WO2016171154A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2016171154A1 WO2016171154A1 PCT/JP2016/062459 JP2016062459W WO2016171154A1 WO 2016171154 A1 WO2016171154 A1 WO 2016171154A1 JP 2016062459 W JP2016062459 W JP 2016062459W WO 2016171154 A1 WO2016171154 A1 WO 2016171154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- display device
- polarized light
- polarizing plate
- phase difference
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
Definitions
- the present invention relates to a display device.
- Patent Document 1 a transmissive screen is irradiated with light emitted from a laser light source to form an intermediate image, and light transmitted through the transmissive screen is reflected by a combiner to give a virtual image to the user.
- a head-up display for visual recognition is disclosed.
- the contrast is reduced by reflecting external light (mainly unpolarized sunlight) on the light exit side surface of the transmissive screen.
- external light mainly unpolarized sunlight
- the stray light caused by unnecessary scattering inside the laser light source or the screen causes coloring such as rainbow unevenness, and the display quality deteriorates.
- An object of the present invention is to provide a display device in which the display quality is improved by suppressing the influence of external light and stray light.
- a display device includes a light source that emits light constituting a display image, a transmissive screen that forms an intermediate image based on the light emitted from the light source, and light of the transmissive screen. And an optical member that is disposed on the emission side, transmits polarized light in a specific direction, and absorbs or reflects other light.
- light other than polarized light in a specific direction is not transmitted by the optical member arranged on the light exit side of the transmissive screen, so that the external light and the light source irradiated on the light exit side surface of the transmissive screen And stray light due to unnecessary scattering inside the transmission screen can be reduced, and the display quality can be improved.
- FIG. 1 is a diagram illustrating a configuration of a display device according to the first embodiment.
- FIG. 2 is a diagram showing the vibration direction of the laser light and the right circularly polarized light incident on the combiner.
- FIG. 3 is a diagram illustrating a configuration of the display device according to the second embodiment.
- FIG. 4 is a diagram illustrating a configuration of a display device according to a modification of the second embodiment.
- FIG. 5 is a diagram illustrating a configuration of a display device according to the third embodiment.
- FIG. 6 is a diagram illustrating a configuration of a display device according to the fourth embodiment.
- FIG. 7 is a diagram illustrating a configuration of a display device according to a modification of the fourth embodiment.
- FIG. 8 is a diagram illustrating a configuration of a display device according to the fifth embodiment.
- a display device includes a light source that emits light constituting a display image, a transmissive screen that forms an intermediate image based on the light emitted from the light source, and light of the transmissive screen. And an optical member that is disposed on the emission side and transmits polarized light in a specific direction and absorbs or reflects other light (first configuration).
- the optical member arranged on the light exit side of the transmission screen does not transmit light other than the polarized light in a specific direction, external light irradiated on the light exit side surface of the transmission screen, In addition, stray light due to unnecessary scattering inside the light source and the transmissive screen can be reduced, and display quality can be improved.
- the light source may emit linearly polarized light or circularly polarized light (second configuration).
- the polarized light constituting the display image is transmitted, the other light is absorbed or reflected, the necessary light is transmitted, and unnecessary light such as external light and stray light is absorbed or reflected. Since it can be reflected, contrast can be improved and a display image with high display quality can be obtained.
- a reflection member that displays the display image as a virtual image by reflecting light transmitted through the optical member may be further provided (third configuration).
- the third configuration in a system for displaying a virtual image, it is possible to reduce external light irradiated on the light emitting side surface of the transmissive screen and stray light due to unnecessary scattering inside the light source or the transmissive screen. Display quality can be improved.
- the reflection member may have a polarization selection function of reflecting polarized light in the specific direction or polarized light in a direction different from the specific direction (fourth configuration).
- the light incident on the reflecting member is converted into polarized light in a specific direction in which strong reflection is obtained or polarized light in a direction different from the specific direction, strong reflected light can be obtained.
- a high-quality virtual image with high brightness can be obtained.
- the reflecting member is a combiner including cholesteric liquid crystal, and converts the light incident on the cholesteric liquid crystal into circularly polarized light in the same direction as the direction of the spiral of the liquid crystal molecules of the cholesteric liquid crystal. May be further provided (fifth configuration).
- the light incident on the cholesteric liquid crystal is converted into circularly polarized light in the same direction as the spiral direction of the liquid crystal molecules of the cholesteric liquid crystal, strong reflected light can be obtained.
- a high-quality virtual image can be obtained.
- the optical member may be a linear polarizing plate, and the conversion member may be a ⁇ / 4 retardation plate (sixth configuration).
- linearly polarized light transmitted through the linearly polarizing plate can be converted into circularly polarized light, strong reflected light from the cholesteric liquid crystal can be obtained, and a high-luminance and high-quality virtual image can be obtained. it can.
- transmitted the said transmission type screen, and injects into the said reflection member is further provided,
- the said optical member is a linear polarizing plate,
- the said conversion member is the said transmission type screen It is good also as a (lambda) / 8 phase difference plate arrange
- linearly polarized light transmitted through the linearly polarizing plate can be converted into circularly polarized light by the ⁇ / 8 phase difference plate through which light passes twice, so that strong reflected light from the cholesteric liquid crystal can be obtained. And a high-quality virtual image with high brightness can be obtained.
- the display device is applied to a head-up display.
- the display device according to the present invention is not limited to the head-up display.
- FIG. 1 is a diagram illustrating a configuration of a display device 100 according to the first embodiment.
- a display device 100 according to the first embodiment includes a laser projector 1, a transmissive screen 2, a polarizing plate 3, a ⁇ / 4 phase difference plate 4, and a combiner 5.
- the laser projector 1 as a light source has a laser light source that emits red, green, and blue laser light, for example, and emits light constituting a display image.
- the light emitted from the laser projector 1 is linearly polarized light that vibrates in the horizontal direction (direction parallel to the XY plane).
- the light emitted from the laser projector 1 is raster scanned using, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- MEMS Micro Electro Mechanical Systems
- the transmission screen 2 forms an intermediate image (real image) based on the light emitted from the laser projector 1.
- the transmissive screen 2 has a structure in which, for example, a microlens array and a lenticular lens array are stacked. Of both surfaces of the transmissive screen 2, the surface on which the light emitted from the laser projector 1 is incident is referred to as an incident surface, and the surface opposite to the incident surface is referred to as an output surface.
- the polarizing plate 3 is disposed on the light exit side of the transmission screen 2.
- the polarizing plate 3 is a linear polarizing plate having a transmission axis 3 ⁇ / b> A in the horizontal direction (direction parallel to the XY plane) that is the same as the vibration direction of the light emitted from the laser projector 1. That is, the polarizing plate 3 has a function of transmitting light that vibrates in the horizontal direction, such as light emitted from the laser projector 1, and absorbing other light.
- the ⁇ / 4 retardation plate 4 is disposed between the polarizing plate 3 and the combiner 5.
- the ⁇ / 4 retardation plate 4 converts linearly polarized light emitted from the laser projector 1 and transmitted through the transmission screen 2 and the polarizing plate 3 into circularly polarized light.
- the slow axis 4A of the ⁇ / 4 retardation plate 4 is inclined 45 degrees clockwise with respect to the transmission axis 3A of the polarizing plate 3 in the Y direction.
- the Y direction is the direction in which the light emitted from the laser projector 1 travels.
- the slow axis 4A of the ⁇ / 4 phase difference plate 4 is 45 degrees with respect to the transmission axis 3A of the polarizing plate 3 so that linearly polarized light oscillating in the horizontal direction is converted into right circularly polarized light. Tilted.
- the transmissive screen 2, the polarizing plate 3, and the ⁇ / 4 phase difference plate 4 are shown separately for the sake of explanation, but actually, the transmissive screen 2, the polarizing plate 3, and the ⁇ / 4
- the / 4 phase difference plate 4 is laminated and in close contact.
- the combiner 5 has light reflectivity and light transmissivity, and has a function of simultaneously guiding a display image based on light emitted from the laser projector 1 and reflected by the combiner 5 and an external image seen through the combiner 5 to the eyes of the observer.
- the combiner 5 has a curved surface and a structure in which a cholesteric liquid crystal is formed based on a transparent resin.
- a cholesteric liquid crystal is formed by laminating a plurality of layers containing liquid crystal molecules so that the alignment direction of the liquid crystal molecules is spiral, and strongly reflects circularly polarized light in the same direction as the spiral.
- the combiner 5 includes a cholesteric liquid crystal having liquid crystal molecules having a right-handed helical structure, and is described as strongly reflecting right circularly polarized light.
- the combiner 5 may be one that strongly reflects left circularly polarized light.
- a ⁇ / 4 retardation plate 4 having a slow axis 4A inclined by 135 degrees with respect to the transmission axis 3A of the polarizing plate 3 may be used.
- the ⁇ / 4 phase difference plate 4 whose slow axis 4A is inclined 135 degrees with respect to the transmission axis 3A of the polarizing plate 3 linearly polarized light oscillating in the horizontal direction can be converted into left circularly polarized light.
- the ⁇ / 4 phase difference plate 4 converts linearly polarized light emitted from the laser projector 1 and transmitted through the transmissive screen 2 and the polarizing plate 3 into circularly polarized light in the same direction as the direction of the cholesteric liquid crystal molecule spiral. Anything to do.
- the light (linearly polarized light) having horizontal vibration emitted from the laser projector 1 is transmitted through the transmission screen 2 and the polarizing plate 3, and right circularly polarized light by the ⁇ / 4 retardation plate 4. Is converted to The converted right circularly polarized light is strongly reflected by the combiner 5 and is visually recognized by the user as a virtual image.
- the polarizing plate 3 is disposed on the exit surface side of the transmissive screen 2, about 40% of external light irradiated on the exit surface of the transmissive screen 2 is about 40%.
- stray light caused by unnecessary scattering inside the laser projector 1 or the transmission screen 2 does not have horizontal polarization but is absorbed by the polarizing plate 3, so that coloring such as rainbow unevenness occurs. do not do.
- the influence of external light and stray light can be suppressed and the contrast of the virtual image to be displayed can be improved, so that a high-quality virtual image can be obtained.
- the light emitted from the laser projector 1 is transmitted without being absorbed by the polarizing plate 3, converted to right circularly polarized light by the ⁇ / 4 phase difference plate 4, and reflected by the combiner 5.
- the combiner 5 Reflect on. That is, by arranging the ⁇ / 4 phase difference plate 4, light incident on the combiner 5 can be converted into circularly polarized light from which strong reflection can be obtained, so that a high-luminance virtual image can be obtained.
- FIG. 3 is a diagram illustrating a configuration of the display device 200 according to the second embodiment.
- the display device 200 according to the second embodiment includes a folding mirror 30 in addition to the configuration of the display device 100 according to the first embodiment. Further, the direction of the slow axis 4B of the ⁇ / 4 phase difference plate 4 is different from the direction of the slow axis 4A of the ⁇ / 4 phase difference plate 4 shown in FIG.
- the slow axis 4B of the ⁇ / 4 retardation plate 4 of the present embodiment is inclined 135 degrees clockwise with respect to the transmission axis 3A of the polarizing plate 3 in the Y direction.
- the slow axis 4B of the ⁇ / 4 phase difference plate 4 is 135 degrees with respect to the transmission axis 3A of the polarizing plate 3 so that the linearly polarized light oscillating in the horizontal direction is converted into left circularly polarized light. Tilted.
- the folding mirror 30 is arranged on the light exit side of the ⁇ / 4 phase difference plate 4, reflects the light converted into the left circularly polarized light by the ⁇ / 4 phase difference plate 4, and makes it incident on the combiner 5.
- the light (linearly polarized light) emitted from the laser projector 1 passes through the transmissive screen 2 and the polarizing plate 3 and is converted into left circularly polarized light by the ⁇ / 4 phase difference plate 4.
- the converted left circularly polarized light is reflected by the folding mirror 30 to become right circularly polarized light, reflected by the combiner 5, and visually recognized by the user as a virtual image.
- FIG. 4 is a diagram illustrating a configuration of a display device 200A according to a modification of the second embodiment.
- the retardation film 40 is not attached to the polarizing plate 3 but is attached to the folding mirror 30.
- the retardation film 40 may be disposed at a position where the light passes twice before the light transmitted through the transmission screen 2 enters the combiner 50. It ’s fine.
- the phase difference plate 40 is not a ⁇ / 4 phase difference plate but a ⁇ / 8 phase difference plate.
- the slow axis 40A of the phase difference plate 40 is inclined 157.5 degrees in the clockwise direction in the Y direction with respect to the transmission axis 3A of the polarizing plate 3.
- the linearly polarized light having the vibration in the horizontal direction that has passed through the polarizing plate 3 passes through the phase difference plate 40, is reflected by the folding mirror 30, and becomes right circularly polarized light when it passes through the phase difference plate 40 again.
- strong reflected light can be obtained with the combiner 5
- a high-intensity virtual image can be obtained.
- the polarizing plate 3 is arranged on the emission surface side of the transmissive screen 2 similarly to the display device 100 in the first embodiment. Therefore, the external light irradiated to the output surface of the transmissive screen 2 can be reduced. Further, stray light caused by unnecessary scattering inside the laser projector 1 and the transmissive screen 2 is absorbed by the polarizing plate 3, so that coloring such as rainbow unevenness does not occur. Thereby, the influence of external light and stray light can be suppressed and the contrast of the virtual image to be displayed can be improved, so that a high-quality virtual image can be obtained.
- the number of folding mirrors to be arranged is not limited to one, and a plurality of folding mirrors may be used.
- FIG. 5 is a diagram illustrating a configuration of a display device 300 according to the third embodiment.
- the display device 300 according to the third embodiment includes a ⁇ / 4 phase difference plate 51 and a ⁇ / 4 phase difference plate 52 in addition to the configuration of the display device 100 according to the first embodiment.
- the direction of the transmission axis 3B of the polarizing plate 3 and the direction of the slow axis 4B of the ⁇ / 4 retardation plate 4 are the same as the direction of the transmission axis 3A of the polarizing plate 3 and the ⁇ / 4 retardation plate shown in FIG. 4 is different from the direction of the slow axis 4A.
- the ⁇ / 4 retardation plate 51 is disposed between the laser projector 1 and the transmissive screen 2. As shown in FIG. 5, the slow axis 51A of the ⁇ / 4 retardation plate 51 is in the Y direction with respect to the vibration direction of light emitted from the laser projector 1 (horizontal direction, horizontal direction to the XY plane). It is tilted 45 degrees clockwise.
- the ⁇ / 4 retardation plate 52 is disposed between the transmissive screen 2 and the polarizing plate 3.
- the slow axis 52A of the ⁇ / 4 retardation plate 52 is parallel to the slow axis 51A of the ⁇ / 4 retardation plate 51, as shown in FIG.
- the polarizing plate 3 disposed between the ⁇ / 4 phase difference plate 52 and the ⁇ / 4 phase difference plate 4 is perpendicular to the vibration direction of light emitted from the laser projector 1 (direction parallel to the XY plane). It has a transmission axis 3B in the direction (Z direction).
- the slow axis 4B of the ⁇ / 4 retardation plate 4 is inclined 45 degrees clockwise with respect to the transmission axis 3B of the polarizing plate 3 in the Y direction.
- the ⁇ / 4 retardation plate 51, the transmission screen 2, the ⁇ / 4 retardation plate 52, the polarizing plate 3, and the ⁇ / 4 retardation plate 4 are shown separately.
- the ⁇ / 4 phase difference plate 51, the transmission screen 2, the ⁇ / 4 phase difference plate 52, the polarizing plate 3, and the ⁇ / 4 phase difference plate 4 are laminated and in close contact with each other.
- the light (linearly polarized light) emitted from the laser projector 1 is converted into right circularly polarized light by the ⁇ / 4 phase difference plate 51.
- the light transmitted through the transmissive screen 2 is converted by the ⁇ / 4 retardation plate 52 into linearly polarized light that vibrates in the vertical direction (direction parallel to the YZ plane).
- the vibration direction of the converted linearly polarized light is the same as the direction of the transmission axis 3B of the polarizing plate 3. Therefore, the converted linearly polarized light passes through the polarizing plate 3 without being attenuated.
- the light transmitted through the polarizing plate 3 is converted into right circularly polarized light by the ⁇ / 4 retardation plate 40, then reflected by the combiner 5, and visually recognized by the user as a virtual image.
- External light passes through the polarizing plate 3 and is converted to right circularly polarized light by the ⁇ / 4 retardation plate 52, and then reflected by the transmission screen 2 to become left circularly polarized light.
- the left circularly polarized light passes through the ⁇ / 4 retardation plate 52 again, and is converted into linearly polarized light that vibrates in the horizontal direction. Therefore, the linearly polarized light cannot be passed through the polarizing plate 3 having the transmission axis 3B in the vertical direction (Z direction) and is absorbed. Therefore, according to the configuration of the present embodiment, reflection of external light on the exit surface side of the transmissive screen 2 can be pushed to about several percent.
- the ⁇ / 4 retardation plate 52 is disposed between the transmissive screen 2 and the polarizing plate 3, thereby providing the display device 100 in the first embodiment.
- the contrast of the virtual image to be displayed can be further improved.
- stray light caused by unnecessary scattering inside the laser projector 1 and the transmission screen 2 is absorbed by the polarizing plate 3, so that coloring such as rainbow unevenness occurs. do not do. Thereby, the influence of external light and stray light can be suppressed and the contrast of the virtual image to be displayed can be improved, so that a high-quality virtual image can be obtained.
- FIG. 6 is a diagram illustrating a configuration of a display device 400 according to the fourth embodiment.
- the display device 400 according to the fourth embodiment includes a folding mirror 30 in addition to the configuration of the display device 300 according to the third embodiment. Further, the direction of the slow axis 4A of the ⁇ / 4 phase difference plate 4 is different from the direction of the slow axis 4B of the ⁇ / 4 phase difference plate 4 included in the display device 300 in the third embodiment.
- the slow axis 4A of the ⁇ / 4 retardation plate 4 of the present embodiment is inclined 135 degrees clockwise with respect to the transmission axis 3B of the polarizing plate 3 in the Y direction. Yes.
- the folding mirror 30 is arranged on the light exit side of the ⁇ / 4 phase difference plate 4, reflects the light that has passed through the ⁇ / 4 phase difference plate 4, and makes it incident on the combiner 5.
- the light (linearly polarized light) emitted from the laser projector 1 is converted into right circularly polarized light by the ⁇ / 4 phase difference plate 51 and passes through the transmissive screen 2.
- the light transmitted through the transmission screen 2 is converted into linearly polarized light that vibrates in the vertical direction by the ⁇ / 4 retardation plate 52.
- the vibration direction of the converted linearly polarized light is the same as the direction of the transmission axis 3B of the polarizing plate 3. Therefore, the converted linearly polarized light passes through the polarizing plate 3 without being attenuated.
- the linearly polarized light that has passed through the polarizing plate 3 is converted into left circularly polarized light by the ⁇ / 4 phase difference plate 4.
- the converted left circularly polarized light is reflected by the folding mirror 30 to become right circularly polarized light, reflected by the combiner 5, and visually recognized by the user as a virtual image.
- FIG. 7 is a diagram illustrating a configuration of a display device 400A according to a modification of the fourth embodiment.
- the retardation film 70 is not attached to the polarizing plate 3 but is attached to the folding mirror 30.
- the phase difference plate 70 may be disposed at a position where the light passes twice before the light transmitted through the transmission screen 2 enters the combiner 50 even if it is not attached to the folding mirror 30. It ’s fine.
- the phase difference plate 70 is not a ⁇ / 4 phase difference plate but a ⁇ / 8 phase difference plate.
- the slow axis 70A of the phase difference plate 70 is inclined 157.5 degrees clockwise with respect to the transmission axis 3B of the polarizing plate 3 in the Y direction.
- the linearly polarized light having the vibration in the vertical direction that has passed through the polarizing plate 3 passes through the phase difference plate 70 and is reflected by the folding mirror 30, and when it passes through the phase difference plate 70 again, becomes right circularly polarized light.
- strong reflected light can be obtained with the combiner 5
- a high-intensity virtual image can be obtained.
- ⁇ / between the transmissive screen 2 and the polarizing plate 3 as in the display device 300 in the third embodiment By disposing the four phase difference plate 52, reflection of external light can be further suppressed, so that the contrast of the virtual image to be displayed can be further improved. Further, stray light caused by unnecessary scattering inside the laser projector 1 and the transmissive screen 2 is absorbed by the polarizing plate 3, so that coloring such as rainbow unevenness does not occur. Thereby, the influence of external light and stray light can be suppressed and the contrast of the virtual image to be displayed can be improved, so that a high-quality virtual image can be obtained.
- the folding mirror 30 it is possible to reduce the overall size of the display devices 400 and 400A as compared with the display device 300 in the third embodiment.
- FIG. 8 is a diagram illustrating a configuration of a display device 500 according to the fifth embodiment.
- a display device 500 according to the fifth embodiment is similar to the display device 200 according to the second embodiment in that the laser projector 1, the transmission screen 2, the polarizing plate 3, the ⁇ / 4 phase difference plate 4, and the combiner. 5 and a folding mirror 30, a ⁇ / 4 phase difference plate 4 is attached to the combiner 5.
- the ⁇ / 4 phase difference plate 4 and the combiner 5 are shown apart from each other for easy visual recognition.
- the slow axis 4A of the phase difference plate 4 is inclined 45 degrees clockwise with respect to the transmission axis 3A of the polarizing plate 3 as shown in FIG.
- the slow axis 4A indicates the inclination viewed from the laser projector 1 side.
- the light (linearly polarized light) emitted from the laser projector 1 is transmitted through the transmission screen 2 and the polarizing plate 3 and reflected by the folding mirror 30.
- the light reflected by the folding mirror 30 is converted into right circularly polarized light by the ⁇ / 4 phase difference plate 4, then reflected by the combiner 5, and visually recognized by the user as a virtual image.
- the external light irradiated on the exit surface of the transmissive screen 2 can be reduced to about 40% or less by the polarizing plate 3. Further, stray light caused by unnecessary scattering inside the laser projector 1 and the transmission screen 2 does not have horizontal polarization, and is absorbed by the polarizing plate 3, so that coloring such as rainbow unevenness occurs. do not do. Thereby, the influence of external light and stray light can be suppressed and the contrast of the virtual image to be displayed can be improved, so that a high-quality virtual image can be obtained.
- the ⁇ / 4 phase difference plate 4 may be attached to the combiner 5.
- the laser projector 1 is used as the light source, but a method using a MEMS display using an LCOS (Liquid Crystal On Silicon), an LCD (Liquid Crystal Display) or a MEMS (Micro Electro Mechanical Systems) shutter, or DLP (Digital Light Processing) may be used. That is, the light emitted from the light source may be light having no polarization.
- LCOS Liquid Crystal On Silicon
- LCD Liquid Crystal Display
- MEMS Micro Electro Mechanical Systems
- DLP Digital Light Processing
- the polarizing plate 3 is used as an optical member that is disposed on the light emitting side of the transmission screen 2 and transmits polarized light in a specific direction, but other optical members may be used.
- an optical member that transmits polarized light in a specific direction an optical member that reflects (regularly reflects) polarized light in a predetermined direction, such as a reflective polarizing film (DBEF (registered trademark)) manufactured by 3M or a cholesteric liquid crystal. It may be arranged.
- DBEF reflective polarizing film
- An optical member that reflects (regular reflection) may be disposed.
- the combiner 5 As an example of the combiner 5, a cholesteric liquid crystal combiner including a cholesteric liquid crystal has been described. However, the present invention is not limited to the cholesteric liquid crystal combiner, and other members such as a half mirror and a hologram element may be used. That is, the combiner 5 may have a polarization selection function of reflecting specific polarized light, or may not have a polarization selection function, like a cholesteric liquid crystal combiner or a hologram element. When the combiner 5 having the polarization selection function is used, the reflected light is obtained by converting the light incident on the combiner 5 into specific polarized light that can provide strong reflection, so that a high-intensity virtual image is obtained. be able to.
- a virtual image may be obtained by reflecting the light emitted from the light source on the windshield of the vehicle without providing the combiner 5. Further, the combiner 5 may be attached to the windshield or embedded.
- an intermediate image is formed on the transmissive screen 2 based on the light constituting the display image, and the light transmitted through the transmissive screen 2 is reflected on the combiner 5 to convert the display image into a virtual image. displayed.
- a configuration may be employed in which an intermediate image is formed on the transmission screen 2 based on the light constituting the display image, and the light transmitted through the transmission screen 2 is displayed as a real image.
- a display device includes a transmission screen that forms an intermediate image based on light constituting a display image, and an optical element that is disposed on the light output side of the transmission screen and absorbs or reflects polarized light in a specific direction. What is necessary is just to provide a member.
- SYMBOLS 1 Laser projector (light source), 2 ... Transmission type screen, 3 ... Polarizing plate (optical member), 4 ... (lambda) / 4 phase difference plate, 5 ... Combiner (reflection member), 30 ... Folding mirror, 40 ... Phase difference plate , 51 .lamda. / 4 phase difference plate, 52 .lamda. / 4 phase difference plate, 70... Phase difference plate, 100, 200, 200A, 300, 400, 400A, 500.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
外光や迷光の影響を抑制して表示品質を向上させる。表示装置100は、表示像を構成する光を出射する光源としてのレーザプロジェクタ1と、レーザプロジェクタ1から出射された光に基づいて中間像を結像する透過型スクリーン2と、透過型スクリーン2の光出射側に配置され、特定方向の偏光を透過し、それ以外の光を吸収する光学部材としての偏光板3とを備える。
Description
本発明は、表示装置に関する。
特許文献1には、レーザ光源から出射された光を透過型スクリーンに照射して中間像を結像し、透過型のスクリーンを透過した光をコンバイナ(combiner)で反射させて使用者に虚像を視認させるヘッドアップディスプレイが開示されている。
しかしながら、中間像を生成するための透過型スクリーンを備えた投影光学系では、外光(主に無偏光の太陽光)が透過型スクリーンの光出射側の面で反射することにより、コントラストが低下する。また、レーザ光源やスクリーン内部での不要散乱に起因する迷光によって虹ムラのような色付きが発生し、表示品質が低下する。
本発明は、外光や迷光の影響を抑制して表示品質を向上させた表示装置を提供することを目的とする。
本発明の一実施形態における表示装置は、表示像を構成する光を出射する光源と、前記光源から出射された光に基づいて中間像を結像する透過型スクリーンと、前記透過型スクリーンの光出射側に配置され、特定方向の偏光を透過し、それ以外の光を吸収または反射する光学部材と、を備える。
本発明によれば、透過型スクリーンの光出射側に配置した光学部材によって、特定方向の偏光以外の光を透過させないので、透過型スクリーンの光出射側の面に照射される外光、及び光源や透過型スクリーン内部での不要散乱による迷光を低減させることができ、表示品質を向上させることができる。
本発明の一実施形態における表示装置は、表示像を構成する光を出射する光源と、前記光源から出射された光に基づいて中間像を結像する透過型スクリーンと、前記透過型スクリーンの光出射側に配置され、特定方向の偏光を透過し、それ以外の光を吸収または反射する光学部材と、を備える(第1の構成)。
第1の構成によれば、透過型スクリーンの光出射側に配置した光学部材によって、特定方向の偏光以外の光を透過させないので、透過型スクリーンの光出射側の面に照射される外光、及び、光源や透過型スクリーン内部での不要散乱による迷光を低減させることができ、表示品質を向上させることができる。
第1の構成において、前記光源は、直線偏光または円偏光を出射する構成としてもよい(第2の構成)。
第2の構成によれば、表示像を構成する偏光は透過させ、それ以外の光は吸収または反射することにより、必要な光は透過させて、外光及び迷光などの不要な光は吸収または反射させることができるので、コントラストを向上させて、表示品質の高い表示像を得ることができる。
第1または第2の構成において、前記光学部材を透過した光を反射することによって、前記表示像を虚像として表示させる反射部材をさらに備えるようにしても良い(第3の構成)。
第3の構成によれば、虚像を表示させるシステムにおいて、透過型スクリーンの光出射側の面に照射される外光、及び、光源や透過型スクリーン内部での不要散乱による迷光を低減させることができ、表示品質を向上させることができる。
第3の構成において、前記反射部材は、前記特定方向の偏光、または前記特定方向とは異なる方向の偏光を反射する偏光選択機能を有していても良い(第4の構成)。
第4の構成によれば、反射部材に入射させる光を、強い反射が得られる特定方向の偏光、または特定方向とは異なる方向の偏光に変換しておくことにより、強い反射光が得られるので、高輝度の高品質な虚像を得ることができる。
第4の構成において、前記反射部材は、コレステリック液晶を含むコンバイナであり、前記コレステリック液晶に入射される光を、前記コレステリック液晶の液晶分子のらせんの向きと同じ方向の円偏光に変換する変換部材をさらに備えるようにしても良い(第5の構成)。
第5の構成によれば、コレステリック液晶に入射される光を、コレステリック液晶の液晶分子のらせんの向きと同じ方向の円偏光に変換することにより、強い反射光を得ることができるので、高輝度で高品質な虚像を得ることができる。
第5の構成において、前記光学部材は、直線偏光板であり、前記変換部材は、λ/4位相差板としても良い(第6の構成)。
第6の構成によれば、直線偏光板を透過した直線偏光を円偏光に変換することができるので、コレステリック液晶による強い反射光を得ることができ、高輝度で高品質な虚像を得ることができる。
第5の構成において、前記透過型スクリーンを透過した光を反射させて前記反射部材に入射させる折り返しミラーをさらに備え、前記光学部材は、直線偏光板であり、前記変換部材は、前記透過型スクリーンを透過した光が前記反射部材に入射するまでの間に、前記光が2回通過する位置に配置されたλ/8位相差板としても良い(第7の構成)。
第7の構成によれば、直線偏光板を透過した直線偏光を、光が2回通過するλ/8位相差板によって円偏光に変換することができるので、コレステリック液晶による強い反射光を得ることができ、高輝度で高品質な虚像を得ることができる。
[実施の形態]
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
以下の各実施形態では、表示装置をヘッドアップディスプレイに適用した例について説明する。ただし、本発明による表示装置がヘッドアップディスプレイに限定されることはない。
[第1の実施形態]
図1は、第1の実施形態における表示装置100の構成を示す図である。第1の実施形態における表示装置100は、レーザプロジェクタ1と、透過型スクリーン2と、偏光板3と、λ/4位相差板4と、コンバイナ5とを備える。
図1は、第1の実施形態における表示装置100の構成を示す図である。第1の実施形態における表示装置100は、レーザプロジェクタ1と、透過型スクリーン2と、偏光板3と、λ/4位相差板4と、コンバイナ5とを備える。
光源としてのレーザプロジェクタ1は、例えば赤色、緑色、青色のレーザ光を出射するレーザ光源を有し、表示像を構成する光を出射する。レーザプロジェクタ1から出射される光は、水平方向(XY平面と平行な方向)に振動する直線偏光である。
図では省略しているが、レーザプロジェクタ1から出射された光は、例えばMEMS(Micro Electro Mechanical Systems)ミラーを用いてラスタースキャンされる。
透過型スクリーン2は、レーザプロジェクタ1から出射された光に基づいて中間像(実像)を結像する。透過型スクリーン2は、例えばマイクロレンズアレイとレンチキュラーレンズアレイが積層された構造である。透過型スクリーン2の両面のうち、レーザプロジェクタ1から出射された光が入射する面を入射面、入射面と反対側の面を出射面と呼ぶ。
偏光板3は、透過型スクリーン2の光出射側に配置されている。偏光板3は、レーザプロジェクタ1から出射される光の振動方向と同じ、水平方向(XY平面と平行な方向)の透過軸3Aを有する直線偏光板である。すなわち、偏光板3は、レーザプロジェクタ1から出射された光のように、水平方向に振動する光を透過させ、それ以外の光を吸収する機能を有する。
λ/4位相差板4は、偏光板3とコンバイナ5との間に配置されている。λ/4位相差板4は、レーザプロジェクタ1から出射され、透過型スクリーン2及び偏光板3を透過した直線偏光を円偏光に変換する。
λ/4位相差板4の遅相軸4Aは、図1に示すように、偏光板3の透過軸3Aに対して、Y方向に向かって時計回りの向きに45度傾いている。ただし、Y方向は、レーザプロジェクタ1から出射された光の進む方向である。より具体的には、水平方向に振動する直線偏光が右円偏光に変換されるように、λ/4位相差板4の遅相軸4Aは、偏光板3の透過軸3Aに対して45度傾いている。
図1では、説明のために、透過型スクリーン2、偏光板3、及びλ/4位相差板4を分離して示しているが、実際には、透過型スクリーン2、偏光板3、及びλ/4位相差板4は積層されて密着した構造となっている。
コンバイナ5は、光反射性と光透過性を有し、レーザプロジェクタ1から出射され、コンバイナ5で反射した光に基づく表示像と、コンバイナ5を通して見える外界像とを同時に観察者の目に導く機能を有する。
本実施形態において、コンバイナ5は、表面が曲面状であり、透明樹脂をベースにコレステリック液晶を形成した構造である。コレステリック液晶は、液晶分子の配列方向がらせん状になるように、液晶分子を含む複数の層が積層されており、らせんと同じ向きの円偏光を強く反射する。ここでは、コンバイナ5は、右巻きのらせん構造をなす液晶分子を有するコレステリック液晶を含み、右円偏光を強く反射するものとして説明するが、左円偏光を強く反射するものであっても良い。左円偏光を強く反射するコレステリック液晶を用いた場合には、λ/4位相差板4として、遅相軸4Aが偏光板3の透過軸3Aに対して135度傾いたものを用いれば良い。遅相軸4Aが偏光板3の透過軸3Aに対して135度傾いたλ/4位相差板4を配置することにより、水平方向に振動する直線偏光を左円偏光に変換することができる。
すなわち、λ/4位相差板4は、レーザプロジェクタ1から出射され、透過型スクリーン2及び偏光板3を透過した直線偏光を、コレステリック液晶の液晶分子のらせんの向きと同じ方向の円偏光に変換するものであれば良い。
図2に示すように、レーザプロジェクタ1から出射された水平方向の振動を有する光(直線偏光)は、透過型スクリーン2及び偏光板3を透過し、λ/4位相差板4によって右円偏光に変換される。変換された右円偏光は、コンバイナ5で強く反射され、虚像として使用者に視認される。
本実施形態の構成によれば、透過型スクリーン2の出射面側に偏光板3を配置しているので、透過型スクリーン2の出射面に照射される外光を、偏光板3によって約40%以下に減少させることができる。また、レーザプロジェクタ1や透過型スクリーン2の内部での不要散乱に起因する迷光は、水平方向の偏光を有しておらず、偏光板3によって吸収されるので、虹ムラのような色付きは発生しない。これにより、外光や迷光の影響を抑制して、表示する虚像のコントラストを向上させることができるので、高品質の虚像を得ることができる。
さらに、レーザプロジェクタ1から出射された光は、偏光板3によって吸収されることなく透過し、λ/4位相差板4によって右円偏光に変換されて、コンバイナ5で反射する。例えば、レーザプロジェクタ1から出射された光が透過型スクリーン2を透過した際に多少の位相ズレが生じた場合でも、λ/4位相差板4によって整った右円偏光に変換されて、コンバイナ5で反射する。すなわち、λ/4位相差板4を配置することによって、コンバイナ5に入射する光を、強い反射が得られる円偏光に変換することができるので、高輝度の虚像を得ることができる。
一方、偏光板3を配置しない従来の構成では、外光が透過型スクリーンの出射面で反射することにより、透過型スクリーンが白く光り、コンバイナの反射で得られる虚像の黒浮きが発生する。これにより、コントラストが大幅に低下する。また、レーザ光源やスクリーン内部での不要散乱に起因する迷光によって虹ムラのような色付きが発生し、表示品質が低下する。
[第2の実施形態]
図3は、第2の実施形態における表示装置200の構成を示す図である。第2の実施形態における表示装置200は、第1の実施形態における表示装置100の構成に加えて、折り返しミラー30を備える。また、λ/4位相差板4の遅相軸4Bの向きが図1に示すλ/4位相差板4の遅相軸4Aの向きと異なる。
図3は、第2の実施形態における表示装置200の構成を示す図である。第2の実施形態における表示装置200は、第1の実施形態における表示装置100の構成に加えて、折り返しミラー30を備える。また、λ/4位相差板4の遅相軸4Bの向きが図1に示すλ/4位相差板4の遅相軸4Aの向きと異なる。
本実施形態のλ/4位相差板4の遅相軸4Bは、図3に示すように、偏光板3の透過軸3Aに対して、Y方向に向かって時計回りの向きに135度傾いている。より具体的には、水平方向に振動する直線偏光が左円偏光に変換されるように、λ/4位相差板4の遅相軸4Bは、偏光板3の透過軸3Aに対して135度傾いている。
折り返しミラー30は、λ/4位相差板4の光出射側に配置され、λ/4位相差板4によって左円偏光に変換された光を反射して、コンバイナ5に入射させる。
レーザプロジェクタ1から出射された光(直線偏光)は、透過型スクリーン2及び偏光板3を透過し、λ/4位相差板4によって左円偏光に変換される。変換された左円偏光は、折り返しミラー30で反射して右円偏光となり、コンバイナ5で反射され、虚像として使用者に視認される。
折り返しミラー30を設けることにより、レーザプロジェクタ1とコンバイナ5との距離が短くても、十分な長さの光路長を確保することができ、表示装置200全体の大きさを小さくすることができる。
<第2の実施形態の変形例>
図4は、第2の実施形態の変形例における表示装置200Aの構成を示す図である。この表示装置200Aでは、位相差板40が偏光板3に貼られずに、折り返しミラー30に貼られている。ただし、位相差板40は、折り返しミラー30に貼られてなくても、透過型スクリーン2を透過した光がコンバイナ50に入射するまでの間に、光が2回通過する位置に配置されていれば良い。
図4は、第2の実施形態の変形例における表示装置200Aの構成を示す図である。この表示装置200Aでは、位相差板40が偏光板3に貼られずに、折り返しミラー30に貼られている。ただし、位相差板40は、折り返しミラー30に貼られてなくても、透過型スクリーン2を透過した光がコンバイナ50に入射するまでの間に、光が2回通過する位置に配置されていれば良い。
この場合、レーザプロジェクタ1から出射された光は、折り返しミラー30に入射する時と、折り返しミラー30で反射してコンバイナ5に入射する時の2回、位相差板40を通過する。このため、位相差板40は、λ/4位相差板ではなく、λ/8位相差板である。
位相差板40の遅相軸40Aは、図4に示すように、偏光板3の透過軸3Aに対して、Y方向に向かって時計回りの向きに157.5度傾いている。これにより、偏光板3を通過した水平方向の振動を有する直線偏光は、位相差板40を通過して折り返しミラー30で反射し、再度、位相差板40を通過すると、右円偏光となる。これにより、コンバイナ5で強い反射光を得ることができるので、高輝度の虚像を得ることができる。
以上、第2の実施形態における表示装置200、及び変形例における表示装置200Aによれば、第1の実施形態における表示装置100と同様に、透過型スクリーン2の出射面側に偏光板3を配置しているので、透過型スクリーン2の出射面に照射される外光を減少させることができる。また、レーザプロジェクタ1や透過型スクリーン2の内部での不要散乱に起因する迷光を偏光板3によって吸収するので、虹ムラのような色付きは発生しない。これにより、外光や迷光の影響を抑制して、表示する虚像のコントラストを向上させることができるので、高品質の虚像を得ることができる。
なお、配置する折り返しミラーは1つに限定されることはなく、複数でも良い。
[第3の実施形態]
図5は、第3の実施形態における表示装置300の構成を示す図である。第3の実施形態における表示装置300は、第1の実施形態における表示装置100の構成に加えて、λ/4位相差板51、及びλ/4位相差板52を備える。また、偏光板3の透過軸3Bの向き、及びλ/4位相差板4の遅相軸4Bの向きは、図1に示す偏光板3の透過軸3Aの向き、及びλ/4位相差板4の遅相軸4Aの向きと異なる。
図5は、第3の実施形態における表示装置300の構成を示す図である。第3の実施形態における表示装置300は、第1の実施形態における表示装置100の構成に加えて、λ/4位相差板51、及びλ/4位相差板52を備える。また、偏光板3の透過軸3Bの向き、及びλ/4位相差板4の遅相軸4Bの向きは、図1に示す偏光板3の透過軸3Aの向き、及びλ/4位相差板4の遅相軸4Aの向きと異なる。
λ/4位相差板51は、レーザプロジェクタ1と透過型スクリーン2との間に配置されている。λ/4位相差板51の遅相軸51Aは、レーザプロジェクタ1から出射される光の振動方向(水平方向、XY平面と水平な方向)に対して、図5に示すように、Y方向に向かって時計回りの向きに45度傾いている。
λ/4位相差板52は、透過型スクリーン2と偏光板3との間に配置されている。λ/4位相差板52の遅相軸52Aは、図5に示すように、λ/4位相差板51の遅相軸51Aと平行である。
λ/4位相差板52とλ/4位相差板4との間に配置されている偏光板3は、レーザプロジェクタ1から出射される光の振動方向(XY平面と水平な方向)と垂直な方向(Z方向)の透過軸3Bを有する。
λ/4位相差板4の遅相軸4Bは、偏光板3の透過軸3Bに対して、Y方向に向かって時計回りの向きに45度傾いている。
図5では、説明のために、λ/4位相差板51、透過型スクリーン2、λ/4位相差板52、偏光板3、及びλ/4位相差板4を分離して示しているが、実際には、λ/4位相差板51、透過型スクリーン2、λ/4位相差板52、偏光板3、及びλ/4位相差板4は積層されて密着した構造となっている。
レーザプロジェクタ1から出射された光(直線偏光)は、λ/4位相差板51によって、右円偏光に変換される。そして、透過型スクリーン2を透過した光は、λ/4位相差板52によって、垂直方向(YZ平面と平行な方向)に振動する直線偏光に変換される。変換された直線偏光の振動方向は、偏光板3の透過軸3Bの方向と同じである。従って、変換された直線偏光は、減衰することなく偏光板3を通過する。偏光板3を透過した光は、λ/4位相差板40によって右円偏光に変換された後、コンバイナ5で反射され、虚像として使用者に視認される。
外光は、偏光板3を通過してλ/4位相差板52によって右円偏光に変換された後、透過型スクリーン2で反射して左円偏光となる。この左円偏光は、再度λ/4位相差板52を通過することにより、水平方向に振動する直線偏光に変換される。このため、この直線偏光は、垂直方向(Z方向)の透過軸3Bを有する偏光板3を通過することができず、吸収される。従って、本実施形態の構成によれば、透過型スクリーン2の出射面側における外光の反射を数%程度に押させることができる。
以上、第3の実施形態における表示装置300によれば、透過型スクリーン2と偏光板3との間にλ/4位相差板52を配置することにより、第1の実施形態における表示装置100に比べて、透過型スクリーン2の出射面側における外光の反射をさらに抑制することができる。これにより、表示する虚像のコントラストをさらに向上させることができる。
また、第1の実施形態における表示装置100と同様に、レーザプロジェクタ1や透過型スクリーン2の内部での不要散乱に起因する迷光を偏光板3によって吸収するので、虹ムラのような色付きは発生しない。これにより、外光や迷光の影響を抑制して、表示する虚像のコントラストを向上させることができるので、高品質の虚像を得ることができる。
[第4の実施形態]
図6は、第4の実施形態における表示装置400の構成を示す図である。第4の実施形態における表示装置400は、第3の実施形態における表示装置300の構成に加えて、折り返しミラー30を備える。また、λ/4位相差板4の遅相軸4Aの向きは、第3の実施形態における表示装置300が備えるλ/4位相差板4の遅相軸4Bの向きと異なる。
図6は、第4の実施形態における表示装置400の構成を示す図である。第4の実施形態における表示装置400は、第3の実施形態における表示装置300の構成に加えて、折り返しミラー30を備える。また、λ/4位相差板4の遅相軸4Aの向きは、第3の実施形態における表示装置300が備えるλ/4位相差板4の遅相軸4Bの向きと異なる。
本実施形態のλ/4位相差板4の遅相軸4Aは、図6に示すように、偏光板3の透過軸3Bに対して、Y方向に向かって時計回りの向きに135度傾いている。
折り返しミラー30は、λ/4位相差板4の光出射側に配置され、λ/4位相差板4を通過した光を反射して、コンバイナ5に入射させる。
レーザプロジェクタ1から出射された光(直線偏光)は、λ/4位相差板51によって、右円偏光に変換されて、透過型スクリーン2を透過する。透過型スクリーン2を透過した光は、λ/4位相差板52によって、垂直方向に振動する直線偏光に変換される。変換された直線偏光の振動方向は、偏光板3の透過軸3Bの方向と同じである。従って、変換された直線偏光は、減衰することなく偏光板3を通過する。
偏光板3を通過した直線偏光は、λ/4位相差板4によって左円偏光に変換される。変換された左円偏光は、折り返しミラー30で反射して右円偏光となり、コンバイナ5で反射され、虚像として使用者に視認される。
本実施形態の構成においても、第2の実施形態における表示装置200と同様に、折り返しミラー30を設けることにより、レーザプロジェクタ1とコンバイナ5との距離が短くても、十分な長さの光路長を確保することができ、表示装置400全体の大きさを小さくすることができる。
<第4の実施形態の変形例>
図7は、第4の実施形態の変形例における表示装置400Aの構成を示す図である。この表示装置400Aでは、位相差板70が偏光板3に貼られずに、折り返しミラー30に貼られている。ただし、位相差板70は、折り返しミラー30に貼られてなくても、透過型スクリーン2を透過した光がコンバイナ50に入射するまでの間に、光が2回通過する位置に配置されていれば良い。
図7は、第4の実施形態の変形例における表示装置400Aの構成を示す図である。この表示装置400Aでは、位相差板70が偏光板3に貼られずに、折り返しミラー30に貼られている。ただし、位相差板70は、折り返しミラー30に貼られてなくても、透過型スクリーン2を透過した光がコンバイナ50に入射するまでの間に、光が2回通過する位置に配置されていれば良い。
この場合、レーザプロジェクタ1から出射された光は、折り返しミラー30に入射する時と、折り返しミラー30で反射してコンバイナ5に入射する時の2回、位相差板70を通過する。従って、位相差板70は、λ/4位相差板ではなく、λ/8位相差板である。
相差板70の遅相軸70Aは、図7に示すように、偏光板3の透過軸3Bに対して、Y方向に向かって時計回りに157.5度傾いている。これにより、偏光板3を通過した垂直方向の振動を有する直線偏光は、位相差板70を通過して折り返しミラー30で反射し、再度、位相差板70を通過すると、右円偏光となる。これにより、コンバイナ5で強い反射光を得ることができるので、高輝度の虚像を得ることができる。
以上、第4の実施形態における表示装置400、及び変形例における表示装置400Aによれば、第3の実施形態における表示装置300と同様に、透過型スクリーン2と偏光板3との間にλ/4位相差板52を配置することにより、外光の反射をさらに抑制することができるので、表示する虚像のコントラストをさらに向上させることができる。また、レーザプロジェクタ1や透過型スクリーン2の内部での不要散乱に起因する迷光を偏光板3によって吸収するので、虹ムラのような色付きは発生しない。これにより、外光や迷光の影響を抑制して、表示する虚像のコントラストを向上させることができるので、高品質の虚像を得ることができる。
さらに、折り返しミラー30を設けることにより、第3の実施形態における表示装置300と比べて、表示装置400、400A全体の大きさを小さくすることができる。
[第5の実施形態]
図8は、第5の実施形態における表示装置500の構成を示す図である。
図8は、第5の実施形態における表示装置500の構成を示す図である。
第5の実施形態における表示装置500は、第2の実施形態における表示装置200と同様に、レーザプロジェクタ1と、透過型スクリーン2と、偏光板3と、λ/4位相差板4と、コンバイナ5と、折り返しミラー30とを備えているが、λ/4位相差板4がコンバイナ5に貼り付けられている。なお、図8では、視認しやすいように、λ/4位相差板4とコンバイナ5とを離して示している。
本実施形態では、位相差板4の遅相軸4Aは、図8に示すように、偏光板3の透過軸3Aに対して、光の進行方向に向かって時計回りに45度傾いている。なお、図8において、遅相軸4Aは、レーザプロジェクタ1側から見た傾きを示している。
レーザプロジェクタ1から出射された光(直線偏光)は、透過型スクリーン2及び偏光板3を透過し、折り返しミラー30で反射する。折り返しミラー30で反射した光は、λ/4位相差板4によって右円偏光に変換された後、コンバイナ5で反射され、虚像として使用者に視認される。
本実施形態の構成においても、透過型スクリーン2の出射面に照射される外光を、偏光板3によって約40%以下に減少させることができる。また、レーザプロジェクタ1や透過型スクリーン2の内部での不要散乱に起因する迷光は、水平方向の偏光を有していないため、偏光板3によって吸収されるので、虹ムラのような色付きは発生しない。これにより、外光や迷光の影響を抑制して、表示する虚像のコントラストを向上させることができるので、高品質の虚像を得ることができる。
なお、上述した第1、第3、第4の実施形態における表示装置100、300、400において、λ/4位相差板4をコンバイナ5に貼り付ける構成としてもよい。
本発明は、上述した実施形態に限定されない。例えば、光源としてレーザプロジェクタ1を用いたが、LCOS(Liquid Crystal On Silicon)、LCD(Liquid Crystal Display)、またはMEMS(Micro Electro Mechanical Systems)シャッタを用いたMEMSディスプレイを用いる方式や、DLP(Digital Light Processing)による方式であってもよい。すなわち、光源から出射される光は、偏光を有しない光であってもよい。
上述した実施形態では、透過型スクリーン2の光出射側に配置され、特定方向の偏光を透過させる光学部材として、偏光板3を用いたが、他の光学部材を用いても良い。
また、特定方向の偏光を透過させる光学部材として、3M社製の反射型偏光性フィルム(DBEF(登録商標))やコレステリック液晶のように、所定方向の偏光を反射(正反射)させる光学部材を配置しても良い。例えば、レーザプロジェクタ1から水平方向の振動を有する直線偏光が出射された場合に、水平方向の振動を有する直線偏光は透過させ、水平方向の振動を有する直線偏光とは異なる、所定方向の偏光を反射(正反射)する光学部材を配置すれば良い。
コンバイナ5の一例としてコレステリック液晶を含むコレステリック液晶コンバイナを挙げたが、コレステリック液晶コンバイナに限定されることはなく、ハーフミラーやホログラム素子など、他の部材を用いても良い。すなわち、コンバイナ5は、コレステリック液晶コンバイナやホログラム素子のように、特定の偏光を反射させる偏光選択機能を有していても良いし、偏光選択機能を有していなくても良い。偏光選択機能を有するコンバイナ5を用いた場合、コンバイナ5に入射させる光を、強い反射が得られる特定の偏光に変換しておくことにより、強い反射光が得られるので、高輝度の虚像を得ることができる。
ヘッドアップディスプレイを飛行機や車などの乗り物に適用した場合に、コンバイナ5を設けずに、光源から出射された光を乗り物のフロントガラスに反射させて虚像を得るようにしても良い。また、コンバイナ5をフロントガラスに貼り付けたり、埋め込むようにしても良い。
上述した実施形態では、表示像を構成する光に基づいて、透過型スクリーン2で中間像を結像し、透過型スクリーン2を透過した光をコンバイナ5で反射させることによって、表示像を虚像として表示した。しかしながら、表示像を構成する光に基づいて、透過型スクリーン2で中間像を結像し、透過型スクリーン2を透過した光を実像として表示する構成であっても良い。
すなわち、本発明による表示装置は、表示像を構成する光に基づいて中間像を結像する透過型スクリーンと、透過型スクリーンの光出射側に配置され、特定方向の偏光を吸収または反射する光学部材とを備えていれば良い。
1…レーザプロジェクタ(光源)、2…透過型スクリーン、3…偏光板(光学部材)、4…λ/4位相差板、5…コンバイナ(反射部材)、30…折り返しミラー、40…位相差板、51…λ/4位相差板、52…λ/4位相差板、70…位相差板、100、200、200A、300、400、400A、500…表示装置
Claims (7)
- 表示像を構成する光を出射する光源と、
前記光源から出射された光に基づいて中間像を結像する透過型スクリーンと、
前記透過型スクリーンの光出射側に配置され、特定方向の偏光を透過し、それ以外の光を吸収または反射する光学部材と、
を備える、表示装置。 - 前記光源は、直線偏光または円偏光を出射する、請求項1に記載の表示装置。
- 前記光学部材を透過した光を反射することによって、前記表示像を虚像として表示させる反射部材をさらに備える、請求項1または2に記載の表示装置。
- 前記反射部材は、前記特定方向の偏光、または前記特定方向とは異なる方向の偏光を反射する偏光選択機能を有する、請求項3に記載の表示装置。
- 前記反射部材は、コレステリック液晶を含むコンバイナであり、
前記コレステリック液晶に入射される光を、前記コレステリック液晶の液晶分子のらせんの向きと同じ方向の円偏光に変換する変換部材をさらに備える、請求項4に記載の表示装置。 - 前記光学部材は、直線偏光板であり、
前記変換部材は、λ/4位相差板である、請求項5に記載の表示装置。 - 前記透過型スクリーンを透過した光を反射させて前記反射部材に入射させる折り返しミラーをさらに備え、
前記光学部材は、直線偏光板であり、
前記変換部材は、前記透過型スクリーンを透過した光が前記反射部材に入射するまでの間に、前記光が2回通過する位置に配置されたλ/8位相差板である、請求項5に記載の表示装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015089266 | 2015-04-24 | ||
JP2015-089266 | 2015-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016171154A1 true WO2016171154A1 (ja) | 2016-10-27 |
Family
ID=57144622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062459 WO2016171154A1 (ja) | 2015-04-24 | 2016-04-20 | 表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016171154A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109445006A (zh) * | 2018-12-12 | 2019-03-08 | 中国工程物理研究院激光聚变研究中心 | 一种用于高功率激光系统的杂散光吸收体及其制备方法 |
WO2022210363A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社小糸製作所 | 画像投影装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000028957A (ja) * | 1998-07-07 | 2000-01-28 | Asahi Glass Co Ltd | 情報表示装置 |
JP2010145674A (ja) * | 2008-12-18 | 2010-07-01 | Konica Minolta Holdings Inc | 映像表示装置およびヘッドマウントディスプレイ |
JP2014026245A (ja) * | 2012-07-30 | 2014-02-06 | Jvc Kenwood Corp | 画像表示装置 |
JP2014077819A (ja) * | 2012-10-09 | 2014-05-01 | Seiko Epson Corp | 画像表示システム |
-
2016
- 2016-04-20 WO PCT/JP2016/062459 patent/WO2016171154A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000028957A (ja) * | 1998-07-07 | 2000-01-28 | Asahi Glass Co Ltd | 情報表示装置 |
JP2010145674A (ja) * | 2008-12-18 | 2010-07-01 | Konica Minolta Holdings Inc | 映像表示装置およびヘッドマウントディスプレイ |
JP2014026245A (ja) * | 2012-07-30 | 2014-02-06 | Jvc Kenwood Corp | 画像表示装置 |
JP2014077819A (ja) * | 2012-10-09 | 2014-05-01 | Seiko Epson Corp | 画像表示システム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109445006A (zh) * | 2018-12-12 | 2019-03-08 | 中国工程物理研究院激光聚变研究中心 | 一种用于高功率激光系统的杂散光吸收体及其制备方法 |
CN109445006B (zh) * | 2018-12-12 | 2023-08-25 | 中国工程物理研究院激光聚变研究中心 | 一种用于高功率激光系统的杂散光吸收体及其制备方法 |
WO2022210363A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社小糸製作所 | 画像投影装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102208724B1 (ko) | 헤드업 디스플레이 장치 | |
JP7402543B2 (ja) | ダイクロイックビームスプリッタカラーコンバイナを有する光学デバイスおよび光学システム | |
US9341883B2 (en) | Display module and light guide device | |
WO2017094248A1 (ja) | 自由曲面レンズ、および、ヘッドアップディスプレイ | |
US7854523B2 (en) | Optical relay for compact head up display | |
US10007121B2 (en) | See-through head-mounted display | |
WO2016203732A1 (ja) | ヘッドアップディスプレイ装置 | |
WO2016157815A1 (ja) | ヘッドアップディスプレイ装置 | |
CN107861243B (zh) | 光学元件和显示装置 | |
JP2013114022A (ja) | 偏光装置及び表示装置 | |
WO2015125247A1 (ja) | 投影装置 | |
JP6946925B2 (ja) | 虚像表示装置 | |
US11619816B2 (en) | Head-mounted display | |
WO2016189871A1 (ja) | 光源ユニット及び投影装置 | |
WO2019102727A1 (ja) | 虚像表示装置 | |
WO2019087615A1 (ja) | 虚像表示装置 | |
WO2016171154A1 (ja) | 表示装置 | |
US20130271730A1 (en) | Illumination system for a projection apparatus and projection apparatus | |
US20140036242A1 (en) | Optical scanning apparatus and optical scanning image projection apparatus | |
JP6600742B2 (ja) | 表示装置及び車両用ヘッドアップディスプレイ装置 | |
JP6175800B2 (ja) | スクリーンおよび投射システム | |
JP2023169582A (ja) | 描画システム | |
JP2023024226A (ja) | 表示システム | |
CN118330889A (zh) | 抬头显示系统、显示设备及交通工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16783175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |