WO2016171228A1 - プレス成形品の製造方法、プレス成形品、金型及びプレス装置 - Google Patents

プレス成形品の製造方法、プレス成形品、金型及びプレス装置 Download PDF

Info

Publication number
WO2016171228A1
WO2016171228A1 PCT/JP2016/062681 JP2016062681W WO2016171228A1 WO 2016171228 A1 WO2016171228 A1 WO 2016171228A1 JP 2016062681 W JP2016062681 W JP 2016062681W WO 2016171228 A1 WO2016171228 A1 WO 2016171228A1
Authority
WO
WIPO (PCT)
Prior art keywords
top plate
press
blank
punch
die
Prior art date
Application number
PCT/JP2016/062681
Other languages
English (en)
French (fr)
Inventor
雅寛 久保
吉田 博司
隆司 宮城
鈴木 利哉
嘉明 中澤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016556053A priority Critical patent/JP6135829B2/ja
Priority to KR1020177030291A priority patent/KR101874277B1/ko
Priority to US15/567,652 priority patent/US10252312B2/en
Priority to KR1020187015361A priority patent/KR102148746B1/ko
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP19152403.2A priority patent/EP3520918A1/en
Priority to CN201680022707.XA priority patent/CN107530753B/zh
Priority to CA2983388A priority patent/CA2983388C/en
Priority to EP16783249.2A priority patent/EP3275566B1/en
Priority to ES16783249T priority patent/ES2749706T3/es
Priority to RU2017136964A priority patent/RU2674364C1/ru
Priority to BR112017022630-8A priority patent/BR112017022630A2/ja
Priority to MX2017013452A priority patent/MX2017013452A/es
Priority to MYPI2017703960A priority patent/MY190422A/en
Publication of WO2016171228A1 publication Critical patent/WO2016171228A1/ja
Priority to US16/195,543 priority patent/US20190118238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments

Definitions

  • the present disclosure relates to a method for manufacturing a press-formed product, a press-formed product, a mold, and a press device.
  • the body of an automobile is assembled by overlapping the edges of a number of molded panels and joining them by spot welding to form a box, and joining structural members to the essential parts of the box by spot welding.
  • a side sill joined to both side parts of a floor panel, an A pillar lower and an A pillar upper erected upward on the front part of the side sill, A roof rail joined to the upper end portion of the A pillar upper, and a B pillar that joins the side sill and the roof rail are used.
  • Components of structural members such as an A pillar lower, an A pillar upper, and a roof rail (for example, each outer panel) generally have a top plate that extends in the longitudinal direction, and two components that are respectively connected to both sides of the top plate.
  • Consists of a convex ridge line part, two vertical walls respectively connected to these two convex ridge line parts, two concave ridge line parts respectively connected to these two vertical wall parts, and two flanges respectively connected to these two concave ridge line parts Often has a substantially hat-shaped cross-sectional shape.
  • the above-described components have a relatively complicated cross-sectional shape and are long. Therefore, in order to suppress an increase in manufacturing cost, the above-described components are generally manufactured by cold press molding. Further, in order to achieve both weight reduction and strength improvement of the vehicle body for improving fuel efficiency, thinning using, for example, a high-tensile steel plate having a tensile strength of 440 MPa or more is promoted as the above-described structural member.
  • a high-strength steel plate blank is bent in the longitudinal direction by cold press forming, for example, a roof rail outer panel (hereinafter referred to as a roof member.
  • the roof member is a structural member of an automobile). If it is going to manufacture the component which is, the springback will generate
  • Patent Document 1 Japanese Patent Application Publication No. 2004-314123 (hereinafter referred to as Patent Document 1) gives a step when manufacturing a press-formed product having a uniform hat-shaped cross section in the longitudinal direction.
  • Patent Document 1 Japanese Patent Application Publication No. 2004-314123
  • Patent Document 2 Japanese Patent No. 5382281 (hereinafter referred to as Patent Document 2) includes a top plate, a vertical wall, and a flange, and the first step when manufacturing a press-formed product that curves in the longitudinal direction.
  • the invention which raises the shape freezing property by bending back the flange formed in step 2 in the second step to reduce the residual stress of the flange is disclosed.
  • Patent Document 1 when a press-molded product having a curved shape in its longitudinal direction, such as a component of a component of an A pillar lower, an A pillar upper, and a roof rail, is manufactured, Springback occurs on the plate, and it cannot be formed into the desired shape.
  • the specific press-formed product includes a long top plate, ridge line portions at both ends in the short direction of the top plate, and vertical walls facing each other in a state extending from the ridge line portion. It refers to a press-molded product configured to include
  • the method for manufacturing a press-formed product according to the first aspect of the present disclosure is a method for manufacturing a specific press-formed product, and uses a die and a punch to form a ridge line portion at the both ends of the blank.
  • the blank is curved from the punch side to the die-side convex shape in a state where the punch is in contact with the punch, and the second portion of the blank on which the top plate is formed is sandwiched between the die and the punch. Two portions are recessed from the die side to the punch side.
  • the method for manufacturing a press-formed product according to the second aspect of the present disclosure is a method for manufacturing a specific press-formed product, and uses a die and a punch, and a first portion in which the ridge line portions at both ends of the blank are formed.
  • the blank is bent from the punch side to the die side with the punch in contact with the die so that the second portion of the blank on which the top plate is formed satisfies the curvature radius R (mm) of the formula (1).
  • R (mm) of the formula (1) the curvature radius
  • the second portion is sandwiched between the die and the punch, and the second portion is recessed from the die side to the punch side.
  • each parameter of Formula (1) is as follows.
  • t Thickness of the blank (mm)
  • ⁇ s Bending outer surface stress (MPa) in the short direction of the portion of the blank where the top plate is formed
  • ⁇ m Average stress (MPa) in the short direction of the portion of the blank where the top plate is formed
  • E Young's modulus (GPa) of the steel sheet constituting the blank
  • a method for manufacturing a press-formed product according to a third aspect of the present disclosure is a method for manufacturing a specific press-formed product, and uses a die and a punch to form the first ridge line portions at both ends of a blank.
  • the blank is bent from the punch side to the die side with the punch in contact with the die so that the second portion of the blank on which the top plate is formed satisfies the curvature radius R (mm) of the formula (2). Further, the second portion is sandwiched between the die and the punch, and the second portion is recessed from the die side to the punch side.
  • each parameter of Formula (2) is as follows.
  • t Thickness of the blank (mm)
  • ⁇ TS Tensile strength (MPa) of the blank
  • ⁇ YP Yield stress of the blank (MPa)
  • E Young's modulus (GPa) of the steel sheet constituting the blank
  • a method for manufacturing a press-formed product according to a fourth aspect of the present disclosure is a method for manufacturing a specific press-formed product according to the first to third aspects, wherein the press-molded product is viewed from the opposing direction of the punch and the die.
  • the top surface of the punch is curved, and the die is formed with a groove that is curved along the top surface of the punch, and the top plate is curved when viewed from the thickness direction of the top plate. Manufacturing goods.
  • a method for manufacturing a press-formed product according to a fifth aspect of the present disclosure is the method for manufacturing a specific press-formed product according to the first to fourth aspects, wherein the opposing direction of the punch and the die and the length of the punch
  • the top surface of the punch is curved convexly toward the die when viewed from the orthogonal direction perpendicular to both directions, and the die is provided with a groove that curves along the top surface of the punch,
  • a press-molded product in which the top plate is curved as viewed from the short side of the top plate is manufactured.
  • the press-formed product according to the present disclosure is a specific press-formed product, and the top plate is a minimum portion where the value of the Vickers hardness is a minimum value between one end and the other end of the top plate in the short direction. And a maximum range where the value of Vickers hardness in each range is a maximum value in a first range between the minimum portion and the one end and a second range between the minimum portion and the other end. .
  • a mold according to the present disclosure includes a punch and a die, and includes a long top plate, ridge line portions at both ends in the short direction of the top plate, and vertical walls facing each other in a state extending from the ridge line portion.
  • a top surface of the punch is a concave surface having a curvature radius R (mm) of 38 (mm) or more and 725 (mm) or less.
  • the press device includes the above-described mold according to the present disclosure and a moving unit that moves the punch relative to the die.
  • the press-molded product according to the present disclosure has a small amount of closing of the vertical wall due to the spring back.
  • the mold according to the present disclosure it is possible to manufacture a specific press-molded product in which the closing of the vertical wall due to the spring back is suppressed.
  • FIG. 1A It is a top view which shows the roof member (press molded product) of 1st Embodiment. It is a side view which shows the roof member of 1st Embodiment. It is 1C-1C sectional drawing in FIG. 1A. 1D is a 1D-1D cross-sectional view in FIG. 1A.
  • FIG. It is a perspective view of the metal mold
  • FIG. 1B is a cross-sectional view taken along the line 1C-1C of FIG. 1A in an intermediate molded product molded by the first press molding process of the first embodiment.
  • 1D is a 1D-1D cross-sectional view of FIG. 1A in an intermediate molded product molded by a first press molding process of the first embodiment.
  • FIG. 1C is a cross-sectional view taken along the line 1C-1C of FIG.
  • FIG. 1A is a roof member manufactured through a second press molding process of the first embodiment.
  • FIG. 1D is a 1D-1D cross-sectional view of FIG. 1A in an intermediate molded product molded by a second press molding process of the first embodiment.
  • FIG. 1B is a cross-sectional view showing in detail the 1C-1C cross-sectional view of FIG. 1A in an intermediate molded product formed by the first press forming process of the first embodiment.
  • 1B is a cross-sectional view showing in detail the 1D-1D cross-sectional view of FIG. 1A in an intermediate molded product molded by the first press molding process of the first embodiment.
  • 1B is a cross-sectional view showing in detail a 1C-1C cross-sectional view of FIG.
  • FIG. 1A in a roof member manufactured through a second press molding process of the first embodiment.
  • FIG. 1B is a cross-sectional view showing in detail a 1D-1D cross-sectional view of FIG. 1A in a roof member manufactured through a second press molding process of the first embodiment.
  • FIG. It is sectional drawing of the longitudinal direction center part in the intermediate molded product shape
  • FIG. 2 is a cross-sectional view of a portion corresponding to the 1C-1C cross-sectional view of FIG. 1A in the intermediate molded product formed by the first press forming process of the first embodiment.
  • FIG. 1C is a cross-sectional view taken along the line 1C-1C of FIG. 1A in a roof member manufactured through a second press molding process of the first embodiment.
  • FIG. 1B is a cross-sectional view taken along the line 1C-1C of FIG. 1A in the intermediate molded product formed by the first press-forming process of the first embodiment, and shows a detailed angle formed by a vertical wall and a flange.
  • 1D is a 1D-1D cross-sectional view of FIG.
  • FIG. 1A in an intermediate molded product formed by a first press forming process of the first embodiment, and is a cross-sectional view showing in detail an angle formed by a vertical wall and a flange.
  • FIG. 1C is a cross-sectional view taken along the line 1C-1C in FIG. 1A of a roof member manufactured through a second press molding process of the first embodiment, showing in detail an angle formed by a vertical wall and a flange.
  • 1D is a 1D-1D sectional view of FIG. 1A in a roof member manufactured through a second press molding process of the first embodiment, and is a sectional view showing in detail an angle formed by a vertical wall and a flange.
  • FIG. 8C is an 8C-8C cross-sectional view in FIG. 8A. It is 8D-8D sectional drawing in FIG. 8A.
  • It is a longitudinal cross-sectional view of the 1st press apparatus used at the 1st press molding process in the manufacturing method of the roof member of 2nd Embodiment. It is a longitudinal cross-sectional view of the 2nd press apparatus used at the 2nd press molding process in the manufacturing method of the roof member of a 2nd embodiment. It is a top view which shows the roof member of 3rd Embodiment.
  • FIG. 11C is a sectional view taken along line 11C-11C in FIG. 11A.
  • FIG. 11D is a cross-sectional view taken along 11D-11D in FIG. 11A. It is a figure for demonstrating the evaluation method of a twist and bending.
  • the roof member 1 manufactured by the roof member manufacturing method of the first embodiment (Example 1) and the roof member manufactured by the method of manufacturing the second comparative roof member (Comparative Example 1) are twisted and bent on the top plate. It is a graph which shows the result of having measured.
  • the Vickers hardness of the top plate measured in the range from one end to the other end in the short direction in the top plate of Example 1, and the top measured in the range from one end to the other end in the short direction in the top plate of Comparative Example 1 It is a graph which shows the result of having measured the Vickers hardness of a board. Simulation of the twist of the roof plate of the roof member of the example of the first embodiment (Examples 2 to 8) and the twist of the roof plate of the roof member of the comparative example of the second comparative mode (Comparative Examples 2 to 6) It is a table
  • First Embodiment The first embodiment will be described below. First, the structure of the roof member (refer FIG. 1A, FIG. 1B, FIG. 1C and FIG. 1D) of this embodiment is demonstrated. Next, the configuration of the press molding apparatus 17 (see FIGS. 2A, 2B, 3A, and 3B) of the present embodiment will be described. Next, a method for manufacturing the roof member of this embodiment will be described. Next, the operation of this embodiment will be described.
  • roof member 1 is an example of a press-formed product and a specific press-formed product.
  • the roof member 1 includes a top plate 2, two convex ridge lines 3a and 3b, two vertical walls 4a and 4b, and two concave ridge lines.
  • the section 5a, 5b and the two flanges 6a, 6b are integrally formed to be a long member having a substantially hat-shaped cross section.
  • the convex ridge line portions 3a and 3b are examples of the ridge line portion.
  • the roof member 1 is a cold press-formed product made of a high-tensile steel plate having a tensile strength of 1310 MPa. That is, as an example, the roof member 1 of the present embodiment is a cold press-formed product made of a high-tensile steel plate having a tensile strength of 440 MPa to 1600 MPa.
  • the top plate 2 is long as shown in FIGS. 1A and 1B.
  • the top plate 2 When viewed from above the top plate 2, the top plate 2 is curved in the longitudinal direction, that is, along the arrow L1 in the drawing, as shown in FIG. 1A. Further, when viewed from the side surface side of the top plate 2, the top plate 2 is curved along the longitudinal direction, that is, along the arrow L2 in the drawing, as shown in FIG. 1B. That is, the roof member 1 has the top plate 2 curved in a convex shape toward the top plate 2 in the longitudinal direction in a side view.
  • the two convex ridge line portions 3a and 3b are formed at both ends of the top plate 2 in the short direction as shown in FIGS. 1A and 1B.
  • the two vertical walls 4a and 4b are opposed to each other in a state of extending from the convex ridge line portions 3a and 3b, respectively. That is, the roof member 1 of the present embodiment is opposed to each other in a state where the long top plate 2, the convex ridge line portions 3 a and 3 b at both ends in the short direction of the top plate 2, and the convex ridge line portions 3 a and 3 b are extended.
  • the vertical walls 4a and 4b are configured to be included.
  • each section perpendicular to the longitudinal direction of the top plate 2 of the present embodiment extends linearly in the lateral direction at each position in the longitudinal direction. That is, as shown in FIG. 1C and FIG. 1D, the top plate 2 of the present embodiment is flat at each position in the longitudinal direction when viewed in vertical sections in the longitudinal direction.
  • the convex ridge line portion 3 a is a portion that connects the top plate 2 and the vertical wall 4 a, and is curved when each cross section perpendicular to the longitudinal direction of the top plate 2 is viewed. It is supposed to be a part.
  • the convex ridge line portion 3a is not shown at both ends by the alternate long and short dash line, but is a portion that connects the top plate 2 and the vertical wall 4b, and is curved when each cross section perpendicular to the longitudinal direction of the top plate 2 is viewed. It is supposed to be a part.
  • the top plate 2 of the present embodiment has a central portion where the value of Vickers hardness is a minimum value at the center in the short direction of the top plate 2, and a short portion between the central portion and the top plate 2.
  • Vickers hardness of each of the first range, which is a range between one end in the hand direction, and the second range, which is a range between the central portion and the other end in the short direction of the top plate 2 is The value has a maximum value in each range, that is, a maximum portion where the value is a maximum value.
  • the center part in which the value of Vickers hardness is set to the minimum value at the center in the short direction of the top plate 2 is referred to as the minimum part.
  • the roof member 1 of the present embodiment is manufactured by press-molding the blank BL shown in FIG. 2B by a method for manufacturing the roof member 1 of the present embodiment described later.
  • the Vickers hardness of the blank BL is 430 (HV) as an example.
  • the Vickers hardness of the minimum part in the top plate 2 of the roof member 1 is about 417 (HV) as an example, as shown in FIG. That is, the Vickers hardness at the center of the top plate 2 is smaller than the Vickers hardness of the blank BL before press molding.
  • the Vickers hardness of the edge part of the flange 6b of the roof member 1 is 430 (HV) as an example.
  • the Vickers hardness at the center of the top plate 2 is smaller than the Vickers hardness at the end of the flange 6b.
  • the top plate 2 is softer than the end portion of the flange 6b.
  • the end portion of the flange 6b means a portion from the end opposite to the side connected to the concave ridge line portion 5b in the flange 6b of the roof member 1 to 5 (mm) on the ridge line portion 5b side. .
  • the reason why the end of the flange 6b is harder than the top plate 2 is considered that the flange 6b is not deformed more than the top plate 2 in the method of manufacturing the roof member 1 described later.
  • the two concave ridge line portions 5a and 5b are formed at the ends of the two vertical walls 4a and 4b opposite to the side connected to the top plate 2, respectively.
  • the two flanges 6a and 6b are connected to the two concave ridge lines 5a and 5b, respectively.
  • the concave ridge portion 5a is a portion that connects the vertical wall 4a and the flange 6a, and is a curved portion when each cross section perpendicular to the longitudinal direction of the top plate 2 is viewed. Yes.
  • concave ridge line portion 5b is not shown at both ends by the alternate long and short dash line, but is a portion that connects the vertical wall 4b and the flange 6b, and is curved when viewed in a cross section perpendicular to the longitudinal direction of the top plate 2. It is said that it is a part.
  • the roof member 1 is viewed from one end in the longitudinal direction, that is, from the front end 1a when viewed from the top 2 in a state where the top 2 is disposed in an upper position. It curves over the other end, that is, the rear end 1b.
  • the roof member 1 includes a first portion 8 including a front end portion 1a, a third portion 10 including a rear end portion 1b, and a first portion. It can be said that the second portion 9 that connects the portion 8 and the third portion 10 is integrally formed.
  • the radius of curvature R of the first portion 8 when viewed from above (when viewed from the upper side of the top plate 2), is, for example, not less than 2000 (mm) and not more than 9000 (mm).
  • the radius of curvature R of the portion 9 is, for example, 500 (mm) or more and 2000 (mm) or less
  • the radius of curvature R of the third portion 10 is, for example, 2500 (mm) or more and 9000 (mm) or less.
  • the curvature radius R of the first portion 8 when viewed from the side (when viewed from the width direction side of the top plate 2), the curvature radius R of the first portion 8 is, for example, 3000 (mm) or more and 15000 ( mm) or less, the curvature radius R of the second portion 9 is, for example, 1000 (mm) to 15000 (mm), and the curvature radius R of the third portion 10 is, for example, 3000 (mm) to 15000 (mm). ).
  • the curvature radius R of the first portion 8 and the curvature radius R of the third portion 10 are larger than the curvature radius R of the second portion 9.
  • the R-stop plate thickness center which is the R start point on the top plate 2 side of the convex ridge line portion 3 a, that is, the concave ridge line in the vertical wall 4 a from the plate thickness center of the top plate 2.
  • the height to the end on the part 5a side is defined as a height h.
  • a step 11a having a step amount a2 (mm) is formed in the longitudinal direction at a portion away from the thickness center of the top plate 2 by 40% or more of the height h. Further, as shown in FIG.
  • the R-stop plate thickness center which is the R start point on the top plate 2 side of the convex ridge line portion 3b, that is, the concave ridge line portion in the vertical wall 4b from the plate thickness center of the top plate 2
  • the height to the end on the 5b side is defined as a height h ′.
  • a step 11a ′ having a step amount a2 ′ (mm) is formed in the longitudinal direction at a portion separated by 40% or more of the height h ′ from the thickness center of the top plate 2.
  • the roof member 1 has different cross-sectional shapes of the flanges 6a and 6b at the front end portion 1a and the rear end portion 1b in the longitudinal direction.
  • the angle of the flange 6b with respect to the vertical wall 4b is 30 ° at the front end 1a and 40 ° at the rear end 1b.
  • the angles of the flanges 6a and 6b with respect to the vertical wall 4a are continuously changed over the longitudinal direction.
  • the width of the top plate 2 in the short direction changes so as to continuously widen from the front end 1a to the rear end 1b in the longitudinal direction.
  • the angle formed between the vertical wall 4b of the first portion 8 and the flange 6b is equal to or greater than the angle formed between the vertical wall 4b of the third portion 10 and the flange 6b. It is preferable.
  • the press molding apparatus 17 of this embodiment is for manufacturing the roof member 1 of this embodiment.
  • the press molding device 17 includes a first press device 18 and a second press device 19 as shown in FIGS. 2A, 2B, 3A, and 3B.
  • the blank BL shown in FIG. 2B is press-formed by drawing using the first press apparatus 18 to form the intermediate molded product 30 shown in FIG. 3B, and then the second The intermediate molded product 30 is press-molded by the press device 19 to manufacture the product, that is, the roof member 1.
  • the blank BL is a long high-tensile steel plate that is a base material for manufacturing the roof member 1.
  • the intermediate molded product 30 includes a top plate 2, two convex ridge line portions 32a and 32b, two vertical walls 33a and 33b, and two concave ridge line portions 34a and 34b. It is a substantially hat-shaped member that includes two flanges 35a and 35b.
  • “press molding” means an action from setting a molding target product in a mold to closing the mold and opening the mold.
  • the blank BL and the intermediate molded product 30 are examples of products to be molded.
  • die 40 mentioned later are taken as an example of a metal mold
  • the first press device 18 includes a first mold 20 and a first moving device 25. As shown in FIG. 2B, the first mold 20 has an upper mold 21, a lower mold 22, a first holder 23, and a second holder 24. The upper mold 21 is disposed on the upper side, and the lower mold 22 is disposed on the lower side.
  • the first press device 18 is an example of a press device.
  • the first mold 20 is an example of a mold.
  • the upper mold 21 is an example of a die.
  • the lower die 22 is an example of a punch.
  • the blank BL is curved from the lower die 22 side to the upper die 21 side, and the portion of the blank BL where the top plate 2 is formed is the radius of curvature of the following formula (1)
  • a portion where the top plate 2 in the blank BL is molded is sandwiched between the upper mold 21 and the lower mold 22 so as to satisfy R (mm), and a portion where the top plate 2 is molded in the blank BL is viewed from the upper mold 21 side. It has a function of being recessed on the lower mold 22 side.
  • the part in which the two convex ridge line parts 3a and 3b in the blank BL are formed is an example of a first part.
  • molded is an example of a 2nd part.
  • each parameter of Formula (1) is as follows.
  • t Blank BL thickness (mm)
  • ⁇ s Bending outer surface stress (MPa) in the short direction of the portion where the top plate is formed in the blank BL
  • ⁇ m Average stress (MPa) in the short direction of the portion where the top plate is formed in the blank BL
  • E Young's modulus (GPa) of steel plate constituting blank BL
  • the 1st press apparatus 18 makes the 2nd part the upper mold
  • the second part is recessed from the upper mold 21 side to the lower mold 22 side.
  • ⁇ s and ⁇ m are obtained by performing molding analysis under the condition that the top plate 2 is flat.
  • the radius of curvature R (mm) of the formula (1) is 38 (mm) or more and 1300 (mm).
  • the radius of curvature R (mm) of the formula (1) is 32 (mm) or more and 1020 (mm).
  • the radius of curvature R (mm) of formula (1) is 30 (mm) or more and 725 (mm).
  • molded will satisfy
  • molded is 38 (mm) or more and 725 (mm).
  • a portion where the top plate 2 in the blank BL is formed is sandwiched between the upper die 21 and the lower die 22 so that the following range is satisfied, and a portion where the top plate 2 is formed in the blank BL is lowered from the upper die 21 side. It can be said that it has the function to dent in the type
  • the upper mold 21 and the lower mold 22 are each long as shown in FIG. 2A.
  • the top surface of the lower mold 22 is curved along the longitudinal direction.
  • the upper die 21 is formed with a groove that curves along the top surface of the lower die 22. 2A and 2B when the upper mold 21 and the lower mold 22 are viewed from the short direction of the upper mold 21 and the lower mold 22, which are orthogonal to the opposing direction of the upper mold 21 and the lower mold 22.
  • the top surface of the lower mold 22 is curved in a convex shape toward the upper mold 21, and the upper mold 21 is formed with a groove that curves along the top surface of the lower mold 22.
  • the top surface 22c of the lower mold 22 is a concave surface having a curvature radius R (mm) of 38 (mm) or more and 725 (mm) or less.
  • R (mm) curvature radius
  • the bottom of the groove of the upper die 21 protrudes toward the lower die 22 with a radius of curvature R (mm), and is a portion (top surface) facing the bottom of the groove of the upper die 21 in the lower die 22. Is recessed on the upper mold 21 side with a radius of curvature R (mm) (see FIG. 2B).
  • the curvature radius R (mm) of this embodiment is set to 100 (mm) as an example.
  • both ends of the top surface 22c of the lower mold 22 in the short direction are referred to as shoulder portions 22d.
  • the shoulder portion 22d corresponds to a portion that contacts the second portion of the blank BL in the lower die 22 when the first press device 20 forms the blank BL into the intermediate molded product 30.
  • step portions 22a and 22a ' are formed on both side surfaces of the lower mold 22, respectively. Further, on both side surfaces of the groove of the upper mold 21, step portions 21a and 21a 'are formed along the step portions 22a and 22a', respectively.
  • the first holder 23 and the second holder 24 are elongated along the upper mold 21 and the lower mold 22.
  • the 1st holder 23 and the 2nd holder 24 are arrange
  • the first moving device 25 moves the upper die 21 toward the lower die 22. That is, the first moving device 25 moves the upper mold 21 relative to the lower mold 22. Then, when the first moving device moves the upper mold 21 toward the lower mold 22 in a state where the blank BL is disposed at a position where the gap between the upper mold 21 and the lower mold 22 is defined, FIG. As shown in the figure, the blank BL is press-molded and the intermediate molded product 30 is molded in a state where both ends in the short direction of the blank BL are sandwiched between the first holder 23 and the second holder 24 and the upper mold 21 respectively. It has come to be.
  • the first pressing device 18 projects the second portion from the upper die 21 side to the lower die 22 side so that the second portion in the blank BL satisfies the curvature radius R (mm) of the formula (1). It is designed to be bent into a shape. However, the first pressing device 18 replaces the formula (1) with the second portion on the upper die 21 side so that the second portion of the blank BL satisfies the curvature radius R (mm) of the following formula (2). May be curved convexly toward the lower die 22 side.
  • each parameter of Formula (2) is as follows.
  • t Thickness of the blank (mm)
  • ⁇ TS Tensile strength (MPa) of the blank
  • ⁇ YP Yield stress of the blank (MPa)
  • E Young's modulus (GPa) of the steel sheet constituting the blank
  • ⁇ TS is, for example, a shipment test value acquired based on the JIS No. 5 tensile test described in the mill sheet.
  • ⁇ YP is a shipping test value acquired based on, for example, the JIS No. 5 tensile test described in the mill sheet.
  • the inventors of the present application set the roof member 1 and the roof member 1A, which will be described later, as parameters, such as the thickness and material strength of the blank BL, the shape of the top plate 2, the method of press forming such as bending and drawing.
  • 1B was molded, the stress generated on the outer surface, ie, the upper surface, and the inner surface, ie, the back surface, of the top plate 2 was examined by numerical analysis.
  • the roof members 1, 1 ⁇ / b> A and 1 ⁇ / b> B are press-molded without using a pad, the deviation stress ⁇ contributing to the warp of the top plate 2 varies depending on the material strength of the blank BL, and the following conditions It was found that A was satisfied.
  • condition A is 0.5 ⁇ YP ⁇ ⁇ ⁇ ⁇ TS It is.
  • Equation (2) is derived from the above condition A and relationship B.
  • ⁇ TS and ⁇ YP are obtained by performing a molding analysis under the condition that the top plate 2 is flat.
  • the second press device 19 includes a second mold 40 and a second moving device 45.
  • the second mold 40 includes an upper mold 41, a lower mold 43, and a holder 43.
  • the upper mold 41 is disposed on the upper side
  • the lower mold 42 is disposed on the lower side.
  • the second press device 19 moves the upper mold 41 to the lower mold 43 side by the second moving device in a state where the intermediate molded product 30 is fitted in the lower mold 43, so that two flanges 35 a in the intermediate molded product 30 are provided.
  • the angle of 35b is changed.
  • stepped portions 43a are formed on both side surfaces of the lower mold 43, respectively. Further, on both side surfaces of the groove of the upper mold 41, step portions 41a are formed along the step portions 43a.
  • the manufacturing method of the roof member 1 of this embodiment is demonstrated, referring drawings.
  • the method for manufacturing the roof member 1 of the present embodiment is performed using the press molding device 17.
  • the manufacturing method of the roof member 1 according to the present embodiment is a first press forming step that is a step performed by the first press device 18 and a second press that is a step performed by the second press device 19. Forming step.
  • the blank BL is arranged at a position where the gap between the upper mold 21 and the lower mold 22 is defined, that is, the blank BL is set at a position where the mold 40 is defined.
  • the first press device 18 is configured such that the blank BL is moved from the lower mold 22 side to the upper mold with the shoulder 22d of the lower mold 22 in contact with the first portion of the blank BL. Curved convexly toward the 21 side.
  • the first press device 18 sandwiches the second portion of the blank BL between the upper die 21 and the lower die 22 and dents the second portion from the upper die 21 side to the lower die 22 side. That is, in the first press molding process, the blank BL is pressed using the upper mold 21 and the lower mold 22. As a result, the intermediate molded product 30 is molded from the blank BL.
  • die 40 used at a 1st press molding process uses what was manufactured so that the conditions of Formula (1) or Formula (2) may be satisfy
  • the thickness t of the blank BL and the Young's modulus E of the steel plate constituting the blank BL are used to calculate the formula (1) or This is performed after selecting the mold 40 satisfying the formula (2) and attaching it to the main body of the first press device 18.
  • the heights h from the top plate 2 are respectively set on the two vertical walls 33a and 33b of the intermediate molded product 30.
  • H ′, steps 36a and 36a ′ having a step amount a1 (mm) defined by the following formulas (3) and (4) are formed at portions separated by 40% or more.
  • symbol a1 is the step amount (mm) in the intermediate molded product 30
  • symbol a2 is the step amount (mm) in the roof member 1
  • symbol W is the width (mm) in the short direction of the top plate 2 in the roof member 1.
  • the angle DI1 formed by the vertical wall 33a of the intermediate molded product 30 and the flange 35a satisfies the following formula (5).
  • the vertical wall 33a and the flange 35a are formed.
  • the symbol DI1 is an angle formed by the vertical wall 33a of the intermediate molded product 30 and the flange 35a
  • the symbol DI2 is an angle formed by the vertical wall 4a of the roof member 1 and the flange 6a.
  • the vertical wall 33b and the flange 35b of the intermediate molded product 30 are formed so as to satisfy the following expression (6).
  • DOF1 is an angle formed by the vertical wall 33b including one end of the intermediate molded product 30 and the flange 35b
  • DOR1 is formed by the vertical wall 33b including the other end of the intermediate molded product 30 and the flange 35b. Is an angle.
  • the outer flange 35b of the intermediate molded product 30 is molded by flowing the material end of the blank BL and bending the blank BL.
  • the intermediate molded product 30 is removed from the first mold 20, and the first press molding process is completed.
  • the second portion of the blank BL satisfies the curvature radius R (mm) of the formula (1) or the formula (2).
  • the second part is recessed from the upper mold 21 side to the lower mold 22 side.
  • die 20 opened the cross section in the longitudinal direction of the top plate 2 in the intermediate molded product 30 deform
  • the state that is, the state in which the radius of curvature is increased.
  • the second part is formed before the first part in the blank BL.
  • a compressive stress is generated in the top plate 2 when the mold is closed in the first press molding process due to an excess remaining when the blank BL is recessed.
  • a springback occurs in the intermediate molded product 30 after the mold opening in the first press molding process.
  • the blank BL is recessed from the upper mold 21 side to the lower mold 22 side with the blank BL sandwiched between the upper mold 21 and the lower mold 22.
  • the blank BL is curved in a convex shape from the lower mold 22 side to the upper mold 21 side with the end 22d of the lower mold 22 in contact with the first portion of the blank BL.
  • by forming the first part before the second part it is possible to reduce an excess surplus when the blank BL is recessed as compared with the case of the first comparative form. it can.
  • the compressive stress which arises in the top plate 2 at the time of the mold closing in a 1st press molding process can be reduced compared with the case of a 1st comparison form.
  • the method for manufacturing the roof member 1 of this embodiment it is possible to manufacture the roof member 1 in which the closing of the vertical walls 4a and 4b due to the spring back is suppressed as compared with the first comparative embodiment.
  • the effect of performing the first press molding satisfying the radius of curvature R of the formula (1) is that the top plate 2 in the blank BL is molded in the first press molding process.
  • the radius of curvature R (mm) of the formula (1) in other words, so as to satisfy the radius of curvature of the formula (2), in other words, the radius of curvature of the second portion in the blank BL.
  • this embodiment will be described in comparison with a second comparative embodiment described below.
  • it demonstrates using the component, a name, etc. as it is, even if not shown in figure.
  • the bottom of the groove of the upper die 21 of the first press device 18 is flat in a cross-sectional view seen from the longitudinal direction, and the portion of the lower die 22 that faces the bottom of the groove of the upper die 21 is long. It is flat in the cross-sectional view seen from the direction.
  • the step portion 21 a is not formed on the upper mold 21, and the step portion 22 a is not formed on the lower mold 22.
  • the second comparative embodiment is the same as the present embodiment except for the above points.
  • the roof member 1 manufactured by the method for manufacturing the roof member 1 of the second comparative embodiment is in a twisted state as shown in Comparative Examples 2 to 6 in the table of FIG. This result is considered to be caused by the closing of the vertical walls 33a and 33b by the spring back after the first press molding, that is, after the mold opening.
  • the closing of the vertical walls 33a and 33b due to the spring back after the first press molding occurs by the following mechanism.
  • the second portion of the blank BL is deformed upward in the first press molding step, that is, in the gap between the upper mold 21 and the lower mold 22. It is bent into a convex shape toward the upper side and molded.
  • the top plate 2 of the intermediate molded product 30 of the second comparative form is curved in a convex shape on the outer surface side which is the outside in a sectional view.
  • stress is generated on the top plate 2 so as to close the vertical walls 33a and 33b.
  • the intermediate molded product 30 is curved along the longitudinal direction, at each position perpendicular to the longitudinal direction of the top plate 2, Differences in stress can occur.
  • the roof member 1 manufactured by the method for manufacturing the roof member 1 of the second comparative embodiment is in a twisted state.
  • the part of the blank BL where the top plate 2 is molded satisfies the curvature radius R (mm) of the formula (1).
  • the curvature radius R (mm) of the second portion in the blank BL satisfies the range of 38 (mm) or more and 725 (mm) or less so as to satisfy the curvature radius of the formula (2).
  • the second part is recessed from the upper mold 21 side to the lower mold 22 side. Therefore, in the first press molding step of the present embodiment, the blank BL is deformed upward as the mold is closed, and the portion where the top plate 2 is formed in the blank BL is then protruded downward when the mold is closed.
  • the intermediate molded product 30 is molded by opening the mold. That is, the top plate 2 of the intermediate molded product 30 of the present embodiment is in a state where the action of the Bauschinger effect is exerted by receiving a load from the upper side to the lower side after being plastically deformed upward. Inferred. As a result, the top plate 2 of the intermediate molded product 30 molded by the first press molding process of the present embodiment is less likely to be twisted than in the second comparative embodiment. This result is considered to be due to the fact that the amount of closing of the vertical walls 33a and 33b by the spring back after the first press molding is smaller than that in the second comparative embodiment.
  • the second press molding process is performed after the first press molding process, but in the second press molding process, the top plate 2 of the intermediate molded product 30 is hardly deformed even when pressed.
  • the roof member 1 manufactured by the method of manufacturing the roof member 1 according to the present embodiment is not twisted or twisted as compared with the second comparative embodiment, as shown in the graph of FIG. Is considered small.
  • t, ⁇ TS which is the equation (1) calculated from the relationship between t, ⁇ s , ⁇ m and E that are parameters related to the top plate 2 or each parameter related to the top plate 2.
  • the top plate 2 of the intermediate molded product 30 is (substantially) flat in a cross-sectional view as viewed from the longitudinal direction. Shape. For this reason, generation
  • the second part of the blank BL is recessed from the upper mold 21 side to the lower mold 22 side and then the intermediate molded product 30 is molded.
  • the convex ridge line portions 32a and 32b at both ends in the short direction of the top plate 2 can be formed at an acute angle as compared with the case of the second comparative embodiment.
  • the spring back that the vertical walls 33a and 33b try to open is more likely to be canceled than in the case of the second comparative embodiment.
  • the roof member 1 of the present embodiment is subjected to stresses at both ends in the short direction of the top plate 2 at each position perpendicular to the longitudinal direction of the top plate 2 due to the intermediate molded product 30 being curved along the longitudinal direction. In spite of the difference, the twist is less likely to occur as compared with the roof member 1 of the second comparative form.
  • the portion of the blank BL where the top plate 2 is formed is pressed flat when the mold is closed.
  • the portion where the top plate 2 in the blank BL is formed when the mold is closed is flattened.
  • the roof member 1 in which the top plate 2 is prevented from being twisted can be manufactured.
  • the roof member 1 manufactured by the manufacturing method of the roof member 1 of this embodiment is changed into the roof member 1 manufactured by the manufacturing method of the roof member 1 of the second comparative embodiment as shown in the graph of FIG. In comparison, the top plate 2 is less twisted.
  • die 20, the 1st press apparatus 18, or the press molding apparatus 17 of this embodiment is used, compared with the case of the 2nd comparative form, the mouth closing of the vertical walls 4a and 4b by a springback is suppressed.
  • the roof member 1 can be manufactured. Accordingly, if the first mold 20, the first press device 18 or the press molding device 17 of the present embodiment is used, the roof in which the top plate 2 is prevented from being twisted compared to the case of the second comparative embodiment.
  • the member 1 can be manufactured.
  • the action according to the expression (1) is achieved.
  • action by Formula (1) even when it is a case where the top plate 2 is curving along a longitudinal direction when the top plate 2 is seen from the upper side like the roof member 1 of this embodiment, there exists an effect
  • the roof member 1 is convexly curved toward the top plate 2 as viewed from the short side of the top plate 2 as in the roof member 1 of the present embodiment, the formula (1) The effect by.
  • the top plate 2 is prevented from being twisted and the vertical walls 33a and 33b are bent.
  • the stress on the entire area of the vertical walls 33a, 33b is formed in the second press molding process. Is reduced.
  • the residual stress means the stress remaining in the material at the press bottom dead center.
  • the steps 36a and 36a ′ are formed on the vertical walls 33a and 33b in the first press forming step, so that the remaining portions below the vertical walls 33a and 33b are left in the second press forming step. Stress is reduced.
  • the flange 35b of the intermediate molded product 30 is formed by flowing the material end of the blank BL and bending the blank BL in the first press molding step. Therefore, in this embodiment, the amount of spring back in the first press molding process is reduced by reducing the compressive residual stress in the first press molding process.
  • Second Embodiment a second embodiment will be described.
  • the configuration of the roof member 1A of the present embodiment shown in FIGS. 8A, 8B, 8C, and 8D will be described.
  • the configuration of the press molding apparatus 17A of the present embodiment shown in FIGS. 9 and 10 will be described.
  • a method for manufacturing the roof member of this embodiment will be described.
  • the operation of this embodiment will be described. In the following description, portions of the present embodiment that are different from the first embodiment will be described.
  • the roof member 1A of the present embodiment is an example of a press-formed product and a specific press-formed product.
  • the roof member 1A of the present embodiment includes the flanges 6a and 6b of the first embodiment shown in FIGS. 1A, 1B, 1C, and 1D. I do not have. Except for this point, the roof member 1A of the present embodiment has the same configuration as the roof member 1 of the first embodiment.
  • the press molding apparatus 17A of the present embodiment is for manufacturing the roof member 1A of the present embodiment.
  • the first press device 18A of the present embodiment does not include the holders 23 and 24 shown in FIG. 2B, as shown in FIG.
  • the first press device 18A is an example of a press device.
  • the press molding apparatus 17A of the present embodiment has the same configuration as the press molding apparatus 17 of the first embodiment.
  • the intermediate molded product 30A has the same configuration as the intermediate molded product 30 of the first embodiment, except that the two flanges 35a and 35b are not provided. That is, the intermediate molded product 30A of the present embodiment is a groove-shaped member.
  • the manufacturing method of the roof member 1A of this embodiment is performed using the press molding apparatus 17A.
  • the manufacturing method of the roof member 1A of the present embodiment is the same as that of the first embodiment, except that the first press molding process is performed by the first press device 18A.
  • the blank BL is press-molded by bending, and the intermediate molded product 30A shown in FIG. 10 is molded.
  • This embodiment exhibits the effects of the first embodiment, the action of contacting the first portion, the action according to the expression (1), and other actions 1, 2, and 3 in the action of the first embodiment.
  • roof member 1B is an example of a press-formed product and a specific press-formed product.
  • the roof member 1B of the present embodiment does not include the flanges 6a and 6b shown in FIGS. 1A, 1B, 1C, and 1D, as shown in FIGS. 11A, 11B, 11C, and 11D. Further, the roof member 1B of the present embodiment has a central portion in the longitudinal direction that is not curved in the lateral direction when the top plate 2 is viewed from above. Furthermore, the roof member 1 of the present embodiment is not curved convexly toward the top plate 2 when viewed from the short side of the top plate 2. Except for this point, the roof member 1B of the present embodiment has the same configuration as the roof member 1 of the first embodiment.
  • the press apparatus of this embodiment is for manufacturing the roof member 1B of this embodiment.
  • the first press device and the second press device (not shown) in the present embodiment are provided with holders 23 and 24 shown in FIG. 2B, respectively, similarly to the first press device 18A and the second press device 19 in the second embodiment. Absent.
  • the groove of the upper die 21 in the first press device of the present embodiment is straight without being curved when viewed from the opposing direction of the upper die 21 and the lower die 22 and the short direction of the upper die 21 and the lower die 22. Is formed.
  • type 22 protrudes linearly along a longitudinal direction.
  • the press device of this embodiment has the same configuration as the press molding device 17A of the second embodiment except for the above points.
  • the intermediate molded product (not shown) formed by the first press molding step of the present embodiment is the second embodiment except that the top plate 2 and the vertical walls 33a and 33b are not curved along the longitudinal direction.
  • the configuration is the same as that of the intermediate molded product 30A. That is, the intermediate molded product of this embodiment is a groove-shaped member.
  • the manufacturing method of the roof member 1B of this embodiment is demonstrated.
  • the manufacturing method of the roof member 1B of this embodiment is the same as that of 2nd Embodiment except the point performed using the press apparatus of this embodiment.
  • the blank BL is press-molded by bending to form an intermediate molded product.
  • the roof member 1 of Example 1 is demonstrated.
  • As the blank BL a high-tensile steel plate blank having a plate thickness of 1.2 mm and a tensile strength of 1310 MPa class was used.
  • the roof member 1 of Example 1 manufactured by the method for manufacturing a roof member according to the present embodiment has a curvature radius R of the first portion 8 of 3000 mm and the second portion 9 when viewed from the top of the top plate 2.
  • the radius of curvature R was 800 mm
  • the radius of curvature R of the third portion 10 was 4000 mm.
  • the roof member 1 of the first embodiment has a curvature radius R of the first portion 8 of 4000 mm and a curvature of the second portion 9 when viewed from the short side of the top plate 2, that is, from the side surface side of the roof member 1.
  • the radius R was 2000 mm
  • the curvature radius R of the third portion 10 was 10,000 mm.
  • the blank BL had a bending outer surface stress ⁇ s of 1234 MPa and an average stress ⁇ m of 100 MPa.
  • the Young's modulus E of the blank BL was 208 GPa.
  • the roof member of Comparative Example 1 is a high-strength steel plate blank having a plate thickness of 1.2 mm and a tensile strength of 1310 MPa as the blank BL. Manufactured by. The roof member of Comparative Example 1 was manufactured so that the curvature radius R of each part of the first, second, and third parts was the same as that in Example 1.
  • Example 1 is considered to have the effects described in the first embodiment.
  • the graph of FIG. 14 shows the Vickers hardness of the top plate measured in a range from one end in the short direction to the other end of the top plate 2 of Example 1, and one end in the short direction of the top plate of Comparative Example 1. The result of having measured the Vickers hardness of the top plate measured in the range over the other end is shown.
  • the top plate 2 of Example 1 has a small value of Vickers hardness as a whole, that is, in the entire region from one end to the other end of the top plate 2 in the short direction. .
  • the value of Vickers hardness is generally the same, whereas in the case of the top plate 2 of Example 1, the following points are different. That is, in the case of the top plate 2 of the first embodiment, the center portion of the top plate 2 where the value of the Vickers hardness is the minimum value, that is, the minimum portion, the center portion, and the top plate 2 Vickers hardness in each of the first range that is a range between one end in the short direction and the second range that is a range between the center portion and the other end in the short direction of the top plate 2 And a maximum portion where the value of becomes a maximum value.
  • the reason why the Vickers hardness characteristics are different between the top plate 2 of Example 1 and the top plate of Comparative Example 1 is that the top plate 2 of Example 1 operates according to the formula (1), that is, the bow. This is thought to be due to the singer effect. Moreover, as the above-mentioned evaluation result, the roof member 1 of Example 1 is not twisted compared with the roof member of Comparative Example 1, that is, the spring back amount is small. From another point of view, it can be said that the roof member 1 of Example 1 is more accurate than a loop member including a top plate having the same Vickers hardness value.
  • each maximum portion is defined as the maximum value of the Vickers hardness in each of the first range and the second range is that the Vickers hardness is the maximum value in each range. Means that it is not both ends of the top plate 2 in the short direction. Moreover, in the top plate 2 of Example 1, the value of the Vickers hardness at the center, that is, the minimum part, was at least 2.3% smaller than the value of Vickers hardness at each maximum.
  • the plate thickness is the thickness of the blank BL used in the simulation.
  • the strength is the tensile strength of the blank BL used for the simulation.
  • the top plate shape is an R shape of a cross section of the first mold 20 used for the simulation.
  • the top plate shape which is the R shape of the cross section of the first mold 20 used for the simulation corresponds to the curvature radius R of the formula (1) or the formula (2).
  • the evaluation section 1 twist is a twist of a portion 10 mm in the longitudinal direction from the front end to the center side
  • the evaluation section 2 twist is a twist of a portion 10 mm in the longitudinal direction from the rear end to the center side.
  • each combination of the plate thickness, strength, and top plate shape in Examples 2 to 8 satisfies the conditions of Formula (1) and Formula (2). Further, in Comparative Examples 2 to 6, it is described that the top plate portion has no shape, but this means that the top plate 2 is pressed flat in the first press molding step.
  • Example 2 and Comparative Example 2 have the same simulation conditions for plate thickness and strength.
  • the evaluation section 1 twist it can be seen that the roof member of Example 2 has a smaller twist of the top plate 2 than the roof member of Comparative Example 2.
  • the simulation results of the evaluation section 2 twist it can be seen that the roof member of Example 2 has a smaller twist of the top plate 2 than the roof member of Comparative Example 2.
  • the evaluation section 2 twist in Example 2 is ⁇ 7.52 °, but the meaning of “ ⁇ ” means that the twist is clockwise.
  • roof members of Comparative Examples 7 to 11 are provided with flanges 6a and 6b shown in FIGS. 1A, 1B, 1C, and 1D, similarly to Examples 9 to 15, that is, the roof member 1A of the second embodiment. Not. Therefore, the roof members of Comparative Examples 7 to 11 were created by simulation on the premise of press working by bending.
  • Example 9 and Comparative Example 7 have the same simulation conditions for plate thickness and strength. Then, comparing the simulation results of the evaluation section 1 twist, it can be seen that the roof member of Example 9 has a smaller twist of the top plate 2 than the roof member of Comparative Example 7. Further, comparing the simulation results of the evaluation section 2 twist, it can be seen that the roof member of Example 9 has a smaller twist of the top plate 2 than the roof member of Comparative Example 7.
  • each Example is each Comparative Example. It can be seen that the top plate 2 is less twisted than From the above evaluation results, in Examples 9 to 14, in the case of each Example, by satisfying the condition of Expression (1), the effect of Expression (1) is exhibited regardless of the difference in tensile strength of the blank BL. Conceivable.
  • the present disclosure has been described with respect to specific embodiments and examples thereof, that is, the first, second, and third embodiments and Examples 2 to 14.
  • the technical scope according to the present disclosure has been described above. Forms other than the first, second and third embodiments and Examples 2 to 14 are also included.
  • the technical scope according to the present disclosure includes modifications of the following forms.
  • the press-molded product may be an automotive part other than the roof member as long as it is manufactured by press molding that satisfies the condition of the formula (1) or the formula (2). Moreover, if it is a thing manufactured by press molding which satisfy
  • the steps 11a and 11a ' are described as being formed on the vertical walls 4a and 4b, respectively. However, if the press-molded product is manufactured by press molding that satisfies the condition of formula (1) or formula (2), the steps 11a and 11a 'may not be formed on the vertical walls 4a and 4b.
  • the roof member manufacturing method according to each embodiment has been described as including a first press molding step and a second press molding step. However, if the press-molded product is manufactured by press molding that satisfies the condition of the formula (1) or the formula (2), the second press molding process may not be performed.
  • the intermediate molded product 30 molded by the first press molding process is described as being manufactured as a press molded product through the second press molding process.
  • the press-molded product is manufactured by press molding that satisfies the condition of formula (1) or formula (2)
  • the intermediate molded products 30 and 30A described in each embodiment are taken as an example of the press-molded product. It may be taken as. In this case, the person who performs in the 1st press molding process and the 2nd press molding process may differ.
  • the thickness, tensile strength, top plate shape, etc. of the blank BL are exemplified.
  • a combination other than the combinations exemplified in the embodiments and examples may be used as long as the parameter combining these satisfies the condition of the expression (1) or the expression (2).
  • the blank BL has a tensile strength greater than 1470 (MPa) or smaller than 590 (MPa)
  • the thickness of the blank BL is less than 1.0 (mm) or thicker than 1.2 (mm), Expression (1) or Expression (2) in relation to the other parameters described above. ).
  • the roof members 1, 1 ⁇ / b> A, and 1 ⁇ / b> B of each embodiment are arranged at the end of the lower mold 22 before the blank BL is recessed from the upper mold 21 side to the lower mold 22 side with the blank BL sandwiched between the upper mold 21 and the lower mold 22. It has been described that the blank BL is manufactured by bending from the lower mold 22 side to the upper mold 21 side in a state where the portion 22d is in contact with the first portion of the blank BL. That is, the roof members 1, 1 ⁇ / b> A, and 1 ⁇ / b> B of each embodiment have been described with the first portion being formed before the second portion in the blank BL.
  • the press-formed product may have a shape different from that of the roof members 1, 1A and 1B of the present embodiment. Good.
  • press-formed products having the shapes of the above-described modifications may be used.
  • Products By performing the second press molding using a punch, die and holder on the intermediate molded product, it is a cold press molded product made of a steel plate having a tensile strength of 440 to 1600 MPa, which extends in the longitudinal direction and has a width. Is a substantially flat top plate of 40 mm or less, two ridge lines connected to both sides of the top plate, two vertical walls connected to the two ridge lines, and two concave ridge lines connected to the two vertical walls, respectively.
  • the top plate of the intermediate molded product has a substantially hat-shaped cross section having a radius of curvature R (mm) defined by the following formula in a cross section perpendicular to the longitudinal direction of the top plate.
  • each parameter of the formula is as follows.
  • t Thickness of the blank (mm)
  • ⁇ s Bending outer surface stress (MPa) in the short direction of the portion of the blank where the top plate is formed
  • ⁇ m Average stress (MPa) in the short direction of the portion of the blank where the top plate is formed
  • E Young's modulus (GPa) of the steel sheet constituting the blank " It is said.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本開示のプレス成形品を製造する方法は、 長尺な天板(2)と、該天板の短手方向の両端の稜線部(32a,32b)と、該稜線部から延びた状態で互いに対向する縦壁(33a,33b)とを含んで構成されるプレス成形品(30)の製造方法であって、ダイ(21)とパンチ(22)とを用いて、ブランク(BL)における前記両端の稜線部が成形される第1部分にパンチを接触させた状態で前記ブランクを前記パンチ側から前記ダイ側に凸状に湾曲させて、前記ブランクにおける前記天板が成形される第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる。

Description

プレス成形品の製造方法、プレス成形品、金型及びプレス装置
 本開示は、プレス成形品の製造方法、プレス成形品、金型及びプレス装置に関する。
 自動車の車体は、多数の成形パネルの縁部同士を重ね合わせて、スポット溶接により接合して箱体とし、この箱体の要所に構造部材をスポット溶接により接合することにより、組み立てられる。例えば、自動車の車体の側部(ボディサイド)には、構造部材として、フロアパネルの両側部に接合されるサイドシル、サイドシルの前部に上方へ向けて立設されるAピラーロアー及びAピラーアッパー、Aピラーアッパーの上端部に接合されるルーフレール、更には、サイドシル及びルーフレールを接合するBピラー等が用いられる。
 Aピラーロアー、Aピラーアッパー、ルーフレール等の構造部材の構成要素(例えば、それぞれのアウターパネル)は、一般的に、長手方向へ延びて存在する天板と、この天板の両側にそれぞれつながる2つの凸稜線部と、これら2つの凸稜線部にそれぞれつながる2つの縦壁と、これら2つの縦壁にそれぞれつながる2つの凹稜線部と、これら2つの凹稜線部にそれぞれつながる2つのフランジとからなる略ハット型の横断面形状を有することが多い。
 上述の構成要素は、比較的複雑な横断面形状を有するとともに長尺である。そこで、製造コストの上昇を抑制するために、上述の構成要素は、一般的に、冷間でのプレス成形により製造されている。また、燃費向上のための車体の軽量化及び強度向上を両立するために、上述の構造部材として、例えば、引張強度が440MPa以上の高張力鋼板を用いる薄肉化も推進されている。
 しかし、高張力鋼板のブランクを冷間でのプレス成形により、例えば、ルーフレールアウターパネル(以下、ルーフ部材という。ルーフ部材とは、自動車の構造部材である。)のような、長手方向に湾曲している構成要素を製造しようとすると、プレス型から離型の際にスプリングバックが発生して、天板にねじれが生じるおそれがある。その結果、ルーフ部材を所望の形状に成形できないという形状凍結性の問題が生じる。
 例えば、日本国特許出願公開2004-314123号公報(以下、特許文献1という。)には、長手方向へ均一なハット型の横断面を有するプレス成形品を製造する際に、段差を付与することにより口開きの発生を抑制して形状凍結性を高める発明が開示されている。
 また、日本国特許第5382281号明細書(以下、特許文献2という。)には、天板、縦壁及びフランジを有し、長手方向に湾曲するプレス成形品を製造する際に、1工程目で形成したフランジを2工程目で曲げ戻してフランジの残留応力を低減することで形状凍結性を高める発明が開示されている。
 特許文献1により開示された発明により、例えば、Aピラーロアー、Aピラーアッパー及びルーフレールの構成部材の構成要素のように、その長手方向に湾曲した形状のプレス成形品を製造すると、離型後の天板にスプリングバックが生じ、所望の形状に成形できない。
 特許文献2により開示された発明により、長手方向及び高さ方向へ湾曲するとともに長手方向中心付近に屈曲部を有するプレス成形品を製造すると、フランジの残留応力、縦壁及び天板の面内の残留応力並びに縦壁及び天板の面内の偏差残留応力が発生する。その結果、特許文献2により開示された発明により製造されたプレス成形品には離型後の天板にスプリングバックが生じ、所望の形状に成形できない。
 本開示は、スプリングバックによる縦壁の口閉じが抑制された特定プレス成形品の製造方法の提供を目的とする。ここで、本明細書において、特定プレス成形品とは、長尺な天板と、該天板の短手方向の両端の稜線部と、該稜線部から延びた状態で互いに対向する縦壁とを含んで構成されるプレス成形品のことをいう。
 本開示に係る第1の態様のプレス成形品の製造方法は、特定プレス成形品の製造方法であって、ダイとパンチとを用いて、ブランクにおける前記両端の稜線部が成形される第1部分にパンチを接触させた状態で前記ブランクを前記パンチ側から前記ダイ側凸状に湾曲させて、前記ブランクにおける前記天板が成形される第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる。
 本開示に係る第2の態様のプレス成形品の製造方法は、特定プレス成形品の製造方法であって、ダイとパンチとを用いて、ブランクにおける前記両端の稜線部が成形される第1部分にパンチを接触させた状態で前記ブランクを前記パンチ側から前記ダイ側に曲げて、前記ブランクにおける前記天板が成形される第2部分が式(1)の曲率半径R(mm)を満たすように、前記第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる。
Figure JPOXMLDOC01-appb-M000003
 ・・・(1)
 ここで、式(1)の各パラメータは以下のとおりである。
 t :前記ブランクの板厚(mm)
 σs :前記ブランクにおける前記天板が成形される部分の短手方向の曲げ外表面応力(MPa)
 σm :前記ブランクにおける前記天板が成形される部分の短手方向の平均応力(MPa)
 E :前記ブランクを構成する鋼板のヤング率(GPa)
 本開示に係る第3の態様のプレス成形品の製造方法は、特定プレス成形品の製造方法であって、ダイとパンチとを用いて、ブランクにおける前記両端の稜線部が成形される第1部分にパンチを接触させた状態で前記ブランクを前記パンチ側から前記ダイ側に曲げて、前記ブランクにおける前記天板が成形される第2部分が式(2)の曲率半径R(mm)を満たすように、前記第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる。
Figure JPOXMLDOC01-appb-M000004
 ・・・(2)
 ここで、式(2)の各パラメータは以下のとおりである。
 t :前記ブランクの板厚(mm)
 σTS :前記ブランクの引張強度(MPa)
 σYP :前記ブランクの降伏応力(MPa)
 E :前記ブランクを構成する鋼板のヤング率(GPa)
 本開示に係る第4の態様のプレス成形品の製造方法は、第1~第3の態様の特定プレス成形品の製造方法であって、前記パンチと前記ダイとの対向方向から見て、前記パンチの頂面は湾曲し、前記ダイには前記パンチの頂面に沿って湾曲する溝が形成されており、前記天板の板厚方向から見て、前記天板が湾曲しているプレス成形品を製造する。
 本開示に係る第5の態様のプレス成形品の製造方法は、第1~第4の態様の特定プレス成形品の製造方法であって、前記パンチと前記ダイとの対向方向及び前記パンチの長手方向の両方に直交する直交方向から見て、前記パンチの頂面は前記ダイ側に凸状に湾曲し、前記ダイには前記パンチの頂面に沿って湾曲する溝が形成されており、前記天板の短手方向から見て、前記天板が湾曲しているプレス成形品を製造する。
 本開示に係るプレス成形品は、特定プレス成形品であって、前記天板は、前記天板における短手方向の一端と他端との間にビッカース硬さの値が最小値となる最小部と、前記最小部と前記一端との間の第1範囲及び前記最小部と前記他端との間の第2範囲に各範囲でのビッカース硬さの値が極大値となる極大部と、有する。
 本開示に係る金型は、パンチと、ダイとを備え、長尺な天板と、該天板の短手方向の両端の稜線部と、該稜線部から延びた状態で互いに対向する縦壁とを含んで構成されるプレス成形品を製造するための金型であって、前記パンチの頂面は、曲率半径R(mm)が38(mm)以上725(mm)以下の凹み面とされており、前記パンチと前記ダイとでブランクをプレスして、前記ブランクにおける前記天板が成形される部分を前記ダイと前記パンチとで挟んで前記部分を前記ダイ側から前記パンチ側に凹ませるためのものである。
 本開示に係るプレス装置は、上記した本開示に係る金型と、前記パンチを前記ダイに対して相対的に移動させる移動部と、を備えている。
 本開示に係るプレス成形品の製造方法を用いれば、スプリングバックによる縦壁の口閉じが抑制された特定プレス成形品を製造することができる。
 本開示に係るプレス成形品は、スプリングバックによる縦壁の口閉じ量が小さい。
 本開示に係る金型を用いれば、スプリングバックによる縦壁の口閉じが抑制された特定プレス成形品を製造することができる。
 本開示に係るプレス装置を用いれば、スプリングバックによる縦壁の口閉じが抑制された特定プレス成形品を製造することができる。
第1実施形態のルーフ部材(プレス成形品)を示す上面図である。 第1実施形態のルーフ部材を示す側面図である。 図1Aにおける1C-1C断面図である。 図1Aにおける1D-1D断面図である。 第1実施形態のルーフ部材の製造方法における第1のプレス成形工程で用いられる第1プレス装置の金型の斜視図である。 第1実施形態のルーフ部材の製造方法における第1のプレス成形工程で用いる第1プレス装置の縦断面図である。 第1実施形態のルーフ部材の製造方法における第2のプレス成形工程で用いられる第2プレス装置の金型の斜視図である。 第1実施形態のルーフ部材の製造方法における第2のプレス成形工程で用いる第2プレス装置の縦断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1C-1C断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1D-1D断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1C-1C断面図である。 第1実施形態の第2のプレス成形工程により成形された中間成形品における図1Aの1D-1D断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1C-1C断面図を詳細に示した断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1D-1D断面図を詳細に示した断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1C-1C断面図を詳細に示した断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1D-1D断面図を詳細に示した断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における長手方向中央部の断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1C-1C断面図に相当する部分の断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における長手方向中央部の断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1C-1C断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1C-1C断面図であって、縦壁とフランジとがなす角を詳細に示した断面図である。 第1実施形態の第1のプレス成形工程により成形された中間成形品における図1Aの1D-1D断面図であって、縦壁とフランジとがなす角を詳細に示した断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1C-1C断面図であって、縦壁とフランジとがなす角を詳細に示した断面図である。 第1実施形態の第2のプレス成形工程を経て製造されたルーフ部材における図1Aの1D-1D断面図であって、縦壁とフランジとがなす角を詳細に示した断面図である。 第2実施形態のルーフ部材を示す上面図である。 第2実施形態のルーフ部材を示す側面図である。 図8Aにおける8C-8C断面図である。 図8Aにおける8D-8D断面図である。 第2実施形態のルーフ部材の製造方法における第1のプレス成形工程で用いる第1プレス装置の縦断面図である。 第2実施形態のルーフ部材の製造方法における第2のプレス成形工程で用いる第2プレス装置の縦断面図である。 第3実施形態のルーフ部材を示す上面図である。 第3実施形態のルーフ部材を示す側面図である。 図11Aにおける11C-11C断面図である。 図11Aにおける11D-11D断面図である。 ねじれ及び曲がりの評価方法を説明するための図である。 第1実施形態のルーフ部材の製造方法により製造したルーフ部材1(実施例1)及び第2比較形態ルーフ部材の製造方法により製造したルーフ部材(比較例1)について、天板のねじれと曲がりとを測定した結果を示すグラフである。 実施例1の天板における短手方向の一端から他端に亘る範囲で測定した天板のビッカース硬さと、比較例1の天板における短手方向の一端から他端に亘る範囲で測定した天板のビッカース硬さとを、測定した結果を示すグラフである。 第1実施形態の実施例(実施例2~8)のルーフ部材の天板のねじれと、第2比較形態の比較例(比較例2~6)のルーフ部材の天板のねじれとについてのシミュレーションによる評価結果を示す表である。 第2実施形態の実施例(実施例9~14)のルーフ部材の天板のねじれと、第2比較形態の比較例(比較例7~11)のルーフ部材の天板のねじれとについてのシミュレーションによる評価結果を示す表である。
≪概要≫
 以下、本開示を実施するための形態を、3つの実施形態(第1、第2及び第3実施形態)を例示して説明する。次いで、実施例について説明する。なお、本明細書において、実施形態とは、本開示を実施するための形態のことをいう。
≪第1実施形態≫
 以下、第1実施形態について説明する。まず、本実施形態のルーフ部材(図1A、図1B、図1C及び図1D参照)の構成について説明する。次いで、本実施形態のプレス成形装置17(図2A、図2B、図3A及び図3B参照)の構成について説明する。次いで、本実施形態のルーフ部材の製造方法について説明する。次いで、本実施形態の作用について説明する。
<ルーフ部材の構成>
 まず、本実施形態のルーフ部材1の構成について、図面を参照しつつ説明する。ここで、ルーフ部材1は、プレス成形品及び特定プレス成形品の一例である。
 図1A、図1B、図1C及び図1Dに示されるように、ルーフ部材1は、天板2と、2つの凸稜線部3a、3bと、2つの縦壁4a、4bと、2つの凹稜線部5a、5bと、2つのフランジ6a、6bと、を一体的に含んで構成されている、断面形状が略ハット型の長尺部材とされている。ここで、凸稜線部3a、3bは、稜線部の一例である。ルーフ部材1は、一例として、引張強度が1310MPa級の高張力鋼板を素材とする冷間プレス成形品とされている。すなわち、本実施形態のルーフ部材1は、一例として、引張強度が440MPa以上1600MPa以下の高張力鋼板を素材とする冷間プレス成形品とされている。
 天板2は、図1A及び図1Bに示されるように、長尺とされている。天板2は、天板2の上側から見ると、図1Aに示されるように、長手方向、すなわち、図中矢印L1に沿って湾曲している。また、天板2は、天板2の側面側から見ると、図1Bに示されるように、長手方向、すなわち、図中矢印L2に沿って湾曲している。すなわち、ルーフ部材1は、側面視で、長手方向に亘って、天板2が天板2側に凸状に湾曲している。
 2つの凸稜線部3a、3bは、図1A及び図1Bに示されるように、天板2の短手方向の両端に形成されている。2つの縦壁4a、4bは、それぞれ凸稜線部3a、3bから延びた状態で互いに対向している。すなわち、本実施形態のルーフ部材1は、長尺な天板2と、天板2の短手方向の両端の凸稜線部3a、3bと、凸稜線部3a、3bから延びた状態で互いに対向する縦壁4a、4bと、を含んで構成されている。
 本実施形態の天板2の長手方向に垂直な各断面は、一例として、長手方向における各位置で、短手方向に直線状に延びている。すなわち、本実施形態の天板2は、図1C及び図1Dに示されるように、その長手方向における垂直な各断面を見ると、長手方向における各位置で、平坦とされている。ここで、凸稜線部3aは、図1Dに示されるように、天板2と、縦壁4aとを繋ぐ部分であって、天板2の長手方向に垂直な各断面を見ると、湾曲している部分とされている。図中の2本の一点鎖線は、それぞれ天板2及び縦壁4aに繋がる凸稜線部3aの両端を示している。凸稜線部3bは、一点鎖線による両端の図示を省略するが、天板2と、縦壁4bとを繋ぐ部分であって、天板2の長手方向に垂直な各断面を見ると、湾曲している部分とされている。本実施形態の天板2は、図14に示されるように、天板2における短手方向の中央にビッカース硬さの値が最小値とされる中央部と、中央部と天板2の短手方向の一端との間の範囲とされる第1範囲及び中央部と天板2の短手方向の他端との間の範囲とされる第2範囲の各範囲に、それぞれビッカース硬さの値が各範囲で最大値、すなわち、極大値となる極大部と、を有している。ここで、本明細書では、天板2における短手方向の中央にビッカース硬さの値が最小値とされる中央部を、最小部という。
 本実施系形態のルーフ部材1は、後述する本実施形態のルーフ部材1の製造方法により、図2Bに示されるブランクBLをプレス成形することで製造されるものとされている。ここで、ブランクBLのビッカース硬さは一例として430(HV)とされている。これに対して、ルーフ部材1の天板2における最小部のビッカース硬さは、図14に示されるように、一例として約417(HV)とされている。すなわち、天板2における中央部のビッカース硬さは、プレス成形前のブランクBLのビッカース硬さよりも小さい。また、ルーフ部材1のフランジ6bの端部のビッカース硬さは、一例として430(HV)とされている。すなわち、天板2における中央部のビッカース硬さは、フランジ6bの端部のビッカース硬さよりも小さい。別言すると、本実施形態のルーフ部材1では、天板2がフランジ6bの端部よりも軟化しているといえる。ここで、フランジ6bの端部とは、ルーフ部材1のフランジ6bにおける凹稜線部5bに繋がっている側とは反対側の端から稜線部5b側に5(mm)までの部分のことをいう。なお、以上のとおり、フランジ6bの端部が天板2よりも硬い理由は、後述するルーフ部材1の製造方法ではフランジ6bが天板2よりも変形されないためと考えられる。
 また、2つの凹稜線部5a、5bは、それぞれ2つの縦壁4a、4bにおける天板2に繋がっている側と反対側の端部に形成されている。2つのフランジ6a、6bは、それぞれ2つの凹稜線部5a、5bに繋がっている。凹稜線部5aは、図示を省略するが、縦壁4aと、フランジ6aとを繋ぐ部分であって、天板2の長手方向に垂直な各断面を見ると、湾曲している部分とされている。また、凹稜線部5bは、一点鎖線による両端の図示を省略するが、縦壁4bと、フランジ6bとを繋ぐ部分であって、天板2の長手方向に垂直な各断面を見ると、湾曲している部分とされている。
 ルーフ部材1は、図1Aに示されるように、天板2が上側に位置する姿勢で配置された状態において天板2側から見ると、長手方向の一方の端部、すなわち、前端部1aから他方の端部、すなわち、後端部1bに亘って湾曲している。別の見方をすると、ルーフ部材1は、図1A及び図1Bに示されるように、前端部1aを含む第1の部分8と、後端部1bを含む第3の部分10と、第1の部分8と第3の部分10とを繋ぐ第2の部分9と、を含んで一体的に構成されているといえる。
 ここで、本実施形態では、上面視で(天板2の上側から見ると)、第1の部分8の曲率半径Rが一例として2000(mm)以上9000(mm)以下とされ、第2の部分9の曲率半径Rが一例として500(mm)以上2000(mm)以下とされ、第3の部分10の曲率半径Rが一例として2500(mm)以上9000(mm)以下とされている。また、本実施形態では、図1Bに示されるように、側面視で(天板2の幅方向側から見ると)、第1の部分8の曲率半径Rが一例として3000(mm)以上15000(mm)以下とされ、第2の部分9の曲率半径Rが一例として1000(mm)以上15000(mm)とされ、第3の部分10の曲率半径Rが一例として3000(mm)以上15000(mm)とされている。以上のとおり、第1の部分8の曲率半径Rと、第3の部分10の曲率半径Rとは、第2の部分9の曲率半径Rよりも大きい。
 ここで、図1Dに示されるように、凸稜線部3aの天板2側のR開始点とされるR止まりの板厚中心、すなわち、天板2の板厚中心から縦壁4aにおける凹稜線部5a側の端までの高さを高さhとする。そうすると、縦壁4aには、天板2の板厚中心から高さhの40%以上離れた部分に、長手方向に亘って、段差量a2(mm)の段差11aが形成されている。また、図1Dに示されるように、凸稜線部3bの天板2側のR開始点とされるR止まりの板厚中心、すなわち、天板2の板厚中心から縦壁4bにおける凹稜線部5b側の端までの高さを高さh’とする。そうすると、縦壁4bには、天板2の板厚中心から高さh’の40%以上離れた部分に、長手方向に亘って、段差量a2’(mm)の段差11a’が形成されている。
 ルーフ部材1は、図1C及び図1Dに示されるように、フランジ6a、6bの断面形状が長手方向の前端部1aと後端部1bとにおいて異なっている。具体的には、縦壁4bに対するフランジ6bの角度は、前端部1aでは30°とされ、後端部1bでは40°とされている。また、縦壁4aに対するフランジ6a、6bの角度は、それぞれ、長手方向に亘って連続的に変化している。また、天板2の短手方向の幅は、長手方向に亘って前端部1aから後端部1bに亘って連続的に広くなるように変化している。なお、図1A~図1Dに示されるように、第1の部分8の縦壁4bとフランジ6bとがなす角度は、第3の部分10の縦壁4bとフランジ6bとがなす角度以上であることが好ましい。
 以上が、本実施形態のルーフ部材1の構成についての説明である。
<プレス装置の構成>
 次に、本実施形態のプレス成形装置17について、図面を参照しつつ説明する。本実施形態のプレス成形装置17は、本実施形態のルーフ部材1を製造するためのものである。プレス成形装置17は、図2A、図2B、図3A及び図3Bに示されるように、第1プレス装置18と、第2プレス装置19と、を含んで構成されている。本実施形態のプレス成形装置17では、第1プレス装置18を用いて図2Bに示されるブランクBLを絞り加工によりプレス成形して図3Bに示される中間成形品30を成形し、次いで、第2プレス装置19により中間成形品30をプレス成形して、製品、すなわち、ルーフ部材1を製造するようになっている。なお、ブランクBLは、ルーフ部材1を製造するための基材である長尺の高張力鋼板とされている。
 ここで、中間成形品30は、図3Bに示されるように、天板2と、2つの凸稜線部32a、32bと、2つの縦壁33a、33bと、2つの凹稜線部34a、34bと、2つのフランジ35a、35bと、を含んで構成される略ハット型の部材とされている。また、本明細書において、「プレス成形する」とは、成形対象品を金型にセットしてから型閉じして型開きをするまでの行為のことをいう。なお、本実施形態において、ブランクBL及び中間成形品30は、成形対象品の一例とされる。また、後述する第1金型20及び第2金型40は、金型の一例とされる。
[第1プレス装置]
 第1プレス装置18は、第1金型20と、第1移動装置25と、を含んで構成されている。第1金型20は、図2Bに示されるように、上型21と、下型22と、第1のホルダ23と、第2のホルダ24とを有している。上型21は上側、下型22は下側に配置されている。ここで、第1プレス装置18は、プレス装置の一例である。第1金型20は、金型の一例である。上型21は、ダイの一例である。下型22は、パンチの一例である。第1プレス装置20は、ブランクBLを中間成形品30に成形する際、上型21と下型22とを用いて、先にブランクBLにおける2つの凸稜線部3a、3bが成形される部分に下型22を接触させた状態でブランクBLを下型22側から上型21側に凸状に湾曲させて、ブランクBLにおける天板2が成形される部分が下記の式(1)の曲率半径R(mm)を満たすように、ブランクBLにおける天板2が成形される部分を上型21と下型22とで挟んで、ブランクBLにおける天板2が成形される部分を上型21側から下型22側に凹ませる機能を有する。ここで、ブランクBLにおける2つの凸稜線部3a、3bが成形される部分は、第1部分の一例である。また、ブランクBLにおける天板2が成形される部分は、第2部分の一例である。
Figure JPOXMLDOC01-appb-M000005
 ・・・(1)
 ここで、式(1)の各パラメータは以下のとおりでる。
 t :ブランクBLの板厚(mm)
 σs :ブランクBLにおける前記天板が成形される部分の短手方向の曲げ外表面応力(MPa)
 σm :ブランクBLにおける前記天板が成形される部分の短手方向の平均応力(MPa)
 E :ブランクBLを構成する鋼板のヤング率(GPa)
 なお、第1プレス装置18は、第2部分のうち下型22に接触する部分が式(1)の曲率半径R(mm)を満たすように、第2部分を上型21と下型22とで挟んで、第2部分を上型21側から下型22側に凹ませるようになっている。
 また、式(1)における各パラメータのうち、σs 及びσmは、天板2が平坦な条件での成形解析を行って求められている。
 ここで、980MPa級の高張力鋼板ブランクの場合、式(1)の曲率半径R(mm)は38(mm)以上1300(mm)となる。また、1310MPa級の高張力鋼板ブランクの場合、式(1)の曲率半径R(mm)は32(mm)以上1020(mm)となる。また、1470MPa級の高張力鋼板ブランクの場合、式(1)の曲率半径R(mm)は30(mm)以上725(mm)となる。そうすると、ブランクBLにおける天板2が成形される部分の曲率半径R(mm)が38(mm)以上725(mm)以下の範囲を満たすように、ブランクBLにおける天板2が成形される部分を上型21と下型22とで挟んで、当該部分を上型21側から下型22側に凹ませれば、少なくとも980MPa級以上1470MPa級以下の範囲の強度を有する高張力鋼板ブランクに対し、式(1)を満たすプレス成形を行うこととなる。以上より、第1プレス装置20は、ブランクBLを中間成形品30に成形する際、ブランクBLにおける天板2が成形される部分の曲率半径R(mm)が38(mm)以上725(mm)以下の範囲を満たすように、ブランクBLにおける天板2が成形される部分を上型21と下型22とで挟んで、ブランクBLにおける天板2が成形される部分を上型21側から下型22側に凹ませる機能を有するといえる。
 上型21と下型22とは、図2Aに示されるように、それぞれ長尺とされている。上型21と下型22とを上型21と下型22との対向方向から見ると、図2A及び図2Bに示されるように、下型22の頂面は、長手方向に沿って湾曲して突出し、上型21には、下型22の頂面に沿って湾曲する溝が形成されている。また、上型21と下型22とを上型21と下型22との対向方向に直交する方向とされる、上型21及び下型22の短手方向から見ると、図2A及び図2Bに示されるように、下型22の頂面は上型21側に凸状に湾曲し、上型21には下型22の頂面に沿って湾曲する溝が形成されている。ここで、下型22の頂面22cは、曲率半径R(mm)が38(mm)以上725(mm)以下の凹み面とされている。さらに、上型21の溝の底は、長手方向から見ると、下型22側に曲率半径R(mm)で突出し、下型22における上型21の溝の底に対向する部分(頂面)は、上型21側に曲率半径R(mm)で凹んでいる(図2B参照)。本実施形態の曲率半径R(mm)は、一例として100(mm)とされている。
 なお、図2A及び図2Bに示されるように、下型22における頂面22cの短手方向の両端を肩部22dという。肩部22dは、第1プレス装置20がブランクBLを中間成形品30に成形する際に、下型22におけるブランクBLの第2部分に接触する部分に相当する。
 また、図2Bに示されるように、下型22を長手方向から見ると、下型22の両側面には、それぞれ段差部22a、22a’が形成されている。また、上型21の溝の両側面には、それぞれ段差部22a、22a’に沿った段差部21a、21a’が形成されている。
 第1のホルダ23及び第2のホルダ24は、上型21及び下型22に沿って、長尺とされている。第1のホルダ23と、第2のホルダ24とは、図2Bに示されるように、それぞれ下型22の短手方向の両側に配置されている。また、第1のホルダ23及び第2のホルダ24は、ばね26、27により上側に付勢されている。
 第1移動装置25は、上型21を下型22に向けて移動させるようになっている。すなわち、第1移動装置25は、上型21を下型22に対して相対的に移動させるようになっている。そして、上型21と下型22との隙間の定められた位置にブランクBLが配置された状態で、第1移動装置が上型21を下型22に向けて移動させると、図2Bに示されるように、ブランクBLにおける短手方向の両端側がそれぞれ第1のホルダ23及び第2のホルダ24と上型21とに挟まれた状態で、ブランクBLがプレス成形されて中間成形品30が成形されるようになっている。
 以上の説明では、第1プレス装置18は、ブランクBLにおける第2部分が式(1)の曲率半径R(mm)を満たすように、第2部分を上型21側から下型22側に凸状に湾曲させてるようになっている。しかしながら、第1プレス装置18は、式(1)に換えて、ブランクBLにおける第2部分が下記の式(2)の曲率半径R(mm)を満たすように、第2部分を上型21側から下型22側に凸状に湾曲させてもよい。
Figure JPOXMLDOC01-appb-M000006
 ・・・(2)
 ここで、式(2)の各パラメータは以下のとおりである。
 t :前記ブランクの板厚(mm)
 σTS :前記ブランクの引張強度(MPa)
 σYP :前記ブランクの降伏応力(MPa)
 E :前記ブランクを構成する鋼板のヤング率(GPa)
 ここで、σTSは、例えば、ミルシートに記載のJIS5号引張試験に基いて取得した出荷試験値である。また、σYPは、例えば、ミルシートに記載のJIS5号引張試験に基いて取得した出荷試験値である。
 ところで、本願の発明者らは、ブランクBLの板厚及び材料強度、天板2の形状、曲げ加工、絞り加工等のプレス成形の方式等をパラメータとして、ルーフ部材1、後述するルーフ部材1A、1Bを成形した場合、天板2の外表面すなわち上面と、内表面すなわち裏面とに発生する応力を数値解析にて調査した。その結果、ルーフ部材1、1A及び1Bを、パッドもを用いずにプレス成形する場合において、天板2の反りに寄与する偏差応力σがブランクBLの材料強度によって変化し、かつ、下記の条件Aを満たすことを知見した。
 ここで、条件Aとは、
 0.5σYP ≦ σ ≦ σTS
 である。
 また、プレス成形における天板2の変形を弾性変形と仮定すると、曲率半径R(mm)、偏差応力σ(MPa)、ブランクBLの板厚(mm)、及び、ブランクBLを構成する鋼板のヤング率(GPa)の関係Bは、下記の関係を満たす。
 ここで、関係Bとは、
 σ = E×1000×t/2R
 である。
 以上の条件A及び関係Bから、式(2)が導かれる。
 なお、式(2)における各パラメータのうち、σTS及びσYPは、天板2が平坦な条件での成形解析を行って求められている。
[第2プレス装置]
 第2プレス装置19は、第2金型40と、第2移動装置45と、を含んで構成されている。第2金型40は、図3Bに示されるように、上型41と、下型43と、ホルダ43とを有している。上型41は上側、下型42は下側に配置されている。第2プレス装置19は、下型43に中間成形品30が嵌め込まれた状態で、第2移動装置により上型41を下型43側に移動させて、中間成形品30における2つのフランジ35a、35bの角度を変更するようになっている。
 また、図3Bに示されるように、下型43を短手方向から見ると、下型43の両側面には、それぞれ段差部43aが形成されている。また、上型41の溝の両側面には、それぞれ段差部43aに沿った段差部41aが形成されている。
 以上が、本実施形態のプレス成形装置17の構成についての説明である。
<ルーフ部材の製造方法>
 次に、本実施形態のルーフ部材1の製造方法について、図面を参照しつつ説明する。本実施形態のルーフ部材1の製造方法は、プレス成形装置17を用いて行われる。また、本実施形態のルーフ部材1の製造方法は、第1プレス装置18により行われる工程とされる第1のプレス成形工程と、第2プレス装置19により行われる工程とされる第2のプレス成形工程と、を含む。
[第1のプレス成形工程]
 第1のプレス成形工程では、上型21と下型22との隙間の定められた位置にブランクBLを配置する、すなわち、金型40の定められた位置にブランクBLをセットする。次いで、作業者が第1プレス装置18を操作すると、第1移動装置25により上型21が下型22側に移動されて、ブランクBLが絞り加工によりプレス成形される。この場合、第1プレス装置18は、図2Bに示されるように、先にブランクBLにおける第1部分に下型22の肩部22dを接触させた状態でブランクBLを下型22側から上型21側に凸状に湾曲させる。次いで、第1プレス装置18は、ブランクBLにおける第2部分を上型21と下型22とで挟んで第2部分を上型21側から下型22側に凹ませる。すなわち、第1のプレス成形工程では、上型21と下型22とを用いてブランクBLをプレスする。その結果、ブランクBLから中間成形品30が成形される。
 なお、第1のプレス成形工程で用いられる金型40は、ブランクBLのパラメータに応じて、式(1)又は式(2)の条件を満たすように、製造されたものを用いる。例えば、第1のプレス成形工程は、ブランクBLの板厚t及びブランクBLを構成する鋼板のヤング率Eから、式(1)又は式(2)を満たす上型21及び下型22、すなわち金型40を製造したうえで行われる。また、例えば、第1のプレス成形工程は、形状の異なる複数の金型40を用意したうえで、ブランクBLの板厚t及びブランクBLを構成する鋼板のヤング率Eから、式(1)又は式(2)を満たす金型40を選択して第1プレス装置18の本体に取り付けたうえで行われる。
 また、第1のプレス成形工程では、図5A、図5B、図6A及び図6Bに示されるように、中間成形品30の2つの縦壁33a、33bに、それぞれ、天板2から高さh、h’の40%以上離れた部分に下記の式(3)及び式(4)により規定される段差量a1(mm)の段差36a、36a’が形成される。
 a1≧a2      ・・・(3)
 a1≦0.2W    ・・・(4)
 ここで、符号a1は中間成形品30における段差量(mm)、符号a2はルーフ部材1における段差量(mm)、符号Wはルーフ部材1における天板2の短手方向の幅(mm)を示す。
 また、第1のプレス成形工程では、図7A及び図7Bにしめされるように、中間成形品30の縦壁33aとフランジ35aとがなす角度DI1が下記の式(5)を満足するように、縦壁33a及びフランジ35aが形成される。
 1.0×DI2≦DI1≦1.2×DI2  ・・・(5)
 ここで、符号DI1は中間成形品30の縦壁33aとフランジ35aとがなす角度であり、符号DI2はルーフ部材1の縦壁4aとフランジ6aとがなす角度である。
 また、第1のプレス成形工程では、下記の式(6)を満足するように、中間成形品30の縦壁33b及びフランジ35bが形成される。
 0.9≦DOF1/DOR1≦1  ・・・(6)
 ただし、DOF1は中間成形品30の一方の端部を含む縦壁33bとフランジ35bとのなす角度であり、DOR1は中間成形品30の他方の端部を含む縦壁33bとフランジ35bとのなす角度である。
 また、第1のプレス成形工程では、ブランクBLの材料端を流入させてブランクBLを撓ませることにより、中間成形品30における外側のフランジ35bが成形される。
 次いで、第1金型20から中間成形品30が取り外されて、第1のプレス成形工程が終了する。
 なお、前述のとおり、第1プレス装置18により中間成形品30が成形される際、ブランクBLにおける第2部分が式(1)又は式(2)の曲率半径R(mm)を満たすように、第2部分が上型21側から下型22側に凹まされる。そして、第1金型20が型開きすると、中間成形品30における天板2の長手方向における断面は、図4A及び図4Bに示されるように、型閉じ時よりも平坦に近づくように変形した状態、すなわち、その曲率半径が大きくなった状態となる。
[第2のプレス成形工程]
 次いで、中間成形品30は、第2プレス装置19の第2金型40の下型43に嵌め込まれる。そして、作業者が第2プレス装置19を操作すると、第2移動装置により上型41が下型43側に移動されて、中間成形品30の2つのフランジ35a、35bの角度が変更される。その結果、中間成形品30からルーフ部材1が製造される。なお、第2のプレス成形工程では、中間成形品30の縦壁33a、33bの段差量がa2となるように、中間成形品30がプレスされる。また、第2のプレス成形工程では、図7A、図7B、図7C及び図7Dに示されるように、中間成形品30における縦壁33a及びフランジ35aがルーフ部材1における縦壁4a及びフランジ6aとなるように、上型41と下型43とに中間成形品30が挟まれて中間成形品30がプレスされる。また、第2のプレス成形工程では、図7A、図7B、図7C及び図7Dに示されるように、中間成形品30における縦壁33b及びフランジ35bがルーフ部材1における縦壁4b及びフランジ6bとなるように、上型41と下型43及びホルダ43とに中間成形品30が挟まれて中間成形品30がプレスされる。
 以上が、本実施形態のルーフ部材1の製造方法についての説明である。
<作用>
 次に、本実施形態の作用について図面を参照しつつ説明する。
[先に下型22をブランクBLにおける第1部分に接触させることの作用]
 先に下型22をブランクBLにおける第1部分に接触させることの作用(以下、先に第1部分に接触させることの作用という。)は、図2Bに示されるように、上型21と下型22とでブランクBLを挟んでブランクBLを上型21側から下型22側に凹ませる前に、下型22の端部22dをブランクBLにおける第1部分に接触させた状態でブランクBLを下型22側から上型21側に凸状に湾曲させることの作用である。別言すれば、ブランクBLにおける第2部分よりも先に第1部分が形成されることの作用である。先に第1部分に接触させることの作用については、本実施形態を、以下に説明する第1比較形態と比較して説明する。なお、第1比較形態において本実施形態で用いた部品等を用いる場合、図示しなくてもその部品、名称等をそのまま用いて説明する。
 第1比較形態の場合、ブランクBLにおける第1部分よりも先に第2部分が形成される。そのため、第1比較形態の場合、ブランクBLを凹ませる際の余分な肉余りにより、第1のプレス成形工程における型閉じ時に天板2に圧縮応力が生じる。その結果、第1比較形態の場合、第1のプレス成形工程における型開き後の中間成形品30にスプリングバックが生じてしまう。
 これに対して、本実施形態の場合、図2Aに示されるように、上型21と下型22とでブランクBLを挟んでブランクBLを上型21側から下型22側に凹ませる前に、下型22の端部22dをブランクBLにおける第1部分に接触させた状態でブランクBLを下型22側から上型21側に凸状に湾曲させる。すなわち、本実施形態の場合、第2部分よりも先に第1部分を成形することで、第1比較形態の場合に比べて、ブランクBLを凹ませる際の余分な肉余りを低減させることができる。これに伴い、本実施形態の場合、第1比較形態の場合に比べて、第1のプレス成形工程における型閉じ時に天板2に生じる圧縮応力を低減することができる。
 したがって、本実施形態のルーフ部材1の製造方法によれば、第1比較形態に比べて、スプリングバックによる縦壁4a、4bの口閉じが抑制されたルーフ部材1を製造することができる。
[式(1)の曲率半径Rを満たす第1のプレス成形を行うことの作用]
 式(1)の曲率半径Rを満たす第1のプレス成形を行うことの作用(以下、式(1)による作用)は、第1のプレス成形工程において、ブランクBLにおける天板2が成形される部分が式(1)の曲率半径R(mm)を満たすように、別言すれば、式(2)の曲率半径を満たすように、更に別言すれば、ブランクBLにおける第2部分の曲率半径R(mm)が38(mm)以上725(mm)以下の範囲を満たすように、第2部分を上型21側から下型22側に凹ませることの作用である。式(1)による作用については、本実施形態を、以下に説明する第2比較形態と比較して説明する。なお、第2比較形態において本実施形態で用いた部品等を用いる場合、図示しなくてもその部品、名称等をそのまま用いて説明する。
 第2比較形態の場合、第1プレス装置18の上型21の溝の底が長手方向から見た断面視において平坦とされ、下型22における上型21の溝の底に対向する部分が長手方向から見た断面視において平坦とされている。また、第2比較形態の場合、上型21に段差部21aが形成されておらず、下型22には段差部22aが形成されていない。第2比較形態は、上記の点以外、本実施形態と同様とされている。
 第2比較形態の場合、第1のプレス成形工程により中間成形品30を成形すると、天板2における残留偏差応力により天板2のねじれが発生する。その結果、第2比較形態のルーフ部材1の製造方法により製造されたルーフ部材1は、図15の表の比較例2~6に示されるように、ねじれた状態となる。この結果は、第1のプレス成形後、すなわち、型開き後のスプリングバックよる縦壁33a、33bの口閉じに起因すると考えられる。なお、第2比較形態の場合、第1のプレス成形後のスプリングバックよる縦壁33a、33bの口閉じは、以下のようなメカニズムで発生すると考えられる。すなわち、中間成形品30は、第1のプレス成形工程において、型閉じするまでにブランクBLにおける第2部分が上側に凸状に変形されて、すなわち、上型21と下型22との隙間で上側に向けて凸状に湾曲されて、成形される。このため、第2比較形態の中間成形品30の天板2には、断面視にて外側とされる外表面側に凸状に湾曲している。その結果、天板2には、縦壁33a、33bを口閉じさせようとする応力が発生している。さらに、第2比較形態の場合、中間成形品30が長手方向に沿って湾曲していることから、天板2の長手方向に垂直な各位置において、天板2の短手方向の両端側の応力には差が生じ得る。その結果、第2比較形態のルーフ部材1の製造方法により製造されたルーフ部材1はねじれた状態となる。
 これに対して、本実施形態の場合、第1のプレス成形工程において、ブランクBLにおける天板2が成形される部分が式(1)の曲率半径R(mm)を満たすように、別言すれば、式(2)の曲率半径を満たすように、更に別言すれば、ブランクBLにおける第2部分の曲率半径R(mm)が38(mm)以上725(mm)以下の範囲を満たすように、第2部分を上型21側から下型22側に凹ます。そのため、本実施形態の第1のプレス成形工程では、型閉じに伴ってブランクBLが上側に凸状に変形し、次いで型閉じ時にブランクBLにおける天板2が形成される部分が下側に凸状となるように変形し、次いで型開きして中間成形品30が成形される。すなわち、本実施形態の中間成形品30の天板2は、上側に塑性変形した後に上側から下側に向けて荷重を受けることで、バウシンガー効果の作用が及ぼされた状態となっていると推認される。その結果、本実施形態の第1のプレス成形工程により成形された中間成形品30の天板2は、第2比較形態の場合に比べて、ねじれが生じ難い。この結果は、第1のプレス成形後のスプリングバックによる縦壁33a、33bの口閉じ量が第2比較形態の場合よりも少ないことに起因すると考えられる。また、第1のプレス成形工程の後に第2のプレス成形工程が行われるが、第2のプレス成形工程では、中間成形品30の天板2をプレスしてもほとんど変形させることがない。その結果、本実施形態のルーフ部材1の製造方法により製造されたルーフ部材1は、後述する図13のグラフに示されるように、第2比較形態の場合に比べて、ねじれていない又はねじれ量が小さいと考えられる。なお、本実施形態の場合、天板2に関する各パラメータとされるt、σs、σm及びEの関係から算出した式(1)又は天板2に関する各パラメータとされるt、σTS、σYP及びEの関係から算出した式(2)に基いて中間成形品30を成形することにより、中間成形品30の天板2を、長手方向から見た断面視にて(略)平坦な形状とする。このため、第1のプレス工程後に行われる第2のプレス工程において、成形下死点での偏差残留応力の発生を抑制できる。また、本実施形態の場合、第1のプレス成形工程において、ブランクBLにおける第2部分を、上型21側から下型22側に凹ましてから中間成形品30を成形することに伴い、天板2の長手方向に垂直な各位置において、天板2の短手方向の両端の凸稜線部32a、32bを、第2比較形態の場合に比べて、鋭角に成形できる。その結果、本実施形態の場合、第2比較形態の場合に比べて、縦壁33a、33bが口開きしようとするスプリングバックが相殺され易い。これに伴い、本実施形態のルーフ部材1は、中間成形品30が長手方向に沿う湾曲により、天板2の長手方向に垂直な各位置において天板2の短手方向の両端側の応力には差が生じているにも関わらず、第2比較形態のルーフ部材1に比べて、ねじれが生じ難い。
 したがって、本実施形態のルーフ部材1の製造方法によれば、第2比較形態、すなわち、第1のプレス成形工程において、型閉じ時にブランクBLにおける天板2が形成される部分を平坦にプレスする場合に比べて、スプリングバックによる縦壁4a、4bの口閉じが抑制されたルーフ部材1を製造することができる。これに伴い、本実施形態のルーフ部材1の製造方法によれば、第2比較形態、すなわち、第1のプレス成形工程において、型閉じ時にブランクBLにおける天板2が形成される部分を平坦にプレスする場合に比べて、天板2のねじれが抑制されたルーフ部材1を製造することができる。また、本実施形態のルーフ部材1の製造方法で製造されたルーフ部材1は、図13のグラフに示されるように、第2比較形態のルーフ部材1の製造方法で製造されたルーフ部材1に比べて、天板2のねじれが小さい。また、本実施形態の第1金型20、第1プレス装置18又はプレス成形装置17を用いれば、第2比較形態の場合に比べて、スプリングバックによる縦壁4a、4bの口閉じが抑制されたルーフ部材1を製造することができる。これに伴い、本実施形態の第1金型20、第1プレス装置18又はプレス成形装置17を用いれば、第2比較形態の場合に比べて、天板2のねじれの発生が抑制されたルーフ部材1を製造することができる。
 特に、本実施形態によれば、高張力鋼板とされているブランクBLをプレス成形する場合に、式(1)による作用を奏する。また、本実施形態のルーフ部材1のように、天板2を上側から見て、天板2が長手方向に沿って湾曲している場合であっても、式(1)による作用を奏する。さらに、本実施形態のルーフ部材1のように、天板2の短手方向から見て、ルーフ部材1が天板2側に凸状に湾曲している場合であっても、式(1)による作用を奏する。
[他の作用]
 次に、本実施形態の他の作用について説明する。
〔他の作用1〕
 本実施形態の場合、第1のプレス成形工程において、縦壁33a、33bに段差36a、36a’を形成し、第2のプレス成形工程において、段差36a、36a’の段差量a1、すなわち、オフセット量を変化させる。そのため、縦壁4a、4bがそれぞれの残留応力が低減されることで、縦壁4a、4b同士の偏差残留応力も低減される。その結果、図13のグラフに示されるように、ルーフ部材1の縦壁4a、4bの上部、すなわち、段差36a、36a’の上側の部分及び段差36a、36a’を含む中央部分における残留応力が低減されて、天板2のねじれ及び縦壁33a、33bの曲がりの発生が抑制される。なお、本実施形態の場合、第1のプレス成形工程で、縦壁33a、33bに段差36a、36a’を形成することにより、第2のプレス成形工程で、縦壁33a、33bの全域の応力が低減される。なお、本明細書でいう、残留応力とは、プレス下死点で材料に残存している応力を意味する。
〔他の作用2〕
 一般的に、天板の上側から見て長手方向に湾曲した形状の図示しないプレス成形品を製造すると、湾曲した部分の内側の縦壁及びフランジに引張残留応力が生じ易い。しかしながら、本実施形態の場合、第1のプレス成形工程において、中間成形品30の縦壁33aとフランジ35aとがなす角度DI1が式(5)を満足するように、縦壁33a及びフランジ35aが形成される。そのため、本実施形態では、ルーフ部材1の縦壁4a及びフランジ6aの引張残留応力が低減されることで、天板2のねじれが低減される。なお、本実施形態の場合、第1のプレス成形工程で、縦壁33a、33bに段差36a、36a’を形成することにより、第2のプレス成形工程で、縦壁33a、33bの下部の残留応力が低減される。
〔他の作用3〕
 また、本実施形態の場合、第1のプレス成形工程において、中間成形品30の縦壁33b及びフランジ35bが、式(6)の角度を満足するように成形される。そのため、本実施形態では、ルーフ部材1のフランジ35bの圧縮残留応力が低減されることで、天板2のねじれが低減される。なお、本実施形態の場合、図7A、図7B、図7C及び図7Dに示されるように、第2のプレス成形工程において、縦壁33b及びフランジ35bがルーフ部材1の縦壁4b及びフランジ6bとなるように、中間成形品30がプレスされる。この場合、縦壁33b及びフランジ35bの角度の変化に伴い、縦壁33b及びフランジ35bに線長差が生じることで、圧縮応力が低減される。
〔他の作用4〕
 また、本実施形態の場合、第1のプレス成形工程において、ブランクBLの材料端を流入させてブランクBLを撓ませることにより、中間成形品30のフランジ35bが成形される。そのため、本実施形態では、第1のプレス成形工程において、圧縮残留応力が低減されることで、第1のプレス成形工程でのスプリングバック量が低減される。
 以上が、本実施形態の作用についての説明である。
≪第2実施形態≫
 次に、第2実施形態について説明する。まず、図8A、図8B、図8C及び図8Dに示される、本実施形態のルーフ部材1Aの構成について説明する。次いで、図9及び図10に示される、本実施形態のプレス成形装置17Aの構成について説明する。次いで、本実施形態のルーフ部材の製造方法について説明する。次いで、本実施形態の作用について説明する。なお、以下の説明では、本実施形態について第1実施形態と異なる部分について説明する。
<ルーフ部材の構成>
 まず、本実施形態のルーフ部材1Aの構成について、図面を参照しつつ説明する。ここで、ルーフ部材1Aは、プレス成形品及び特定プレス成形品の一例である。
 本実施形態のルーフ部材1Aは、図8A、図8B、図8C及び図8Dに示されるように、図1A、図1B、図1C及び図1Dに示される第1実施形態のフランジ6a、6bを備えていない。本実施形態のルーフ部材1Aは、この点以外、第1実施形態のルーフ部材1と同様の構成とされている。
<プレス装置の構成>
 次に、本実施形態のプレス成形装置17Aについて、図面を参照しつつ説明する。本実施形態のプレス成形装置17Aは、本実施形態のルーフ部材1Aを製造するためのものである。
 本実施形態の第1プレス装置18Aは、図9に示されるように、図2Bに示されるホルダ23、24を備えていない。ここで、第1プレス装置18Aは、プレス装置の一例である。本実施形態のプレス成形装置17Aは、この点以外、第1実施形態のプレス成形装置17と同様の構成とされている。ここで、中間成形品30Aは、2つのフランジ35a、35bを備えていない点以外は、第1実施形態の中間成形品30と同様の構成とされている。すなわち、本実施形態の中間成形品30Aは、溝型の部材とされている。
<ルーフ部材の製造方法>
 次に、本実施形態のルーフ部材1Aの製造方法について説明する。本実施形態のルーフ部材1Aの製造方法は、プレス成形装置17Aを用いて行われる。また、本実施形態のルーフ部材1Aの製造方法は、第1のプレス成形工程が第1プレス装置18Aにより行われる点以外は、第1実施形態と同様である。なお、本実施形態の場合、第1のプレス成形工程において、ブランクBLが曲げによりプレス成形されて、図10に示される中間成形品30Aが成形される。
<作用>
 本実施形態は、第1の実施形態の作用における、先に第1部分に接触させることの作用及び式(1)による作用並びに他の作用1、2及び3の作用を奏する。
 以上が、第2実施形態についての説明である。
≪第3実施形態≫
 次に、第3実施形態について説明する。まず、図11A、図11B、図11C及び図11Dに示される、本実施形態のルーフ部材1Bの構成について説明する。次いで、本実施形態の図示しないプレス装置の構成について説明する。次いで、本実施形態のルーフ部材の製造方法について説明する。次いで、本実施形態の作用について説明する。なお、以下の説明では、本実施形態について第1及び第2実施形態と異なる部分について説明する。また、本実施形態の説明において、第1及び第2実施形態の部品等の符号と同様の部品等の符号を用いる場合、図示しなくても同様の符号を用いて説明する。
<ルーフ部材の構成>
 まず、本実施形態のルーフ部材1Bの構成について、図面を参照しつつ説明する。ここで、ルーフ部材1Bは、プレス成形品及び特定プレス成形品の一例である。
 本実施形態のルーフ部材1Bは、図11A、図11B、図11C及び図11Dに示されるように、図1A、図1B、図1C及び図1Dに示されるフランジ6a、6bを備えていない。また、本実施形態のルーフ部材1Bは、天板2を上側から見ると、長手方向中央部が短手方向に湾曲していない。さらに、本実施形態のルーフ部材1は、天板2の短手方向から見ると、天板2側に凸状に湾曲していない。本実施形態のルーフ部材1Bは、この点以外、第1実施形態のルーフ部材1と同様の構成とされている。
<プレス装置の構成>
 次に、本実施形態の図示しないプレス装置について、説明する。本実施形態のプレス装置は、本実施形態のルーフ部材1Bを製造するためのものである。
 本実施形態における図示しない第1プレス装置及び第2プレス装置は、それぞれ第2実施形態の第1プレス装置18A及び第2プレス装置19と同様に、図2Bに示されるホルダ23、24を備えていない。また、本実施形態の第1プレス装置における上型21の溝は、上型21と下型22との対向方向並びに上型21及び下型22の短手方向から見て湾曲せずに直線状に形成されている。また、下型22は長手方向に沿って直線状に突出している。本実施形態のプレス装置は、上記の点以外、第2実施形態のプレス成形装置17Aと同様の構成とされている。ここで、本実施形態の第1のプレス成形工程により成形される図示しない中間成形品は、天板2及び縦壁33a、33bが長手方向に沿って湾曲していない点以外は、第2実施形態の中間成形品30Aと同様の構成とされている。すなわち、本実施形態の中間成形品は、溝型の部材とされている。
<ルーフ部材の製造方法>
 次に、本実施形態のルーフ部材1Bの製造方法について説明する。本実施形態のルーフ部材1Bの製造方法は、本実施形態のプレス装置を用いて行われる点以外は、第2実施形態と同様である。なお、本実施形態の場合、第1のプレス成形工程において、ブランクBLが曲げによりプレス成形されて、中間成形品が成形される。
<作用>
 本実施形態は、第1の実施形態の作用における、先に第1部分に接触させることの作用及び式(1)による作用で説明したスプリングバックによる縦壁4a、4bの口閉じが抑制されることの作用並びに他の作用1及び2の作用を奏する。
 以上が、第3実施形態についての説明である。
≪実施例≫
 次に、実施例及び比較例についての評価とされる、第1、第2及び第3の評価を、図面を参照しつつ説明する。なお、以下の説明では、本実施形態及び第2比較形態で用いた部品等の符号と同様の部品等の符号を用いる場合、その部品等の符号をそのまま用いる。
<第1の評価>
 第1の評価では、前述の第1実施形態のルーフ部材の製造方法により製造した実施例1とされるルーフ部材1と、前述の第2比較形態のルーフ部材の製造方法により製造した比較例1とされるルーフ部材とについて、ねじれと曲がりとを比較した。また、第1の評価では、実施例1のルーフ部材1及び比較例1のルーフ部材の天板2及び凸稜線部3a、3bについてビッカース硬さを測定して比較した。
[実施例1のルーフ部材]
 まず、実施例1のルーフ部材1について説明する。ブランクBLとしては、板厚1.2mmで、かつ、引張強度が1310MPa級の高張力鋼板ブランクを用いた。そして、本実施形態のルーフ部材の製造方法により製造された実施例1のルーフ部材1は、天板2の上側から見て、第1の部分8の曲率半径Rが3000mm、第2の部分9の曲率半径Rが800mm、第3の部分10の曲率半径Rが4000mmであった。また、実施例1のルーフ部材1は、天板2の短手方向、すなわち、ルーフ部材1の側面側から見て、第1の部分8の曲率半径Rが4000mm、第2の部分9の曲率半径Rが2000mm、第3の部分10の曲率半径Rが10000mmであった。なお、第1のプレス成形工程において、ブランクBLの曲げ外表面応力σsは1234MPa、平均応力σmは100MPaであった。また、ブランクBLのヤング率Eは、208GPaであった。
[比較例1のルーフ部材]
 比較例1のルーフ部材は、実施例1と同様、ブランクBLとして板厚1.2mmで、かつ、引張強度が1310MPa級の高張力鋼板ブランクを用いて、第2比較形態のルーフ部材の製造方法により製造された。なお、比較例1のルーフ部材は、第1、第2及び第3の部分の各部分の曲率半径Rが実施例1の場合と同様となるように製造された。
[比較方法]
 本評価における比較方法では、まず、図示しない3次元測定装置を用いて、実施例1のルーフ部材1及び比較例1のルーフ部材の形状を測定した。次いで、図示しないコンピュータを用いて、実施例1のルーフ部材1及び比較例1のルーフ部材についての測定したデータSDと、設計データDDとを比較した。具体的には、図12に示されるように、天板2の長手方向の中心部分の断面を一致(ベストフィット)させて、設計データDDにおける前端(後端)の天板2の短手方向の角度を基準として、当該基準からの測定した各データの前端(後端)の天板2の角度の変化量を、ねじれとして評価した。また、図12に示されるように、設計データDDにおける前端面(後端面)の中心位置O1に対する、測定した各データの前端面(後端面)の中心位置O2の幅方向におけるずれ量を、曲がりとした。
[比較結果及び考察]
 図13のグラフは、実施例1及び比較例1の評価結果を示す。図13のグラフから、実施例1は、比較例1に比べて、天板2のねじれが小さいことがわかった。また、図13のグラフから、実施例1は、比較例1に比べて、縦壁33a、33bの曲がりが小さいことがわかった。以上の評価結果より、実施例1は、第1実施形態で説明した作用を奏すると考えられる。
[ビッカース硬さ]
 また、図14のグラフは、実施例1の天板2における短手方向の一端から他端に亘る範囲で測定した天板のビッカース硬さと、比較例1の天板における短手方向の一端から他端に亘る範囲で測定した天板のビッカース硬さとを、測定した結果を示す。実施例1の天板2は、比較例1の天板に比べて、全体的に、すなわち、天板2の短手方向の一端から他端に亘る全領域において、ビッカース硬さの値が小さい。また、比較例1の天板の場合は、全体的にビッカース硬さの値が同等であるのに対し、実施例1の天板2の場合は、以下の点で異なる。すなわち、実施例1の天板2の場合は、天板2における短手方向の中央にビッカース硬さの値が最小値とされる中央部、すなわち、最小部と、中央部と天板2の短手方向の一端との間の範囲とされる第1範囲及び中央部と天板2の短手方向の他端との間の範囲とされる第2範囲の各範囲に、それぞれビッカース硬さの値が極大値となる極大部と、を有している。このように、実施例1の天板2と比較例1の天板とにおいて、ビッカース硬さの特性が異なる理由は、実施例1の天板2は、式(1)による作用、すなわち、バウシンガー効果による作用と考えられる。また、前述の評価結果のとおり、実施例1のルーフ部材1は、比較例1のルーフ部材に比べて、ねじれていない、すなわち、スプリングバック量が小さい。別の見方をすると、実施例1のルーフ部材1は、ビッカース硬さの値が全体的に同等である天板を備えたループ部材に比べて、高精度であるといえる。なお、前述のとおり、第1範囲及び第2範囲の各範囲にそれぞれビッカース硬さの値が極大値となるとして各極大部を定義した理由は、各範囲においてビッカース硬さが最大値となる部分が天板2の短手方向の両端でないことを意味する。また、実施例1の天板2において、中央部、すなわち、最小部のビッカース硬さの値は、各極大部のビッカース硬さの値に対して少なくとも2.3%以上小さかった。
<第2の評価>
[評価方法等]
 第2の評価では、前述の第1実施形態のルーフ部材の製造方法に基づくシミュレーションにより作成した実施例2~8のルーフ部材1と、前述の第2比較形態のルーフ部材の製造によりシミュレーションにより作成した比較例2~6のルーフ部材とについて、前端及び後端における天板2のねじれを評価した。
 図15の表には、実施例2~8及び比較例2~6についてのシミュレーションの条件と、評価結果とが記載されている。ここで、図15の表について説明すると、板厚とは、シミュレーションに用いたブランクBLの厚みである。強度とは、シミュレーションに用いたブランクBLの引張強度である。天板部形状とは、シミュレーションに用いた第1金型20における断面のR形状である。ここで、シミュレーションに用いた第1金型20における断面のR形状とされる天板部形状とは、式(1)又は式(2)の曲率半径Rに相当する。評価断面1ねじれとは前端から中央側に長手方向に10mmの部分のねじれ、評価断面2ねじれとは後端から中央側に長手方向に10mmの部分のねじれである。なお、実施例2~8における板厚、強度及び天板部形状の各組み合せは、何れも、式(1)及び式(2)の条件を満たしている。また、比較例2~6では、天板部形状がなしと記載されているが、第1のプレス成形工程において、天板2を平坦なままプレスすることの意味である。
[評価結果及び考察]
 図15の表から、実施例2~8のルーフ部材は、比較例2~6のルーフ部材に比べて、天板2のねじれが小さいことがわかる。例えば、実施例2と比較例2とは、それぞれ板厚、強度についてのシミュレーションの条件が同等である。そして、評価断面1ねじれのシミュレーションの結果を比較すると、実施例2のルーフ部材は、比較例2のルーフ部材に比べて、天板2のねじれが小さいことがわかる。また、評価断面2ねじれのシミュレーションの結果を比較すると、実施例2のルーフ部材は、比較例2のルーフ部材に比べて、天板2のねじれが小さいことがわかる。なお、実施例2における評価断面2ねじれは、-7.52°とあるが、「-」の意味は、時計回りにねじれたことを意味する。そのため、角度の絶対値で比較すると、実施例2のルーフ部材は、比較例2のルーフ部材に比べて、天板2のねじれが小さいといえる。また、板厚、強度についてのシミュレーションの条件が同等である組み合せ(例えば、実施例3と比較例2、実施例4と比較例4等)を比較すると、各実施例は、各比較例に比べて、天板2のねじれが小さいことがわかる。以上の評価結果より、実施例2~8は、式(1)及び式(2)の条件を満たすことで、ブランクBLの引張強度の違いによらず、式(1)による作用を奏すると考えられる。
<第3の評価>
[評価方法等]
 第3の評価では、前述の第2実施形態のルーフ部材の製造方法によりシミュレーションにより作成した実施例9~14のルーフ部材1Aと、以下に説明するルーフ部材の製造によりシミュレーションにより作成した比較例7~11のルーフ部材とについて、前端及び後端のねじれを比較した。
[比較例7~11のルーフ部材]
 比較例7~11のルーフ部材は、実施例9~15、すなわち、第2実施形態のルーフ部材1Aと同様に、図1A、図1B、図1C及び図1Dに示されるフランジ6a、6bを備えていない。そのため、比較例7~11のルーフ部材は、曲げによるプレス加工を前提にシミュレーションにより作成された。
 図16の表には、実施例9~14及び比較例7~11についてのシミュレーションの条件と、評価結果とが記載されている。ここで、図15の表における、板厚、強度、天板部形状並びに評価断面1ねじれ及び評価断面2ねじれの意味は、図15の表の場合と同様である。なお、実施例9~14における板厚、強度及び天板部形状の各組み合せは、何れも、式(1)及び式(2)の条件を満たしている。
[評価結果及び考察]
 図16の表から、実施例9~14のルーフ部材は、比較例7~11のルーフ部材に比べて、天板2のねじれが小さいことがわかる。例えば、実施例9と比較例7とは、それぞれ板厚、強度についてのシミュレーションの条件が同等である。そして、評価断面1ねじれのシミュレーションの結果を比較すると、実施例9のルーフ部材は、比較例7のルーフ部材に比べて、天板2のねじれが小さいことがわかる。また、評価断面2ねじれのシミュレーションの結果を比較すると、実施例9のルーフ部材は、比較例7のルーフ部材に比べて、天板2のねじれが小さいことがわかる。さらに、板厚、強度についてのシミュレーションの条件が同等である組み合せとされる、例えば、実施例12と比較例10、実施例13と比較例11等を比較すると、各実施例は、各比較例に比べて、天板2のねじれが小さいことがわかる。以上の評価結果より、実施例9~14は、各実施例の場合、式(1)の条件を満たすことで、ブランクBLの引張強度の違いに関わらず、式(1)による作用を奏すると考えられる。
<実施例についての総括>
 以上のとおり、第1~第3の評価に基づいて、第1及び第2実施形態についての作用について説明したが、第2及び第3の評価から、ルーフ部材1におけるフランジ6a、6bの有無に関わらず、実施例2~14のルーフ部材は、比較例2~11のルーフ部材に比べて、ねじれが小さいことがわかった。なお、第3実施形態についての実施例については記載していないが、第3実施形態の場合も、式(1)による作用によりねじれが小さいことと推認される。
 以上のとおり、本開示を特定の実施形態及びその実施例、すなわち、第1、第2及び第3実施形態並びに実施例2~14について説明したが、本開示に係る技術的範囲には前述した第1、第2及び第3実施形態並びに実施例2~14以外の形態も含まれる。例えば、本開示に係る技術的範囲には、下記のような形態の各変形例も含まれる。
 各実施形態では、プレス成形品の一例はルーフ部材であるとして説明した。しかしながら、式(1)又は式(2)の条件を満たすプレス成形により製造される物であれば、プレス成形品は、ルーフ部材以外の自動車用の部品であってもよい。また、式(1)又は式(2)の条件を満たすプレス成形により製造される物であれば、自動車用の部品以外の部品であってもよい。
 各実施形態では、縦壁4a、4bにはそれぞれ段差11a、11a’が形成されているとして説明した。しかしながら、プレス成形品が、式(1)又は式(2)の条件を満たすプレス成形により製造されれば、縦壁4a、4bに段差11a、11a’が形成されていなくてもよい。
 各実施形態のルーフ部材の製造方法は、第1のプレス成形工程と、第2のプレス成形工程とを含んでいるとして説明した。しかしながら、プレス成形品が式(1)又は式(2)の条件を満たすプレス成形により製造されれば、第2のプレス成形工程を実施しなくてもよい。
 各実施形態のルーフ部材の製造方法は、第1のプレス成形工程により成形された中間成形品30が、第2のプレス成形工程を経てプレス成形品として製造されるとして説明した。しかしながら、プレス成形品は式(1)又は式(2)の条件を満たすプレス成形により製造される物であることから、各実施形態で説明した中間成形品30、30Aをプレス成形品の一例としてと捉えてもよい。この場合、第1のプレス成形工程及び第2のプレス成形工程における実施する者が異なっていてもよい。
 各実施形態の説明及び実施例の第1~第3の評価の説明では、ブランクBLの板厚、引張強度、天板部形状等を例示した。しかしながら、これらを組み合せたバラメータが式(1)又は式(2)の条件を満たせば、各実施形態及び実施例で例示した組み合せ以外の組み合せであってもよい。例えば、引張強度が1470(MPa)よりも大きい、又は、590(MPa)よりも小さいブランクBLであっても、他のパラメータ(σs 、σm 、E等)との関係で、式(1)及び式(2)の条件を満たせばよい。また、例えば、板厚が1.0(mm)未満、又は1.2(mm)よりも厚いブランクBLであっても、上記の他のパラメータとの関係で、式(1)又は式(2)の条件を満たせばよい。
 各実施形態のルーフ部材1、1A及び1Bは、上型21と下型22とでブランクBLを挟んでブランクBLを上型21側から下型22側に凹ませる前に、下型22の端部22dをブランクBLにおける第1部分に接触させた状態でブランクBLを下型22側から上型21側に曲げて製造されることを説明した。すなわち、各実施形態のルーフ部材1、1A及び1Bは、ブランクBLにおける第2部分よりも先に第1部分が形成されて製造されることを説明した。しかしながら、ブランクBLにおける第2部分よりも先に第1部分が形成されて製造される物であれば、プレス成形品は、本実施形態のルーフ部材1、1A及び1Bと異なる形状であってもよい。例えば、上記の各変形例の形状のプレス成形品であってもよい。
≪付記≫
 本明細書からは、以下の他の開示が概念化される。
 すなわち、他の開示とは、
「ブランクにパンチ、ダイ及びホルダを用いる第1のプレス成形を行うことにより、長手方向へ延びて存在する天板と、該天板の両側にそれぞれつながる2つの稜線と、該2つの稜線にそれぞれつながる2つの縦壁と、該2つの縦壁にそれぞれつながる2つの凹稜線部と、該2つの凹稜線部にそれぞれつながる2つのフランジとにより構成される略ハット型の横断面形状を有する中間成形品を製造し、
 該中間成形品にパンチ、ダイ及びホルダを用いる第2のプレス成形を行うことにより、引張強度が440~1600MPaの鋼板からなる冷間プレス成形品であって、長手方向へ延びて存在するとともに幅が40mm以下の略平坦な天板と、該天板の両側にそれぞれつながる2つの稜線と、該2つの稜線にそれぞれつながる2つの縦壁と、該2つの縦壁にそれぞれつながる2つの凹稜線部と、該2つの凹稜線部にそれぞれつながる2つのフランジとにより構成される略ハット型の横断面形状を有するとともに全長が500mm以上のプレス成形品を製造する方法であって、
 前記第1のプレス成形では、前記中間成形品の天板を、該天板の長手方向に垂直な断面において、下記の式により規定される曲率半径R(mm)を有する前記略ハット型の断面内側へ凹んだ湾曲形状に形成し、
 前記第2のプレス成形では、前記中間成形品の天板の断面形状を前記プレス成形品の断面形状に成形する、
 を特徴とするプレス成形品の製造法。
Figure JPOXMLDOC01-appb-M000007

 ここで、式の各パラメータは以下のとおりである。
 t :前記ブランクの板厚(mm)
 σs :前記ブランクにおける前記天板が成形される部分の短手方向の曲げ外表面応力(MPa)
 σm :前記ブランクにおける前記天板が成形される部分の短手方向の平均応力(MPa)
 E :前記ブランクを構成する鋼板のヤング率(GPa)」
 とされる。
 2015年4月22日に出願された日本国特許出願2015-087502号及び日本国特許出願2015-087503号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載されたすべての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (8)

  1.  長尺な天板と、該天板の短手方向の両端の稜線部と、該稜線部から延びた状態で互いに対向する縦壁とを含んで構成されるプレス成形品の製造方法であって、
      ダイとパンチとを用いて、ブランクにおける前記両端の稜線部が成形される第1部分にパンチを接触させた状態で前記ブランクを前記パンチ側から前記ダイ側に凸状に湾曲させて、前記ブランクにおける前記天板が成形される第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる、
     プレス成形品の製造方法。
  2.  前記第2部分が式(1)の曲率半径R(mm)を満たすように、前記第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる、
     請求項1に記載のプレス成形品の製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ・・・(1)
     ここで、式(1)の各パラメータは以下のとおりである。
     t :前記ブランクの板厚(mm)
     σs :前記ブランクにおける前記天板が成形される部分の短手方向の曲げ外表面応力(MPa)
     σm :前記ブランクにおける前記天板が成形される部分の短手方向の平均応力(MPa)
     E :前記ブランクを構成する鋼板のヤング率(GPa)
  3.  前記第2部分が式(2)の曲率半径R(mm)を満たすように、前記第2部分を前記ダイと前記パンチとで挟んで前記第2部分を前記ダイ側から前記パンチ側に凹ませる、
     請求項1に記載のプレス成形品の製造方法。
    Figure JPOXMLDOC01-appb-M000002
     ・・・(2)
     ここで、式(2)の各パラメータは以下のとおりである。
     t :前記ブランクの板厚(mm)
     σTS :前記ブランクの引張強度(MPa)
     σYP :前記ブランクの降伏応力(MPa)
     E :前記ブランクを構成する鋼板のヤング率(GPa)
  4.  前記パンチと前記ダイとの対向方向から見て、前記パンチの頂面は湾曲し、前記ダイには前記パンチの頂面に沿って湾曲する溝が形成されており、
     前記天板の板厚方向から見て、前記天板が湾曲しているプレス成形品を製造する、
     請求項1~3の何れか1項に記載のプレス成形品の製造方法。
  5.  前記パンチと前記ダイとの対向方向及び前記パンチの長手方向の両方に直交する直交方向から見て、前記パンチの頂面は前記ダイ側に凸状に湾曲し、前記ダイには前記パンチの頂面に沿って湾曲する溝が形成されており、
     前記天板の短手方向から見て、前記天板が湾曲しているプレス成形品を製造する、
     請求項1~4の何れか1項に記載のプレス成形品の製造方法。
  6.  長尺な天板と、該天板の短手方向の両端の稜線部と、該稜線部から延びた状態で互いに対向する縦壁とを含んで構成されるプレス成形品であって、
     前記天板は、前記天板における短手方向の一端と他端との間にビッカース硬さの値が最小値となる最小部と、前記最小部と前記一端との間の第1範囲及び前記最小部と前記他端との間の第2範囲に各範囲でのビッカース硬さの値が極大値となる極大部と、有する、
     プレス成形品。
  7.  パンチと、ダイとを備え、長尺な天板と、該天板の短手方向の両端の稜線部と、該稜線部から延びた状態で互いに対向する縦壁とを含んで構成されるプレス成形品を製造するための金型であって、
     前記パンチの頂面は、曲率半径R(mm)が38(mm)以上725(mm)以下の凹み面とされており、
     前記パンチと前記ダイとでブランクをプレスして、前記ブランクにおける前記天板が成形される部分を前記ダイと前記パンチとで挟んで前記部分を前記ダイ側から前記パンチ側に凹ませるための、
     金型。
  8.  請求項7に記載の金型と、
     前記パンチを前記ダイに対して相対的に移動させる移動部と、
     を備えたプレス装置。
PCT/JP2016/062681 2015-04-22 2016-04-21 プレス成形品の製造方法、プレス成形品、金型及びプレス装置 WO2016171228A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN201680022707.XA CN107530753B (zh) 2015-04-22 2016-04-21 冲压成型件的制造方法、冲压成型件
US15/567,652 US10252312B2 (en) 2015-04-22 2016-04-21 Pressed component manufacturing method, pressed component, mold, and press apparatus
KR1020187015361A KR102148746B1 (ko) 2015-04-22 2016-04-21 프레스 성형품
EP16783249.2A EP3275566B1 (en) 2015-04-22 2016-04-21 Methods for producing press-molded product
EP19152403.2A EP3520918A1 (en) 2015-04-22 2016-04-21 Pressed component
KR1020177030291A KR101874277B1 (ko) 2015-04-22 2016-04-21 프레스 성형품의 제조 방법, 프레스 성형품, 금형 및 프레스 장치
CA2983388A CA2983388C (en) 2015-04-22 2016-04-21 Pressed component manufacturing method, pressed component, mold, and press apparatus
JP2016556053A JP6135829B2 (ja) 2015-04-22 2016-04-21 プレス成形品の製造方法及びプレス成形品
ES16783249T ES2749706T3 (es) 2015-04-22 2016-04-21 Método de fabricación de componente prensado, componente prensado, molde y aparato de prensado
RU2017136964A RU2674364C1 (ru) 2015-04-22 2016-04-21 Способ изготовления штампованного компонента, штампованный компонент, штамп и штамповочное устройство
BR112017022630-8A BR112017022630A2 (ja) 2015-04-22 2016-04-21 The manufacturing method, a press-forming article, a metallic mold, and a press device of a press-forming article
MX2017013452A MX2017013452A (es) 2015-04-22 2016-04-21 Metodo de fabricacion de componente prensado, componente prensado, molde, y aparato de prensa.
MYPI2017703960A MY190422A (en) 2015-04-22 2016-04-21 Pressed component manufacturing method, pressed component, mold, and press apparatus
US16/195,543 US20190118238A1 (en) 2015-04-22 2018-11-19 Pressed component manufacturing method, pressed component, mold, and press apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-087503 2015-04-22
JP2015-087502 2015-04-22
JP2015087503 2015-04-22
JP2015087502 2015-04-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/567,652 A-371-Of-International US10252312B2 (en) 2015-04-22 2016-04-21 Pressed component manufacturing method, pressed component, mold, and press apparatus
US16/195,543 Division US20190118238A1 (en) 2015-04-22 2018-11-19 Pressed component manufacturing method, pressed component, mold, and press apparatus

Publications (1)

Publication Number Publication Date
WO2016171228A1 true WO2016171228A1 (ja) 2016-10-27

Family

ID=57143958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062681 WO2016171228A1 (ja) 2015-04-22 2016-04-21 プレス成形品の製造方法、プレス成形品、金型及びプレス装置

Country Status (13)

Country Link
US (2) US10252312B2 (ja)
EP (2) EP3275566B1 (ja)
JP (1) JP6135829B2 (ja)
KR (2) KR102148746B1 (ja)
CN (1) CN107530753B (ja)
BR (1) BR112017022630A2 (ja)
CA (2) CA2983388C (ja)
ES (1) ES2749706T3 (ja)
MX (1) MX2017013452A (ja)
MY (1) MY190422A (ja)
RU (1) RU2674364C1 (ja)
TW (1) TWI629122B (ja)
WO (1) WO2016171228A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013090A (ja) * 2015-06-30 2017-01-19 Jfeスチール株式会社 ハット形断面形状を有するプレス成形品の製造方法およびその製造方法で成形する予備成形品
JP2020019034A (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 プレス成形方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171229A1 (ja) 2015-04-22 2016-10-27 新日鐵住金株式会社 プレス成形品の製造方法、プレス成形品及びプレス装置
WO2019102972A1 (ja) * 2017-11-21 2019-05-31 本田技研工業株式会社 プレス成形方法
MX2021013873A (es) * 2019-05-20 2022-03-22 Jfe Steel Corp Metodo de fabricacion de un componente prensado y un troquel de correccion de forma.
TWI693115B (zh) * 2019-07-03 2020-05-11 力山工業股份有限公司 車架成型裝置及成型方法
DE102021121616B3 (de) * 2021-08-20 2022-10-06 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung von Blechbauteilen und Vorrichtung hierfür
CN113828690A (zh) * 2021-08-23 2021-12-24 中国第一汽车股份有限公司 一种汽车顶盖尾部区域尺寸控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168141A (ja) * 2002-11-19 2004-06-17 Kikuchi Co Ltd 車両用荷重受け物品及びその製造方法並びにその製造装置
JP2004314123A (ja) * 2003-04-16 2004-11-11 Nippon Steel Corp 形状凍結性に優れたハット型成形部品及びプレス成形用金型
JP2006240441A (ja) * 2005-03-02 2006-09-14 Sumitomo Metal Ind Ltd 車体補強用部材
JP2013027894A (ja) * 2011-07-27 2013-02-07 Daihatsu Motor Co Ltd フレーム部品の製造方法及びフレーム部品
JP5382281B1 (ja) * 2013-01-16 2014-01-08 新日鐵住金株式会社 プレス成形方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2057606C1 (ru) * 1992-10-20 1996-04-10 Челябинский государственный технический университет Способ изготовления профилей
US6550302B1 (en) * 1999-07-27 2003-04-22 The Regents Of The University Of Michigan Sheet metal stamping die design for warm forming
JP3864899B2 (ja) 2002-12-05 2007-01-10 Jfeスチール株式会社 形状凍結性に優れたプレス加工方法およびそれに用いる加工工具
JP5422454B2 (ja) * 2010-03-23 2014-02-19 本田技研工業株式会社 車体側部構造
JP6069223B2 (ja) 2011-12-22 2017-02-01 新日鐵住金株式会社 プレス成形品
JP5965159B2 (ja) 2012-02-22 2016-08-03 東プレ株式会社 プレス部品の成形方法
JP5926089B2 (ja) 2012-03-29 2016-05-25 東プレ株式会社 プレス成形品
RU2608866C2 (ru) * 2012-12-19 2017-01-25 Ниппон Стил Энд Сумитомо Метал Корпорейшн Инструмент для штамповки и способ изготовления штампованного изделия
JP2015087502A (ja) 2013-10-30 2015-05-07 株式会社リコー 画像投影装置、及び画像投影システム
JP2015087503A (ja) 2013-10-30 2015-05-07 日本電信電話株式会社 効果音生成装置、効果音生成方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168141A (ja) * 2002-11-19 2004-06-17 Kikuchi Co Ltd 車両用荷重受け物品及びその製造方法並びにその製造装置
JP2004314123A (ja) * 2003-04-16 2004-11-11 Nippon Steel Corp 形状凍結性に優れたハット型成形部品及びプレス成形用金型
JP2006240441A (ja) * 2005-03-02 2006-09-14 Sumitomo Metal Ind Ltd 車体補強用部材
JP2013027894A (ja) * 2011-07-27 2013-02-07 Daihatsu Motor Co Ltd フレーム部品の製造方法及びフレーム部品
JP5382281B1 (ja) * 2013-01-16 2014-01-08 新日鐵住金株式会社 プレス成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275566A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013090A (ja) * 2015-06-30 2017-01-19 Jfeスチール株式会社 ハット形断面形状を有するプレス成形品の製造方法およびその製造方法で成形する予備成形品
JP2020019034A (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 プレス成形方法

Also Published As

Publication number Publication date
CA2983388A1 (en) 2016-10-27
KR101874277B1 (ko) 2018-07-03
KR102148746B1 (ko) 2020-08-27
EP3275566A4 (en) 2019-01-23
RU2674364C1 (ru) 2018-12-07
EP3275566B1 (en) 2019-08-21
US20190118238A1 (en) 2019-04-25
EP3275566A1 (en) 2018-01-31
CA2983388C (en) 2018-11-20
CN107530753A (zh) 2018-01-02
MX2017013452A (es) 2018-02-19
BR112017022630A2 (ja) 2018-07-17
TWI629122B (zh) 2018-07-11
KR20180063906A (ko) 2018-06-12
CA3013745A1 (en) 2016-10-27
CN107530753B (zh) 2018-11-13
JP6135829B2 (ja) 2017-05-31
KR20170124605A (ko) 2017-11-10
EP3520918A1 (en) 2019-08-07
TW201703893A (zh) 2017-02-01
JPWO2016171228A1 (ja) 2017-06-01
CA3013745C (en) 2019-11-26
US20180093315A1 (en) 2018-04-05
MY190422A (en) 2022-04-21
US10252312B2 (en) 2019-04-09
ES2749706T3 (es) 2020-03-23

Similar Documents

Publication Publication Date Title
JP6135829B2 (ja) プレス成形品の製造方法及びプレス成形品
TWI624315B (zh) 壓製成形品之製造方法、壓製成形品及壓製裝置
JP4700568B2 (ja) 形状凍結性に優れた多段プレス成形方法
WO2016171229A1 (ja) プレス成形品の製造方法、プレス成形品及びプレス装置
CN111727089B (zh) 冲压部件的制造方法、冲压成型装置和冲压成型用的金属板
KR20170010832A (ko) 프레스 성형품의 제조 방법 및 프레스 금형
WO2016017228A1 (ja) プレス成形(press forming)方法
JP6094699B2 (ja) プレス成形品の製造方法、プレス成形品及びプレス装置
KR102545155B1 (ko) 프레스 성형 방법
KR102545162B1 (ko) 프레스 성형 방법
JP6759645B2 (ja) プレス成形品を製造する方法及びプレス装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016556053

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2983388

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15567652

Country of ref document: US

Ref document number: MX/A/2017/013452

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177030291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017022630

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017136964

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112017022630

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171020