WO2019041680A1 - 一种宽温、低功耗阵列波导光栅模块及波长控制方法 - Google Patents

一种宽温、低功耗阵列波导光栅模块及波长控制方法 Download PDF

Info

Publication number
WO2019041680A1
WO2019041680A1 PCT/CN2017/118169 CN2017118169W WO2019041680A1 WO 2019041680 A1 WO2019041680 A1 WO 2019041680A1 CN 2017118169 W CN2017118169 W CN 2017118169W WO 2019041680 A1 WO2019041680 A1 WO 2019041680A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
module
wavelength
awg
control device
Prior art date
Application number
PCT/CN2017/118169
Other languages
English (en)
French (fr)
Inventor
吴凡
李长安
凌九红
胡家艳
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2019041680A1 publication Critical patent/WO2019041680A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/32Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time

Definitions

  • the invention relates to an optical module and a packaging method, and belongs to the technical field of optical communication, in particular to a wide temperature and low power consumption array waveguide grating module and a wavelength control method.
  • AWG Arrayed Waveguide Gratings
  • AWG is a key optical device for dense wavelength division multiplexing systems. It has the advantages of high integration, large number of channels, low insertion loss, and easy mass production.
  • the AWG Dense Wavelength Division Multiplexing system requires high center wavelength stability for the multiplexer/demultiplexer. The center wavelength accuracy needs to be controlled within +/- 5% of the channel spacing, usually at 100 GHz, 50 GHz and 25 GHz.
  • the center wavelength accuracy needs to be controlled within +/- 0.04 nm, +/- 0.02 nm, and +/- 0.01 nm, respectively.
  • the traditional silicon-based AWG chip is sensitive to temperature.
  • the drift of the center wavelength with temperature is 0.0118nm/°C.
  • the center wavelength of the AWG chip is within the operating temperature of the wavelength division multiplexing system (-40°C to 85°C). The amount of drift significantly exceeds the system requirements, so measures are needed to control the center wavelength of the AWG module to operate properly within the operating ambient temperature.
  • Athermal AWG (AWG) technology is a commonly used central wavelength control technology.
  • the athermal AWG module usually uses temperature compensation technology to maintain the wavelength stability.
  • the thermal expansion and contraction of the temperature drive rod drives the relative movement of the waveguide. Compensate for wavelength drift with temperature. After the AWG chip is cut into two parts, the change in the center wavelength d ⁇ has the following relationship with the relative displacement dx of the two parts of the chip:
  • n s and n c are the input slab waveguide and output slab waveguide of the AWG, respectively, also called the effective refractive index of the Roland circle and the effective refractive index of the array waveguide, n g is the group refractive index, and d is the phase The spacing of the adjacent array waveguides on the circumference of the Roland, m is the diffraction order. ⁇ is the vacuum wavelength.
  • the thermal expansion coefficient of the driving rod is larger than the thermal expansion coefficient of the optical path base.
  • the driving rod drives the first region 101 and the second region 102 of the optical path base to generate relative motion, thereby driving the two portions of the AWG chip along the cutting slit 206. Relative movement, thereby compensating for the drift of the wavelength of the AWG chip with temperature.
  • the length of the driving rod 103 is L
  • the coefficient of thermal expansion relative to the optical path base is ⁇
  • the relative displacement generated by the driving rod driving chip is:
  • k is the proportionality factor and is related to the specific structure.
  • the central wavelength can be compensated directly for the temperature change offset by the drive rod.
  • the relationship between dx/dT and d ⁇ /dT and temperature is nonlinear.
  • the amount of change from low temperature to normal temperature (-40 ° C to 25 ° C) and normal temperature to high temperature (25 ° C to 85 ° C) differ by about 0.04 nm.
  • the variation of the center wavelength d ⁇ with the temperature T can be approximated by the formulas (2) and (3) as shown in the formula (4).
  • the temperature compensating device 1 can only compensate for the primary term of the central wavelength as a function of temperature, and cannot compensate for the quadratic term. Because the refractive index of the silica-based silica waveguide has a high-order coefficient with temperature change in practical applications, the compensated center-wavelength-temperature curve is an open parabola, as shown in FIG. If the compensation factor Equal to b, then symmetric compensation; if compensation coefficient Greater than b, then overcompensation; if compensation coefficient Less than b, then it is under-compensation.
  • the advantage of the athermal AWG is that it does not require power consumption.
  • the disadvantage is that the center wavelength accuracy of each channel is sacrificed at a normal temperature of 25 ° C to meet the specifications of the module's full temperature range.
  • the central wavelength variation of the symmetrically compensated athermal AWG is about 0.05 nm, so the method can only maintain the stability of the wavelength in a limited temperature range, for example, the working environment temperature is -5 ° C to 65 ° In the °C range, the center wavelength accuracy meets the requirements of the 100G system, and when the working environment temperature is extended to -40 ° C to 85 ° C, the module wavelength variation is >0.1 nm, which does not meet the central wavelength accuracy and needs to be controlled by +/- 0.04 nm.
  • the wavelength inconsistency caused by the wavelength deviation of each channel from the ITUT value has a serious impact on important indicators such as module crosstalk.
  • the existing heatless AWG technology has limited wavelength accuracy compensation capability, which mainly reflects the inability to meet the wavelength precision control requirements of high temperature and low temperature regions at the same time.
  • the object of the present invention is to overcome the above-mentioned technical drawbacks of the prior art, and to provide an optical module for wavelength compensation based on driving displacement and a packaging method for wavelength control.
  • the module and the wavelength-controlled packaging method control the overall temperature of the module by the module temperature control device, and divide the operating temperature into two or more segments to segment the wavelength control, thereby reducing power consumption and in a wider industry.
  • a wide temperature, low power arrayed waveguide grating module and wavelength control method comprising:
  • the temperature compensating device comprises an optical path base composed of a plurality of independent sub-areas and a driving rod for connecting the sub-areas of each optical path base.
  • the optical path bottom plate comprises a first area and a second area, and the sub-areas are connected by a hinge or completely separated;
  • the AWG chip assembly is cut into a plurality of sub-areas, each of which is disposed on a light path base sub-area;
  • the optical path base is provided with a module temperature control device.
  • both ends of the driving rod are fixed on two sub-areas of the optical path base, and the thermal expansion coefficient of the driving rod is different from the optical path base.
  • the module temperature control device is located at the bottom of the optical path base.
  • a wide temperature, low power arrayed waveguide grating module and wavelength control method comprising:
  • the temperature compensation device 1 and the AWG chip assembly 2 are heated or cooled by the module temperature control device, and the temperature of the drive rod is adjusted to control the driving displacement.
  • the above-mentioned wide temperature, low power consumption arrayed waveguide grating module and wavelength control method include: an undercompensation adjustment step, Appropriate for less than b, where d ⁇ ' is the central wavelength change caused by the displacement of the driving rod driving chip, dT is the temperature change, and b is the first-order coefficient of the chip center wavelength ⁇ as a function of temperature T; specifically:
  • the temperature compensation device 1 and the AWG chip assembly 2 are cooled by the module temperature control device at a high temperature region of 25-85 ° C, so that the module is at a controllable calibration temperature in a high temperature environment, and exhibits hot AWG technical characteristics. In other temperature zones, it appears as athermal AWG-free technology.
  • a wide temperature, low power consumption arrayed waveguide grating module and wavelength control method, overcompensation adjustment step Applicable when greater than b, where d ⁇ ' is the central wavelength change caused by the displacement of the driving rod driving chip, dT is the temperature change, and b is the first-order coefficient of the chip center wavelength ⁇ as a function of temperature T; specifically:
  • the temperature compensation device 1 and the AWG chip assembly 2 are heated by the module temperature control device at a temperature of -40 to 25 ° C, so that the module is at a controllable calibration temperature in a low temperature environment, and exhibits thermal AWG technical characteristics, while in other In the temperature range, it is characterized by athermal AWG technical characteristics.
  • a wide temperature, low power consumption arrayed waveguide grating module and a wavelength control method comprising: a symmetric compensation adjustment step, Applicable when consistent with b, where d ⁇ ' is the central wavelength change caused by the displacement of the driving rod driving chip, dT is the temperature change, and b is the first-order coefficient of the chip center wavelength ⁇ as a function of temperature T; specifically:
  • the module is heated at 40-5 °C in the low temperature zone by the module temperature control device, so that the module is at a controllable calibration temperature in a low temperature environment, which is characterized by hot AWG technical characteristics, and passes through the high temperature region at 65-85 ° C.
  • the module temperature control device cools the temperature compensation device 1 and the AWG chip assembly 2 such that the module is at a controllable calibration temperature in a high temperature environment, exhibiting thermal AWG technical characteristics. In the intermediate temperature range -5-65 ° C, it shows the technical characteristics of the AWG-free.
  • the present invention has the following advantages:
  • the invention further controls the wavelength drift on the basis of the athermal AWG.
  • the control precision of the wavelength drift is higher than that of the athermal AWG, and is more suitable for the 100G and even denser wavelength division multiplexing system requirements for the industrial temperature range.
  • the invention can divide the working temperature range of the module into two or more segments, and the overall heating mode of the module in the whole working range compared with the hot AWG module has low power consumption and short stabilization time;
  • the athermal AWG technology using a drive rod to achieve temperature compensation has been quite mature.
  • the present invention adds a module temperature control device to the prior art and is easy to implement.
  • FIG. 1 Schematic diagram of the AWG of the present invention
  • FIG. 1 Schematic diagram of a temperature compensation device for a conventional athermal AWG
  • FIG. 3 is a schematic view of the AWG chip assembly of the present invention.
  • Figure 4 is a schematic view of the chip temperature control device of the present invention.
  • 6A is a comparison diagram of temperature curves of the first and second embodiments of the present invention and the unheated AWG under-compensation;
  • 6B is a comparison diagram of temperature profiles of the first and second embodiments of the present invention and the athermal AWG overcompensation;
  • Figure 7 a comparison chart of the temperature profile of the second embodiment of the present invention and the asymmetrical AWG-free compensation
  • FIG. 9A is a comparison diagram of a temperature profile of the fourth embodiment of the present invention and the athermal AWG overcompensation;
  • FIG. 9B is a comparison diagram of temperature curves of the fourth embodiment of the present invention and the athermal AWG undercompensation; FIG.
  • FIG. 9C is a comparison diagram of a temperature profile of a fourth embodiment of the present invention and a heatless AWG symmetric compensation
  • Figure 10 is a schematic view of a first embodiment of the present invention.
  • Figure 11 is a schematic view showing a second embodiment of the present invention.
  • Figure 12 is a schematic view showing a third embodiment of the present invention.
  • Figure 13A is a schematic view of a fourth embodiment of the present invention.
  • FIG. 13B is a schematic diagram of another implementation manner of the fourth embodiment of the present invention:
  • Chip temperature control device 4. Drive rod temperature control device;
  • 201 an input device
  • 202 an input slab waveguide
  • FIG. 1 An arrayed waveguide grating for realizing wide temperature and low power consumption of the present invention is shown in FIG. 1 and includes a temperature compensation device 1, an AWG chip assembly 2, a chip temperature control device 3, a drive rod temperature control device 4, and a module temperature control device 5.
  • the temperature compensating device 1 includes an optical path base and a driving rod 103.
  • the optical path base is an intumescent coefficient insensitive material, and can be made of silicon material, heat resistant glass, quartz or Invar.
  • the optical path base is cut into a first area 101 and a second area 102, and the first area 101 and the second area 102 are hinged or completely separated by a hinge, and relative movement can occur between the two, including rotation, parallel movement or more complicated The way to mix movements.
  • the AWG chip assembly 2 includes an input device 201, an output device 205, and an AWG chip.
  • the AWG chip includes an input slab waveguide 202, an array waveguide 203, and an output slab waveguide 204.
  • the AWG chip is cut and cut to produce a slit 206.
  • the cutting slit 206 may be located at any position of the input slab waveguide 202 or the arrayed waveguide 203 or the output slab waveguide 204, the input device 201 is coupled to the end face of the input slab waveguide 202, and the output device 205 is coupled to the end face of the output slab waveguide 204.
  • the chip temperature control device 3, as shown in FIG. 3, includes two regions 301 and 302.
  • the AWG chip assembly 2 is fixed to the first region 101 and the second region 102 of the optical path base, and the two portions of the chip are respectively located above the two regions of the optical path base.
  • the chip temperature control device 3 is fixed on the AWG chip, and the two regions 301 and 302 of the chip temperature control device 3 correspond to the two portions of the AWG chip, respectively.
  • the drive rod temperature control device 4 is mounted on the drive rod 103.
  • the thermal expansion coefficient of the optical path base in the temperature compensating device 1 is equal to or approximately equal to the thermal expansion coefficient of the AWG chip, so that when the temperature changes, stress and deformation do not occur on the chip due to thermal deformation inconsistency.
  • the driving rod temperature control device 4 is used to adjust the temperature of the driving rod in the temperature compensating device 1.
  • the driving rod temperature changes the driving displacement dx changes, and the compensation amount for the wavelength also changes.
  • the chip temperature control device 3 is used to adjust the temperature of the chip to cause a certain drift of the wavelength.
  • the module temperature control device 5 is used to regulate the temperature of the entire module such that the module operates at a constant temperature only in certain temperature ranges.
  • the invention compensates the wavelength by the temperature compensating device, and then further reduces the variation of the wavelength in the wide temperature range (-40 to 80 ° C) through the chip temperature control device, the driving rod temperature control device and the module temperature control device, and realizes the AWG wavelength. More precise control.
  • the chip temperature control device, the drive rod temperature control device, and the module temperature control device can be used alone or in combination. In order to further understand the apparatus and method of the present invention, several combined embodiments are given below.
  • the temperature compensation device 1, the drive rod temperature control device 4, and the AWG chip assembly 2 are included, as shown in FIG.
  • the driving rod temperature control device 4 can perform temperature control on the driving rod, adjust the driving displacement, and adjust the compensation effect.
  • dx/dTenv is small, and the compensation effect is good in the low temperature region (-40 to 25 °C), but the compensation effect is poor in the high temperature region (25 to 85 °C), then, in the high temperature region (25 to 85) °C)
  • the drive rod is heated by the drive rod temperature control device 4 to increase the drive displacement dx, so that the compensation compensation effect is similar in the high temperature region (25 to 85 ° C), so that it has better compensation over the entire temperature range.
  • the relationship between the obtained central wavelength drift and temperature is as shown in FIG. 6A, and the wavelength drift-temperature curve becomes flat and the variation range is lowered.
  • dx/dTenv is large, and the compensation effect is good in the high temperature region (25 to 85 °C), but the compensation effect is poor in the low temperature region (-40 to 25 °C), then in the low temperature region (-40 Up to 25 ° C)
  • the drive rod is heated by the drive rod temperature control device 4 to reduce the drive displacement dx, so that the compensation in the low temperature region (-40 to 25 ° C) has an under-compensation effect, so that the temperature range is higher.
  • the relationship between the obtained central wavelength drift and temperature is as shown in Fig. 6B, and the wavelength drift-temperature curve becomes flat and the variation range is reduced.
  • the wavelength drift in the low temperature region (-40 to -5 ° C) and the high temperature region (60 to 85 ° C) is large, and the drive rods are driven by the drive rod temperature control device 4 in these two temperature regions. Heating, increasing the driving displacement in the high temperature region (60 to 85 ° C), reducing the driving displacement in the low temperature region (-40 to -5 ° C), so that the two temperature regions also have a better compensation effect.
  • the relationship between the center wavelength drift and temperature is as shown in Fig. 6C, and the center wavelength-temperature curve becomes flat and the magnitude of change is reduced.
  • the temperature compensation device 1, the chip temperature control device 3, and the AWG chip assembly 2 are included, as shown in FIG.
  • This embodiment compensates for the wavelength by the temperature compensating means, and then further reduces the variation of the wavelength in the wide temperature range (-40 to 80 °C) by the chip temperature control device, thereby achieving more precise control of the AWG wavelength.
  • the chip temperature control device 3 can adjust the temperature of the AWG chip to adjust the wavelength shift. For the case of symmetric compensation, the wavelength drifts more in the long-wave direction in the high temperature region (60 to 85 ° C) and the low temperature region (-40 to -5 ° C).
  • the chip is heated by the chip temperature control device so that the wavelength drifts in the long-wave direction in the temperature region, thereby causing the wavelength-temperature change over the entire temperature range (-40 to 85 ° C).
  • the amplitude is reduced, and the relationship between the obtained center wavelength drift and temperature is as shown in Fig. 6A.
  • a chip temperature control device in a high temperature region (for example, 60 to 85 ° C) and a low temperature region (for example, -40 to -5 ° C) so that the wavelength drifts in the short wave direction in the two temperature regions, thereby making the entire temperature
  • a chip temperature control device in a high temperature region (for example, 60 to 85 ° C) and a low temperature region (for example, -40 to -5 ° C) so that the wavelength drifts in the short wave direction in the two temperature regions, thereby making the entire temperature
  • the range (-40 to 85 ° C) wavelength-temperature change amplitude is reduced, and the obtained central wavelength shift is related to temperature as shown in Fig. 6B.
  • the wavelength drifts more in the long-wave direction in the high-temperature region (25 to 85 °C), and the chip is cooled by the temperature control device, so that the wavelength drifts in the short-wave direction in the high-temperature region, and the obtained central wavelength drift and temperature are obtained.
  • the relationship is shown in Figure 6C.
  • the wavelength drifts more in the long-wave direction in the low temperature region (-40 to 25 °C), and the chip is cooled by the temperature control device, so that the wavelength drifts in the short-wave direction in the low-temperature region, and the obtained central wavelength drift and temperature are obtained.
  • the relationship is shown in Figure 7.
  • a temperature compensation device 1 there are: a temperature compensation device 1, a drive rod temperature control device 4, a chip temperature control device 3, and an AWG chip assembly 2, as shown in FIG.
  • the drive rod is heated by the drive rod temperature control device so that the wavelengths in the two temperature regions are The short-wave direction moves; in the intermediate temperature region (-10 to 60 ° C), the chip is heated by the chip temperature control device, so that the wavelength drifts in the long-wave direction in the temperature region, thereby making the entire temperature range (-40 to 85 ° C) wavelength -
  • the temperature variation is reduced, and the relationship between the obtained center wavelength drift and temperature is shown in Fig. 8.
  • the method includes: a temperature compensation device 1, a module temperature control device 5, an AWG chip assembly 2, and a module temperature compensation device 5 performs temperature control on the temperature compensation device 1 and the AWG chip assembly 2 to make the module work in a certain working segment.
  • the thermostatic effect is achieved inside to adjust the compensation effect. As shown in Figure 13.
  • the temperature compensating device 1 maintains the high temperature overcompensation state, and has a good compensation effect at 25 to 85 degrees Celsius, and the compensation effect is poor at -40 to 25 °C.
  • the temperature compensation device 1 and the AWG chip assembly 2 are heated by the module temperature control device 5 to maintain the module temperature at a constant temperature of 25 ° C, so that the entire temperature range (-40 to 85) °C)
  • the wavelength-temperature change amplitude is reduced, and the relationship between the obtained center wavelength drift and temperature is as shown in Fig. 9A.
  • the temperature compensating device 1 maintains the high temperature undercompensation state, and has a good compensation effect at -40 to 25 ° C, and the compensation effect is poor at 25 to 85 ° C.
  • the temperature compensation device 1 and the AWG chip assembly 2 are cooled by the module temperature control device 5, so that the module temperature is maintained at a constant temperature of 25 ° C, so that the entire temperature range (-40 to 85 ° C)
  • the wavelength-temperature change amplitude is reduced, and the relationship between the obtained center wavelength drift and temperature is as shown in Fig. 9B.
  • the temperature compensation device 1 maintains the full temperature symmetrical compensation state, and has a good compensation effect at -5 to 65 ° C, and the compensation effect is poor in the temperature range of -40 to -5 ° C and 65 to 85 ° C.
  • the temperature compensation device 1 and the AWG chip assembly 2 are heated by the module temperature control device 5 to maintain the module temperature at a constant temperature of -5 ° C; when the ambient temperature is between 65 and 85 ° C
  • the temperature compensating device 1 and the AWG chip assembly 2 are cooled by the module temperature control device 5 to maintain the module temperature at a constant temperature of 65 °C.
  • the wavelength-temperature variation range of the entire temperature range (-40 to 85 ° C) is thereby reduced, and the relationship between the obtained center wavelength drift and temperature is as shown in Fig. 9C.
  • the invention controls the temperature compensation device and the temperature of the AWG chip assembly by the module temperature control device, and divides the actual working temperature into two or more segments, thereby achieving the variation of the wavelength in the wide temperature range (-40 to 80 ° C). More precise control of AWG wavelengths.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光栅模块及波长控制方法。光栅模块包括:温度补偿装置(1),其包括若干个独立子区域构成的光路底座和用于连接各光路底座子区域的驱动杆(103);AWG芯片组件(2),被切割成若干个子区域,每个子区域设置于一光路底座子区域上;光路底座上设置有模块温度控制装置(5)。通过模块温度控制装置(5)控制光栅模块温度,将实际工作温度范围分成二段或多段,降低能耗,能更精确地控制光模块波长的补偿量。

Description

一种宽温、低功耗阵列波导光栅模块及波长控制方法 技术领域
本发明涉及一种光模块及封装方法,属于光通信技术领域,具体涉及一种宽温、低功耗阵列波导光栅模块及波长控制方法。
背景技术
阵列波导光栅(Arrayed Waveguide Gratings,简称AWG)是基于平面光波导的光器件,由输入波导、输入平板波导、阵列波导、输出平板波导和输出波导组成,其中相邻阵列波导具有固定的长度差。AWG是密集波分复用系统的关键光器件,具有集成度高、通道数目多、插入损耗小,易于批量自动化生产等优点。AWG密集波分复用系统对复用/解复用器件的中心波长稳定性要求较高,中心波长精度需要控制在通道间隔的+/-5%以内,通常在100GHz,50GHz和25GHz间隔的波分复用系统中,中心波长精度分别需要控制+/-0.04nm,+/-0.02nm和+/-0.01nm以内。但是,传统的硅基AWG芯片对温度比较敏感,一般中心波长随温度的漂移为0.0118nm/℃,在波分复用系统工作环境温度内(-40℃至85℃),AWG芯片的中心波长漂移量明显超出了系统要求,因此,需要采用措施来控制AWG模块的中心波长,使其能在工作环境温度内正常工作。
无热AWG(Athermal AWG,简称AAWG)技术是一种常用的中心波长控制技术,无热AWG模块通常采用温度补偿的技术保持波长的稳定,通过温度驱动杆的热胀冷缩驱动波导相对移动来补偿波长随温度的漂移。AWG芯片被切割成两部分后,中心波长的变化dλ与芯片两部分的相对位移dx具有如 下关系:
Figure PCTCN2017118169-appb-000001
其中R是罗兰圆焦距,n s和n c分别是AWG的输入平板波导、输出平板波导,也叫罗兰圆的有效折射率和阵列波导的有效折射率,n g是群折射率,d是相邻阵列波导在罗兰圆周上的间距,m是衍射级次。λ是真空波长。
驱动杆的热膨胀系数比光路底座的热膨胀系数大,当温度变化时,驱动杆会驱动光路底座的第一区域101和第二区域102产生相对运动,进而带动AWG芯片的两部分沿着切割缝隙206相对移动,从而对AWG芯片的波长随温度的漂移起到补偿作用。设驱动杆103的长度为L,相对光路基座的热膨胀系数为α,则驱动杆驱动芯片两部分产生的相对位移为:
dx=kLαdT  (2)
其中k为比例系数,与具体结构有关。
设由驱动杆驱动芯片两部分产生的位移引起的中心波长变化为dλ',结合公式(1)和公式(2)得出:
Figure PCTCN2017118169-appb-000002
如果dx/dT以及dλ/dT都是等同线性变化,则可以直接通过驱动杆来完成中心波长对于温度变化偏移的补偿,但实际运用中,dx/dT以及dλ/dT与温度的关系是非线性的,低温到常温(-40℃~25℃)变化量以及常温到高温(25℃~85℃)的变化量相差约0.04nm。通过公式(2)和(3)可以近似的推导出中心波长dλ随温度T的的变化量,如公式(4)所示。
dλ=a*dT 2+b*dT+c   (4)
从式(4)可以看出,温度补偿装置1只能补偿中心波长随温度变化的一次项,不能补偿其二次项。因为实际应用中硅基二氧化硅波导的折射率 随温度变化具有高阶系数,经过补偿后的中心波长-温度曲线是开口向上的抛物线,如图4所示。如果补偿系数
Figure PCTCN2017118169-appb-000003
与b相等,那么是对称补偿;如果补偿系数
Figure PCTCN2017118169-appb-000004
大于b,那么是过补偿;如果补偿系数
Figure PCTCN2017118169-appb-000005
小于b,那么是欠补偿。
无热AWG的优点是不需要功耗,缺点是需要通过常温25℃牺牲各通道中心波长精度来满足模块全温度范围内指标要求。从图4可以看出,对称补偿的无热AWG的中心波长变化量约为0.05nm,因此该方法只能在有限的温度范围内保持波长的稳定性,例如工作环境温度在-5℃至65℃范围内,中心波长精度满足100G系统的要求,而工作环境温度扩展到-40℃至85℃时,模块波长变化量>0.1nm,完全不满足中心波长精度需要控制的+/-0.04nm,且各通道波长偏离ITUT值所造成的波长不一致性对模块串扰等重要指标影响严重。
显然,现有的无热AWG技术波长精度补偿能力有限,主要体现无法同时满足高温、低温区域波长精度控制要求。需要一种方案,使得AWG在宽温(-40~85℃)工作时,不仅功耗低、且中心波长满足50G、25G甚至更密集波分复用系统的要求。
发明内容
本发明的目的是克服现有技术存在上述的技术缺陷,提供一种基于驱动位移进行波长补偿的光模块及波长控制的封装方法。该模块及波长控制的封装方法通过模块温度控制装置控制模块的整体温度,将工作温度分为二段或者多段,对波长控制进行分段处理,从而实现降低功耗,且在更为宽的工业温度范围内更为精确的控制AWG模块波长补偿量的封装方法。
本发明的技术方案是:
一种宽温、低功耗阵列波导光栅模块及波长控制方法,包括:
温度补偿装置,包括若干个独立子区域构成的光路底座和用于连接各光路底座子区域的驱动杆。所述的光路底板包含第一区域、第二区域,子区域间通过铰链连接或完全分开;
AWG芯片组件,被切割成若干个子区域,每个子区域设置于一光路底座子区域上;
其中,所述光路底座上设置有模块温度控制装置。
优选的,上述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,驱动杆的两端固定于所述光路底座的两个子区域上,驱动杆的热膨胀系数不同于所述光路底座,所述模块温度控制装置位于所述光路底座的底部。
一种宽温、低功耗阵列波导光栅模块及波长控制方法,包括:
将AWG芯片组件切割成若干子区域并分别置于温度补偿装置相互独立的光路底座子区域上;
利用驱动杆驱动光路底座子区域相对移动,从而在AWG芯片组件子区域间产生驱动位移,利用所述驱动位移来补偿波长漂移;
利用模块温度控制装置,对温度补偿装置1和AWG芯片组件2进行加热或制冷,调整驱动杆的温度,从而控制驱动位移。
优选的,上述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,包括:欠补偿调整步骤,在
Figure PCTCN2017118169-appb-000006
小于b时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:在高温区域25-85℃通过模块温度控制装置对温度补偿装置1和AWG芯片组件2进行制冷,使得模块在高温环境中处于可控制的定标温度,表现为有热AWG技术特性。而在其他 温度区域内,表现为无热AWG技术。
优选的,一种宽温、低功耗阵列波导光栅模块及波长控制方法,,过补偿调整步骤,在
Figure PCTCN2017118169-appb-000007
大于b时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:在低温区域-40-25℃通过模块温度控制装置对温度补偿装置1和AWG芯片组件2进行加热,使得模块在低温环境中处于可控制的定标温度,表现为有热AWG技术特性,而在其他温度区域内,表现为无热AWG技术特性。
优选的,一种宽温、低功耗阵列波导光栅模块及波长控制方法,包括:对称补偿调整步骤,在
Figure PCTCN2017118169-appb-000008
与b一致时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:在低温区域-40-5℃通过模块温度控制装置对模块整体进行加热,使得模块在低温环境中处于可控制的定标温度,表现为有热AWG技术特性,而在高温区域65-85℃通过模块温度控制装置对温度补偿装置1和AWG芯片组件2进行制冷,使得模块在高温环境中处于可控制的定标温度,表现为有热AWG技术特性。而在中间温度区域-5-65℃,表现为无热AWG技术特性。
因此,本发明具有如下优点:
1.本发明在无热AWG的基础上,对波长漂移采取进一步控制,波长漂移的控制精度比无热AWG高,更适合面向工业温度范围要求的100G以及甚至更密集波分复用系统需求。
2.本发明可将模块工作温度范围划分为二段或多段,相比有热AWG模块在整个工作范围内对模块的整体加热方式,功耗低,稳定时间短;
3.采用驱动杆来实现温度补偿的无热AWG技术已经相当成熟,本发明在现有技术上增加模块温度控制装置,很容易实施。
附图说明
图1、本发明AWG的示意图;
图2、现有无热AWG的温度补偿装置示意图;
图3、本发明AWG芯片组件示意图;
图4、本发明芯片温度控制装置示意图;
图5、现有无热AWG在不同补偿效果下的温度曲线图;
图6A、本发明第一、二实施例与无热AWG欠补偿情况温度曲线对比图;
图6B、本发明第一、二实施例与无热AWG过补偿情况温度曲线对比图;
图6C、本发明第一、二实施例与无热AWG对称补偿情况温度曲线对比图;
图7、本发明第二实施例与无热AWG对称补偿情况温度曲线对比图;
图8、本发明第三实施例与无热AWG对称补偿情况温度曲线对比图;
图9A、本发明第四实施例与无热AWG过补偿情况温度曲线对比图;
图9B、本发明第四实施例与无热AWG欠补偿情况温度曲线对比图;
图9C、本发明第四实施例与无热AWG对称补偿情况温度曲线对比图;
图10、本发明第一实施例示意图;
图11、本发明第二实施例示意图;
图12、本发明第三实施例示意图;
图13A、本发明第四实施例示意图
图13B、本发明第四实施例的另外一种实现方式示意图:
其中:
1、温度补偿装置;             2、AWG芯片组件;
3、芯片温度控制装置;            4、驱动杆温度控制装置;
5、模块温度控制装置;
101、光路底座第一区域;
102、光路底座第二区域;       103、驱动杆;
201、输入装置;               202、输入平板波导;
203、阵列波导;               204、输出平板波导;
205、输出装置;               206、切割缝隙
301至302、芯片温度控制装置的两个区域。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
以下结合实施例和附图对本发明作进一步说明。
本发明的一种实现宽温、低功耗的阵列波导光栅参见图1,包括温度补偿装置1、AWG芯片组件2、芯片温度控制装置3、驱动杆温度控制装置4、模块温度控制装置5。温度补偿装置1如图2所示,包括光路底座和驱动杆103,光路底座为膨胀系数不敏感材料,可以为硅材料、耐热玻璃、石英或因瓦合金等制成。光路底座被切割成第一区域101和第二区域102,第一区域101和第二区102域通过铰链连接或完全分开,二者之间能够发生相对移动,包括旋转、平行移动或者更为复杂的混合移动方式。
驱动杆103的两端分别固定在第一区域101和第二区域102上。AWG芯片组件2如图3所示,包括输入装置201、输出装置205、AWG芯片,其中AWG芯片包括输入平板波导202、阵列波导203和输出平板波导204,AWG芯片被切割开,切割产生缝隙206,切割缝隙206可以位于输入平板波导202或者阵列波导203或者输出平板波导204任意位置处,输入装置201耦合在输入平板波导202的端面上,输出装置205耦合在输出平板波导204的端面上。芯片温度控制装置3如图3所示,包括两个区域301和302。
AWG芯片组件2固定于光路底座的第一区域101和第二区域102上,芯片的两部分分别位于光路底座的两个区域上面。芯片温度控制装置3固定于AWG芯片上面,芯片温度控制装置3的两个区域301和302分别对应与AWG芯片的两个部分。驱动杆温度控制装置4安装在驱动杆103上。
温度补偿装置1中的光路基座的热膨胀系数与AWG芯片的热膨胀系数相等或者近似相等,这样,当温度变化时,不会因为热变形不一致在芯片上产生应力和变形。
驱动杆温度控制装置4用来调整温度补偿装置1中的驱动杆的温度,当驱动杆温度变化是,其驱动位移dx发生变化,对波长的补偿量也发生变化。
芯片温度控制装置3用来调节芯片的温度,使其波长发生一定的漂移。
模块温度控制装置5用来调节整个模块的温度,使得仅在某些温度范围内,模块工作在恒温状态。
本发明通过温度补偿装置对波长进行补偿,然后通过芯片温度控制装置、驱动杆温度控制装置、模块温度控制装置进一步降低波长在宽温(-40~80℃)范围内的变化,实现对AWG波长更精确的控制。芯片温度控制装置、驱动杆温度控制装置、模块温度控制装置可以单独使用或者组合 使用。为了进一步理解本发明的装置和方法,下面给出几种组合的实施例。
第一个实施例中:包含温度补偿装置1、驱动杆温度控制装置4,AWG芯片组件2,如图10所示。驱动杆温度控制装置4可以对驱动杆进行温度控制,调节驱动位移,从而调整补偿效果。例如,对于欠补偿情况,dx/dTenv较小,在低温区域(-40至25℃)补偿效果好,但在高温区域(25至85℃)补偿效果差,那么,在高温区域(25至85℃)通过驱动杆温度控制装置4对驱动杆进行加热,增大驱动位移dx,使得在高温区域(25至85℃)具有类似过补偿的补偿效果,从而在整个温度范围内具有较好的补偿效果,得到的中心波长漂移与温度的关系如图6A所示,波长漂移-温度曲线变的平坦且变化幅度降低。类似的,对于过补偿情况,dx/dTenv较大,在高温区域(25至85℃)补偿效果好,但在低温区域(-40至25℃)补偿效果差,那么在低温温区域(-40至25℃)通过驱动杆温度控制装置4对驱动杆进行加热,减小驱动位移dx,使得在低温区域(-40至25℃)具有类似欠补偿的补偿效果,从而在整个温度范围内具有较好的补偿效果,得到的中心波长漂移与温度的关系如图6B所示,波长漂移-温度曲线变的平坦且变化幅度降低。同理,对于对称补偿情况,在低温区域(-40至-5℃)和高温区域(60至85℃)的波长漂移较大,在这两个温度区域通过驱动杆温度控制装置4对驱动杆进行加热,增大高温区域(60至85℃)的驱动位移,减小低温区域(-40至-5℃)的驱动位移,使得在这两个温度区域内也具有较好的补偿效果,得到的中心波长漂移与温度的关系如图6C所示,中心波长-温度曲线变的平坦且变化幅度降低。
第二个实施例中:包含温度补偿装置1、芯片温度控制装置3,AWG芯片组件2,如图11所示。该实施例通过温度补偿装置对波长进行补偿,然后通过芯片温度控制装置进一步降低波长在宽温(-40至80℃)范围内的 变化,实现对AWG波长更精确的控制。芯片温度控制装置3可以调节AWG芯片的温度,从而调节波长漂移。对于对称补偿的情况,波长在高温区域(60至85℃)和低温区域(-40至-5℃)都向长波方向漂移较多。那么在中间温度区域(例如-5至60℃),通过芯片温度控制装置对芯片加热,使得波长在该温度区域内向长波方向漂移,从而使得整个温度范围(-40至85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图6A所示。也可以在高温区域(例如60至85℃)和低温区域(例如-40至-5℃)通过芯片温度控制装置对芯片制冷,使得波长在这两个温度区域内向短波方向漂移,从而使得整个温度范围(-40至85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图6B所示。对于欠补偿的情况,波长在高温区域(25~85℃)朝长波方向漂移较多,通过温度控制装置对芯片进行制冷,使得波长在高温区域内向短波方向漂移,得到的中心波长漂移与温度的关系如图6C所示。对于过补偿的情况,波长在低温区域(-40~25℃)朝长波方向漂移较多,通过温度控制装置对芯片进行制冷,使得波长在低温区域内向短波方向漂移,得到的中心波长漂移与温度的关系如图7所示。
第三个实施例中:包含:温度补偿装置1、驱动杆温度控制装置4,芯片温度控制装置3,AWG芯片组件2,如图12所示。对于对称补偿的情况,在低温区域(-40~-10℃)和高温区域(60~85℃),通过驱动杆温度控制装置对驱动杆进行加热,使得在这两个温度区域范围内波长朝短波方向移动;在中间温度区域(-10~60℃),通过芯片温度控制装置对芯片加热,使得波长在该温度区域内向长波方向漂移,从而使得整个温度范围(-40~85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图8所示。
第四个实施例中:包括:温度补偿装置1,模块温度控制装置5,AWG芯片组件2,模块温度补偿装置5对温度补偿装置1和AWG芯片组件2进行 温度控制,使模块在一定工作段内达到恒温效果,从而调整补偿效果。如图13所示。
温度补偿装置1保持高温过补偿状态,在25~85摄氏度具有较好的补偿效果,在-40~25℃补偿效果较差。当环境温度在-40~25℃时,通过模块温度控制装置5对温度补偿装置1和AWG芯片组件2进行加热,使模块温度维持在25℃恒温上,从而使得整个温度范围(-40~85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图9A所示。
温度补偿装置1保持高温欠补偿状态,在-40~25℃具有较好的补偿效果,在25~85℃补偿效果较差。当环境温度在25~85℃时,通过模块温度控制装置5对温度补偿装置1和AWG芯片组件2进行制冷,使模块温度维持在25℃恒温下,从而使得整个温度范围(-40~85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图9B所示。
温度补偿装置1保持全温对称补偿状态,在-5~65℃具有较好的补偿效果,在-40~-5℃以及65~85℃温度段内补偿效果较差。当环境温度在-40~-5℃时,通过模块温度控制装置5对温度补偿装置1和AWG芯片组件2进行加热,使模块温度维持在-5℃恒温上;当环境温度在65~85℃时,通过模块温度控制装置5对温度补偿装置1和AWG芯片组件2进行制冷,使模块温度维持在65℃恒温下。从而使得从而使得整个温度范围(-40~85℃)波长-温度变化幅度减小,得到的中心波长漂移与温度的关系如图9C所示。
本发明通过模块温度控制装置对温度补偿装置以及AWG芯片组件温度进行控制,将实际工作温度分为二段或多段,从而达到降低波长在宽温(-40至80℃)范围内的变化,实现对AWG波长更精确的控制。
虽然本发明已经详细地示出并描述了相关的特定的实施例参考,但本领域的技术人员能够应该理解,在不背离本发明的精神和范围内可以在形 式上和细节上作出各种改变,例如温度控制区域的改变等,这些改变都将落入本发明的权利要求所要求的保护范围。

Claims (7)

  1. 一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,包括:
    温度补偿装置(1),包括若干个独立子区域构成的光路底座;
    AWG芯片组件(2),被切割成若干个子区域,每个子区域设置于一光路底座子区域上;
    其中,所述光路底座上设置有模块温度控制装置(5)。
  2. 根据权利要求1所述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,基于模块温度控制装置和现有无热AWG技术,所述模块温度控制装置(5)固定于光路底座下方并且包含多个部分,每个部分对应于光路底板的每个子区域。
  3. 根据权利要求1所述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,所述光路底座包括能够发生相对移动的第一区域(101)和第二区(102),了区域间通过铰链或驱动杆连接。
  4. 一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在,包括:
    将AWG芯片组件(2)切割成若干子区域并分别置于温度补偿装置相互独立的光路底座子区域上;
    利用驱动杆(103)驱动光路底座子区域相对移动从而在AWG芯片组件子区域间产生驱动位移,利用所述驱动位移来补偿波长漂移;
    利用模块温度控制装置(5)控制模块温度,从而调整光路底座子区域间相对移动的驱动位移。
  5. 根据权利要求4所述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,包括:过补偿调整步骤,在
    Figure PCTCN2017118169-appb-100001
    大于b时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:将模块工作温度范围划分为多二段,在低温区域-40-25℃通过模块温度控制装置(5)对模块整体进行加热,使模块在环境温度为低温区域时表现有热AWG模块状态,环境温度为常温至高温区域时表现为无热AWG模块状态。
  6. 根据权利要求4所述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,包括:欠补偿调整步骤,在
    Figure PCTCN2017118169-appb-100002
    小于b时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:将模块工作温度范围划分为多二段,在高温区域25-85℃通过模块温度控制装置(5)对模块整体进行制冷,使模块在环境温度为高温区域时表现有热AWG模块状态,环境温度为低温至常温区域时表现为无热AWG模块状态。
  7. 根据权利要求4所述的一种宽温、低功耗阵列波导光栅模块及波长控制方法,其特征在于,包括:对称补偿调整步骤,在
    Figure PCTCN2017118169-appb-100003
    与b一致时适用,其中,dλ'为驱动杆驱动芯片两部分产生的位移引起的中心波长变化,dT为温度变化,b为芯片中心波长λ随温度T变化函数的一次项系数;具体为:
    将模块工作温度范围划分为多段:在环境温度为高温区域65℃至85℃区间时,通过模块温度控制装置对模块整体制冷;在环境温度为低温区域-40℃至-5℃区间时,通过模块温度控制装置对模块整体进行加热,使模块 在这两段温度区间内表现为有热AWG模块状态;在模块处于环境温度为-5℃至-65℃的中间温度区间时,模块温度控制装置停止工作,使得模块在该区域内表现为无热AWG模块状态。
PCT/CN2017/118169 2017-08-31 2017-12-25 一种宽温、低功耗阵列波导光栅模块及波长控制方法 WO2019041680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710779051.2A CN107462950A (zh) 2017-08-31 2017-08-31 一种宽温、低功耗阵列波导光栅模块及波长控制方法
CN201710779051.2 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019041680A1 true WO2019041680A1 (zh) 2019-03-07

Family

ID=60550943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118169 WO2019041680A1 (zh) 2017-08-31 2017-12-25 一种宽温、低功耗阵列波导光栅模块及波长控制方法

Country Status (2)

Country Link
CN (1) CN107462950A (zh)
WO (1) WO2019041680A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462950A (zh) * 2017-08-31 2017-12-12 武汉光迅科技股份有限公司 一种宽温、低功耗阵列波导光栅模块及波长控制方法
CN108594363B (zh) * 2018-03-30 2020-02-14 武汉光迅科技股份有限公司 一种阵列波导光栅及光模块
CN108572412B (zh) * 2018-05-07 2020-04-03 河南仕佳光子科技股份有限公司 一种高稳定性温度自适应补偿装置
CN108828713B (zh) * 2018-06-20 2020-06-02 武汉光迅科技股份有限公司 一种无热阵列波导光栅模块及宽温补偿方法
CN109031534B (zh) * 2018-08-28 2020-08-11 中山大学 一种热调谐光栅耦合器
CN110058371B (zh) * 2019-04-08 2021-05-11 武汉光迅科技股份有限公司 一种光模块
CN112180503A (zh) * 2019-07-05 2021-01-05 博创科技股份有限公司 一种双体式的有热阵列波导光栅及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788848B2 (en) * 2000-09-14 2004-09-07 Nec Corporation Arrayed waveguide grating device, process for producing the same, arrayed waveguide module, and optical communication system
CN101019053A (zh) * 2004-05-05 2007-08-15 光波微系统公司 利用可变宽度凹槽的无热awg和低功耗awg
CN201828682U (zh) * 2010-10-20 2011-05-11 广东海粤集团有限公司 基于温度控制的平面波导阵列光栅波分复用器
CN104765103A (zh) * 2015-04-29 2015-07-08 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置
CN107462950A (zh) * 2017-08-31 2017-12-12 武汉光迅科技股份有限公司 一种宽温、低功耗阵列波导光栅模块及波长控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003220772A1 (en) * 2002-04-02 2003-10-13 Ntt Electronics Corporation Temperature controller and array waveguide lattice type optical wavelength multiplexer/demultiplexer
JP2007065562A (ja) * 2005-09-02 2007-03-15 Furukawa Electric Co Ltd:The アレイ導波路回折格子
CN103926654B (zh) * 2014-04-25 2017-06-06 珠海保税区光联通讯技术有限公司 无热阵列波导光栅波分复用器
CN103955029B (zh) * 2014-05-09 2017-01-04 江苏亨通光网科技有限公司 一种曲线形有热awg阵列波导光栅密集波分复用器及其制作装置,制作方法和测试方法
CN104280821B (zh) * 2014-10-31 2017-11-10 武汉光迅科技股份有限公司 一种温度分段补偿的温度不敏感型阵列波导光栅(aawg)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788848B2 (en) * 2000-09-14 2004-09-07 Nec Corporation Arrayed waveguide grating device, process for producing the same, arrayed waveguide module, and optical communication system
CN101019053A (zh) * 2004-05-05 2007-08-15 光波微系统公司 利用可变宽度凹槽的无热awg和低功耗awg
CN201828682U (zh) * 2010-10-20 2011-05-11 广东海粤集团有限公司 基于温度控制的平面波导阵列光栅波分复用器
CN104765103A (zh) * 2015-04-29 2015-07-08 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置
CN107462950A (zh) * 2017-08-31 2017-12-12 武汉光迅科技股份有限公司 一种宽温、低功耗阵列波导光栅模块及波长控制方法

Also Published As

Publication number Publication date
CN107462950A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2019041680A1 (zh) 一种宽温、低功耗阵列波导光栅模块及波长控制方法
US7539368B2 (en) Arrayed waveguide grating
WO2018036035A1 (zh) 一种具有温度补偿的无热阵列波导光栅及其制作方法
WO2016173263A1 (zh) 一种降低阵列波导光栅非线性温度效应的装置
JP4018344B2 (ja) 光パスの熱−光作用を制御するための結晶材料の使用
US20060193558A1 (en) Dispersion compensator, method for manufacturing the same, and method for compensating wavelength dispersion
CN103926654A (zh) 无热阵列波导光栅波分复用器
CN102540350B (zh) 一种实现双线性温度补偿的温度不敏感型阵列波导光栅
CN108828713B (zh) 一种无热阵列波导光栅模块及宽温补偿方法
WO2019200961A1 (zh) 一种非线性温度补偿装置、光模块及方法
CN110376677B (zh) 一种无热阵列波导光栅
JP4667927B2 (ja) アレイ導波路回折格子型光合分波器
JP5703349B2 (ja) 導波路型光デバイス
CN107561639A (zh) 基于驱动位移进行波长补偿的光模块及控制方法
CN107562084A (zh) 一种基于芯片温控和无热awg技术的模块及波长补偿方法
US6850654B2 (en) Passive thermal compensation of all-fiber Mach-Zehnder interferometer
CN103116217B (zh) 一种宽范围波长可调的标准具
WO2021036010A1 (zh) 一种波长可控阵列波导光栅
KR101327158B1 (ko) 배열 도파로 격자
Ticknor et al. Efficient passive and active wavelength-stabilization techniques for AWGs and integrated optical filters
JP3331180B2 (ja) 温度無依存平面型光デバイス
JP2002318314A (ja) 光フィルタデバイス、調整するための方法、および通信システム
CN202614980U (zh) 一种具有温度偏振补偿的反射型阵列波导光栅
Ikuma et al. AWG-based tunable optical dispersion compensator with multiple lens structure
JP5004924B2 (ja) アレイ導波路回折格子型光合分波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923706

Country of ref document: EP

Kind code of ref document: A1