、本发明第一种方案与常规线性补偿方案的温度曲线对比图;
图8B、本发明第二种方案与常规线性补偿方案的温度曲线对比图;
图8C、本发明第三种方案与常规线性补偿方案的温度曲线对比图;
图8D、本发明第四种方案与常规线性补偿方案的温度曲线对比图;
图9、现有技术线性补偿在不同补偿效果下的温度曲线图;
图10、传统的线性补偿方案;
图11、传统的线性补偿后的温度曲线图;
其中:
1、AWG芯片;              101、输入波导;
102、输入平板波导;       103、阵列波导;
104、输出平板波导;       105、输出波导;
106、芯片分割端面;       2、底座
201、底座第一区域;       202、铰链;
203、底座第二区域;       3、驱动器
301、第一驱动杆;         302、第二驱动杆;
303、第三驱动杆;         304、第四驱动杆;
305、第五驱动杆;
具体实施方式
下面结合附图,介绍本发明的具体实施方式。
在线性AAWG中,如果补偿系数dλ/dT正好与芯片的波长/温度系数一致,那么就是完全补偿;如果补偿系数dλ/dT大于芯片的波长/温度系数,则称为过补偿;如果补偿系数dλ/dT小于芯片的波长/温度系数,则称为欠补偿,图9所示为这三种补偿效果的温度曲线图。在本发明中会结合不同的补偿效果进行分段线性补偿,用于减小线性补偿残余的非线性效应。
本发明涉及一种降低阵列波导光栅的非线性温度效应的装置。图1A是本发明的总体结构示意图,包括阵列波导光栅(AWG)芯片1、集成光路底座2及驱动器3。图2是本发明的总体结构截面图,AWG芯片1通过合适的方式固定设置在底座2上。AWG芯片1的示意图如图3所示,其包括输入波导101、输入平板波导102、阵列波导103、输出平板波导104、输出波导105,其中输入波导101将输入光导入输入平板波导102,输入平板波导102与输出平板波导104通过阵列波导103连接成一定角度设置,输入平板波导102通过衍射把多个不同波长光信号的光功率分配到阵列波导103中的每一个端口,阵列波导103中相邻波导具有固定的长度差,由于上述长度差使得阵列波导103对不同波长光信号产生不同的传输相位 延迟,在输出平板波导104中相干叠加,使不同波长的光信号通过不同端口的输出波导105输出。AWG芯片被分割为两部分,分割处可以位于输入平板波导102、输出平板波导104或阵列波导103上面。
图4是集成光路底座和驱动器在初始状态下的典型结构示意图,其中集成光路底座2包括第一区域201、第二区域203、以及用于连接第一区域201和第二区域203的铰链202,所述铰链202能够使所述第一区域201相对于第二区域203发生转动或其他相对位移。集成光路底座2具有较低的第一热膨胀系数,不容易随温度变化变形,可以由玻璃、水晶、金属、合金或其它复合材料等制成。AWG芯片1固定于集成光路底座2的第一区域201和第二区域203上,从而可以通过所述第一区域201相对于第二区域203之间的相对运动(转动或位移)使得AWG芯片1的光路发生变化。
驱动器3包括两个或两个以上的驱动杆,这些驱动杆连接在集成光路底座2的第一区域201和第二区域203之间用于驱动集成光路底座2的第一区域201和第二区域203之间发生相对运动,这些驱动杆的热膨胀系数不同于集成光路底座2,这些驱动杆的热膨胀系数与集成光路底座的热膨胀系数相差等于或者大于50%,通常这些驱动杆的热膨胀系数比集成光路底座的热膨胀系数大,使得这些驱动杆容易随温度变化发生变形,从而引起集成光路底座2的第一区域201和第二区域203之间发生相对运动。其中至少一个的第一驱动杆301的两端分别与集成光路底座2的第一区域201和第二区域203相固定,且该第一驱动杆301的中间没有缝隙;至少一个的第二驱动杆302/第三驱动杆303/第四驱动杆304/第五驱动杆305的两端分别与集成光路底座2的第一区域201和第二区域203相固定,且第二驱动杆302/第三驱动杆303/第四驱动杆304/第五驱动杆305的中间留有一定的缝隙;或者,至少一个的第二驱动杆302/第三驱动杆303/第四驱动杆304/第五驱动杆305的一端与集成光路底座2的第一区域201或第二区域203相固定,且其另一端与集成光路底座2的第二区域203或第一区域201之间留有一定的缝隙;上述缝隙随着温度的变化而发生变化,在升温或降温的过程中引起上述缝隙的开启或闭合。此外,驱动器的各个驱动杆需要具有不同的热膨胀系数或者有效长度,和不同的杠杆系数,从而使各个驱动杆在铰链202处引起的位移不同,这样可以发生过补偿或欠补偿的效果。这些第一驱动杆301/第二驱动杆302/第三驱动杆303/第四驱动杆304/第五驱动杆305组合一起发生作用,引起底座的第一区域201和第二区域203绕铰链202发生非线性的相对位移,引起阵列波导光栅芯片1的被分割的两个部分发生相对移动,用于降低阵列波导光栅芯片1的中心波长随温度的非线性效应。
本发明根据2-5个驱动杆的组合对本发明的结构和工作原理进行详细说明,本领域技术人员应当可以理解,驱动杆的数量可以根据实际需要灵活设置,并不局限于本发明实施例中 的2-5个,例如还可以是9个驱动杆,21个驱动杆或更多。
根据本发明图1A所示,AWG芯片1和底座2连接固定,固定方式可以是采用粘接剂、焊接或其他方式,在底座2的铰链202附近,AWG芯片1被分割成两部分,分割端面为106,分割后的两个部分可以发生相对移动,引起AWG中心波长的变化,用于补偿AWG芯片1的中心波长随温度变化引起的漂移。
AWG芯片1的切割端面106可以通过激光切割、水切割、化学刻蚀、锯齿切割等方式进行分割,切割形状可以是直线、曲线或其他形状,切割的宽度一般控制在1-50um以内,这样可以保证切割后的AWG芯片1发生相对移动,既可以避免在高低温变化时由于缝宽太小导致切割面发生相对移动时出现碰撞,引起芯片破裂,也可以避免由于缝宽太大导致的附加插入损耗偏大的问题。切割后的端面不要裸露在空气中,需要采用匹配方式使之与AWG芯片1的折射率一致,通常是采用折射率与AWG芯层折射率接近的匹配胶涂在芯片分割端面106上,并覆盖光路上的所有缝隙,也可以采用镀膜等方式进行折射率匹配。
如图1A所示,在现有技术中线性补偿方案的基础上,保留第一驱动杆301,引入另外两种驱动杆,分别为第二驱动杆302和第四驱动杆304,第二驱动杆302的长度最大,第一驱动杆301次之,第四驱动杆304最短。其中第二驱动杆302和第四驱动杆304经过分割,分别具有一定的缝隙,用于减小高温段(高于常温)和低温段(低于常温)的非线性温度效应。
设第一驱动杆301的有效长度为L1,热膨胀系数为
Figure PCTCN2015097423-appb-000020
与底座2的杠杆系数为k1;第二驱动杆302的有效长度为L2,热膨胀系数为
Figure PCTCN2015097423-appb-000021
与底座2的杠杆系数为k2;第四驱动杆304的有效长度为L4,热膨胀系数为
Figure PCTCN2015097423-appb-000022
与底座的杠杆系数为k4,这些参数需要满足如下条件:
Figure PCTCN2015097423-appb-000023
              公式5
关于杠杆系数k,可以理解为驱动器的位移和铰链202的位移之间的关系。杠杆系数由底座结构、驱动杆的长度和驱动杆与底座的安装位置来决定,在底座结构设计时可以通过模拟计算软件来确定。拿第一驱动杆301举例,当温度变化时,由于热胀冷缩导致第一驱动杆301发生长度改变,变化量为30um,此时引起铰链202发生变形,导致底座第一区域201和第二区域202发生相对位移,其中包括角度和位移的变化,对AWG芯片而言,位移变化值是有效的,角度变化是不必要的,因此忽略角度变化,只取位移变化值,此时由铰链202引起的底座第一区域201和第二区域203的位移为15um,那么可以得出第一驱动杆301的杠杆系数为0.5。即,杠杆系数相当于底座第一区域和第二区域在驱动杆作用下的间距变化与驱动杆伸缩长度的比值,杠杆系数越大表示驱动杆对底座第一区域和第二区域间距变化的作用越大,反之亦然。
当常温范围时,第一驱动杆301起线性补偿作用,此时底座引起的芯片位移为
Figure PCTCN2015097423-appb-000024
               公式6
当温度升高至一定范围后,三种驱动杆均发生热膨胀,通过设置第二驱动杆302和第四驱动杆304的缝隙宽度,使第二驱动杆302的缝隙被填满,第四驱动杆304的缝隙依然存在,不起温度补偿作用,如同1B所示。那么在高温段则出现由第一驱动杆301和第二驱动杆302同时发生作用的情况,并以第一驱动杆301和第二驱动杆302中引入的较大位移值为准。
此时底座2引起的芯片位移为
Figure PCTCN2015097423-appb-000025
            公式7
这样,在高温段将会出现过补偿的现象,会将线性补偿后的温度/波长变化抛物线的右半边曲线下拉,趋向水平方向。
当温度从常温下降至一定范围后,驱动器发生收缩,第二驱动杆302收缩量最大,缝隙变宽,不起温度补偿作用;由于第一驱动杆301的长度比第四驱动杆304大,当第一驱动杆301发生收缩时,其收缩量比第四驱动杆304大,因此使第四驱动杆304的缝隙被填满,第四驱动杆304开始发挥补偿作用,并以第一驱动杆301和第四驱动杆304中引入的较小位移值为准。
此时底座2引起的芯片相对位移为
Figure PCTCN2015097423-appb-000026
                  公式8
这样,在低温段将会出现欠补偿的现象,会将线性补偿后的温度/波长变化抛物线的左半边曲线下拉,趋向水平方向。
根据此原理,可以将驱动器的驱动杆数量增加,如从三根增加到五根,高温段两根、低温段两根、常温段一根,这样可以将高温段和低温段分成更多的温度段。此时由底座2引起的AWG芯片1相对位移为
Figure PCTCN2015097423-appb-000027
          公式9
这样,图11中线性补偿后的温度/波长变化抛物线的左、右两边将更趋向于水平方向,直至接近成为一条水平的直线,明显降低了AWG芯片1的波长/温度的非线性效应。
在本发明的技术方案中,驱动器的不同驱动杆与底座2的铰链202处的杠杆系数至少有两个不同的数值。
在如图1A-1C所示的第一种方案中,为了满足更宽温度范围,如-40~85℃内的波长补偿,将整个工作温度范围分割为三个温度区,如低温段为-40~-10℃,常温段为-10~50℃,高温段 为50~85℃,在图1A中,第一驱动杆301与集成光路底座的第一区域201和第二区域203相连且中间没有缝隙,第二驱动杆302和第四驱动杆304经过分割,分别具有一定的缝隙。第一驱动杆301、第二驱动杆302、第四驱动杆304分别用于对常温段、高温段和低温段的补偿。
三个驱动杆均采用金属铜制成,热膨胀系数为17.7*10-6/℃,每个驱动杆的长度有区别,第一驱动杆301的长度为37.4mm,第二驱动杆302的长度为39.5mm,其中图1A上显示第二驱动杆302与底座203接触部分的虚线为第二驱动杆302比第一驱动杆301更长的部分,底座203在此处有一个凹槽(图中用凹下的虚线表示),第二驱动杆302的最下端固定在凹槽里;第四驱动杆304的长度为25.7mm,由于第四驱动杆304比第一驱动杆301短,底座203与第四驱动器接触部分需要一个凸台(图中用凸出的实线表示),该凸台和底座203是一个整体,具有相同的热膨胀系数,用于固定第四驱动杆304的最下端。本实施例中以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000028
其中:L1
Figure PCTCN2015097423-appb-000029
k1为第一驱动杆301的有效长度、热膨胀系数、与底座的杠杆系数,L2
Figure PCTCN2015097423-appb-000030
k2为第二驱动杆302的有效长度、热膨胀系数、与底座的杠杆系数,L4
Figure PCTCN2015097423-appb-000031
k4为第四驱动杆304的有效长度、热膨胀系数、与底座的杠杆系数。通过调整驱动器的安装位置,使第一驱动杆301与底座的杠杆系数为0.55,第二驱动杆302与底座的杠杆系数为0.65,第四驱动杆304与底座的杠杆系数为0.6。第二驱动杆302和第四驱动杆304经过分割,分别具有一定的缝隙。在常温段,第一驱动杆301起补偿作用。第二驱动杆302和第四驱动杆304存在缝隙,不能发挥作用。此时芯片切割面发生的相对位移为
dx1=0.55*37.4*10-3*17.7*10-6*dT1=0.364*10-6*dT1        公式10
根据AWG的参数计算,芯片分割面的相对位移与波长变化的关系为每微米对应于33皮米。
此时可以得出波长/温度的关系
1=0.364*33*10-12*dT1=12.01*10-12*dT1                 公式11
选用的AWG芯片1的波长/温度的一次项系数为12pm/℃,可以看出第一驱动杆301在常温段能正好进行线性补偿。
在高温段,第二驱动杆302发生膨胀,缝隙被填满,如图1B所示,此时由第一驱动杆301和第二驱动杆302同时进行补偿,并以其中位移较大者优先,通过公式12计算出来,第二驱动杆302引起的波长/温度系数为15pm/℃,大于第一驱动杆301引起的波长/温度系数,会发挥主要作用。
2=0.65*39.5*10-3*17.7*10-6*33*10-12*dT2=15*10-12*dT2          公式12
此时在高温段为过补偿,可以将线性补偿后的温度/波长变化抛物线右边的向上翘曲部分下拉。
在低温段,三个驱动杆都发生收缩,第二驱动杆302收缩量较大,缝隙越来越大,不发挥补偿作用;第四驱动杆304收缩量最小,由于第一驱动杆301的长度比第四驱动杆304大,当第一驱动杆301发生收缩时,其收缩量比第四驱动杆304大,因此使第四驱动杆304的缝隙被填满,第四驱动杆304开始发挥补偿作用,如图1C所示,通过公式13计算出来,第四驱动杆304引起的波长/温度系数为9pm/℃,小于第一驱动杆301引起的波长/温度系数,会发挥主要作用。
4=0.6*25.7*10-3*17.7*10-6*33*10-12*dT4=9*10-12*dT4        公式13
此时在低温段出现欠补偿,可以将线性补偿后的温度/波长变化抛物线左边的向上翘曲部分下拉。
经过非线性补偿后,AWG的波长/温度曲线图如图8A所示,和传统线性方案相比,在-40~85℃范围内,波长漂移量可以从65pm降低到20pm。
根据本发明的思路,可以扩展多种方案。
在如图5所示的第二种方案中,将整个工作温度范围分割为两个温度区,如低温段为-40~50℃,高温段为50~85℃。驱动器包括第一驱动杆301和第二驱动杆302,两个驱动杆均采用金属铜制成,热膨胀系数为17.7*10-6/℃。第一驱动杆301与集成光路底座的第一区域201和第二区域203相连且中间没有缝隙,第二驱动杆302两端分别同第一区域201、第二区域203相连接,第二驱动杆302上经过分割具有一定的缝隙。如图5所示,线性补偿采用欠补偿结构。第一驱动杆301的长度为31mm,第二驱动杆302的长度为42mm,其中图5显示第二驱动杆302与底座203接触部分的虚线为第二驱动杆302比第一驱动杆301更长的部分,底座203在此处有一个凹槽,第二驱动杆302的最下端固定在凹槽里;本实施例中以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000032
其中:L1
Figure PCTCN2015097423-appb-000033
k1为第一驱动杆301的有效长度、热膨胀系数、与底座的杠杆系数,L2
Figure PCTCN2015097423-appb-000034
k2为第二驱动杆302的有效长度、热膨胀系数、与底座的杠杆系数。通过调整驱动器的安装位置,使第一驱动杆301与底座的杠杆系数为0.5,第二驱动杆302与底座的杠杆系数为0.6。
在低温段,第一驱动杆301起补偿作用。第二驱动杆302存在缝隙,不能发挥作用。此时可以得出波长/温度的关系:
1=0.5*31*10-3*17.7*10-6*33*10-12*dT2=9*10-12*dT2        公式14
在高温段,由于热胀冷缩的作用,第二驱动杆302开始膨胀,有效长度变大,缝隙被填满,开始发挥补偿作用。
此时可以得出波长/温度的关系:
2=0.6*42*10-3*17.7*10-6*33*10-12*dT2=14.7*10-12*dT2         公式15
经过补偿后的温度曲线图如图8B所示,在-40~85℃范围内,波长漂移量可以从110pm降低到30pm。
在如图6所示的第三种方案中,将整个工作温度范围分割为两个温度区,如低温段为-40~0℃,高温段为0~85℃。驱动器包括第一驱动杆301和第四驱动杆304,两个驱动杆均采用金属铜制成,热膨胀系数为17.7*10-6/℃。第一驱动杆301与集成光路底座的第一区域201和第二区域203相连且中间没有缝隙,第四驱动杆304两端分别同第一区域201、第二区域203相连接,中间经过分割具有一定的缝隙。第一驱动杆301线性补偿采用过补偿结构。第一驱动杆301的长度为40mm,第四驱动杆304的长度为29mm,由于第四驱动杆304比第一驱动杆301短,底座203与第四驱动器接触部分需要一个凸台,该凸台和底座203是一个整体,具有相同的热膨胀系数,用于固定第四驱动杆304。本实施例中以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
Figure PCTCN2015097423-appb-000035
其中:L1
Figure PCTCN2015097423-appb-000036
k1为第一驱动杆301的有效长度、热膨胀系数、与底座的杠杆系数,L4
Figure PCTCN2015097423-appb-000037
k4为第四驱动杆304的有效长度、热膨胀系数、与底座的杠杆系数。通过调整驱动器的安装位置,使第一驱动杆301与底座的杠杆系数为0.62,第四驱动杆304与底座的杠杆系数为0.5。
在高温段,第一驱动杆301起补偿作用。第四驱动杆304较短,存在缝隙,不能发挥作用。此时可以得出波长/温度的关系:
1=0.62*40*10-3*17.7*10-6*33*10-12*dT2=14.5*10-12*dT2       公式16
在低温段,由于热胀冷缩的作用,第一驱动杆301发生收缩,由于第一驱动杆301的长度比第四驱动杆304大,其收缩量较大,带动第四驱动杆304移动,使第四驱动杆304的缝隙被填满,此时第四驱动杆304开始发挥补偿作用。
此时可以得出波长/温度的关系:
2=0.5*29*10-3*17.7*10-6*33*10-12*dT2=8.5*10-12*dT2       公式17
经过补偿后的温度曲线图如图8C所示,在-40~85℃范围内,波长漂移量可以从105pm降低到28pm。
在如图7所示的第四种方案中,驱动器由五个驱动杆组成。如图7所示,在第一种方案 的基础上,将高温段和低温段分为更多的片断,分别由两个驱动杆进行补偿。将-40~85℃温度范围分为5段,分别为常温段dT1,温度范围为10~30℃,由第一驱动杆301起主导作用,进行线性完全补偿;高温段dT2,温度范围为30~55℃,由第二驱动杆302起主导作用,进行线性过补偿;高温段dT3,温度范围为55~85℃,由第三驱动杆303起主导作用,进行补偿系数更大的线性过补偿;低温段dT4,温度范围为-15~10℃,由第四驱动杆304起主导作用,进行线性欠补偿;低温段dT5,温度范围为-40~-15℃,由第五驱动杆305起主导作用,进行补偿系数更小的线性欠补偿。
本方案中的五个驱动杆可以是不同的材料,具有不同的热膨胀系数,如第一驱动杆301为金属铜,第二驱动杆302和第三驱动杆303为金属铝,第四驱动杆304和第五驱动杆305为不锈钢。每个驱动杆可以具有不同的有效长度,如第二驱动杆302和第三驱动杆303分别比第一驱动杆301更长,图7中虚线所示为第二驱动杆302和第三驱动杆303比第一驱动杆301超过的长度,底座203在此处分别有一个凹槽,第二驱动杆302和第三驱动杆303的最下端固定在凹槽里;第四驱动杆304和第五驱动杆305分别比第一驱动杆301更短,图7中的两个凸台和底座203是一个整体,具有相同的热膨胀系数,分别用于固定第四驱动杆304和第五驱动杆305。
五个驱动杆的热膨胀系数、有效长度、杠杆系数需要满足以下条件:
Figure PCTCN2015097423-appb-000038
        公式18
其中ki,Li
Figure PCTCN2015097423-appb-000039
(5≥i≥1)分别为第i个驱动器的与底座的杠杆系数、有效长度和热膨胀系数,如第一驱动杆301的有效长度为L1,热膨胀系数为
Figure PCTCN2015097423-appb-000040
与底座2的杠杆系数为k1。这些驱动杆作用在底座上的有效波长/温度关系从大到小依次为第三驱动杆303,第二驱动杆302,第一驱动杆301,第四驱动杆304和第五驱动杆305。
通过调整每个驱动杆的热膨胀系数、有效长度和杠杆系数,使每个驱动杆的这三个参数的乘积满足公式18的要求,可以使高温段出现两个分段的过补偿,低温段出现两个分段的欠补偿,这样可以使线性补偿后的温度/波长变化抛物线的左右两边的翘曲部分拉平,直至趋于水平直线。经过补偿后的温度曲线图如图8D所示,在-40~85℃范围内,波长漂移量可以从65pm降低到10pm。
总体来说,本发明提出一种降低阵列波导光栅的非线性温度效应的装置,具体包括集成光路底座2和驱动器3,可以有效降低AWG芯片1的波长/温度非线性效应。集成光路底座2上含有一个铰链202,把底座2分成两部分,这两部分可以绕铰链202做适量的相对运动。 AWG芯片1被切割成两部分,切割线可以位于输入平板波导、阵列波导或输出平板波导的任意位置。让铰链202与AWG芯片1的切割线对齐,把切割开的两部分AWG芯片装在底座上,且两部分芯片分别位于底座铰链的两边。驱动器3由多个驱动杆组成,具有不同的有效长度或热膨胀系数,安装在集成光路底座2的两端,具有不同的杠杆系数,当温度变化时,由于热胀冷缩作用,驱动器3使集成光路底座2的两部分绕铰链202发生相对运动,用来补偿AWG芯片1的中心波长随温度的漂移。工作温度范围被分为多个温度段,驱动器3的多个驱动杆可以分别实现欠补偿或过补偿,使每个温度段内具有不同的波长/温度系数,可以有效降低线性补偿方案残余的非线性温度效应。
虽然本发明已经详细地示出并描述了相关的特定的实施例参考,但本领域的技术人员能够理解,在不背离本发明的思路和范围内可以在形式上和细节上作出各种改变,这些改变都将落入本发明的权利要求所要求的保护范围内。

Claims (11)

  1. 一种降低阵列波导光栅非线性温度效应的装置,包含用于阵列波导光栅芯片的集成光路底座、驱动器,其特征在于:集成光路底座包括第一区域、第二区域和连接所述第一区域和第二区域的铰链,所述铰链使得所述第一区域和第二区域之间能够发生相对转动和/或平移;
    所述集成光路底座上方固定设置所述阵列波导光栅芯片,阵列波导光栅芯片分割为两部分,分别固定于集成光路底座的第一区域和第二区域;
    所述驱动器由两个或两个以上的驱动杆组合而成,所述驱动杆的热膨胀系数不同于集成光路底座的热膨胀系数,其中:所述第一区域和第二区域在不同的温度区间主要受不同的驱动杆的驱动来发生所述的相对转动和/或平移,从而使得第一区域和第二区域会随温度变化产生非线性位移,从而带动阵列波导光栅芯片的两个分割部分发生相对移动,在不同的温度区间内对其中心波长漂移量进行准确补偿。
  2. 根据权利要求1所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动杆中至少一个驱动杆的中间或者该驱动杆与所述集成光路底座的第一区域或第二区域之间采用无缝隙固定设置,所述驱动杆中至少一个驱动杆的中间或者该驱动杆与所述集成光路底座的第一区域或第二区域之间具有缝隙,该缝隙通过在不同的温度区域内由驱动杆的热胀冷缩引起开启或闭合。
  3. 根据权利要求2所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动杆中包括过补偿结构或者欠补偿结构或者过补偿、欠补偿组合结构,其中:所述驱动杆设置缝隙的驱动杆一侧固定于底座设置的凹槽里形成过补偿结构,所述设置缝隙的驱动杆一侧固定于设置的凸台上形成欠补偿结构。
  4. 根据权利要求3所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述不同驱动杆具有不同的有效长度和/或杠杆系数和/或热膨胀系数,使得不同驱动杆的有效长度、杠杆系数、热膨胀系数之积也不相同。
  5. 根据权利要求1或2或3或4所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动器的热膨胀系数与集成光路底座的热膨胀系数相差等于或者大于50%。
  6. 根据权利要求5所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述阵列波导光栅芯片分割的两个部分之间的缝隙位于阵列波导光栅的输入平板波导或阵列波导或输出平板波导的任意位置,并且所述缝隙设置于所述集成光路底座上的铰链位置处,所述缝隙为1um~50um。
  7. 根据权利要求6所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述阵列波导光栅芯片的缝隙内填充有折射率匹配材料,该材料的折射率与阵列波导光栅被分割区域的波导材料的折射率相同或接近。
  8. 根据权利要求1或2或3或4所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动器由第一驱动杆(301)、第二驱动杆(302)、第四驱动杆(304)组成,第一驱动杆(301)、第二驱动杆(302)、第四驱动杆(304)与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆(302)、第四驱动杆(304)的中间或者所述第二驱动杆(302)、第四驱动杆(304)与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆(302)一侧固定于底座(203)设置的凹槽里形成过补偿结构;第四驱动杆(304)一侧固定于底座(203)设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
    Figure PCTCN2015097423-appb-100001
    其中:L1
    Figure PCTCN2015097423-appb-100002
    k1为第一驱动杆(301)的有效长度、热膨胀系数、与底座的杠杆系数,L2
    Figure PCTCN2015097423-appb-100003
    k2为第二驱动杆(302)的有效长度、热膨胀系数、与底座的杠杆系数,L4
    Figure PCTCN2015097423-appb-100004
    k4为第四驱动杆(304)的有效长度、热膨胀系数、与底座的杠杆系数。
  9. 根据权利要求1或2或3或4所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动器由第一驱动杆(301)、第二驱动杆(302)组成,第一驱动杆(301)、第二驱动杆(302)与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆(302)的中间或者所述第二驱动杆(302)与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆(302)一侧固定于底座(203)设置的凹槽里形成过补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
    Figure PCTCN2015097423-appb-100005
    其中:L1
    Figure PCTCN2015097423-appb-100006
    k1为第一驱动杆(301)的有效长度、热膨胀系数、与底座的杠杆系数,L2
    Figure PCTCN2015097423-appb-100007
    k2为第二驱动杆(302)的有效长度、热膨胀系数、与底座的杠杆系数。
  10. 根据权利要求1或2或3或4所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动器由第一驱动杆(301)、第四驱动杆(304)组成,第一驱动杆(301)、第四驱动杆(304)与集成光路底座的第一区域和第二区域固定相连,所述第四驱动杆(304)的中间或者所述第四驱动杆(304)与所述集成光路底座的第一区域或第二区域之间设置缝隙;第四驱动杆(304)一侧固定于底座(203)设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
    Figure PCTCN2015097423-appb-100008
    其中:L1
    Figure PCTCN2015097423-appb-100009
    k1为第一驱动杆(301)的有效长度、热膨胀系数、与底座的杠杆系数,L4
    Figure PCTCN2015097423-appb-100010
    k4为第四驱动杆(304)的有效长度、热膨胀系数、与底座的杠杆系数。
  11. 根据权利要求1或2或3或4所述的一种降低阵列波导光栅非线性温度效应的装置,其特征在于:所述驱动器由第一驱动杆(301)、第二驱动杆(302)、第三驱动杆(303)、第四驱动杆(304)、第五驱动杆(305)组成,所述第一驱动杆(301)与集成光路底座的第一区域和第二区域固定相连,所述第二驱动杆(302)、第三驱动杆(303)、第四驱动杆(304)、第五驱动杆(305)的中间或者所述第二驱动杆(302)、第三驱动杆(303)、第四驱动杆(304)、第五驱动杆(305)与所述集成光路底座的第一区域或第二区域之间设置缝隙;第二驱动杆(302)、第三驱动杆(303)一侧固定于底座(203)设置的凹槽里形成过补偿结构;第四驱动杆(304)、第五驱动杆(305)一侧固定于底座(203)设置的凸台上形成欠补偿结构;以上驱动杆的热膨胀系数、有效长度、杠杆系数满足如下条件:
    Figure PCTCN2015097423-appb-100011
    其中:ki,Li
    Figure PCTCN2015097423-appb-100012
    (5≥i≥1)分别为所述第i个驱动杆的与底座的杠杆系数、有效长度和热膨胀系数。
PCT/CN2015/097423 2015-04-29 2015-12-15 一种降低阵列波导光栅非线性温度效应的装置 WO2016173263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,022 US10241265B2 (en) 2015-04-29 2015-12-15 Apparatus for alleviating nonlinear temperature effect of arrayed waveguide gratings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510216683.9 2015-04-29
CN201510216683.9A CN104765103B (zh) 2015-04-29 2015-04-29 一种降低阵列波导光栅非线性温度效应的装置

Publications (1)

Publication Number Publication Date
WO2016173263A1 true WO2016173263A1 (zh) 2016-11-03

Family

ID=53647048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097423 WO2016173263A1 (zh) 2015-04-29 2015-12-15 一种降低阵列波导光栅非线性温度效应的装置

Country Status (3)

Country Link
US (1) US10241265B2 (zh)
CN (1) CN104765103B (zh)
WO (1) WO2016173263A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765103B (zh) * 2015-04-29 2018-01-19 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置
CN107490823B (zh) * 2017-08-30 2019-11-08 武汉光迅科技股份有限公司 一种实现阵列波导光栅双线性温度补偿装置及方法
CN107562084A (zh) * 2017-08-31 2018-01-09 武汉光迅科技股份有限公司 一种基于芯片温控和无热awg技术的模块及波长补偿方法
CN107462950A (zh) * 2017-08-31 2017-12-12 武汉光迅科技股份有限公司 一种宽温、低功耗阵列波导光栅模块及波长控制方法
CN109425929A (zh) * 2017-08-31 2019-03-05 上海永鼎光电子技术有限公司 一种实现宽温度范围内波长稳定的无热阵列波导光栅
CN107561639A (zh) * 2017-08-31 2018-01-09 武汉光迅科技股份有限公司 基于驱动位移进行波长补偿的光模块及控制方法
CN108614324A (zh) * 2018-03-28 2018-10-02 武汉光迅科技股份有限公司 阵列波导光栅及波长补偿方法
CN108803711B (zh) * 2018-05-07 2022-12-16 武汉光迅科技股份有限公司 一种宽温高稳定性温度自适应平坦化补偿装置
CN108828713B (zh) * 2018-06-20 2020-06-02 武汉光迅科技股份有限公司 一种无热阵列波导光栅模块及宽温补偿方法
CN109239940B (zh) * 2018-11-02 2021-05-07 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
CN109541747A (zh) * 2019-01-24 2019-03-29 清远市亿源通光电科技有限公司 一种基于阵列波导光栅的温度补偿结构
CN110515155A (zh) * 2019-08-29 2019-11-29 易锐光电科技(安徽)有限公司 一种波长可控阵列波导光栅
CN110596846B (zh) * 2019-09-20 2022-04-08 武汉光迅科技股份有限公司 一种标准具封装结构及波长锁定装置
CN116134357A (zh) * 2020-07-31 2023-05-16 莫列斯有限公司 用于阵列波导光栅(awg)模块的新的且改进的可变双向热补偿器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019053A (zh) * 2004-05-05 2007-08-15 光波微系统公司 利用可变宽度凹槽的无热awg和低功耗awg
US20080199130A1 (en) * 2005-09-02 2008-08-21 The Furukawa Electric Co, Ltd. Arrayed waveguide grating
CN101414030A (zh) * 2008-10-13 2009-04-22 武汉光迅科技股份有限公司 温度补偿杆及制作复用和解复用的无热阵列波导光栅方法
CN104280821A (zh) * 2014-10-31 2015-01-14 武汉光迅科技股份有限公司 一种温度分段补偿的温度不敏感型阵列波导光栅(aawg)
CN104765103A (zh) * 2015-04-29 2015-07-08 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070459A (ko) * 2000-10-13 2002-09-09 후루까와덴끼고오교 가부시끼가이샤 어레이도파로회절격자 및 그 광투과 중심파장 보정방법
US6735364B2 (en) * 2001-08-27 2004-05-11 The Furukawa Electric Co., Ltd. Arrayed waveguide grating optical multiplexer/demultiplexer and method for manufacturing the same
US6603892B1 (en) * 2001-10-24 2003-08-05 Lightwave Microsystems Corporation Mechanical beam steering for optical integrated circuits
US6975793B2 (en) * 2002-03-18 2005-12-13 Lightwave Microsystems Corporation Method and apparatus facilitating mechanical beam steering for optical integrated circuits
US6738545B1 (en) * 2002-03-18 2004-05-18 Lightwave Microsystems Corporation Athermal AWG and AWG with low power consumption using groove of changeable width
KR100763790B1 (ko) * 2005-01-07 2007-10-08 (주)포인테크 온도 무의존성 광도파로열 격자 및 그 제작방법
US7397986B2 (en) 2005-03-04 2008-07-08 Gemfire Corporation Optical device with reduced temperature dependence
CN100510633C (zh) * 2007-02-08 2009-07-08 北京航空航天大学 一种基于神经网络进行温度补偿的光纤陀螺
JP2010152177A (ja) * 2008-12-25 2010-07-08 Furukawa Electric Co Ltd:The アサーマルawgモジュール
US8494319B2 (en) * 2009-02-26 2013-07-23 Aidi Corporation Arrayed waveguide grating (AWG) with different radii in the input and output slab regions
JP2012014039A (ja) * 2010-07-02 2012-01-19 Furukawa Electric Co Ltd:The 波長合分波器およびその製造方法
JPWO2012002368A1 (ja) * 2010-07-02 2013-08-29 古河電気工業株式会社 アレイ導波路回折格子型光合分波器
JP2012014071A (ja) * 2010-07-02 2012-01-19 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
JP2013057907A (ja) * 2011-09-09 2013-03-28 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019053A (zh) * 2004-05-05 2007-08-15 光波微系统公司 利用可变宽度凹槽的无热awg和低功耗awg
US20080199130A1 (en) * 2005-09-02 2008-08-21 The Furukawa Electric Co, Ltd. Arrayed waveguide grating
CN101414030A (zh) * 2008-10-13 2009-04-22 武汉光迅科技股份有限公司 温度补偿杆及制作复用和解复用的无热阵列波导光栅方法
CN104280821A (zh) * 2014-10-31 2015-01-14 武汉光迅科技股份有限公司 一种温度分段补偿的温度不敏感型阵列波导光栅(aawg)
CN104765103A (zh) * 2015-04-29 2015-07-08 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置

Also Published As

Publication number Publication date
CN104765103A (zh) 2015-07-08
US10241265B2 (en) 2019-03-26
US20180164518A1 (en) 2018-06-14
CN104765103B (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2016173263A1 (zh) 一种降低阵列波导光栅非线性温度效应的装置
US7539368B2 (en) Arrayed waveguide grating
CN103018825B (zh) 一种实现分段温度补偿的无热阵列波导光栅
US8867873B2 (en) Arrayed waveguide grating
JP5457661B2 (ja) 光波長合分波回路
CN101099098B (zh) 温度不敏感的阵列波导光栅的封装方法
RU2596176C2 (ru) Узлы термокомпенсированных решеток на основе массива волноводов
CN103926654B (zh) 无热阵列波导光栅波分复用器
CN206725806U (zh) 一种实现宽温度范围内波长稳定的无热阵列波导光栅
WO2018036035A1 (zh) 一种具有温度补偿的无热阵列波导光栅及其制作方法
CN102540350B (zh) 一种实现双线性温度补偿的温度不敏感型阵列波导光栅
CN105866882B (zh) 一种实现温度补偿的温度不敏感型阵列波导光栅
US6668116B2 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer
WO2019041680A1 (zh) 一种宽温、低功耗阵列波导光栅模块及波长控制方法
CN102193149A (zh) 无热阵列波导光栅波分复用器
JP5351522B2 (ja) 光特性補償のための温度無依存のアレイ導波路回折格子合分波器及びその製作方法
JP4667927B2 (ja) アレイ導波路回折格子型光合分波器
US20130142483A1 (en) Arrayed waveguide grating multiplexer-demultiplexer
US20210041626A1 (en) Athermal arrayed waveguide grating using precise parallel movement module, and manufacturing method therefor
CN108594363B (zh) 一种阵列波导光栅及光模块
CN108614324A (zh) 阵列波导光栅及波长补偿方法
CN107748421A (zh) 一种用于固定阵列波导光栅芯片的底座
CN109425929A (zh) 一种实现宽温度范围内波长稳定的无热阵列波导光栅
JP2014035474A (ja) アレイ導波路回折格子型光合分波器
CN207937671U (zh) 一种用于固定阵列波导光栅芯片的底座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890638

Country of ref document: EP

Kind code of ref document: A1