WO2016170961A1 - 超音波振動子、超音波プローブおよび超音波振動子の製造方法 - Google Patents

超音波振動子、超音波プローブおよび超音波振動子の製造方法 Download PDF

Info

Publication number
WO2016170961A1
WO2016170961A1 PCT/JP2016/061046 JP2016061046W WO2016170961A1 WO 2016170961 A1 WO2016170961 A1 WO 2016170961A1 JP 2016061046 W JP2016061046 W JP 2016061046W WO 2016170961 A1 WO2016170961 A1 WO 2016170961A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
ultrasonic
substrate
piezoelectric element
signal input
Prior art date
Application number
PCT/JP2016/061046
Other languages
English (en)
French (fr)
Inventor
勝裕 若林
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP16782982.9A priority Critical patent/EP3288290A4/en
Priority to JP2016575689A priority patent/JP6141551B2/ja
Priority to CN201680023332.9A priority patent/CN107534816B/zh
Publication of WO2016170961A1 publication Critical patent/WO2016170961A1/ja
Priority to US15/788,925 priority patent/US20180035977A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/064Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface with multiple active layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins

Definitions

  • the present invention produces an ultrasonic transducer, an ultrasonic probe, and an ultrasonic transducer that emits an ultrasonic wave to an observation target, receives an ultrasonic echo reflected from the observation target, converts the echo into an echo signal, and outputs the echo signal. Regarding the method.
  • Ultrasound may be applied to observe the characteristics of the biological tissue or material that is the object of observation.
  • the ultrasonic transducer transmits an ultrasonic wave to the observation target, receives an ultrasonic echo reflected by the observation target, and the ultrasonic observation apparatus performs a predetermined process on the received ultrasonic echo. By performing signal processing, it is possible to acquire information regarding the characteristics of the observation target.
  • An ultrasonic transducer converts an electrical pulse signal into an ultrasonic pulse (acoustic pulse) and irradiates the object to be observed, as well as an electrical echo signal that expresses the ultrasonic echo reflected by the object as a voltage change.
  • a plurality of piezoelectric elements that convert and output to for example, see Patent Document 1.
  • an ultrasonic echo can be acquired from an observation target by providing multiple piezoelectric elements in an array and electronically switching the elements involved in transmission / reception or delaying transmission / reception of the piezoelectric body of each ultrasonic transducer. To do.
  • each piezoelectric element is electrically connected by wiring to a circuit board that transmits a pulse signal and receives an echo signal.
  • the piezoelectric element and the wiring are connected by, for example, solder, but there is a possibility that the characteristics of the piezoelectric element may be deteriorated due to heat during soldering.
  • the present invention has been made in view of the above, and an ultrasonic transducer, an ultrasonic probe, and an ultrasonic wave that can suppress the deterioration of characteristics of a piezoelectric element and can realize a narrow pitch of a plurality of piezoelectric elements.
  • An object is to provide a method for manufacturing a vibrator.
  • the ultrasonic transducer emits an ultrasonic wave according to an input of an electric signal and converts an ultrasonic wave incident from the outside into an electric signal.
  • a plurality of sealing portions for sealing at least a part of an outer surface of an electrical path connecting the electrodes, the plurality of piezoelectric elements, the plurality of backing materials, a part of the substrate, the plurality Signal input / output electrodes and front The plurality of sealing portions are formed by stacking
  • the ultrasonic transducer according to the present invention is the above-described invention, wherein the piezoelectric element, the backing material, the signal input / output electrode, and a wall portion surrounding a plurality of oscillating portions having at least the sealing portion, And a second backing material that is provided in a hollow space formed by the wall portion and the plurality of oscillating portions and attenuates the ultrasonic vibration.
  • the signal input / output electrode has a thick portion forming a part of the electrical path.
  • the ultrasonic transducer according to the present invention is characterized in that, in the above-described invention, the ultrasonic transducer includes a connection electrode that is connected to each of the substrate and the signal input / output electrode to form the electrical path.
  • the connection electrode is connected to the substrate through a side surface of the backing material.
  • connection electrode comprises a thin film formed by a physical vapor deposition method and a plating film formed by wet plating.
  • the ultrasonic transducer according to the present invention is characterized in that, in the above invention, a part of the substrate is embedded in the backing material.
  • the ultrasonic transducer according to the present invention is characterized in that, in the above invention, a part of the substrate is provided along a side surface of the backing material.
  • the ultrasonic transducer according to the present invention is provided on the side opposite to the side where the backing material of the piezoelectric element is disposed, and the second electrode paired with the signal input / output electrode.
  • An acoustic matching layer that adjusts the acoustic impedance of the ultrasonic wave, and the second electrode has a ground potential via a conductive resin provided between the acoustic matching layer and the piezoelectric element. It is characterized by being grounded.
  • the plurality of piezoelectric elements are arranged in a scanning direction obtained by dividing the molding member and an elevation direction substantially orthogonal to the scanning direction. It is characterized by being.
  • the ultrasonic probe according to the present invention is characterized in that the ultrasonic transducer according to the above-described invention is provided at the tip.
  • the ultrasonic transducer manufacturing method includes a plurality of piezoelectric elements that emit ultrasonic waves in response to input of electrical signals and convert ultrasonic waves incident from the outside into electrical signals.
  • a part of a substrate for inputting / outputting an electric signal to the substrate, a plurality of signal input / output electrodes provided between the piezoelectric element and the substrate and electrically connected thereto, and the signal input / output of the plurality of piezoelectric elements A laminated member that is provided on the side where the electrodes are disposed and laminates a plurality of materials that respectively constitute a plurality of backing materials that attenuate ultrasonic vibrations generated by the operations of the plurality of piezoelectric elements.
  • the laminated member manufacturing step is connected to the substrate and the signal input / output electrode, respectively, to form the electrical path.
  • connection electrode member disposing step may include forming a thin film on an outer surface corresponding to the electrical path by physical vapor deposition. And a second step of forming a plating film on the outer surface of the thin film by wet plating.
  • the forming member is formed by laminating materials constituting each of the piezoelectric element, the signal input / output electrode, and the backing material in this order.
  • the substrate is held by the backing material, and in the molding step, the molding member is cut so that a distance from an adjacent member formed by division from the piezoelectric element toward the substrate is increased. It is characterized by.
  • the ultrasonic vibrator in the ultrasonic vibrator, it is possible to suppress the characteristic deterioration of the piezoelectric element at the time of manufacture and to realize a narrow pitch of the plurality of piezoelectric elements.
  • FIG. 1 is a diagram schematically showing an endoscope system according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing the ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing a configuration of a main part of the ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram showing a configuration of a main part of the ultrasonic transducer according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram for explaining the method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining the method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram for explaining the method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram for explaining a method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining a method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram for explaining the method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating the method for manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram for explaining the method of manufacturing the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 14 is a schematic diagram showing a configuration of an ultrasonic transducer according to the second modification of the first embodiment of the present invention.
  • FIG. 15 is a schematic diagram for explaining the production of the member for forming an ultrasonic transducer according to the second modification of the first embodiment of the present invention.
  • FIG. 16 is a schematic diagram for explaining the production of the member for forming an ultrasonic transducer according to the second modification of the first embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 3 of Embodiment 1 of the present invention.
  • FIG. 18 is a schematic diagram for explaining the production of the member for forming an ultrasonic transducer according to the third modification of the first embodiment of the present invention.
  • FIG. 19 is a schematic diagram illustrating a configuration of a main part of the ultrasonic transducer according to the fourth modification of the first embodiment of the present invention.
  • FIG. 20 is a schematic diagram illustrating a configuration of a main part of the ultrasonic transducer according to the fifth modification of the first embodiment of the present invention.
  • FIG. 21 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 6 of Embodiment 1 of the present invention.
  • FIG. 22 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 7 of Embodiment 1 of the present invention.
  • FIG. 23 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 8 of Embodiment 1 of the present invention.
  • FIG. 24 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 9 of Embodiment 1 of the present invention.
  • FIG. 25 is a diagram illustrating a method for manufacturing the ultrasonic transducer according to the tenth modification of the first embodiment of the present invention.
  • FIG. 26 is a schematic diagram showing a configuration of an ultrasonic transducer according to Modification 10 of Embodiment 1 of the present invention.
  • FIG. 27 is a schematic diagram showing a configuration of an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 28 is a schematic diagram for explaining a method of manufacturing an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 29 is a schematic diagram for explaining a method of manufacturing an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 30 is a schematic diagram for explaining a method of manufacturing an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 31 is a schematic diagram illustrating a method for manufacturing the ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 32 is a schematic diagram for explaining a method of manufacturing an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing an endoscope system 1 according to Embodiment 1 of the present invention.
  • the endoscope system 1 is a system that performs ultrasonic diagnosis in a subject such as a person using an ultrasonic endoscope.
  • the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscope observation device 4, a display device 5, and a light source device 6.
  • the ultrasonic endoscope 2 converts an electrical pulse signal received from the ultrasonic observation device 3 into an ultrasonic pulse (acoustic pulse) and irradiates the subject at the tip thereof, and is reflected by the subject.
  • the converted ultrasonic echo is converted into an electrical echo signal expressed by a voltage change and output.
  • the ultrasonic endoscope 2 usually has an imaging optical system and an imaging device, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organ (trachea, bronchi) of the subject for digestion. It is possible to image a tube, respiratory organ, and surrounding organs (pancreas, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.).
  • the ultrasonic endoscope 2 has a light guide that guides illumination light to be irradiated onto the subject during imaging.
  • the light guide has a distal end portion that reaches the distal end of the insertion portion of the ultrasonic endoscope 2 into the subject, and a proximal end portion that is connected to the light source device 6 that generates illumination light.
  • the ultrasonic endoscope 2 includes an insertion unit 21, an operation unit 22, a universal cable 23, and a connector 24.
  • the insertion part 21 is a part inserted into the subject.
  • the insertion portion 21 includes an ultrasonic transducer 7 provided on the distal end side, a rigid member 211 connected to the proximal end side of the ultrasonic transducer 7, and a proximal end side of the rigid member 211.
  • a bending portion 212 which is connected to the bending portion 212 and bendable, and a flexible tube portion 213 which is connected to the proximal end side of the bending portion 212 and has flexibility.
  • a light guide that transmits illumination light supplied from the light source device 6 and a plurality of signal cables that transmit various signals are routed inside the insertion portion 21.
  • a treatment tool insertion passage for inserting the treatment tool is formed.
  • the ultrasonic vibrator 7 may be any of a convex vibrator, a linear vibrator, and a radial vibrator.
  • the ultrasonic endoscope 2 may be one that mechanically scans the ultrasonic transducer 7, or a plurality of piezoelectric elements are provided in an array as the ultrasonic transducer 7, and the piezoelectric elements involved in transmission / reception are electronic For example, electronic scanning may be performed by switching automatically or delaying transmission / reception of each piezoelectric element. The configuration of the piezoelectric element will be described later.
  • the operation unit 22 is a part that is connected to the proximal end side of the insertion unit 21 and receives various operations from a doctor or the like. As shown in FIG. 1, the operation unit 22 includes a bending knob 221 for performing a bending operation on the bending unit 212 and a plurality of operation members 222 for performing various operations. In addition, the operation portion 22 is formed with a treatment instrument insertion port 223 that communicates with the treatment instrument insertion passage formed in the insertion portion 21 and allows the treatment instrument to be inserted into the treatment instrument insertion passage.
  • the universal cable 23 is a cable that extends from the operation unit 22 and includes a plurality of signal cables that transmit various signals, an optical fiber that transmits illumination light supplied from the light source device 6, and the like.
  • the connector 24 is provided at the tip of the universal cable 23.
  • the connector 24 includes first to third connector portions 241 to 243 to which the ultrasonic cable 31, the video cable 41, and the optical fiber cable 61 are connected.
  • the ultrasonic observation apparatus 3 is electrically connected to the ultrasonic endoscope 2 via the ultrasonic cable 31, and outputs a pulse signal to the ultrasonic endoscope 2 via the ultrasonic cable 31, and also within the ultrasonic wave An echo signal is input from the endoscope 2. Then, the ultrasonic observation device 3 performs a predetermined process on the echo signal to generate an ultrasonic image.
  • the endoscope observation apparatus 4 is electrically connected to the ultrasonic endoscope 2 via the video cable 41 and inputs an image signal from the ultrasonic endoscope 2 via the video cable 41. Then, the endoscope observation apparatus 4 performs a predetermined process on the image signal to generate an endoscope image.
  • the display device 5 is configured using liquid crystal, organic EL (Electro Luminescence), or the like, and an ultrasonic image generated by the ultrasonic observation device 3 or an endoscope image generated by the endoscope observation device 4. Etc. are displayed.
  • the light source device 6 is connected to the ultrasonic endoscope 2 via the optical fiber cable 61 and supplies illumination light for illuminating the inside of the subject to the ultrasonic endoscope 2 via the optical fiber cable 61.
  • FIG. 2 is a perspective view showing the ultrasonic transducer 7 according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a configuration of a main part of the ultrasonic transducer 7 according to the first embodiment.
  • FIG. 4 is a schematic diagram showing the configuration of the main part of the ultrasonic transducer 7 according to the first embodiment, which is a plan view in the direction of arrow A in FIG. 3, and is upside down from FIG. FIG. Note that FIG. 4 shows a configuration in which ten elements 70 including the piezoelectric elements 71 are arranged. However, for the sake of explanation, the configuration of the ultrasonic transducer 7 is simplified and actually arranged.
  • the ultrasonic transducer 7 is a convex ultrasonic transducer as shown in FIG. 2, and is a one-dimensional array (1D array) in which a plurality of piezoelectric elements 71 are arranged in a line. It will be explained as being. In other words, in the ultrasonic transducer 7 according to the first embodiment, the plurality of elements 70 are arranged along the outer surface forming the curved surface of the ultrasonic transducer 7.
  • the ultrasonic transducer 7 includes a plurality of piezoelectric elements 71 and a first acoustic matching layer 72 provided on the outer surface side of the ultrasonic transducer 7 with respect to the piezoelectric elements 71.
  • the second acoustic matching layer 73 provided on the side opposite to the side in contact with the piezoelectric element 71 of the first acoustic matching layer 72 and the side opposite to the side in contact with the first acoustic matching layer 72 of the second acoustic matching layer 73 are provided.
  • Output electrode a second electrode 77 provided on the main surface of the piezoelectric element 71 on the first acoustic matching layer 72 side, a first electrode 76, and a wiring pattern on an FPC (Flexible Printed Circuits) substrate 80 described later.
  • FPC Flexible Printed Circuits
  • the first acoustic matching layer 72 and the backing material 75 are provided for each piezoelectric element 71, and the second acoustic matching layer 73 and the acoustic lens 74 include the plurality of piezoelectric elements 71 and the first piezoelectric element 71.
  • the acoustic matching layer 72 is configured to be collectively covered.
  • the element 70 in the first embodiment is an output unit that outputs one ultrasonic pulse corresponding to a certain pulse signal, including the piezoelectric element 71, the backing material 75, the first electrode 76, and the second electrode 77.
  • one piezoelectric element 71 is described as an output unit.
  • a plurality of target elements are used.
  • One element is configured with the piezoelectric element 71 as an output unit.
  • the piezoelectric element 71 converts an electrical pulse signal into an ultrasonic pulse (acoustic pulse), irradiates the subject, and converts the ultrasonic echo reflected by the subject into an electrical echo signal that expresses the voltage change. Convert and output.
  • the piezoelectric element 71 is electrically connected to the FPC board 80 through the first electrode 76 by the conductive thin film 78.
  • the first electrode 76 and the second electrode 77 are formed using a conductive metal material or resin material.
  • the piezoelectric element 71 is formed using a PMN-PT single crystal, a PMN-PZT single crystal, a PZN-PT single crystal, a PIN-PZN-PT single crystal, or a relaxor material.
  • PMN-PT single crystal is an abbreviation for solid solution of magnesium lead niobate and lead titanate.
  • PMN-PZT single crystal is an abbreviation for solid solution of magnesium / lead niobate and lead zirconate titanate.
  • the PZN-PT single crystal is an abbreviation for a solid solution of zinc / lead niobate and lead titanate.
  • the PIN-PZN-PT single crystal is an abbreviation for a solid solution of indium / lead niobate, zinc / lead niobate and lead titanate.
  • the relaxor-based material is a general term for a three-component piezoelectric material in which lead-based composite perovskite, which is a relaxor material, is added to lead zirconate titanate (PZT) for the purpose of increasing the piezoelectric constant and dielectric constant.
  • the lead-based composite perovskite is represented by Pb (B1, B2) O 3 , B1 is any one of magnesium, zinc, indium, and scandium, and B2 is any one of niobium, tantalum, or tungsten. These materials have an excellent piezoelectric effect. For this reason, even if it reduces in size, the value of an electrical impedance can be made low and it is preferable from a viewpoint of impedance matching between thin film electrodes.
  • the first acoustic matching layer 72 and the second acoustic matching layer 73 have acoustic impedance between the piezoelectric element 71 and the observation target in order to efficiently transmit sound (ultrasonic waves) between the piezoelectric element 71 and the observation target.
  • the first acoustic matching layer 72 and the second acoustic matching layer 73 are made of different materials.
  • the first embodiment will be described as having two acoustic matching layers (the first acoustic matching layer 72 and the second acoustic matching layer 73). It is good also as three or more layers.
  • the acoustic matching layer may be an ultrasonic transducer that does not have the acoustic matching layer as long as the acoustic impedance with the observation target is matched.
  • the acoustic lens 74 is formed using polymethylpentene, epoxy resin, polyetherimide, or the like, and has a function of narrowing one surface to squeeze ultrasonic waves. Note that a material such as a silicone resin having a sound speed slower than that of the subject may be used, and the surface may be convex to converge the ultrasonic beam.
  • the acoustic lens 74 can also be arbitrarily provided, and the acoustic lens 74 may not be provided.
  • the backing material 75 attenuates unnecessary ultrasonic vibration generated by the operation of the piezoelectric element 71.
  • the backing material 75 is formed using a material having a large attenuation rate, for example, an epoxy resin in which a filler such as alumina or zirconia is dispersed, or a rubber in which the filler is dispersed.
  • the first electrode 76 is electrically connected to the FPC board 80 through the conductive thin film 78 described above.
  • the first electrode 76 is an electrode for inputting / outputting a signal to / from the piezoelectric element 71.
  • the second electrode 77 is formed on the first acoustic matching layer 72 and is electrically connected to a ground electrode 72a that is grounded to a ground potential.
  • the conductive thin film 78 forms an electrical conduction path between the first electrode 76 and the FPC board 80.
  • the conductive thin film 78 is a conductive thin film formed on the side surface of the piezoelectric element 71 by physical vapor deposition (PVD) such as sputtering and wet plating such as electrolytic plating.
  • PVD physical vapor deposition
  • the wiring pattern formed on the substrate 80 is electrically connected.
  • the conductive thin film 78 is formed by forming a plating film on a laminated film formed of any one of chromium / copper, chromium / gold, nickel-chromium / copper or chromium / copper / nickel.
  • the sealing portion 79 is formed using an insulating resin material, and includes a part of the backing material 75 and a part of the FPC substrate 80 and the conductive thin film 78 including a connection portion between the FPC substrate 80 and the conductive thin film 78. The outer surface of the part is sealed.
  • the FPC board 80 is a board in which a wiring pattern made of a conductive metal such as copper foil is formed on an insulating and flexible film-like base made of polyimide or the like.
  • the piezoelectric element 71 is vibrated by the input of the pulse signal, so that the ultrasonic transducer 7 is supervised by the first acoustic matching layer 72, the second acoustic matching layer 73, and the acoustic lens 74. Irradiate sound waves.
  • the vibration of the piezoelectric element 71 is attenuated by the backing material 75 on the side opposite to the arrangement side of the first acoustic matching layer 72, the second acoustic matching layer 73, and the acoustic lens 74, and the FPC board.
  • the vibration of the piezoelectric element 71 is not transmitted to 80 or the like.
  • the ultrasonic wave reflected from the observation target is transmitted to the piezoelectric element 71 via the first acoustic matching layer 72, the second acoustic matching layer 73, and the acoustic lens 74.
  • the piezoelectric element 71 is vibrated by the transmitted ultrasonic wave, and the piezoelectric element 71 converts the vibration into an electrical echo signal, and outputs it as an echo signal to the FPC board 80 via the conductive thin film 78.
  • FIGS. 5 to 10 are schematic views for explaining a method for manufacturing the ultrasonic transducer 7 according to the first embodiment.
  • a process for producing a molding member (molding member 700 described later) for forming the piezoelectric element 71, the backing material 75, the first electrode 76, and the second electrode 77 will be described.
  • the backing material base material 750 formed in this manner is laminated (see FIG. 5: laminated member manufacturing step). Part of the FPC board 80 is embedded and laminated on the backing material base material 750.
  • the masking material 90 may be any material that masks a part of the second thin film 770 and the FPC substrate 80 in a film formation region by a sputtering process described later. This prevents film formation on the second thin film 770 by sputtering.
  • a third thin film 781 is formed by sputtering using a material constituting a part of the conductive thin film 78 (see FIG. 7).
  • a gold (Au) film having a thickness of 300 nm is formed with a chromium (Cr) film having a thickness of 50 nm as a base, or a nickel chromium (NiCr) film having a thickness of 50 nm is formed with a 100 nm film as a base.
  • a conductive thin film having good adhesion can be formed by stacking copper (Cu) having a thickness and platinum (Pt) having a thickness of 400 nm.
  • 1000 nm silver (Ag) or 700 nm silver palladium (AgPd) may be formed by vapor deposition.
  • the third thin film 781, the first thin film 760 and the wiring pattern formed on the FPC board 80 can be electrically connected.
  • the masking material 90 is removed (see FIG. 8), and a plating film 782 is formed by electrolytic plating (see FIG. 9).
  • a laminated film (connecting member) constituting the conductive thin film 78 is formed by the third thin film 781 and the plating film 782 (connecting electrode member disposing step).
  • the plating film 782 is a material constituting a part of the conductive thin film 78 formed by a sulfamic acid bath or a pyrophosphoric acid bath, and nickel or copper is used.
  • the third thin film 781 is covered with the plating film 782 by the electrolytic plating process. In physical vapor deposition, since film stress is an issue, it has not been possible to increase the film thickness to reduce resistance.
  • the film stress when the film stress is strong, the film is peeled off by cutting with a precision cutting machine such as a dicing saw, and it is difficult to form a thick film.
  • the plating of nickel sulfamate or copper pyrophosphate can control the film stress and can form a thick film of 1 to 10 ⁇ m, and can secure the thickness of the conductive film necessary for wiring to the vibrator. That is, the plating film 782 can improve physical properties such as strength and electrical characteristics of the conductive thin film 78.
  • a laminated member is produced by the above treatment, and these treatments correspond to the laminated member production step of the present invention.
  • a sealing member 790 is provided on the surface of the backing material base material 750 where the FPC board 80 is embedded, and a contact portion between the FPC board 80 and the third thin film 781 is formed. A part of the FPC board 80, a part of the third thin film 781, and a part of the outer surface of the plating film 782 are sealed with a sealing member 790 (see FIG. 10: molding member manufacturing step).
  • the molding member 700 is produced by the above-described processing.
  • FIG. 11 is a schematic diagram for explaining a method of manufacturing the ultrasonic transducer 7 according to the first embodiment, and is a view seen from the FPC board 80 side of FIG.
  • the first acoustic matching layer base material 720 in which the second acoustic matching layer 73 is laminated is disposed on the second thin film 770 of the molding member 700 manufactured by the above-described processing, and the processing jig 101 is arranged. It is a top view which shows the state mounted in.
  • the first acoustic matching layer base material 720 is formed using the constituent material of the first acoustic matching layer 72.
  • the FPC board 80 is formed by using a conductive material for forming a wiring pattern, and extends from the solid part 81 to a foil-like solid part 81 that uniformly extends to a part of the surface of the FPC board 80.
  • a pattern portion 82 is formed in which a plurality of wirings 82a extend in accordance with the wiring pattern.
  • the solid portion 81 and the pattern portion 82 are formed using, for example, copper.
  • the third thin film 781 described above is in contact with the solid portion 81.
  • the FPC board 80 is positioned on the processing jig 101 by the positioning pins 91. At this time, the height of the end portion of the solid portion 81 that is connected to the pattern portion 82 is adjusted by a height adjusting member M (see FIG. 12) formed of machinable ceramics or the like. Here, the plane that passes through the surface of the FPC board 80 that is in contact with the height adjusting member M is adjusted to the height that passes through the first acoustic matching layer base material 720.
  • FIG. 12 is a schematic diagram for explaining a method of manufacturing the ultrasonic transducer 7 according to the first embodiment, and is a side view as seen from the arrangement direction of the wirings 82a of the pattern portion 82 in FIG.
  • the FPC board 80, the molding member 700 connected to the FPC board 80, and the molding member 700 are disposed on the processing jig 101, and the second acoustic matching layer 73 is laminated.
  • the dicing saw 100 is used to cut a part of the FPC board 80 including the solid portion 81, the molding member 700, and the first acoustic matching layer base material 720. Insert. Specifically, as shown in FIGS.
  • a blade of a precision cutting machine such as a dicing saw 100 is passed along a cutting path C1 that passes between the wirings 82a of the pattern portion 82 and extends in the longitudinal direction of the FPC board 80.
  • a part of the FPC board 80, the molding member 700, and the first acoustic matching layer base material 720 are cut and divided along the stacking direction of the molding member 700 (molding step).
  • the term “stacking direction” as used herein refers to a stacking direction of the piezoelectric element base material 710, the first thin film 760, the second thin film 770, and the backing material base material 750.
  • the dicing saw 100 divides the solid portion 81 according to each wiring 82a, and the piezoelectric element 71, the first acoustic matching layer 72, the backing material 75, the first electrode 76, the second electrode 77, the conductive thin film 78, and The sealing portion 79 is formed, and then the acoustic lens 74 is disposed, thereby obtaining the ultrasonic vibrator 7 shown in FIGS.
  • the piezoelectric element 71 is formed by dividing the piezoelectric element base material 710 by the dicing saw 100. At this time, the piezoelectric element 71 has a rectangular shape, and the length in the arrangement direction of the plurality of piezoelectric elements 71 in a plane perpendicular to the cut surface is w, which is a direction perpendicular to the arrangement direction.
  • the ratio represented by w / t is 0.3 to 0.7, so that the electro-mechanical conversion efficiency can be obtained with high efficiency. This is preferable in that it can be performed.
  • the forming member 700 includes the piezoelectric element base material 710, the backing material base material 750, the first thin film 760, the second thin film 770, and the third thin film 781.
  • a molding member 700 in which a part of the FPC board 80 including a contact portion between the FPC board 80 and the third thin film 781, a part of the third thin film 781, and a part of the plating film 782 are sealed with a sealing member 790 is provided.
  • the molding member 700 is cut along with the wiring 82a together with the FPC board 80 including the solid portion 81.
  • the piezoelectric element 71 and the FPC board 80 are electrically connected without using a bonding material that generates heat, such as solder, the characteristic deterioration of the piezoelectric element 71 is suppressed, and the dicing saw 100 or the like is interposed between the piezoelectric elements 71. Since the interval is about the thickness of the blade, a narrow pitch of the plurality of piezoelectric elements can be realized.
  • the piezoelectric elements 71 and the FPC board 80 are connected to each other only by dividing the solid portion 81 by cutting using the dicing saw 100, the piezoelectric elements 71 and wiring (for example, wiring 82a) need not be aligned with high accuracy, and can be easily manufactured even if the pitch between the piezoelectric elements 71 is fine. Therefore, it is possible to produce a high-quality ultrasonic transducer that requires a narrow pitch.
  • the relative positional relationship between the molding member 700 and the FPC board 80 may be fixed by filling wax or the like between the molding member 700 and the FPC board 80.
  • the forming member 700 has been described as including the piezoelectric element base material 710, the backing material base material 750, the first thin film 760, the second thin film 770, and the third thin film 781. However, it may further include a first acoustic matching layer base material 720 and the like.
  • FIG. 13 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to the first modification of the first embodiment.
  • the ultrasonic transducer 7 has been described as including only one backing material (backing material 75).
  • the ultrasonic transducer 7 includes two backing materials.
  • a wall portion 92 having a hollow prism shape is erected on the first acoustic matching layer 72, and a second backing is formed in the hollow space formed by the wall portion 92.
  • the ultrasonic vibrator 7a is manufactured by filling the material 75a.
  • the wall portion 92 surrounds a plurality of oscillation portions including the piezoelectric element 71, the backing material 75, the first electrode 76, the second electrode 77, the conductive thin film 78, and the sealing portion 79.
  • the second backing material 75a is provided in a hollow space formed by the wall portion 92 and the plurality of oscillation portions.
  • the second backing material 75a has an acoustic impedance smaller than that of the backing material 75 (first backing material).
  • the backing material 75 can hold the piezoelectric element 71 and can attenuate unnecessary vibrations with high efficiency, and the second backing material 75a can be used to adjoin adjacent piezoelectric elements. It is possible to prevent vibrations causing crosstalk from being transmitted to 71. For this reason, according to the first modification, it is possible to reduce the pulse width and suppress the crosstalk.
  • FIG. 14 is a schematic diagram showing a configuration of an ultrasonic transducer according to the second modification of the first embodiment.
  • the ultrasonic transducer 7 is described as including the first electrode 76 having a flat plate shape.
  • the ultrasonic transducer 7 b is electrically connected to the first electrode 76.
  • a thick portion 76 a is provided on the side in contact with the conductive thin film 78.
  • FIGS. 15 and 16 are schematic diagrams for explaining the production of the member for forming an ultrasonic transducer according to the second modification of the first embodiment.
  • the forming member of the ultrasonic transducer 7b according to the modified example 2 has a plurality of convex portions 761 on one main surface of the piezoelectric element base material 711 that become the thick portion 76a after the cutting process.
  • the first thin film 762 is formed using a member in which the second thin film 771 is formed on the other main surface. Specifically, as shown in FIG.
  • the base material for piezoelectric element is cut by cutting along the cutting path C2 passing through the convex portion 761.
  • a laminate for forming a molding member is obtained, which includes the material 710, the backing material base material 750, the second thin film 770, and the like.
  • the formation of the thick portion 76a increases the contact area between the first electrode 76 and the conductive thin film 78 as compared with the first electrode 76 that does not have the thick portion 76a.
  • the electrical connection can be further ensured.
  • FIG. 17 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to the third modification of the first embodiment.
  • the ultrasonic transducer 7b has been described as including the first electrode 76 having the thick portion 76a.
  • the ultrasonic transducer 7c is disposed on the opposite side surface. An exposed first electrode 76b and second electrode 77a are provided.
  • the first electrode 76b has a thick portion 76a on the side where the conductive thin film 78 is disposed, and is exposed to the outside on the side where the conductive thin film 78 is disposed, connected to the side surface of the piezoelectric element 71, and The side of the piezoelectric element 71 opposite to the side in contact with the conductive thin film 78 is retracted. Further, the second electrode 77a is exposed to the outside on the side opposite to the side where the conductive thin film 78 is disposed and is connected to the side surface of the piezoelectric element 71, and the piezoelectric element 71 on the side where the conductive thin film 78 is disposed. Evacuated to the side of the.
  • FIG. 18 is a schematic diagram for explaining the production of the member for forming an ultrasonic transducer according to the third modification of the first embodiment.
  • the forming member of the ultrasonic transducer 7c according to the modified example 3 includes a plurality of protrusions 763 that are thick portions 76a formed on one main surface of the piezoelectric element base material 711.
  • the first thin film 764 is formed, and a member in which a plurality of second thin films 772 are formed on the other main surface is used.
  • the first thin film 764 and the second thin film 772 are arranged in a staggered manner as viewed from the thickness direction of the piezoelectric element base material 711, and a space (gap) between the second thin films 772 is located at a position facing the convex portion 763.
  • a laminate for forming a molding member is formed by cutting along the cutting path C ⁇ b> 3 passing through the convex portion 763. obtain.
  • FIG. 19 is a schematic diagram illustrating a configuration of a main part of the ultrasonic transducer according to the fourth modification of the first embodiment.
  • the ultrasonic transducer 7 has been described on the assumption that the slit formed by cutting has a uniform width.
  • the slit is formed on the FPC board 80 side. It may be substantially V-shaped so that the width increases.
  • the groove width on the FPC board 80 side is widened so that the second backing material is cast after the cut laminate is curved when a convex vibrator or a radial vibrator is manufactured. It becomes easy to work.
  • FIG. 20 is a schematic diagram illustrating a configuration of a main part of the ultrasonic transducer according to the fifth modification of the first embodiment.
  • the ultrasonic transducer 7 has been described as having slits formed by cutting having a uniform width.
  • the slits are formed on the FPC board 80 side. It may be a stepped shape whose width increases toward the surface.
  • FIG. 21 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to Modification 6 of Embodiment 1, and is a diagram illustrating a configuration of a molding member.
  • the backing material 75 has been described as having a prismatic shape, but the outer edge of the surface on the side that holds the FPC board 80 is different from the ultrasonic transducer 7d according to Modification 6 of the present invention. It may be a chamfered backing material 75b. Damage to the conductive thin film 78 can be suppressed by this chamfering.
  • FIG. 22 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to Modification Example 7 of Embodiment 1, and is a diagram illustrating a configuration of a molding member.
  • the backing material 75 has been described as having a prismatic shape. However, like the ultrasonic transducer 7e according to the seventh modification, the width is increased toward the side that holds the FPC board 80.
  • the backing material 75c may have a trapezoidal shape when viewed from the side.
  • FIG. 23 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to Modification 8 of Embodiment 1, and is a diagram illustrating a configuration of a molding member.
  • the backing material 75 has been described as having a prismatic shape. However, like the ultrasonic transducer 7f according to Modification Example 7, the surface on the side that holds the FPC board 80 has a curved surface. The backing material 75d formed may be used.
  • FIG. 24 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to the ninth modification of the first embodiment.
  • the FPC board 80 is embedded in the backing material 75 and connected to the first electrode 76 by the conductive thin film 78.
  • the FPC board 80 may be disposed on the side surface of the backing material 75 so that the first electrode 76 and the solid portion 81 after the division of the FPC board 80 are directly connected.
  • a sealing portion 79 a is formed at a connection portion between the first electrode 76 and the FPC board 80.
  • FIG. 25 is a diagram illustrating a method for manufacturing the ultrasonic transducer according to the tenth modification of the first embodiment.
  • FIG. 26 is a schematic diagram illustrating a configuration of an ultrasonic transducer according to the tenth modification of the first embodiment.
  • the 1D array has been described as an example.
  • the scanning direction of the ultrasonic transducer (the arrangement direction of the piezoelectric elements in the 1D array, and the piezoelectric element arrangement obtained by dividing the molding member 700)
  • the present invention can also be applied to a 1.25D array, a 1.5D array, a 1.75D array, or the like in which a plurality of piezoelectric elements (oscillators) are arranged in a direction (elevation direction) substantially orthogonal to (direction).
  • a plurality of piezoelectric elements (oscillators) are arranged in a direction along the spherical surface along the arrangement direction of the piezoelectric elements and perpendicular to the scanning direction.
  • the first molding member 701 that connects three molding members as described above, for example, different FPC boards 80a to 80c
  • the second molding member 702 and the third molding member 703 are provided, arranged in the moving direction of the dicing saw 100, and then divided along the cutting path C4 using the dicing saw 100, as shown in FIG.
  • a 1.25D array ultrasonic transducer 7h having such elements 70a to 70c can be manufactured.
  • the ultrasonic transducer 7h of the 1.25D array shown in FIG. 26 is erected by a dicing saw 100 after a wall portion serving as a weir when casting a backing material as shown in Modification 1 (see FIG. 13) is erected.
  • a space between the divided grooves and walls may be cast with a liquid backing material, and the backing material may be solidified to form an ultrasonic transducer of a 1.25D array.
  • the liquid backing material include a liquid material in which alumina (Al 2 O 3 ), zirconia (ZrO 2 ) or the like is mixed as a filler with a flexible epoxy resin or silicone resin after curing. The same applies to ultrasonic transducers such as 1.5D arrays and 1.75D arrays.
  • FIG. 27 is a schematic diagram showing the configuration of the ultrasonic transducer according to the second embodiment.
  • the second electrode 77 is described as being connected to the ground electrode 72a provided on the first acoustic matching layer 72.
  • the second electrode 77 is an FPC board. It is electrically connected to the ground pattern 83 formed in 80.
  • the ultrasonic transducer 7 i is provided on the surface opposite to the connection surface of the conductive thin film 78 of the FPC substrate 80 with respect to the ultrasonic transducer 7 described above.
  • a second conductive thin film 78 a that connects the ground pattern 83 and the second electrode 77 is provided.
  • the first acoustic matching layer 72 does not have the ground electrode 72a.
  • FIGS. 28 to 32 are schematic diagrams for explaining the method of manufacturing the ultrasonic transducer according to the second embodiment.
  • production of a molding member for forming the piezoelectric element 71, the backing material 75, the first electrode 76, the second electrode 77, the conductive thin film 78 (first conductive thin film) and the second conductive thin film 78a is described. explain.
  • the first thin film 760 and the second thin film 770 are formed on the opposing main surfaces of the piezoelectric element base material 710, respectively, the first thin film 760 is opposite to the piezoelectric element base material 710 side. Is provided with a backing material base material 750 (see FIG. 5).
  • a masking material 93 that covers the second thin film 770 and a part of the FPC substrate 80, and a thin film formation prevention that prevents the formation of the thin film by sputtering on the surface of the first thin film 760 opposite to the surface where the conductive thin film 78 is formed.
  • a member 765 is disposed (see FIG. 28).
  • a fourth thin film 783 is formed by sputtering using a laminated film material that is one constituent material of the conductive thin film 78 and the second conductive thin film 78a (see FIG. 29).
  • the fourth thin film 783 connects the first thin film 760 and the wiring pattern formed on the FPC board 80,
  • the second thin film 770 and the fifth thin film 784 connecting the ground pattern formed on the FPC board 80 are divided.
  • a plating film 782 that covers the third thin film 781 and a second plating film 785 that covers the fifth thin film 784 are formed by electrolytic plating (see FIG. 31).
  • a sealing member 791 is provided on the surface of the backing material base material 750 where the FPC board 80 is embedded, and the FPC board 80 and the third A part of the FPC substrate 80 including each contact portion with the thin film 781 and the fifth thin film 784, a part of the third thin film 781 and the fifth thin film 784, and a part of the plating film 782 and the second plating film 785 are sealed. It seals with the member 791 for use (refer FIG. 32).
  • the forming member 700A is manufactured by the above-described processing.
  • the first acoustic matching layer base material 720 in which the second acoustic matching layer 73 is laminated is disposed on the second thin film 770 of the molding member 700A, and the processing jig 101 is provided with the first acoustic matching layer base material 720.
  • the dicing saw 100 By placing and moving the dicing saw 100 along the cutting path C1 (see FIGS. 11 and 12) extending in the longitudinal direction of the FPC board 80, a part of the FPC board 80, the molding member 700A, and The first acoustic matching layer base material 720 is cut.
  • the dicing saw 100 cuts the solid portion 81 and the ground pattern 83 according to each wiring 82a, and at the same time, the piezoelectric element 71, the first acoustic matching layer 72, the backing material 75, the first electrode 76, the second electrode 77, the conductive 27 is obtained by forming the conductive thin film 78, the second conductive thin film 78a, and the sealing portion 79b, and then disposing the acoustic lens 74.
  • a second sealing portion 76c formed by a thin film formation preventing member 765 is formed on the second conductive thin film 78a side of the first electrode 76, and the gap between the first electrode 76 and the second conductive thin film 78a is formed. Insulated.
  • the piezoelectric element base material 710, the backing material base material 750, the first thin film 760, the second thin film 770, the fifth thin film 784, and the second plating film 785 are formed.
  • the piezoelectric element 71 and the FPC board 80 are electrically connected without using a bonding material that generates heat, such as solder, the characteristic deterioration of the piezoelectric element 71 is suppressed, and the dicing saw 100 or the like is interposed between the piezoelectric elements 71. Since the interval is about the thickness of the blade, a narrow pitch of the plurality of piezoelectric elements can be realized.
  • the first electrode 76b is formed by the backing material 75 (backing material base material 750). Since the side opposite to the side in contact with the conductive thin film 78 is not exposed to the outside, the thin film formation preventing member 765 is not necessary, and an ultrasonic vibrator with a reduced number of parts can be manufactured.
  • the ultrasonic transducer, the ultrasonic probe, and the ultrasonic transducer manufacturing method according to the present invention suppress the deterioration of the characteristics of the piezoelectric elements and realize a narrow pitch of the plurality of piezoelectric elements. Useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本発明に係る超音波振動子は、複数の圧電素子と、圧電素子に対して電気信号を入出力する基板と、圧電素子と前記基板との間に設けられ、電気的に接続する複数の信号入出力用電極と、複数の圧電素子の前記信号入出力用電極が配設される側に設けられ、該複数の圧電素子の動作によって発せられる力を減衰させる複数のバッキング材と、基板と信号入出力用電極とを接続する電気的な経路の少なくとも一部の外表面を封止する複数の封止部と、を備え、複数の圧電素子、複数のバッキング材、基板の一部、複数の信号入出力用電極および複数の封止部は、それぞれを構成する複数の材料を積層して形成される成形用部材を、該積層方向に沿って分割してなる。

Description

超音波振動子、超音波プローブおよび超音波振動子の製造方法
 本発明は、超音波を観測対象へ出射するとともに、観測対象で反射された超音波エコーを受信してエコー信号に変換して出力する超音波振動子、超音波プローブおよび超音波振動子の製造方法に関する。
 観測対象である生体組織または材料の特性を観測するために、超音波を適用することがある。具体的には、超音波振動子が、観測対象に超音波を送信し、その観測対象によって反射された超音波エコーを受信し、超音波観測装置が、受信した超音波エコーに対して所定の信号処理を施すことにより、観測対象の特性に関する情報を取得することができる。
 超音波振動子は、電気的なパルス信号を超音波パルス(音響パルス)に変換して観測対象へ照射するとともに、観測対象で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する複数の圧電素子を備える(例えば、特許文献1を参照)。例えば、複数の圧電素子をアレイ状に設け、送受信にかかわる素子を電子的に切り替えたり、各超音波振動子の圧電体の送受信に遅延をかけたりすることで、観測対象から超音波エコーを取得する。
 ところで、各圧電素子は、パルス信号の送信およびエコー信号の受信を行う回路基板と配線により電気的に接続している。圧電素子と配線とは、例えばはんだにより接続されるが、はんだ付けの際の熱により、圧電素子の特性が消極等の劣化を生じるおそれがあった。
 圧電素子の消極を抑制する技術として、圧電素子を構成する母材の側面に、回路基板と電気的に接続するための導電性の薄膜を形成し、薄膜形成後に母材を分割することで、はんだ付けを行わずに、複数の圧電素子と回路基板とを電気的に接続することが可能な技術が開示されている(例えば、特許文献2を参照)。
特開2002-224104号公報 特開2007-201901号公報
 近年、例えば、被検体内に挿入され、該被検体内の観察を行なう内視鏡に超音波振動子を実装する場合など、超音波振動子の小型化が求められている。超音波振動子を小型化する場合は、複数の圧電素子のピッチを狭くすることが望ましいが、特許文献2が開示する技術では、母材を狭ピッチで分割する際に生じる応力などにより母材(圧電素子)から薄膜が剥がれてしまう場合があった。
 本発明は、上記に鑑みてなされたものであって、圧電素子の特性劣化を抑制するとともに、複数の圧電素子の狭ピッチ化を実現することができる超音波振動子、超音波プローブおよび超音波振動子の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波振動子は、電気信号の入力に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する複数の圧電素子と、各圧電素子に対して電気信号を入出力する基板と、前記圧電素子と前記基板との間に設けられ、電気的に接続する複数の信号入出力用電極と、前記複数の圧電素子の前記信号入出力用電極が配設される側に設けられ、該複数の圧電素子の動作によって発せられる超音波振動を減衰させる複数のバッキング材と、前記基板と前記信号入出力用電極とを接続する電気的な経路の少なくとも一部の外表面を封止する複数の封止部と、を備え、前記複数の圧電素子、前記複数のバッキング材、前記基板の一部、前記複数の信号入出力用電極および前記複数の封止部は、当該圧電素子、当該バッキング材、当該基板、当該信号入出力用電極および当該封止部をそれぞれ構成する複数の材料を積層して形成される成形用部材を、該積層方向に沿って分割してなることを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記圧電素子、前記バッキング材、前記信号入出力用電極、および前記封止部を少なくとも有する複数の発振部を取り囲む壁部と、前記壁部と前記複数の発振部とが形成する中空空間に設けられ、前記超音波振動を減衰させる第2のバッキング材と、をさらに備えたことを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記信号入出力用電極は、前記電気的な経路の一部をなす肉厚部を有することを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記基板および前記信号入出力用電極にそれぞれ接続し、前記電気的な経路を形成する接続電極を備えたことを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記基板の一部は、前記バッキング材に保持され、前記接続電極は、前記バッキング材の側面を介して前記基板に接続することを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記接続電極は、物理蒸着法により形成された薄膜と、湿式めっきにより形成されためっき皮膜と、からなることを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記基板の一部は、前記バッキング材に埋設されていることを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記基板の一部は、前記バッキング材の側面に沿って設けられることを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記信号入出力用電極と対をなす第2の電極と、前記圧電素子の前記バッキング材が配設される側と反対側に設けられ、前記超音波の音響インピーダンスを調整する音響整合層と、をさらに備え、前記第2の電極は、前記音響整合層と前記圧電素子との間に設けられた導電性樹脂を介してグラウンド電位に接地されることを特徴とする。
 また、本発明に係る超音波振動子は、上記発明において、前記複数の圧電素子は、前記成形用部材を分割してなる走査方向と、該走査方向と略直交するエレベーション方向と、に配列されることを特徴とする。
 また、本発明に係る超音波プローブは、上記の発明に係る超音波振動子を先端に備えたことを特徴とする。
 また、本発明に係る超音波振動子の製造方法は、電気信号の入力に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する複数の圧電素子、各圧電素子に対して電気信号を入出力する基板の一部、前記圧電素子と前記基板との間に設けられ、電気的に接続する複数の信号入出力用電極、および前記複数の圧電素子の前記信号入出力用電極が配設される側に設けられ、該複数の圧電素子の動作によって発せられる超音波振動を減衰させる複数のバッキング材をそれぞれ構成する複数の材料を積層して積層部材を作製する積層部材作製工程と、前記積層部材に対して、前記基板と前記信号入出力用電極とを接続する電気的な経路の少なくとも一部の外表面を封止することにより成形用部材を作製する成形用部材作製工程と、前記成形用部材作製工程で作製された前記成形用部材を、該成形用部材の積層方向に沿って分割することにより、前記圧電素子、前記バッキング材、前記基板の一部、前記信号入出力用電極および前記封止部を成形する成形工程と、を含むことを特徴とする。
 また、本発明に係る超音波振動子の製造方法は、上記発明において、前記積層部材作製工程は、前記基板および前記信号入出力用電極にそれぞれ接続し、前記電気的な経路を形成する接続電極を成形するための接続電極用部材を配設する接続電極用部材配設工程を含むことを特徴とする。
 また、本発明に係る超音波振動子の製造方法は、上記発明において、前記接続電極用部材配設工程は、物理蒸着法によって、前記電気的な経路に応じた外表面に薄膜を形成する第1工程と、湿式めっきにより前記薄膜の外表面にめっき皮膜を形成する第2工程と、を含むことを特徴とする。
 また、本発明に係る超音波振動子の製造方法は、上記発明において、前記成形用部材は、前記圧電素子、前記信号入出力用電極、前記バッキング材の順に各々を構成する材料が積層され、前記バッキング材に前記基板が保持されてなり、前記成形工程は、前記圧電素子から前記基板に向けて分割により形成される隣接部材との距離が大きくなるように、前記成形用部材を切削することを特徴とする。
 本発明によれば、超音波振動子において、製造時の圧電素子の特性劣化を抑制するとともに、複数の圧電素子の狭ピッチ化を実現することができるという効果を奏する。
図1は、本発明の実施の形態1に係る内視鏡システムを模式的に示す図である。 図2は、本発明の実施の形態1に係る超音波振動子を示す斜視図である。 図3は、本発明の実施の形態1に係る超音波振動子の要部の構成を示す模式図である。 図4は、本発明の実施の形態1に係る超音波振動子の要部の構成を示す模式図である。 図5は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図6は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図7は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図8は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図9は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図10は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図11は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図12は、本発明の実施の形態1に係る超音波振動子の製造方法を説明する模式図である。 図13は、本発明の実施の形態1の変形例1に係る超音波振動子の構成を示す模式図である。 図14は、本発明の実施の形態1の変形例2に係る超音波振動子の構成を示す模式図である。 図15は、本発明の実施の形態1の変形例2に係る超音波振動子の成形用部材の作製を説明する模式図である。 図16は、本発明の実施の形態1の変形例2に係る超音波振動子の成形用部材の作製を説明する模式図である。 図17は、本発明の実施の形態1の変形例3に係る超音波振動子の構成を示す模式図である。 図18は、本発明の実施の形態1の変形例3に係る超音波振動子の成形用部材の作製を説明する模式図である。 図19は、本発明の実施の形態1の変形例4に係る超音波振動子の要部の構成を示す模式図である。 図20は、本発明の実施の形態1の変形例5に係る超音波振動子の要部の構成を示す模式図である。 図21は、本発明の実施の形態1の変形例6に係る超音波振動子の構成を示す模式図である。 図22は、本発明の実施の形態1の変形例7に係る超音波振動子の構成を示す模式図である。 図23は、本発明の実施の形態1の変形例8に係る超音波振動子の構成を示す模式図である。 図24は、本発明の実施の形態1の変形例9に係る超音波振動子の構成を示す模式図である。 図25は、本発明の実施の形態1の変形例10に係る超音波振動子の製造方法を説明する図である。 図26は、本発明の実施の形態1の変形例10に係る超音波振動子の構成を示す模式図である。 図27は、本発明の実施の形態2に係る超音波振動子の構成を示す模式図である。 図28は、本発明の実施の形態2に係る超音波振動子の製造方法を説明する模式図である。 図29は、本発明の実施の形態2に係る超音波振動子の製造方法を説明する模式図である。 図30は、本発明の実施の形態2に係る超音波振動子の製造方法を説明する模式図である。 図31は、本発明の実施の形態2に係る超音波振動子の製造方法を説明する模式図である。 図32は、本発明の実施の形態2に係る超音波振動子の製造方法を説明する模式図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。
(実施の形態1)
 図1は、本発明の実施の形態1に係る内視鏡システム1を模式的に示す図である。内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5と、光源装置6とを備える。
 超音波内視鏡2は、その先端部に、超音波観測装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する。
 超音波内視鏡2は、通常は撮像光学系および撮像素子を有しており、被検体の消化管(食道、胃、十二指腸、大腸)、または呼吸器(気管、気管支)へ挿入され、消化管や呼吸器、その周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を撮像することが可能である。また、超音波内視鏡2は、撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置6に接続されている。
 超音波内視鏡2は、図1に示すように、挿入部21と、操作部22と、ユニバーサルケーブル23と、コネクタ24とを備える。挿入部21は、被検体内に挿入される部分である。この挿入部21は、図1に示すように、先端側に設けられる超音波振動子7と、超音波振動子7の基端側に連結される硬性部材211と、硬性部材211の基端側に連結され湾曲可能とする湾曲部212と、湾曲部212の基端側に連結され可撓性を有する可撓管部213とを備える。ここで、挿入部21の内部には、具体的な図示は省略したが、光源装置6から供給された照明光を伝送するライトガイド、各種信号を伝送する複数の信号ケーブルが引き回されているとともに、処置具を挿通するための処理具用挿通路が形成されている。
 超音波振動子7は、コンベックス振動子、リニア振動子およびラジアル振動子のいずれでも構わない。超音波内視鏡2は、超音波振動子7をメカ的に走査させるものであってもよいし、超音波振動子7として複数の圧電素子をアレイ状に設け、送受信にかかわる圧電素子を電子的に切り替えたり、各圧電素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。圧電素子の構成については、後述する。
 操作部22は、挿入部21の基端側に連結され、医師等からの各種操作を受け付ける部分である。この操作部22は、図1に示すように、湾曲部212を湾曲操作するための湾曲ノブ221と、各種操作を行うための複数の操作部材222とを備える。また、操作部22には、挿入部21内に形成された処置具用挿通路に連通し、当該処置具用挿通路に処置具を挿通するための処置具挿入口223が形成されている。
 ユニバーサルケーブル23は、操作部22から延在し、各種信号を伝送する複数の信号ケーブル、および光源装置6から供給された照明光を伝送する光ファイバ等が配設されたケーブルである。
 コネクタ24は、ユニバーサルケーブル23の先端に設けられている。そして、コネクタ24は、超音波ケーブル31、ビデオケーブル41、および光ファイバケーブル61がそれぞれ接続される第1~第3コネクタ部241~243を備える。
 超音波観測装置3は、超音波ケーブル31を介して超音波内視鏡2に電気的に接続し、超音波ケーブル31を介して超音波内視鏡2にパルス信号を出力するとともに超音波内視鏡2からエコー信号を入力する。そして、超音波観測装置3は、当該エコー信号に所定の処理を施して超音波画像を生成する。
 内視鏡観察装置4は、ビデオケーブル41を介して超音波内視鏡2に電気的に接続し、ビデオケーブル41を介して超音波内視鏡2からの画像信号を入力する。そして、内視鏡観察装置4は、当該画像信号に所定の処理を施して内視鏡画像を生成する。
 表示装置5は、液晶または有機EL(Electro Luminescence)などを用いて構成され、超音波観測装置3にて生成された超音波画像や、内視鏡観察装置4にて生成された内視鏡画像等を表示する。
 光源装置6は、光ファイバケーブル61を介して超音波内視鏡2に接続し、光ファイバケーブル61を介して被検体内を照明する照明光を超音波内視鏡2に供給する。
 続いて、超音波振動子7の構成を図2~4を参照して説明する。図2は、本実施の形態1に係る超音波振動子7を示す斜視図である。図3は、本実施の形態1に係る超音波振動子7の要部の構成を示す模式図である。図4は、本実施の形態1に係る超音波振動子7の要部の構成を示す模式図であって、図3の矢視A方向の平面図であり、図3とは上下を反転した図である。なお、図4では、圧電素子71を含むエレメント70が10個並んでいるものを図示しているが、説明のために超音波振動子7の構成を簡略化した図であり、実際に配設される個数はこの限りではない。本実施の形態1では、超音波振動子7が、図2に示すようなコンベックス型の超音波振動子であって、複数の圧電素子71が一列に配列された一次元アレイ(1Dアレイ)であるものとして説明する。換言すれば、本実施の形態1に係る超音波振動子7では、複数のエレメント70が、当該超音波振動子7の曲面をなす外表面に沿って配置されている。
 超音波振動子7は、図3,4に示すように、複数の圧電素子71と、圧電素子71に対して、当該超音波振動子7の外表面側に設けられる第1音響整合層72と、第1音響整合層72の圧電素子71と接する側と反対側に設けられる第2音響整合層73と、第2音響整合層73の第1音響整合層72と接する側と反対側に設けられる音響レンズ74と、圧電素子71の第1音響整合層72と接する側と反対側に設けられるバッキング材75と、圧電素子71のバッキング材75側の主面に設けられる第1電極76(信号入出力用電極)と、圧電素子71の第1音響整合層72側の主面に設けられる第2電極77と、第1電極76と後述するFPC(Flexible Printed Circuits)基板80上の配線パターンとを電気的に接続する導電性薄膜78(接続電極)と、導電性薄膜78およびFPC基板80の接続部分を封止する封止部79と、各圧電素子71に対して電気信号を入出力するFPC基板80と、を有する。なお、本実施の形態1では、第1音響整合層72およびバッキング材75が、圧電素子71ごとに設けられるとともに、第2音響整合層73および音響レンズ74が、複数の圧電素子71および第1音響整合層72を一括して覆う構成をなしている。本実施の形態1におけるエレメント70とは、圧電素子71、バッキング材75、第1電極76および第2電極77を含み、あるパルス信号に応じた一つの超音波パルスを出力する出力単位のことをいう。本実施の形態1では、一つの圧電素子71を出力単位として説明するが、FPC基板80に形成されている配線パターンにより複数の圧電素子71から同時に超音波を出射する場合は、対象となる複数の圧電素子71を出力単位として一つのエレメントを構成する。
 圧電素子71は、電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する。
 圧電素子71は、導電性薄膜78により第1電極76を介してFPC基板80と電気的に接続している。第1電極76および第2電極77は、導電性を有する金属材料または樹脂材料を用いて形成される。
 圧電素子71は、PMN-PT単結晶、PMN-PZT単結晶、PZN-PT単結晶、PIN-PZN-PT単結晶またはリラクサー系材料を用いて形成される。PMN-PT単結晶は、マグネシウム・ニオブ酸鉛およびチタン酸鉛の固溶体の略称である。PMN-PZT単結晶は、マグネシウム・ニオブ酸鉛およびチタン酸ジルコン酸鉛の固溶体の略称である。PZN-PT単結晶は、亜鉛・ニオブ酸鉛およびチタン酸鉛の固溶体の略称である。PIN-PZN-PT単結晶は、インジウム・ニオブ酸鉛、亜鉛・ニオブ酸鉛およびチタン酸鉛の固溶体の略称である。リラクサー系材料は、圧電定数や誘電率を増加させる目的でリラクサー材料である鉛系複合ペロブスカイトをチタン酸ジルコン酸鉛(PZT)に添加した三成分系圧電材料の総称である。鉛系複合ペロブスカイトは、Pb(B1、B2)Oで表され、B1はマグネシウム、亜鉛、インジウムまたはスカンジウムのいずれかであり、B2はニオブ、タンタルまたはタングステンのいずれかである。これらの材料は、優れた圧電効果を有している。このため、小型化しても電気的なインピーダンスの値を低くすることができ、薄膜電極との間のインピーダンスマッチングの観点から好ましい。
 第1音響整合層72および第2音響整合層73は、圧電素子71と観測対象との間で音(超音波)を効率よく透過させるために、圧電素子71と観測対象との間の音響インピーダンスをマッチングさせる。第1音響整合層72および第2音響整合層73は、互いに異なる材料からなる。なお、本実施の形態1では、二つの音響整合層(第1音響整合層72および第2音響整合層73)を有するものとして説明するが、圧電素子71と観測対象との特性により一層としてもよいし、三層以上としてもよい。また、音響整合層は、観測対象との音響インピーダンスの整合が取れていれば、該音響整合層を有しない超音波振動子であってもよい。
 音響レンズ74は、ポリメチルペンテンや、エポキシ樹脂、ポリエーテルイミドなどを用いて形成され、一方の面が凹状をなして超音波を絞る機能を有する。なお、シリコーン樹脂のように音速が被検体より遅い材料を用い、表面が凸状をなして超音波ビームを収束させるものであってもよい。音響レンズ74についても、任意に設けることができ、当該音響レンズ74を有しない構成であってもよい。
 バッキング材75は、圧電素子71の動作によって生じる不要な超音波振動を減衰させる。バッキング材75は、減衰率の大きい材料、例えば、アルミナやジルコニア等のフィラーを分散させたエポキシ樹脂や、上述したフィラーを分散したゴムを用いて形成される。
 第1電極76は、上述した導電性薄膜78を介してFPC基板80と電気的に接続している。第1電極76は、圧電素子71への信号の入出力を行うための電極である。
 第2電極77は、第1音響整合層72に形成され、グラウンド電位に接地されたグラウンド電極72aと電気的に接続されている。
 導電性薄膜78は、第1電極76とFPC基板80との間の電気的な導通経路を形成する。導電性薄膜78は、スパッタなどの物理蒸着法(Physical Vapor Deposition:PVD)、および電解めっきなどの湿式めっきにより圧電素子71の側面に形成される導電性の薄膜であり、第1電極76とFPC基板80上に形成された配線パターンとを電気的に接続する。導電性薄膜78は、クロム/銅、クロム/金、ニッケル-クロム/銅またはクロム/銅/ニッケルのいずれかにより形成される積層膜上に、めっき皮膜が形成されてなる。
 封止部79は、絶縁性を有する樹脂材料を用いて形成され、バッキング材75の一部、ならびにFPC基板80と導電性薄膜78との接続部分を含むFPC基板80および導電性薄膜78の一部の外表面を封止する。
 FPC基板80は、ポリイミド等により形成された絶縁性および屈曲性を有するフィルム状の基材上に、銅箔等の導電性金属により形成された配線パターンが形成された基板である。
 以上の構成を有する超音波振動子7は、パルス信号の入力によって圧電素子71が振動することで、第1音響整合層72、第2音響整合層73および音響レンズ74を介して観測対象に超音波を照射する。この際、圧電素子71において、第1音響整合層72、第2音響整合層73および音響レンズ74の配設側の反対側は、バッキング材75により、圧電素子71の振動が減衰され、FPC基板80などには圧電素子71の振動は伝わらないようになっている。また、観測対象から反射された超音波は、第1音響整合層72、第2音響整合層73および音響レンズ74を介して圧電素子71に伝えられる。伝達された超音波により圧電素子71が振動し、圧電素子71が該振動を電気的なエコー信号に変換して、エコー信号として導電性薄膜78を介してFPC基板80に出力する。
 次に、超音波振動子7の製造方法について、図5~12を参照して説明する。図5~10は、本実施の形態1に係る超音波振動子7の製造方法を説明する模式図である。まず、圧電素子71、バッキング材75、第1電極76および第2電極77を形成するための成形用部材(後述する成形用部材700)を作製する処理について説明する。
 圧電素子71を構成する材料を用いて形成された長方体状の圧電素子用母材710の対向する主面に、第1電極76を構成する材料を用いて形成された第1薄膜760、および第2電極77を構成する材料を用いて形成された第2薄膜770をそれぞれ積層した後、第1薄膜760の圧電素子用母材710側と反対側にバッキング材75を構成する材料を用いて形成されたバッキング材用母材750を積層する(図5参照:積層部材作製工程)。バッキング材用母材750には、FPC基板80の一部が埋め込まれて積層されている。
 その後、第2薄膜770およびFPC基板80の一部を被覆するマスキング材90を配設する(図6参照)。マスキング材90は、後述するスパッタ処理による成膜領域において、第2薄膜770およびFPC基板80の一部をマスクするものであればよい。これにより、スパッタ処理による第2薄膜770への成膜を防止する。
 マスキング材90の配設後、導電性薄膜78の一部を構成する材料を用いたスパッタ処理により、第3薄膜781を形成する(図7参照)。ここで、第3薄膜781としては50nmの厚さのクロム(Cr)を下地に300nmの厚さの金(Au)を形成したり、50nmの厚さのニッケルクロム(NiCr)を下地に100nmの厚さの銅(Cu)、そして400nmの厚さの白金(Pt)を積層して、密着力が良好な導電性薄膜を形成したりすることができる。スパッタ以外の成膜方法としては、蒸着により1000nmの銀(Ag)や、700nmの銀パラジウム(AgPd)を成膜して形成してもよい。第3薄膜781の形成により、第1薄膜760とFPC基板80上に形成された配線パターンとが電気的に接続可能となる。
 第3薄膜781を形成後、マスキング材90を除去し(図8参照)、電解めっき処理によりめっき皮膜782を形成する(図9参照)。第3薄膜781およびめっき皮膜782により導電性薄膜78を構成する積層膜(接続用部材)が形成される(接続電極用部材配設工程)。めっき皮膜782としては、スルファミン酸浴やピロリン酸浴により形成された導電性薄膜78の一部を構成する材料であってニッケルや銅が用いられる。電解めっき処理により、第3薄膜781がめっき皮膜782に覆われた状態となる。物理蒸着では、膜応力が課題となるため、抵抗を下げるための厚膜化ができなかった。より具体的には、膜応力が強いとダイシングソーなどの精密裁断機による切断時に剥離してしまい、厚膜形成が困難であった。一方で、スルファミン酸ニッケルやピロリン酸銅のメッキは膜応力の制御が可能で1~10μmの厚膜形成が可能であり、振動子への配線として必要な導電性皮膜の厚さを確保できる。つまり、めっき皮膜782により導電性薄膜78の強度などの物理的特性や電気的特性を向上させることが可能となる。以上の処理によって積層部材が作製され、これらの処理が、本発明の積層部材作製工程に相当する。
 めっき皮膜782を形成後、バッキング材用母材750の表面であって、FPC基板80が埋設された表面に封止用部材790を設けて、FPC基板80と第3薄膜781との接触部分を含むFPC基板80の一部、第3薄膜781の一部およびめっき皮膜782の一部の外表面を封止用部材790により封止する(図10参照:成形用部材作製工程)。上述した処理により成形用部材700を作製する。
 図11は、本実施の形態1に係る超音波振動子7の製造方法を説明する模式図であって図10のFPC基板80側から見た図である。図11は、上述した処理により作製された成形用部材700の第2薄膜770上に、第2音響整合層73を積層した第1音響整合層用母材720を配設し、加工治具101に載置した状態を示す上面図である。第1音響整合層用母材720は、第1音響整合層72の構成材料を用いて形成されている。
 ここで、FPC基板80には、配線パターンを形成する導電性の材料を用いて形成され、当該FPC基板80の表面の一部に一様に延びる箔状のベタ部81と、ベタ部81から配線パターンに応じて複数の配線82aがそれぞれ延びるパターン部82とが形成されている。ベタ部81およびパターン部82は、例えば銅を用いて形成される。上述した第3薄膜781は、ベタ部81と接触している。
 また、FPC基板80は、位置決めピン91により加工治具101上で位置決めされる。この際、ベタ部81のパターン部82に連なる側の端部は、マシナブルセラミックスなどにより形成された高さ調整部材M(図12参照)によって高さが調整されている。ここでは、FPC基板80の表面であって、高さ調整部材Mと接触する表面を通過する平面が、第1音響整合層用母材720を通過する高さに調整されている。
 図12は、本実施の形態1に係る超音波振動子7の製造方法を説明する模式図であって、図11において、パターン部82の各配線82aの配列方向からみた側面図である。図12に示すように、加工治具101に対して、FPC基板80や、該FPC基板80に接続された成形用部材700、成形用部材700に配設され、第2音響整合層73が積層された第1音響整合層用母材720を配置後、ダイシングソー100を用いてベタ部81を含むFPC基板80の一部、成形用部材700、および第1音響整合層用母材720に切り込みを入れる。具体的には、図11,12に示すように、パターン部82の配線82a間を通過し、FPC基板80の長手方向に延びる切断経路C1に沿ってダイシングソー100などの精密裁断機の刃を回転させながら移動させることによって、FPC基板80の一部、成形用部材700および第1音響整合層用母材720を、成形用部材700の積層方向に沿って切断して分割する(成形工程)。なお、ここでいう積層方向とは、圧電素子用母材710、第1薄膜760、第2薄膜770およびバッキング材用母材750の積み重ね方向のことをいう。ダイシングソー100により、各配線82aに応じてベタ部81が分割されるとともに、圧電素子71、第1音響整合層72、バッキング材75、第1電極76、第2電極77、導電性薄膜78および封止部79が形成され、その後音響レンズ74を配設することで、図3,4に示す超音波振動子7を得る。
 圧電素子71は、ダイシングソー100により圧電素子用母材710が分割されることにより成形される。この際、圧電素子71は、長方体状をなしており、切断面と直交する平面における複数の圧電素子71の配列方向の長さをw、この配列方向と直交する方向であって、第1音響整合層72などの積層方向の長さをtとすると、w/tで表される比が、0.3~0.7であることが、電気-機械の変換効率を高効率で得ることができるという点で好ましい。
 以上説明した本実施の形態1によれば、圧電素子用母材710、バッキング材用母材750、第1薄膜760、第2薄膜770および第3薄膜781を含む成形用部材700であって、FPC基板80と第3薄膜781との接触部分を含むFPC基板80の一部、第3薄膜781の一部およびめっき皮膜782の一部を封止用部材790により封止した成形用部材700を形成し、ベタ部81を含むFPC基板80とともに成形用部材700を配線82aに応じて切断するようにした。半田など熱が生じる接合材を使用せずに圧電素子71とFPC基板80とを電気的に接続するため、圧電素子71の特性劣化を抑制するとともに、圧電素子71間が、ダイシングソー100などの刃の厚さ程度の間隔となるため、複数の圧電素子の狭ピッチ化を実現することができる。
 また、上述した実施の形態1によれば、ダイシングソー100を用いた切断により、ベタ部81を分割するのみで複数の圧電素子71とFPC基板80とをそれぞれ接続するようにしたので、圧電素子71と配線(例えば配線82a)との位置合わせを高精度に行う必要がなく、圧電素子71間が微細なピッチであっても容易に作製することができる。そのために、狭ピッチ化が求められた高画質の超音波振動子の作製が可能となる。
 なお、上述した実施の形態1において、成形用部材700とFPC基板80との間にワックスなどを充填して、成形用部材700およびFPC基板80の相対的な位置関係を固定してもよい。
 また、上述した実施の形態1では、成形用部材700が、圧電素子用母材710、バッキング材用母材750、第1薄膜760、第2薄膜770および第3薄膜781を含むものとして説明したが、第1音響整合層用母材720などをさらに含むものであってもよい。
(実施の形態1の変形例1)
 図13は、本実施の形態1の変形例1に係る超音波振動子の構成を示す模式図である。上述した実施の形態1では、超音波振動子7が、一つのバッキング材(バッキング材75)のみを備えるものとして説明したが、本変形例1では、二つのバッキング材を備える。図13に示すように、上述した超音波振動子7の構成において、第1音響整合層72に中空角柱状をなす壁部92を立設し、該壁部92のなす中空空間に第2バッキング材75aを充填することにより超音波振動子7aを作製する。壁部92は、圧電素子71、バッキング材75、第1電極76、第2電極77、導電性薄膜78および封止部79からなる複数の発振部を取り囲む。第2バッキング材75aは、壁部92と複数の発振部とが形成する中空空間に設けられる。
 第2バッキング材75aは、音響インピーダンスが、バッキング材75(第1バッキング材)の音響インピーダンスよりも小さい。このような関係を有する二つのバッキング材を用いることで、バッキング材75が圧電素子71を保持し、高効率に不要振動を減衰させることができるとともに、第2バッキング材75aにより、隣接する圧電素子71に対してクロストークの原因となる振動を伝達しないようにすることができる。このため、本変形例1によれば、パルス幅低減と、クロストークの抑制とを実現することができる。
(実施の形態1の変形例2)
 図14は、本実施の形態1の変形例2に係る超音波振動子の構成を示す模式図である。上述した実施の形態1では、超音波振動子7が、平板状をなす第1電極76を備えるものとして説明したが、本変形例2では、超音波振動子7bが、第1電極76の導電性薄膜78と接触する側に、肉厚部76aを備える。
 肉厚部76aは、第1電極76とFPC基板80との間の電気的な導通経路の一部をなし、例えば、第1電極76と同じ導電性の材料を用いて形成され、導電性薄膜78と接触する。図15,16は、本実施の形態1の変形例2に係る超音波振動子の成形用部材の作製を説明する模式図である。変形例2にかかる超音波振動子7bの成形用部材は、図15に示すように、圧電素子用母材711の一方の主面に、切断処理後に肉厚部76aとなる複数の凸部761が形成された第1薄膜762が形成され、他方の主面に第2薄膜771が形成された部材を用いて作製される。具体的には、図16に示すように、第1薄膜762上にバッキング材用母材751を配設後、凸部761を通過する切断経路C2に沿って切断することで、圧電素子用母材710、バッキング材用母材750、第2薄膜770などを含む、成形用部材を形成するための積層体を得る。
 本変形例2によれば、肉厚部76aの形成により、上述した肉厚部76aを有しない第1電極76と比して、第1電極76と導電性薄膜78との接触面積が大きくなり、電気的な接続を一層確実なものとすることができる。
(実施の形態1の変形例3)
 図17は、本実施の形態1の変形例3に係る超音波振動子の構成を示す模式図である。上述した変形例2では、超音波振動子7bが、肉厚部76aを有する第1電極76を備えるものとして説明したが、本変形例3では、超音波振動子7cが、対向する側面でそれぞれ露出する第1電極76bおよび第2電極77aを備える。
 第1電極76bは、導電性薄膜78が配設される側に肉厚部76aを有し、導電性薄膜78が配設される側で圧電素子71の側面に連なって外部に露出するとともに、導電性薄膜78と接触する側と反対側の圧電素子71の側面に対して退避している。また、第2電極77aは、導電性薄膜78が配設される側と反対側で圧電素子71の側面に連なって外部に露出するとともに、導電性薄膜78が配設される側の圧電素子71の側面に対して退避している。
 図18は、本実施の形態1の変形例3に係る超音波振動子の成形用部材の作製を説明する模式図である。変形例3にかかる超音波振動子7cの成形用部材は、図18に示すように、圧電素子用母材711の一方の主面に、肉厚部76aとなる凸部763が形成された複数の第1薄膜764が形成され、他方の主面に複数の第2薄膜772が形成された部材を用いて作製される。第1薄膜764および第2薄膜772は、圧電素子用母材711の厚さ方向からみて互い違いに並べられており、凸部763と対向する位置に、第2薄膜772間のスペース(ギャップ)が存在している。凸部763を有する第1薄膜764上にバッキング材用母材751を配設後、凸部763を通過する切断経路C3に沿って切断することで、成形用部材を形成するための積層体を得る。
(実施の形態1の変形例4)
 図19は、本実施の形態1の変形例4に係る超音波振動子の要部の構成を示す模式図である。上述した実施の形態1では、超音波振動子7が、切断により形成されるスリットが一様な幅であるものとして説明したが、本変形例4のように、スリットが、FPC基板80側に向けて幅が大きくなるような略V字状をなすものであってもよい。本変形例4によれば、FPC基板80側の溝幅を広げることで、コンベックス型振動子やラジアル型振動子の作製時、切断した積層体を湾曲させた後の第2バッキング材の注型作業がしやすくなる。
(実施の形態1の変形例5)
 図20は、本実施の形態1の変形例5に係る超音波振動子の要部の構成を示す模式図である。上述した実施の形態1では、超音波振動子7が、切断により形成されるスリットが一様な幅であるものとして説明したが、本変形例5のように、スリットが、FPC基板80側に向けて幅が大きくなる段付き形状をなすものであってもよい。
(実施の形態1の変形例6)
 図21は、本実施の形態1の変形例6に係る超音波振動子の構成を示す模式図であって、成形用部材の構成を示す図である。上述した実施の形態1では、バッキング材75が、角柱状をなすものとして説明したが、本変形例6に係る超音波振動子7dのように、FPC基板80を保持する側の面の外縁が面取りされたバッキング材75bであってもよい。この面取りによって導電性薄膜78の損傷を抑制することができる。
(実施の形態1の変形例7)
 図22は、本実施の形態1の変形例7に係る超音波振動子の構成を示す模式図であって、成形用部材の構成を示す図である。上述した実施の形態1では、バッキング材75が、角柱状をなすものとして説明したが、本変形例7に係る超音波振動子7eのように、FPC基板80を保持する側に向けて幅が小さくなるような側面視で台形状をなすバッキング材75cであってもよい。
(実施の形態1の変形例8)
 図23は、本実施の形態1の変形例8に係る超音波振動子の構成を示す模式図であって、成形用部材の構成を示す図である。上述した実施の形態1では、バッキング材75が、角柱状をなすものとして説明したが、本変形例7に係る超音波振動子7fのように、FPC基板80を保持する側の面が曲面をなすバッキング材75dであってもよい。
(実施の形態1の変形例9)
 図24は、本実施の形態1の変形例9に係る超音波振動子の構成を示す模式図である。上述した実施の形態1では、FPC基板80がバッキング材75に埋め込まれ、導電性薄膜78により第1電極76と接続するものとして説明したが、本変形例9に係る超音波振動子7gのように、FPC基板80をバッキング材75の側面に配置して、第1電極76とFPC基板80の分割後のベタ部81とを直接接続するようにしてもよい。この場合、第1電極76とFPC基板80との接続部分に封止部79aが形成される。
 なお、本変形例9において、上述した変形例2に係る超音波振動子7bの構成を適用すれば、肉厚部76aによりFPC基板80との接触領域が増大するため、電気的な接続を一層容易かつ確実なものとすることができる。
(実施の形態1の変形例10)
 図25は、本実施の形態1の変形例10に係る超音波振動子の製造方法を説明する図である。図26は、本実施の形態1の変形例10に係る超音波振動子の構成を示す模式図である。上述した実施の形態1では、1Dアレイを例に説明したが、超音波振動子の走査方向(1Dアレイにおける圧電素子の配列方向であって、成形用部材700を分割してなる圧電素子の配列方向)と略直交する方向(エレベーション方向)に複数の圧電素子(発振部)が配列される1.25Dアレイや1.5Dアレイ、1.75Dアレイなどであっても適用できる。なお、コンベックス型の超音波振動子においては、圧電素子の配列方向に沿った球面に沿った方向であって、走査方向と直交する方向に複数の圧電素子(発振部)が配列されるものとする。例えば、図25に示す1.25Dアレイの超音波振動子の製造方法では、上述したような成形用部材を三つ、例えば、異なるFPC基板80a~80cにそれぞれ接続する第1成形用部材701、第2成形用部材702および第3成形用部材703を設けて、ダイシングソー100の移動方向に配列した後、ダイシングソー100を用いて切断経路C4に沿って各々分割することより、図26に示すようなエレメント70a~70cを有する1.25Dアレイの超音波振動子7hを作製することができる。
 図26に示す1.25Dアレイの超音波振動子7hは、変形例1(図13参照)に示すようなバッキング材を注型する際の堰となる壁部を立設後、ダイシングソー100によって分割した溝部および壁部との間を液状のバッキング材により注型し、該バッキング材を固化させて1.25Dアレイの超音波振動子としてもよい。液状のバッキング材としては、硬化後も柔軟性のあるエポキシ樹脂やシリコーン樹脂にフィラーとしてアルミナ(Al23)やジルコニア(ZrO2)などを混合した液状材料が挙げられる。なお、1.5Dアレイ、1.75Dアレイなどの超音波振動子においても同様である。
(実施の形態2)
 図27は、本実施の形態2に係る超音波振動子の構成を示す模式図である。上述した実施の形態1では、第2電極77が第1音響整合層72に設けられたグラウンド電極72aと接続するものとして説明したが、本実施の形態2では、第2電極77が、FPC基板80に形成されたグラウンドパターン83と電気的に接続する。
 本実施の形態2に係る超音波振動子7iは、図27に示すように、上述した超音波振動子7に対して、FPC基板80の導電性薄膜78の接続面と反対側の面に設けられたグラウンドパターン83と第2電極77とを接続する第2導電性薄膜78aを備える。なお、本実施の形態2では、第1音響整合層72は、グラウンド電極72aを有しない。
 次に、超音波振動子7iの製造方法について、図28~32を参照して説明する。図28~32は、本実施の形態2に係る超音波振動子の製造方法を説明する模式図である。ここでは、圧電素子71、バッキング材75、第1電極76、第2電極77、導電性薄膜78(第1導電性薄膜)および第2導電性薄膜78aを形成するための成形用部材の作製について説明する。
 まず、上述したように、圧電素子用母材710の対向する主面に、第1薄膜760および第2薄膜770をそれぞれ形成した後、第1薄膜760の圧電素子用母材710側と反対側にバッキング材用母材750を設ける(図5参照)。
 その後、第2薄膜770およびFPC基板80の一部を被覆するマスキング材93、および第1薄膜760の導電性薄膜78形成面の反対側の面には、スパッタによる薄膜形成を防止する薄膜形成防止部材765を配設する(図28参照)。導電性薄膜78および第2導電性薄膜78aの一構成材料である積層膜の材料を用いたスパッタ処理により、第4薄膜783を形成する(図29参照)。
 第4薄膜783を形成後、マスキング材93を除去すると(図30参照)、第4薄膜783が、第1薄膜760およびFPC基板80上に形成された配線パターンを接続する第3薄膜781と、第2薄膜770およびFPC基板80上に形成されたグラウンドパターンを接続する第5薄膜784とに分割される。その後、電解めっき処理により、第3薄膜781を被覆するめっき皮膜782と、第5薄膜784を被覆する第2めっき皮膜785と、を形成する(図31参照)。
 めっき皮膜782および第2めっき皮膜785を形成後、バッキング材用母材750の表面であって、FPC基板80が埋設された表面に封止用部材791を設けて、FPC基板80と、第3薄膜781および第5薄膜784との各接触部分を含むFPC基板80の一部、第3薄膜781および第5薄膜784の一部、およびめっき皮膜782および第2めっき皮膜785の一部を封止用部材791により封止する(図32参照)。上述した処理により成形用部材700Aを作製する。
 その後は、上述した処理と同様に、成形用部材700Aの第2薄膜770上に、第2音響整合層73を積層した第1音響整合層用母材720を配設し、加工治具101に載置して、FPC基板80の長手方向に延びる切断経路C1(図11,12参照)に沿ってダイシングソー100を回転させながら移動させることによって、FPC基板80の一部、成形用部材700Aおよび第1音響整合層用母材720を切断する。ダイシングソー100により、各配線82aに応じてベタ部81およびグラウンドパターン83が切断されるとともに、圧電素子71、第1音響整合層72、バッキング材75、第1電極76、第2電極77、導電性薄膜78、第2導電性薄膜78aおよび封止部79bが形成され、その後音響レンズ74を配設することで、図27に示す超音波振動子7iを得る。なお、第1電極76の第2導電性薄膜78a側は、薄膜形成防止部材765により形成された第2封止部76cが形成され、第1電極76と第2導電性薄膜78aとの間を絶縁している。
 以上説明した本実施の形態2によれば、圧電素子用母材710、バッキング材用母材750、第1薄膜760、第2薄膜770、第5薄膜784および第2めっき皮膜785を含む成形用部材700Aであって、FPC基板80と第3薄膜781および第5薄膜784との各接触部分を含むFPC基板80の一部、第1薄膜781および第5薄膜784の一部およびめっき皮膜782および第2めっき皮膜785の一部を封止用部材791により封止した成形用部材700Aを形成し、ベタ部81およびグラウンドパターン83を含むFPC基板80とともに成形用部材700Aを配線82aに応じて切断するようにした。半田など熱が生じる接合材を使用せずに圧電素子71とFPC基板80とを電気的に接続するため、圧電素子71の特性劣化を抑制するとともに、圧電素子71間が、ダイシングソー100などの刃の厚さ程度の間隔となるため、複数の圧電素子の狭ピッチ化を実現することができる。
 なお、本実施の形態2において、上述した実施の形態1の変形例3に係る超音波振動子7cの構成を適用すれば、バッキング材75(バッキング材用母材750)により、第1電極76bの導電性薄膜78との接触側と反対側が外部に露出しないため、薄膜形成防止部材765が不要となり、部品点数を削減した超音波振動子を作製することができる。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態および変形例によってのみ限定されるべきものではない。本発明は、以上説明した実施の形態および変形例には限定されず、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。また、実施の形態および変形例の構成を適宜組み合わせてもよい。
 このように、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
 以上のように、本発明にかかる超音波振動子、超音波プローブおよび超音波振動子の製造方法は、圧電素子の特性劣化を抑制するとともに、複数の圧電素子の狭ピッチ化を実現するのに有用である。
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 光源装置
 7~7i 超音波振動子
 21 挿入部
 22 操作部
 23 ユニバーサルケーブル
 24 コネクタ
 31 超音波ケーブル
 41 ビデオケーブル
 61 光ファイバケーブル
 70 エレメント
 71 圧電素子
 72 第1音響整合層
 73 第2音響整合層
 74 音響レンズ
 75 バッキング材
 75a 第2バッキング材
 76,76b 第1電極
 76a 肉厚部
 77,77a 第2電極
 78 導電性薄膜
 78a 第2導電性薄膜
 79 封止部
 80,80a~80c FPC基板
 92 壁部
 101 加工治具
 100 ダイシングソー
 211 硬性部材
 212 湾曲部
 213 可撓管部
 221 湾曲ノブ
 222 操作部材
 223 処置具挿入口
 241 第1コネクタ部
 242 第2コネクタ部
 243 第3コネクタ部
 700,700A 成形用部材
 710,711 圧電素子用母材
 720 第1音響整合層用母材
 750,751 バッキング材用母材
 760,762,764 第1薄膜
 761,763 凸部
 770,771 第2薄膜
 781 第3薄膜
 782 めっき皮膜
 783 第4薄膜
 784 第5薄膜
 785 第2めっき皮膜
 790 封止用部材

Claims (15)

  1.  電気信号の入力に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する複数の圧電素子と、
     各圧電素子に対して電気信号を入出力する基板と、
     前記圧電素子と前記基板との間に設けられ、電気的に接続する複数の信号入出力用電極と、
     前記複数の圧電素子の前記信号入出力用電極が配設される側に設けられ、該複数の圧電素子の動作によって発せられる超音波振動を減衰させる複数のバッキング材と、
     前記基板と前記信号入出力用電極とを接続する電気的な経路の少なくとも一部の外表面を封止する複数の封止部と、
     を備え、
     前記複数の圧電素子、前記複数のバッキング材、前記基板の一部、前記複数の信号入出力用電極および前記複数の封止部は、当該圧電素子、当該バッキング材、当該基板、当該信号入出力用電極および当該封止部をそれぞれ構成する複数の材料を積層して形成される成形用部材を、該積層方向に沿って分割してなる
     ことを特徴とする超音波振動子。
  2.  前記圧電素子、前記バッキング材、前記信号入出力用電極、および前記封止部を少なくとも有する複数の発振部を取り囲む壁部と、
     前記壁部と前記複数の発振部とが形成する中空空間に設けられ、前記超音波振動を減衰させる第2のバッキング材と、
     をさらに備えたことを特徴とする請求項1に記載の超音波振動子。
  3.  前記信号入出力用電極は、前記電気的な経路の一部をなす肉厚部を有することを特徴とする請求項1または2に記載の超音波振動子。
  4.  前記基板および前記信号入出力用電極にそれぞれ接続し、前記電気的な経路を形成する接続電極を備えたことを特徴とする請求項1~3のいずれか一つに記載の超音波振動子。
  5.  前記基板の一部は、前記バッキング材に保持され、
     前記接続電極は、前記バッキング材の側面を介して前記基板に接続することを特徴とする請求項4に記載の超音波振動子。
  6.  前記接続電極は、物理蒸着法により形成された薄膜と、湿式めっきにより形成されためっき皮膜と、からなることを特徴とする請求項4または5に記載の超音波振動子。
  7.  前記基板の一部は、前記バッキング材に埋設されていることを特徴とする請求項5に記載の超音波振動子。
  8.  前記基板の一部は、前記バッキング材の側面に沿って設けられることを特徴とする請求項5に記載の超音波振動子。
  9.  前記信号入出力用電極と対をなす第2の電極と、
     前記圧電素子の前記バッキング材が配設される側と反対側に設けられ、前記超音波の音響インピーダンスを調整する音響整合層と、
     をさらに備え、
     前記第2の電極は、前記音響整合層と前記圧電素子との間に設けられた導電性樹脂を介してグラウンド電位に接地される
     ことを特徴とする請求項1に記載の超音波振動子。
  10.  前記複数の圧電素子は、前記成形用部材を分割してなる走査方向と、該走査方向と略直交するエレベーション方向と、に配列されることを特徴とする請求項1に記載の超音波振動子。
  11.  請求項1~10のいずれか一つに記載の超音波振動子を先端に備えたことを特徴とする超音波プローブ。
  12.  電気信号の入力に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する複数の圧電素子、各圧電素子に対して電気信号を入出力する基板の一部、前記圧電素子と前記基板との間に設けられ、電気的に接続する複数の信号入出力用電極、および前記複数の圧電素子の前記信号入出力用電極が配設される側に設けられ、該複数の圧電素子の動作によって発せられる超音波振動を減衰させる複数のバッキング材をそれぞれ構成する複数の材料を積層して積層部材を作製する積層部材作製工程と、
     前記積層部材に対して、前記基板と前記信号入出力用電極とを接続する電気的な経路の少なくとも一部の外表面を封止することにより成形用部材を作製する成形用部材作製工程と、
     前記成形用部材作製工程で作製された前記成形用部材を、該成形用部材の積層方向に沿って分割することにより、前記圧電素子、前記バッキング材、前記基板の一部、前記信号入出力用電極および前記封止部を成形する成形工程と、
     を含むことを特徴とする超音波振動子の製造方法。
  13.  前記積層部材作製工程は、前記基板および前記信号入出力用電極にそれぞれ接続し、前記電気的な経路を形成する接続電極を成形するための接続電極用部材を配設する接続電極用部材配設工程を含む
     ことを特徴とする請求項12に記載の超音波振動子の製造方法。
  14.  前記接続電極用部材配設工程は、
     物理蒸着法によって、前記電気的な経路に応じた外表面に薄膜を形成する第1工程と、
     湿式めっきにより前記薄膜の外表面にめっき皮膜を形成する第2工程と、
     を含むことを特徴とする請求項13に記載の超音波振動子の製造方法。
  15.  前記成形用部材は、前記圧電素子、前記信号入出力用電極、前記バッキング材の順に各々を構成する材料が積層され、前記バッキング材に前記基板が保持されてなり、
     前記成形工程は、
     前記圧電素子から前記基板に向けて分割により形成される隣接部材との距離が大きくなるように、前記成形用部材を切削することを特徴とする請求項12に記載の超音波振動子の製造方法。
PCT/JP2016/061046 2015-04-21 2016-04-04 超音波振動子、超音波プローブおよび超音波振動子の製造方法 WO2016170961A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16782982.9A EP3288290A4 (en) 2015-04-21 2016-04-04 Ultrasonic transducer, ultrasonic probe, and method for manufacturing ultrasonic transducer
JP2016575689A JP6141551B2 (ja) 2015-04-21 2016-04-04 超音波振動子、超音波プローブおよび超音波振動子の製造方法
CN201680023332.9A CN107534816B (zh) 2015-04-21 2016-04-04 超声波振子、超声波探头以及超声波振子的制造方法
US15/788,925 US20180035977A1 (en) 2015-04-21 2017-10-20 Ultrasound transducer, ultrasound probe and method of manufacturing ultrasound transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-086781 2015-04-21
JP2015086781 2015-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/788,925 Continuation US20180035977A1 (en) 2015-04-21 2017-10-20 Ultrasound transducer, ultrasound probe and method of manufacturing ultrasound transducer

Publications (1)

Publication Number Publication Date
WO2016170961A1 true WO2016170961A1 (ja) 2016-10-27

Family

ID=57143559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061046 WO2016170961A1 (ja) 2015-04-21 2016-04-04 超音波振動子、超音波プローブおよび超音波振動子の製造方法

Country Status (5)

Country Link
US (1) US20180035977A1 (ja)
EP (1) EP3288290A4 (ja)
JP (1) JP6141551B2 (ja)
CN (1) CN107534816B (ja)
WO (1) WO2016170961A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109428B2 (ja) * 2016-09-29 2022-07-29 コーニンクレッカ フィリップス エヌ ヴェ 画像診断アセンブリの電気的接地並びに関連する腔内デバイス、システム、及び方法
JP7014597B2 (ja) 2017-12-28 2022-02-01 三菱重工サーマルシステムズ株式会社 インバータ装置、昇圧回路制御方法及びプログラム
JP7014598B2 (ja) 2017-12-28 2022-02-01 三菱重工サーマルシステムズ株式会社 インバータ装置、昇圧回路制御方法及びプログラム
JP6876645B2 (ja) * 2018-03-15 2021-05-26 株式会社日立製作所 超音波プローブ及びその製造方法
JP7324181B2 (ja) * 2020-09-08 2023-08-09 富士フイルム株式会社 超音波内視鏡
CN112557516B (zh) * 2020-12-18 2023-03-14 济南大学 一种钪酸铋-钛酸铅-铁酸铋三元体系压电陶瓷及其声发射传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022300A (ja) * 1988-06-15 1990-01-08 Matsushita Electric Ind Co Ltd 超音波探触子の製造方法
JP2000115892A (ja) * 1998-10-02 2000-04-21 Olympus Optical Co Ltd 超音波振動子の製造方法
JP2008200300A (ja) * 2007-02-21 2008-09-04 Fujifilm Corp 超音波用探触子
JP2010207594A (ja) * 2003-04-01 2010-09-24 Olympus Corp 超音波振動子の製造方法
JP2011199529A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 超音波センサの製造方法、超音波センサ、及び超音波センサを備える紙幣処理装置
JP2014197905A (ja) * 2010-06-23 2014-10-16 株式会社東芝 超音波トランスデューサとその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169337B2 (ja) * 1995-05-30 2001-05-21 キヤノン株式会社 光起電力素子及びその製造方法
US5820564A (en) * 1996-12-16 1998-10-13 Albatross Technologies, Inc. Method and apparatus for surface ultrasound imaging
US6443900B2 (en) * 2000-03-15 2002-09-03 Olympus Optical Co., Ltd. Ultrasonic wave transducer system and ultrasonic wave transducer
US6558323B2 (en) * 2000-11-29 2003-05-06 Olympus Optical Co., Ltd. Ultrasound transducer array
JP3940683B2 (ja) * 2003-02-24 2007-07-04 株式会社東芝 超音波探触子及びその製造方法
JP4997688B2 (ja) * 2003-08-19 2012-08-08 セイコーエプソン株式会社 電極、薄膜トランジスタ、電子回路、表示装置および電子機器
US7691060B2 (en) * 2003-10-10 2010-04-06 Angelsen Bjoern A J Probe for 3-dimensional scanning and focusing of an ultrasound beam
EP1542005B1 (en) * 2003-12-09 2007-01-24 Kabushiki Kaisha Toshiba Ultrasonic probe with conductive acoustic matching layer
WO2006009220A1 (ja) * 2004-07-22 2006-01-26 Olympus Corporation 超音波振動子
WO2006040962A1 (ja) * 2004-10-15 2006-04-20 Olympus Medical Systems Corp. 超音波振動子およびその製造方法
JP2007158467A (ja) * 2005-11-30 2007-06-21 Toshiba Corp 超音波プローブ及びその製造方法
JP4839099B2 (ja) * 2006-03-03 2011-12-14 オリンパスメディカルシステムズ株式会社 マイクロマシンプロセスにより製造された超音波振動子、超音波振動子装置、その体腔内超音波診断装置、及びその制御方法
WO2010061912A1 (ja) * 2008-11-28 2010-06-03 オリンパスメディカルシステムズ株式会社 超音波トランスデューサ、電子機器及び超音波内視鏡
JP5620345B2 (ja) * 2010-06-23 2014-11-05 株式会社東芝 超音波トランスデューサとその製造方法
JP2012257017A (ja) * 2011-06-08 2012-12-27 Toshiba Corp 超音波プローブ
WO2015011969A1 (ja) * 2013-07-26 2015-01-29 オリンパスメディカルシステムズ株式会社 超音波振動子及び超音波振動子の製造方法
JP2015097733A (ja) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 超音波デバイスおよびその製造方法並びに電子機器および超音波画像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022300A (ja) * 1988-06-15 1990-01-08 Matsushita Electric Ind Co Ltd 超音波探触子の製造方法
JP2000115892A (ja) * 1998-10-02 2000-04-21 Olympus Optical Co Ltd 超音波振動子の製造方法
JP2010207594A (ja) * 2003-04-01 2010-09-24 Olympus Corp 超音波振動子の製造方法
JP2008200300A (ja) * 2007-02-21 2008-09-04 Fujifilm Corp 超音波用探触子
JP2011199529A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 超音波センサの製造方法、超音波センサ、及び超音波センサを備える紙幣処理装置
JP2014197905A (ja) * 2010-06-23 2014-10-16 株式会社東芝 超音波トランスデューサとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3288290A4 *

Also Published As

Publication number Publication date
US20180035977A1 (en) 2018-02-08
EP3288290A1 (en) 2018-02-28
CN107534816A (zh) 2018-01-02
JPWO2016170961A1 (ja) 2017-06-01
JP6141551B2 (ja) 2017-06-07
EP3288290A4 (en) 2018-10-17
CN107534816B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
JP6141551B2 (ja) 超音波振動子、超音波プローブおよび超音波振動子の製造方法
US7696671B2 (en) Array ultrasonic transducer having piezoelectric devices
CN107205726B (zh) 超声波探头
US9321082B2 (en) Ultrasonic transducer, manufacturing method thereof, and ultrasonic probe
JP6157795B2 (ja) 超音波振動子および超音波プローブ
US9642599B2 (en) Ultrasound transducer and ultrasound transducer manufacturing method
US20190350555A1 (en) Ultrasonic transducer, ultrasonic endoscope, and method of manufacturing ultrasonic transducer
US11160530B2 (en) Ultrasonic transducer module, ultrasonic endoscope and processing method of ultrasonic transducer module
CN112839591A (zh) 超声波探头和超声波内窥镜
JP4795707B2 (ja) 超音波プローブおよび超音波診断装置
JP4769127B2 (ja) 超音波プローブ及び超音波プローブ製造方法
JP6758272B2 (ja) 超音波振動子及び超音波内視鏡
JP6581302B2 (ja) 超音波振動子モジュールおよび超音波内視鏡
JP2018064744A (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
WO2024079914A1 (ja) 超音波振動子、医療機器、及び超音波振動子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE