WO2016170634A1 - Method for manufacturing float glass - Google Patents

Method for manufacturing float glass Download PDF

Info

Publication number
WO2016170634A1
WO2016170634A1 PCT/JP2015/062312 JP2015062312W WO2016170634A1 WO 2016170634 A1 WO2016170634 A1 WO 2016170634A1 JP 2015062312 W JP2015062312 W JP 2015062312W WO 2016170634 A1 WO2016170634 A1 WO 2016170634A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
float
bath
molten metal
glass ribbon
Prior art date
Application number
PCT/JP2015/062312
Other languages
French (fr)
Japanese (ja)
Inventor
史朗 谷井
誠二 東
鈴木 祐一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201580078995.6A priority Critical patent/CN107531541B/en
Priority to PCT/JP2015/062312 priority patent/WO2016170634A1/en
Priority to KR1020177030154A priority patent/KR20170138441A/en
Publication of WO2016170634A1 publication Critical patent/WO2016170634A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing float glass.
  • molten glass is continuously supplied to a horizontal bath surface of molten tin to form a belt-like glass (usually referred to as a glass ribbon). Pull up from the outlet side of the molten metal bath and pull out of the molten metal bath. Next, this glass ribbon is transported by a transport roll (lift-out roll), carried into a slow cooling furnace, slowly cooled while moving in the slow cooling furnace, and cut into a required length by a cutting device in the next process, thereby forming a plate shape The float glass is manufactured.
  • a transport roll lift-out roll
  • one surface of the glass is formed by a molten metal bath surface, and the other surface of the glass is formed by spreading the molten glass on the molten metal. It is known as a production method suitable for mass production. For this reason, the float process is widely applied to the production of flat glass such as automotive glass and display glass.
  • FIG. 3 shows an example of a conventional float glass manufacturing apparatus applied to this type of float process.
  • the manufacturing apparatus of this example includes a float bath 101 including a molten metal bath 100 of tin, a dross box 102 installed on the downstream side of the float bath 101, and a slow cooling furnace 103.
  • a plurality of lift-out rolls 105 are installed horizontally inside the dross box 102, and a plurality of layer rolls 106 are installed horizontally inside the slow cooling furnace 103 (see Patent Document 1).
  • the molten glass is supplied to the bath surface of the molten metal bath 100, stretched to a necessary thickness and width, and then the glass ribbon 108 is pulled out by the pulling force of the lift-out roll 105, Can be transported.
  • the formation of tin oxide on the liquid surface of the molten metal bath 100 of tin causes the adhesion of tin droplets when the glass ribbon 108 is pulled up.
  • the formation of tin oxide is caused by oxygen (O 2 ) may be caused by leakage.
  • O 2 oxygen
  • the present inventors have clarified that the conventional reductive decomposition of tin oxide by supplying hydrogen gas has an insufficient effect of suppressing the adhesion of tin droplets to the glass ribbon 108 in the take-off portion. For example, even if the use of float glass is a building application or the like, a level of tin droplet adhesion that is not regarded as a problem is not permitted in recent electronic applications and the like.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method for producing a float glass in which a float glass in which the adhesion of tin droplets is sufficiently suppressed can be obtained.
  • the inventors of the present invention have made oxidation in the surface of the tin bath by making the inside of the float bath a specific atmosphere supplied with acetylene (C 2 H 2 ).
  • the present inventors have found that the decomposition rate of tin can be improved and the effect of decomposing oxygen that causes tin oxide to be produced can be obtained.
  • the present invention provides the following (1) to (4).
  • a molten metal bath which is a tin bath provided in a float bath, and formed into a glass ribbon, and the glass ribbon is pulled up from the liquid surface of the molten metal bath and is removed from the float bath.
  • FIG. 1 is a configuration diagram illustrating a float glass manufacturing apparatus 1 according to the present embodiment.
  • FIG. 2 is an enlarged configuration diagram illustrating the float bath 2 of the float glass manufacturing apparatus 1.
  • FIG. 3 is a configuration diagram illustrating an example of a conventional float glass manufacturing apparatus.
  • FIG. 1 is a configuration diagram illustrating a float glass manufacturing apparatus 1 according to the present embodiment.
  • illustration of a part of the structure of the float glass manufacturing apparatus 1 (hereinafter, also simply referred to as “manufacturing apparatus 1”) is omitted.
  • the manufacturing apparatus 1 causes the molten glass G supplied to the float bath 2 to flow along the surface of the molten metal bath 3 held in the float bath 2 to form a strip-shaped glass ribbon 5.
  • the glass ribbon 5 is drawn out by a lift-out roll 7 provided in the dross box section 6.
  • the glass ribbon 5 is taken out from the outlet portion of the dross box portion 6, drawn into the slow cooling furnace 10 by the layer roll 9, cooled, washed, and then cut into a predetermined dimension. The Thus, a float glass having a desired size is obtained.
  • the molten glass G sent from the melting furnace (not shown) through the supply passage 11 is supplied to the inlet portion 2 a of the float bath 2 through a lip 12 provided at the end portion of the supply passage 11. .
  • a tool 13 for adjusting the flow of the molten glass G is installed so as to be movable up and down.
  • the supply passage 11 and the float bath 2 are each configured by assembling a plurality of heat-resistant materials such as refractory bricks, but are simplified in FIG.
  • the float bath 2 includes a molten metal bath 2 ⁇ / b> A filled with a molten metal bath 3, and an upper structure 2 ⁇ / b> B installed on the upper portion of the molten metal bath 2 ⁇ / b> A. However, it is configured to be shielded from the external atmosphere as much as possible.
  • the float bath 2 is provided with a heater (not shown) so that the temperature in the float bath 2 can be adjusted for each region.
  • the float bath 2 can be filled with a molten metal bath 3 of tin (Sn).
  • the tin bath constituting the molten metal bath 3 contains, for example, about 0.3 mass% of lead (Pb), zinc (Zn), iron (Fe), nickel (Ni), etc. as inevitable impurities. May be.
  • a front lintel 15 which is a front wall is formed, and the upper part of the front lintel 15 is connected to the ceiling wall 16.
  • a rear end wall 17 is provided on the downstream end side of the float bath 2 so as to be connected to the ceiling wall 16, and an outlet portion 18 of the glass ribbon 5 is formed at a position near the liquid surface of the molten metal bath 3 on the rear end wall 17.
  • the upper structure 2 ⁇ / b> B is configured by the front lintel 15, the ceiling wall 16, and the rear end wall 17.
  • the upper structure 2B is provided with a pipe (not shown), and a reducing mixed gas composed of hydrogen and nitrogen is supplied from this pipe, so that the internal space of the float bath 2 is always maintained in a reducing atmosphere at atmospheric pressure or higher.
  • the reducing atmosphere gas inside the float bath 2 slightly flows out to the dross box 6 side from the outlet 18 from which the glass ribbon 5 is drawn.
  • the dross box portion 6 provided on the downstream side of the float bath 2 includes a lower casing 6A and an upper casing 6B.
  • three lift-out rolls 7 are horizontally provided at equal intervals on the lower casing 6A.
  • the lift-out roll 7 is generally composed of a roll body portion made of, for example, quartz and a shaft that supports the roll body portion.
  • the number of liftout rolls 7 is not limited to three as in this embodiment, and any number of liftout rolls 7 may be provided as long as the glass ribbon 5 can be conveyed to the slow cooling furnace 10 side.
  • the lower casing 6A has a side wall 6a on the float bath 2 side and a side wall 6b on the slow cooling furnace 10 side on the bottom wall 6c, and other side walls (not shown) standing on both sides in the width direction of the side wall 6a and the side wall 6b. It is comprised in the box shape which the upper surface side of each side wall opened.
  • a graphite seal block 21 and a wall-shaped pedestal 22 are disposed in order to block the air flow between the molten metal bathtub 2A and the slow cooling furnace 10.
  • the seal block 21 is installed on the pedestal 22 so that the upper surface thereof is in contact with the roll surface of the lift-out roll 7, and the seal block 21 is partitioned so as to be somewhat airtight with the peripheral surface of the lift-out roll 7. Yes.
  • the pedestal 22 is formed in a wall shape from a thick metal piece such as ductile cast iron, and is provided so as to partition the inside of the lower casing 6A.
  • an inert gas such as nitrogen
  • a reducing gas such as hydrogen
  • a mixed gas thereof a non-oxidizing gas
  • a non-oxidizing gas such as a supply pipe 23
  • the non-oxidizing gas ejected from the supply pipe 23 is preferably ejected after preheating to 400 to 600 ° C. This is to prevent the glass ribbon 5 from being locally cooled by the ejection of the non-oxidizing gas.
  • the dross box section 6 is provided with a heater (not shown) so that the temperature of the glass ribbon 5 can be adjusted.
  • the upper casing 6B of the dross box section 6 is configured as a steel sealing gate, and has a ceiling wall 24 installed between the float bath 2 and the slow cooling furnace 10, and a stainless steel drape 25 suspended from the ceiling wall 24. And is installed on the upper side of the lower casing 6A.
  • the plurality of drapes 25 depending on the ceiling wall 24 are arranged along the upper side of the contact position between the three lift-out rolls 7 and the glass ribbon 5 moving above. That is, these drapes 25 are arranged above the central axis of the lift-out roll 7 so as to extend over the entire length of the lift-out roll 7, and partition the internal space of the upper casing 6B into a plurality.
  • a plurality of layer rolls 9 are installed horizontally in the slow cooling furnace 10, and the glass ribbon 5 that has moved through the dross box 6 can be conveyed through the slow cooling furnace 10 by the plurality of layer rolls 9.
  • FIG. 2 is an enlarged configuration diagram illustrating the float bath 2 of the float glass manufacturing apparatus 1.
  • the float bath 2 has a region (take-off portion) TO in which the glass ribbon 5 is pulled up from the liquid surface of the molten metal bath 3 and separated. That is, the take-off portion TO indicates a position where the glass ribbon 5 is separated from the liquid surface when the glass ribbon 5 is continuously pulled up from the liquid surface of the molten metal bath 3.
  • the float bath 2 is provided with a heater (not shown), and is adjusted so that the temperature in the float bath 2 gradually decreases from the upstream side toward the take-off portion TO on the downstream side. Has been. This is because a certain degree of hardness is required to pull up the glass ribbon 5 at the take-off portion TO.
  • the temperature in the float bath 2 is over 600 ° C. throughout the region, and the temperature of the take-off portion TO is preferably over 600 ° C.
  • the temperature in the float bath 2 (including the temperature of the take-off portion TO) is a temperature including not only glass (molten glass G and glass ribbon 5) but also the surrounding atmosphere. Can be measured.
  • the bathtub rear end wall 2Aa is provided on the downstream end side of the molten metal bathtub 2A constituting the float bath 2 so as to form the outlet portion 18 of the glass ribbon 5 between the rear end wall 17 and the molten metal bathtub 2A. It can be said that the bathtub rear end wall 2Aa is a part of the molten metal bathtub 2A.
  • a hollow gas supply pipe 2Ab is embedded in the bathtub rear end wall 2Aa.
  • the gas supply pipe 2Ab has one end connected to the outside of the float bath 2 and the other end connected to a space SP between the liquid surface of the molten metal bath 3 and the glass ribbon 5 in the take-off portion TO.
  • the number of gas supply pipes 2Ab is not limited to one, and a plurality of gas supply pipes 2Ab are provided at predetermined intervals in the width direction of the float bath 2 (the back side or the front side in FIG. 2). May be provided. Further, the gas supply pipe 2Ab may not be embedded in the bathtub rear end wall 2Aa.
  • gas supply pipe 2Ac similar to gas supply pipe 2Ab is arrange
  • the end face of the gas supply pipe 2Ac is disposed on one side in the width direction of the float bath 2 (the back side in FIG. 2) at a position facing the space SP.
  • an end face of the gas supply pipe 2Ac (not shown) is similarly disposed on the other side in the width direction of the float bath 2 (front side in FIG. 2).
  • the gas sent from one end of the gas supply pipe 2Ab and the gas supply pipe 2Ac can be discharged from the other end and supplied to the space SP.
  • a gas containing acetylene (C 2 H 2 ) is supplied into the float bath 2 using the gas supply pipe 2Ab and the gas supply pipe 2Ac, and preferably the float bath 2 A gas containing acetylene (C 2 H 2 ) is supplied to the space SP in the take-off portion TO.
  • soda-lime glass and an alkali free glass are mentioned, An alkali free glass is preferable.
  • the alkali-free glass include SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO in terms of mass percentage based on oxide. : 0-8%, CaO: 0-14.5%, SrO: 0-24%, BaO: 0-13.5%, MgO + CaO + SrO + BaO: 8-29.5%, and ZrO 2 : 0-5% An alkali-free glass to be contained is mentioned.
  • the oxide-based mass percentage display is SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to An alkali-free glass containing 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, and MgO + CaO + SrO + BaO: 9 to 18% is preferable.
  • the oxide-based mass percentage display is SiO 2 : 54 to 73, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5 Preferred is an alkali-free glass containing 5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, and MgO + CaO + SrO + BaO: 8 to 26%. .
  • molten glass G is supplied from the melting furnace to the supply passage 11, and the molten metal bath 3 at the inlet 2 a of the float bath 2 is adjusted by adjusting the flow rate of the molten glass G flowing on the lip 12 by the amount of damming of the twill 13.
  • Molten glass G is supplied on top.
  • the molten glass G flowed on the molten metal bath 3 is formed into a strip-like glass ribbon 5 having a predetermined width and a predetermined thickness.
  • the glass ribbon 5 is pulled up from the liquid level of the molten metal bath 3 by the lift-out roll 7 and moved to the dross box 6 side, and then the glass ribbon 5 is cooled while being conveyed through the slow cooling furnace 10 by the layer roll 9. .
  • the glass ribbon 5 having a desired width and length can be manufactured by cutting the glass ribbon 5 into a length and a width necessary for the cutting step.
  • the glass ribbon 5 When supplying the molten glass G to the molten metal bath 3 and forming it into the glass ribbon 5, nitrogen gas and hydrogen gas are sent into the float bath 2 from a pipe (not shown) provided in the upper structure 2B, and a reducing atmosphere.
  • the glass ribbon 5 is formed by gradually lowering the temperature so that the downstream side becomes a low temperature by controlling a heater (not shown).
  • the temperature of the take-off portion TO exceeds 600 ° C.
  • acetylene (C 2 H 2 ) is provided via the gas supply pipe 2Ab and the gas supply pipe 2Ac. It is preferable to supply a gas containing acetylene (C 2 H 2 ) to the space SP of the take-off portion TO.
  • the decomposition rate of tin oxide generated on the liquid surface of the molten metal bath 3 is improved rather than simply making the atmosphere of the hydrogen (H 2 ) gas inside the float bath 2.
  • oxygen that leaks into the float bath 2 and produces tin oxide also reacts with acetylene (C 2 H 2 ) before reacting with tin to become CO 2 or H 2 O to react with tin. No longer.
  • the reduction of tin oxide first proceeds as SnO 2 ⁇ SnO.
  • SnO can be converted to Sn even if acetylene (C 2 H 2 ) is used.
  • the reduction does not progress further.
  • SnO is reductively decomposed into Sn by setting the temperature above 600 ° C.
  • Acetylene (C 2 H 2 ) is considered to undergo reductive decomposition by acting on tin oxide after first becoming 2C + H 2 .
  • the reaction of oxygen (O 2 ) first becomes carbon monoxide (CO), and finally becomes carbon dioxide (CO 2 ).
  • the tin oxide on the liquid surface of the molten metal bath 3 is decomposed and the production of tin oxide is also suppressed, so that the transfer of tin oxide when the glass ribbon 5 is pulled up at the take-off portion TO is suppressed, As a result, the tin in the molten metal bath 3 is carried along with the tin oxide, and tin droplets are prevented from adhering to the glass ribbon 5. Then, by slowly cooling and cutting the glass ribbon 5, a float glass in which the adhesion of tin droplets is suppressed can be obtained.
  • the temperature in the float bath 2 is not particularly limited as long as it exceeds 600 ° C, and the temperature of the take-off portion TO is preferably more than 600 ° C.
  • the temperature in the float bath in particular, the temperature of the take-off portion TO is more preferably 620 ° C. or higher, more preferably 650 ° C. or higher, more preferably 700 ° C. or higher, because it is superior in the effect of decomposing tin oxide and oxygen. 750 degreeC or more is especially preferable.
  • the upper limit temperature is not particularly limited, for example, 850 ° C. or less is preferable when considering changes in surrounding metal members. Therefore, the preferred take-off portion TO can be rephrased as a region in the float bath 2 having a temperature of more than 600 ° C. and 850 ° C. or less.
  • Acetylene (C 2 H 2 ) is supplied from, for example, the gas supply pipe 2Ab and the gas supply pipe 2Ac as a mixed gas with nitrogen (N 2 ).
  • the concentration of acetylene in the mixed gas is preferably 0.5 mol% or more, more preferably 1 mol% or more, and further preferably 2 mol% or more.
  • the upper limit is not particularly limited, from the viewpoint of acetylene carbon produced during the decomposition of (C 2 H 2) (C ) are prevented from becoming aggregates, preferably 50 mol% or less.
  • Acetylene may be supplied to the entire float bath 2 from a pipe (not shown) provided in the upper structure 2B including the space SP of the take-off portion TO, but carbon adheres to the float bath 2. From the viewpoint of avoiding this, it is preferable to supply only to the space SP.
  • molten glass G is supplied to the liquid surface of a molten metal bath 3 which is a tin bath, formed into a glass ribbon 5, slowly cooled and cut, and float glass (non-alkali glass) ) Was manufactured.
  • the composition of the molten glass G is expressed in terms of mass percentage on the basis of oxides: SiO 2 : 59.70%, Al 2 O 3 : 16.90%, B 2 O 3 : 7.90%, MgO: 3. They were 27%, CaO: 4.00%, SrO: 7.69%, BaO: 0.10%, MgO + CaO + SrO + BaO: 15.06%, and contained substantially no SO 3 .
  • Examples 1-2 and Comparative Example 1 mixing of acetylene (C 2 H 2 ) and nitrogen (N 2 ) from the gas supply pipe 2Ab and the gas supply pipe 2Ac into the space SP of the take-off portion TO.
  • Gas (C 2 H 2 concentration: 2 mol%) (simply indicated as “C 2 H 2 ” in Table 1 below) was supplied.
  • a mixed gas (H 2 concentration: 2 mol%) of hydrogen (H 2 ) and nitrogen (N 2 ) is supplied from a pipe (not shown) provided in the upper structure 2B. did.
  • a heater (not shown) in the float bath 2 was controlled to vary the temperature of the take-off portion TO as shown in Table 1 below.
  • the gas species supplied to the space SP from the gas supply pipe 2Ab and the gas supply pipe 2Ac is a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ) (H 2 concentration: 2 mol%) (in Table 1 below, Float glass was produced in the same manner as in Example 1 except that it was changed to “H 2 ”.
  • the technology of the present invention can be widely applied to glass manufacturing technology in general by the float method.
  • Seal block 22 ... Base 23 ... Supply pipe 24 ... Ceiling wall 25 ... Drape 100 ... Molten metal bath 101 ... Float bath 102 ... Dross box 103 ... Slow cooling furnace 105 ... Lift out roll 106 ... Layer low 108 ... glass ribbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing float glass with which float glass for which adhesion of drops of tin is sufficiently suppressed can be obtained. The present invention relates to a method for manufacturing float glass by feeding molten glass onto the surface of a molten metal bath, which is a float bath containing tin, to shape the molten glass into a glass ribbon, pulling off the glass ribbon from the surface of the molten metal bath and drawing off the glass ribbon from the float bath, then annealing and cutting the glass ribbon to obtain the float glass. In this method for manufacturing float glass, the temperature inside the float bath is over 600°C and acetylene is fed to the float bath.

Description

フロートガラスの製造方法Method for producing float glass
 本発明は、フロートガラスの製造方法に関する。 The present invention relates to a method for producing float glass.
 フロート法によるガラスの製造方法においては、まず、溶融錫の水平な浴面に溶融ガラスを連続的に供給して帯状のガラス(通常、ガラスリボンと称される)を形成し、このガラスリボンを溶融金属浴の出口側から引き上げて溶融金属浴の槽外へ引き出す。次いで、このガラスリボンを搬送ロール(リフトアウトロール)により搬送して徐冷炉に搬入し、徐冷炉内を移動させながら徐冷し、次工程の切断装置により必要な長さに切断することで、板状のフロートガラスを製造している。
 上述したフロート法によるガラスの製造方法は、ガラスの一面を溶融金属の浴面によって形成し、溶融金属上に溶融ガラスを広げることによりガラスの他の面を形成するので、ガラスの平坦性を極めて高くすることが可能であり、大量生産にも好適な製造方法として知られている。このため、フロート法は、自動車用ガラス、ディスプレイ用ガラスなどの板ガラス生産に広く適用されている。
In the glass manufacturing method by the float process, first, molten glass is continuously supplied to a horizontal bath surface of molten tin to form a belt-like glass (usually referred to as a glass ribbon). Pull up from the outlet side of the molten metal bath and pull out of the molten metal bath. Next, this glass ribbon is transported by a transport roll (lift-out roll), carried into a slow cooling furnace, slowly cooled while moving in the slow cooling furnace, and cut into a required length by a cutting device in the next process, thereby forming a plate shape The float glass is manufactured.
In the glass manufacturing method by the float method described above, one surface of the glass is formed by a molten metal bath surface, and the other surface of the glass is formed by spreading the molten glass on the molten metal. It is known as a production method suitable for mass production. For this reason, the float process is widely applied to the production of flat glass such as automotive glass and display glass.
 図3は、この種のフロート法に適用される従来のフロートガラスの製造装置の一例を示す。この例の製造装置は、錫の溶融金属浴100を備えたフロートバス101と、このフロートバス101の下流側に設置されたドロスボックス102と、徐冷炉103と、から構成されている。ドロスボックス102の内部には複数のリフトアウトロール105が水平に設置され、徐冷炉103の内部には複数のレヤーロール106が水平に設置されている(特許文献1参照)。
 図3に示す製造装置において、溶融金属浴100の浴面に溶融ガラスを供給し、必要な厚さおよび幅に引き延ばした後、リフトアウトロール105の牽引力によりガラスリボン108を引き出して徐冷炉103の側に搬送できる。
FIG. 3 shows an example of a conventional float glass manufacturing apparatus applied to this type of float process. The manufacturing apparatus of this example includes a float bath 101 including a molten metal bath 100 of tin, a dross box 102 installed on the downstream side of the float bath 101, and a slow cooling furnace 103. A plurality of lift-out rolls 105 are installed horizontally inside the dross box 102, and a plurality of layer rolls 106 are installed horizontally inside the slow cooling furnace 103 (see Patent Document 1).
In the manufacturing apparatus shown in FIG. 3, the molten glass is supplied to the bath surface of the molten metal bath 100, stretched to a necessary thickness and width, and then the glass ribbon 108 is pulled out by the pulling force of the lift-out roll 105, Can be transported.
 図3に示すような製造装置を用いてフロートガラスを製造する場合において、ガラスリボン108を錫の溶融金属浴100の液面から引き上げる際に、ガラスリボン108の下面(溶融金属浴100側の面)に錫滴が付着したまま、フロートバス101から引き出されることがある。
 通常、錫はガラスに濡れないため、錫の溶融金属浴100からガラスリボン108を引き上げる際に錫滴は付着しないようにも思われる。
 しかし、錫の溶融金属浴100の液面に酸化錫(SnO2、SnO)が生成していると、酸化錫は同じく酸化物であるガラスには濡れるため、ガラスリボン108を引き上げる際に、液面の酸化錫が転写される。そして、転写される酸化錫とともに、溶融金属浴100の錫も併せて運ばれ、これにより、ガラスリボン108に錫滴が付着する。
In the case of manufacturing float glass using a manufacturing apparatus as shown in FIG. 3, when the glass ribbon 108 is pulled up from the liquid surface of the molten metal bath 100 of tin, the lower surface of the glass ribbon 108 (the surface on the molten metal bath 100 side). ) May be pulled out of the float bath 101 with the tin droplets attached.
Normally, tin does not wet the glass, so it appears that no tin droplets adhere when pulling up the glass ribbon 108 from the molten metal bath 100 of tin.
However, if tin oxide (SnO 2 , SnO) is generated on the liquid surface of the molten metal bath 100 of tin, the tin oxide is wet with the glass which is also an oxide. The tin oxide on the surface is transferred. Then, the tin of the molten metal bath 100 is also carried together with the tin oxide to be transferred, whereby tin droplets adhere to the glass ribbon 108.
 このように、錫の溶融金属浴100の液面における酸化錫の生成は、ガラスリボン108を引き上げる際の錫滴付着の原因となるが、酸化錫の生成は、フロートバス101内に酸素(O2)が漏入することにより発生すると考えられる。
 このため、従来は、フロートバス101内に水素(H2)ガスを供給することで、酸化錫の還元分解を行い、ガラスリボン108に錫滴が付着することを抑制している。
As described above, the formation of tin oxide on the liquid surface of the molten metal bath 100 of tin causes the adhesion of tin droplets when the glass ribbon 108 is pulled up. However, the formation of tin oxide is caused by oxygen (O 2 ) may be caused by leakage.
For this reason, conventionally, by supplying hydrogen (H 2 ) gas into the float bath 101, tin oxide is reduced and decomposed, and tin droplets are prevented from adhering to the glass ribbon 108.
国際公開第2009/014028号International Publication No. 2009/014028
 しかしながら、フロートバス101内でガラスリボン108を溶融金属浴100の液面から引き上げる領域(テイクオフ部)において、溶融金属浴100の液面とガラスリボン108との間のスペースは、上下が覆われているため、ガスが循環しにくく、漏入した酸素が滞留しやすい。
 このため、従来の水素ガス供給による酸化錫の還元分解では、テイクオフ部においてガラスリボン108に錫滴が付着することを抑制する効果が不十分であることを本発明者らは明らかにした。例えば、フロートガラスの用途が建築用途等である場合には問題視されないレベルの錫滴付着であっても、近年の電子用途等においては許容されるものではない。
However, in the area where the glass ribbon 108 is pulled up from the liquid level of the molten metal bath 100 in the float bath 101 (take-off portion), the space between the liquid level of the molten metal bath 100 and the glass ribbon 108 is covered up and down. Therefore, it is difficult for gas to circulate, and leaked oxygen tends to stay.
For this reason, the present inventors have clarified that the conventional reductive decomposition of tin oxide by supplying hydrogen gas has an insufficient effect of suppressing the adhesion of tin droplets to the glass ribbon 108 in the take-off portion. For example, even if the use of float glass is a building application or the like, a level of tin droplet adhesion that is not regarded as a problem is not permitted in recent electronic applications and the like.
 本発明は、以上の点を鑑みてなされたものであり、錫滴の付着が十分に抑制されたフロートガラスが得られるフロートガラスの製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a method for producing a float glass in which a float glass in which the adhesion of tin droplets is sufficiently suppressed can be obtained.
 本発明者らは、上記目的を達成するために鋭意検討した結果、フロートバス内をアセチレン(C22)が供給される特定の雰囲気にすることによって、錫浴の液面に生成した酸化錫の分解速度が向上するとともに、酸化錫を生成させる原因となる酸素を分解する効果も得られることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the inventors of the present invention have made oxidation in the surface of the tin bath by making the inside of the float bath a specific atmosphere supplied with acetylene (C 2 H 2 ). The present inventors have found that the decomposition rate of tin can be improved and the effect of decomposing oxygen that causes tin oxide to be produced can be obtained.
 すなわち、本発明は、以下の(1)~(4)を提供する。
 (1)フロートバスに湛えられた錫浴である溶融金属浴の液面に溶融ガラスを供給してガラスリボンに成形し、前記ガラスリボンを前記溶融金属浴の液面から引き上げて前記フロートバスから引き出した後に徐冷および切断してフロートガラスを得る、フロートガラスの製造方法であって、前記フロートバス内の温度が600℃超であり、かつ前記フロートバス内にアセチレンを供給する、フロートガラスの製造方法。
 (2)前記フロートバス内における前記ガラスリボンを前記溶融金属浴の液面から引き上げる領域であるテイクオフ部の温度が、600℃超である、上記(1)に記載のフロートガラスの製造方法。
 (3)前記テイクオフ部に、アセチレンを供給する、上記(2)に記載のフロートガラスの製造方法。
 (4)前記テイクオフ部における前記溶融金属浴の液面と前記ガラスリボンとの間のスペースに、アセチレンを供給する、上記(2)または(3)に記載のフロートガラスの製造方法。
That is, the present invention provides the following (1) to (4).
(1) Molten glass is supplied to the liquid surface of a molten metal bath, which is a tin bath provided in a float bath, and formed into a glass ribbon, and the glass ribbon is pulled up from the liquid surface of the molten metal bath and is removed from the float bath. A float glass manufacturing method for obtaining float glass by slowly cooling and cutting after drawing, wherein the temperature in the float bath is over 600 ° C., and acetylene is supplied into the float bath. Production method.
(2) The method for producing float glass according to (1) above, wherein the temperature of the take-off portion, which is a region where the glass ribbon in the float bath is pulled up from the liquid surface of the molten metal bath, is over 600 ° C.
(3) The float glass manufacturing method according to (2), wherein acetylene is supplied to the take-off portion.
(4) The method for producing float glass according to (2) or (3), wherein acetylene is supplied to a space between the liquid surface of the molten metal bath and the glass ribbon in the take-off portion.
 本発明によれば、錫滴の付着が十分に抑制されたフロートガラスが得られるフロートガラスの製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing a float glass in which a float glass in which the adhesion of tin droplets is sufficiently suppressed can be obtained.
図1は、本実施形態のフロートガラスの製造装置1を示す構成図である。FIG. 1 is a configuration diagram illustrating a float glass manufacturing apparatus 1 according to the present embodiment. 図2は、フロートガラスの製造装置1のフロートバス2を拡大して示す構成図である。FIG. 2 is an enlarged configuration diagram illustrating the float bath 2 of the float glass manufacturing apparatus 1. 図3は、従来のフロートガラスの製造装置の一例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example of a conventional float glass manufacturing apparatus.
 以下、添付図面を参照して本発明の一実施形態について説明するが、本発明は以下に説明する実施形態に限定されるものではない。なお、本明細書において“質量%”と“重量%”、“質量百分率”と“重量百分率”とはそれぞれ同義である。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to the embodiment described below. In the present specification, “mass%” and “wt%”, “mass percentage” and “weight percentage” have the same meaning.
 図1は、本実施形態のフロートガラスの製造装置1を示す構成図である。なお、図1では、フロートガラスの製造装置1(以下、単に「製造装置1」ともいう)が有する一部の構成の図示を省略している。
 図1に示すように、製造装置1は、フロートバス2に供給された溶融ガラスGを、フロートバス2に湛えられた溶融金属浴3の表面に沿って流動させて帯板状のガラスリボン5に成形し、このガラスリボン5をドロスボックス部6に設けたリフトアウトロール7で引き出す装置として構成されている。
 本実施形態の製造装置1において、ガラスリボン5は、ドロスボックス部6の出口部から取り出された後、レヤーロール9により徐冷炉10に引き込まれて冷却され、洗浄された後、所定の寸法に切断される。こうして、目的の大きさのフロートガラスが得られる。
FIG. 1 is a configuration diagram illustrating a float glass manufacturing apparatus 1 according to the present embodiment. In FIG. 1, illustration of a part of the structure of the float glass manufacturing apparatus 1 (hereinafter, also simply referred to as “manufacturing apparatus 1”) is omitted.
As shown in FIG. 1, the manufacturing apparatus 1 causes the molten glass G supplied to the float bath 2 to flow along the surface of the molten metal bath 3 held in the float bath 2 to form a strip-shaped glass ribbon 5. The glass ribbon 5 is drawn out by a lift-out roll 7 provided in the dross box section 6.
In the manufacturing apparatus 1 of the present embodiment, the glass ribbon 5 is taken out from the outlet portion of the dross box portion 6, drawn into the slow cooling furnace 10 by the layer roll 9, cooled, washed, and then cut into a predetermined dimension. The Thus, a float glass having a desired size is obtained.
 フロートバス2の入口部2aには、溶解炉(図示略)から供給通路11を介して送られてきた溶融ガラスGが、供給通路11の終端部に設けられたリップ12を介して供給される。リップ12の上流側の供給通路11には、溶融ガラスGの流れを調節するためのツイール13が上下移動自在に設置されている。供給通路11およびフロートバス2は、それぞれ耐火レンガ等の耐熱材を複数組み付けて構成されるが、図1では簡略化して記載している。 The molten glass G sent from the melting furnace (not shown) through the supply passage 11 is supplied to the inlet portion 2 a of the float bath 2 through a lip 12 provided at the end portion of the supply passage 11. . In the supply passage 11 on the upstream side of the lip 12, a tool 13 for adjusting the flow of the molten glass G is installed so as to be movable up and down. The supply passage 11 and the float bath 2 are each configured by assembling a plurality of heat-resistant materials such as refractory bricks, but are simplified in FIG.
 フロートバス2は、図1に示すように溶融金属浴3が満たされた溶融金属浴槽2Aと、この溶融金属浴槽2Aの上部に設置された上部構造体2Bと、からなり、フロートバス2の内部が外部雰囲気とは極力遮断される構成とされている。
 なお、フロートバス2にはヒータ(図示略)が設けられており、フロートバス2内の温度を、領域ごとに調節できるように構成されている。
As shown in FIG. 1, the float bath 2 includes a molten metal bath 2 </ b> A filled with a molten metal bath 3, and an upper structure 2 </ b> B installed on the upper portion of the molten metal bath 2 </ b> A. However, it is configured to be shielded from the external atmosphere as much as possible.
The float bath 2 is provided with a heater (not shown) so that the temperature in the float bath 2 can be adjusted for each region.
 フロートバス2に湛えられるのは、錫(Sn)の溶融金属浴3である。もっとも、溶融金属浴3を構成する錫浴には、不可避不純物として、例えば、鉛(Pb)、亜鉛(Zn)、鉄(Fe)、ニッケル(Ni)などが0.3質量%程度含まれていてもよい。 The float bath 2 can be filled with a molten metal bath 3 of tin (Sn). However, the tin bath constituting the molten metal bath 3 contains, for example, about 0.3 mass% of lead (Pb), zinc (Zn), iron (Fe), nickel (Ni), etc. as inevitable impurities. May be.
 フロートバス2の入口部2aには、前面壁であるフロントリンテル15が形成され、フロントリンテル15の上部が天井壁16に接続されている。フロートバス2の下流端側には後端壁17が天井壁16と接続するように設けられ、後端壁17において溶融金属浴3の液面近くの位置にガラスリボン5の出口部18が形成されている。フロートバス2においてフロントリンテル15と天井壁16と後端壁17とから上部構造体2Bが構成されている。 At the entrance 2a of the float bath 2, a front lintel 15 which is a front wall is formed, and the upper part of the front lintel 15 is connected to the ceiling wall 16. A rear end wall 17 is provided on the downstream end side of the float bath 2 so as to be connected to the ceiling wall 16, and an outlet portion 18 of the glass ribbon 5 is formed at a position near the liquid surface of the molten metal bath 3 on the rear end wall 17. Has been. In the float bath 2, the upper structure 2 </ b> B is configured by the front lintel 15, the ceiling wall 16, and the rear end wall 17.
 また、上部構造体2Bにはパイプ(図示略)が備えられ、このパイプから水素および窒素からなる還元性混合ガスが供給され、フロートバス2の内部空間が常に大気圧以上の還元性雰囲気に保持されている。フロートバス2の内部の還元性雰囲気ガスは、ガラスリボン5が引き出される出口部18からドロスボックス部6側にも若干流出する。 Further, the upper structure 2B is provided with a pipe (not shown), and a reducing mixed gas composed of hydrogen and nitrogen is supplied from this pipe, so that the internal space of the float bath 2 is always maintained in a reducing atmosphere at atmospheric pressure or higher. Has been. The reducing atmosphere gas inside the float bath 2 slightly flows out to the dross box 6 side from the outlet 18 from which the glass ribbon 5 is drawn.
 フロートバス2の下流側に設けられているドロスボックス部6は、下部ケーシング6Aと上部ケーシング6Bとからなり、本実施形態では下部ケーシング6Aに3つのリフトアウトロール7が水平に等間隔で設けられている。リフトアウトロール7は、例えば石英で形成されたロール胴部とこのロール胴部を支持するシャフトとから概略構成されている。リフトアウトロール7の設置本数は本実施形態のように3本に限らず、ガラスリボン5を徐冷炉10側に搬送できるならば何本設けてもよい。下部ケーシング6Aは、フロートバス2側の側壁6aと徐冷炉10側の側壁6bとを底壁6c上に有し、側壁6aおよび側壁6bの幅方向両側に立設された他の側壁(図示略)を有し、各側壁の上面側が開口したボックス状に構成されている。 The dross box portion 6 provided on the downstream side of the float bath 2 includes a lower casing 6A and an upper casing 6B. In the present embodiment, three lift-out rolls 7 are horizontally provided at equal intervals on the lower casing 6A. ing. The lift-out roll 7 is generally composed of a roll body portion made of, for example, quartz and a shaft that supports the roll body portion. The number of liftout rolls 7 is not limited to three as in this embodiment, and any number of liftout rolls 7 may be provided as long as the glass ribbon 5 can be conveyed to the slow cooling furnace 10 side. The lower casing 6A has a side wall 6a on the float bath 2 side and a side wall 6b on the slow cooling furnace 10 side on the bottom wall 6c, and other side walls (not shown) standing on both sides in the width direction of the side wall 6a and the side wall 6b. It is comprised in the box shape which the upper surface side of each side wall opened.
 リフトアウトロール7の下部には、溶融金属浴槽2Aと徐冷炉10との間の気流を遮断するために、グラファイト製のシールブロック21と壁状の台座22とが配置されている。シールブロック21は、その上面をリフトアウトロール7のロール面と接するように台座22の上に設置され、シールブロック21がリフトアウトロール7の周面との間をある程度気密になるように仕切っている。台座22は、ダクタイル鋳鉄などの厚手の金属片から壁状に構成され、下部ケーシング6Aの内部を仕切るように設けられている。 In the lower part of the lift-out roll 7, a graphite seal block 21 and a wall-shaped pedestal 22 are disposed in order to block the air flow between the molten metal bathtub 2A and the slow cooling furnace 10. The seal block 21 is installed on the pedestal 22 so that the upper surface thereof is in contact with the roll surface of the lift-out roll 7, and the seal block 21 is partitioned so as to be somewhat airtight with the peripheral surface of the lift-out roll 7. Yes. The pedestal 22 is formed in a wall shape from a thick metal piece such as ductile cast iron, and is provided so as to partition the inside of the lower casing 6A.
 リフトアウトロール7の下方空間には、例えば、窒素などの不活性ガス;水素などの還元性ガス;これらの混合ガス;等の非酸化性ガスを噴出するための供給管23が設置されている。本実施形態において供給管23から噴出する非酸化性ガスは、400~600℃に予熱した後に噴出することが好ましい。これは非酸化性ガスの噴出によってガラスリボン5が局所的に冷却されるのを防ぐためである。
 また、ドロスボックス部6にはヒータ(図示略)が設けられており、ガラスリボン5の温度を調節できるように構成されている。
In the lower space of the lift-out roll 7, for example, an inert gas such as nitrogen; a reducing gas such as hydrogen; a mixed gas thereof; a non-oxidizing gas such as a supply pipe 23 is installed. . In this embodiment, the non-oxidizing gas ejected from the supply pipe 23 is preferably ejected after preheating to 400 to 600 ° C. This is to prevent the glass ribbon 5 from being locally cooled by the ejection of the non-oxidizing gas.
The dross box section 6 is provided with a heater (not shown) so that the temperature of the glass ribbon 5 can be adjusted.
 ドロスボックス部6の上部ケーシング6Bは鋼材製のシーリングゲートとして構成され、フロートバス2と徐冷炉10との間に設置された天井壁24と、この天井壁24から垂下されたステンレス鋼製のドレープ25とを備えて構成され、下部ケーシング6Aの上側に設置されている。天井壁24に垂下された複数のドレープ25は、3つのリフトアウトロール7とその上方を移動するガラスリボン5との接触位置の上方に沿うように配置されている。すなわち、これらのドレープ25はリフトアウトロール7の全長に渡るようにリフトアウトロール7の中心軸の上方に配置され、上部ケーシング6Bの内部空間を複数に仕切っている。
 徐冷炉10にはレヤーロール9が水平に複数設置されており、ドロスボックス部6を通過して移動してきたガラスリボン5を複数のレヤーロール9により徐冷炉10内を搬送できる。
The upper casing 6B of the dross box section 6 is configured as a steel sealing gate, and has a ceiling wall 24 installed between the float bath 2 and the slow cooling furnace 10, and a stainless steel drape 25 suspended from the ceiling wall 24. And is installed on the upper side of the lower casing 6A. The plurality of drapes 25 depending on the ceiling wall 24 are arranged along the upper side of the contact position between the three lift-out rolls 7 and the glass ribbon 5 moving above. That is, these drapes 25 are arranged above the central axis of the lift-out roll 7 so as to extend over the entire length of the lift-out roll 7, and partition the internal space of the upper casing 6B into a plurality.
A plurality of layer rolls 9 are installed horizontally in the slow cooling furnace 10, and the glass ribbon 5 that has moved through the dross box 6 can be conveyed through the slow cooling furnace 10 by the plurality of layer rolls 9.
 次に、図2に基づいて、製造装置1のフロートバス2について、より詳細に説明する。
 図2は、フロートガラスの製造装置1のフロートバス2を拡大して示す構成図である。図2に示すように、フロートバス2内には、ガラスリボン5が溶融金属浴3の液面から引き上げられて分離する領域(テイクオフ部)TOがある。すなわち、テイクオフ部TOは、溶融金属浴3の液面からガラスリボン5を連続的に引き上げる際にガラスリボン5が液面から離れる位置を指す。
Next, the float bath 2 of the manufacturing apparatus 1 will be described in more detail based on FIG.
FIG. 2 is an enlarged configuration diagram illustrating the float bath 2 of the float glass manufacturing apparatus 1. As shown in FIG. 2, the float bath 2 has a region (take-off portion) TO in which the glass ribbon 5 is pulled up from the liquid surface of the molten metal bath 3 and separated. That is, the take-off portion TO indicates a position where the glass ribbon 5 is separated from the liquid surface when the glass ribbon 5 is continuously pulled up from the liquid surface of the molten metal bath 3.
 上述したように、フロートバス2にはヒータ(図示略)が設けられており、フロートバス2内の温度が、上流側から下流側のテイクオフ部TOに向けて徐々に低温となるように、調節されている。これは、テイクオフ部TOでガラスリボン5を引き上げるためには、ある程度の硬さを要するからである。
 もっとも、本実施形態においては、フロートバス2内の温度は、全域で600℃超であり、テイクオフ部TOの温度も好ましくは600℃超である。
 なお、フロートバス2内の温度(テイクオフ部TOの温度を含む)とは、ガラス(溶融ガラスGおよびガラスリボン5)のみならず周囲の雰囲気も含む温度のことであり、例えば、放射温度計を用いて測定できる。
As described above, the float bath 2 is provided with a heater (not shown), and is adjusted so that the temperature in the float bath 2 gradually decreases from the upstream side toward the take-off portion TO on the downstream side. Has been. This is because a certain degree of hardness is required to pull up the glass ribbon 5 at the take-off portion TO.
However, in the present embodiment, the temperature in the float bath 2 is over 600 ° C. throughout the region, and the temperature of the take-off portion TO is preferably over 600 ° C.
The temperature in the float bath 2 (including the temperature of the take-off portion TO) is a temperature including not only glass (molten glass G and glass ribbon 5) but also the surrounding atmosphere. Can be measured.
 フロートバス2を構成する溶融金属浴槽2Aの下流端側には、後端壁17との間にガラスリボン5の出口部18を形成するようにして、浴槽後端壁2Aaが設けられている。浴槽後端壁2Aaは、溶融金属浴槽2Aの一部であるともいえる。 The bathtub rear end wall 2Aa is provided on the downstream end side of the molten metal bathtub 2A constituting the float bath 2 so as to form the outlet portion 18 of the glass ribbon 5 between the rear end wall 17 and the molten metal bathtub 2A. It can be said that the bathtub rear end wall 2Aa is a part of the molten metal bathtub 2A.
 浴槽後端壁2Aaの内部には、中空のガス供給管2Abが埋設されている。ガス供給管2Abは、一端がフロートバス2の外部に接続し、他端がテイクオフ部TOにおける溶融金属浴3の液面とガラスリボン5との間のスペースSPに接続している。
 なお、ガス供給管2Abは、1本に限定されることはなく、フロートバス2の幅方向(図2の奥側または手前側の方向)に、所定の間隔で、複数本のガス供給管2Abが配設されていてもよい。また、ガス供給管2Abは、浴槽後端壁2Aaに埋設されていなくてもよい。
A hollow gas supply pipe 2Ab is embedded in the bathtub rear end wall 2Aa. The gas supply pipe 2Ab has one end connected to the outside of the float bath 2 and the other end connected to a space SP between the liquid surface of the molten metal bath 3 and the glass ribbon 5 in the take-off portion TO.
Note that the number of gas supply pipes 2Ab is not limited to one, and a plurality of gas supply pipes 2Ab are provided at predetermined intervals in the width direction of the float bath 2 (the back side or the front side in FIG. 2). May be provided. Further, the gas supply pipe 2Ab may not be embedded in the bathtub rear end wall 2Aa.
 そして、本実施形態では、スペースSPの幅方向両側にも、ガス供給管2Abと同様のガス供給管2Acが配設されている。具体的には、図2に示すように、フロートバス2の幅方向の一側(図2中の奥側)に、スペースSPに臨む位置で、ガス供給管2Acの端面が配設されている。
 また、フロートバス2の幅方向の他側(図2中の手前側)にも、図示を省略したガス供給管2Acの端面が同様に配設されている。
And in this embodiment, gas supply pipe 2Ac similar to gas supply pipe 2Ab is arrange | positioned also in the width direction both sides of space SP. Specifically, as shown in FIG. 2, the end face of the gas supply pipe 2Ac is disposed on one side in the width direction of the float bath 2 (the back side in FIG. 2) at a position facing the space SP. .
In addition, an end face of the gas supply pipe 2Ac (not shown) is similarly disposed on the other side in the width direction of the float bath 2 (front side in FIG. 2).
 このため、ガス供給管2Abおよびガス供給管2Acの一端から送り込まれたガスを、他端から放出し、スペースSPに供給できる。
 そして、本実施形態においては、後述するように、ガス供給管2Abおよびガス供給管2Acを用いて、フロートバス2内にアセチレン(C22)を含むガスを供給し、好ましくはフロートバス2内のテイクオフ部TOにおけるスペースSPに、アセチレン(C22)を含むガスを供給する。
Therefore, the gas sent from one end of the gas supply pipe 2Ab and the gas supply pipe 2Ac can be discharged from the other end and supplied to the space SP.
In the present embodiment, as will be described later, a gas containing acetylene (C 2 H 2 ) is supplied into the float bath 2 using the gas supply pipe 2Ab and the gas supply pipe 2Ac, and preferably the float bath 2 A gas containing acetylene (C 2 H 2 ) is supplied to the space SP in the take-off portion TO.
 なお、製造装置1を用いて製造するフロートガラスとしては、特に限定されず、例えば、ソーダライムガラス、無アルカリガラスが挙げられ、無アルカリガラスが好ましい。
 なお、無アルカリガラスとしては、例えば、酸化物基準の質量百分率表示で、SiO2:50~73%、Al23:10.5~24%、B23:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:8~29.5%、及びZrO2:0~5%、を含有する無アルカリガラスが挙げられる。
 このとき、歪点が高く溶解性を考慮する場合には、酸化物基準の質量百分率表示で、SiO2:58~66%、Al23:15~22%、B23:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、及びMgO+CaO+SrO+BaO:9~18%、を含有する無アルカリガラスが好ましい。
 また、高歪点を考慮する場合には、酸化物基準の質量百分率表示で、SiO2:54~73、Al23:10.5~22.5%、B23:0~5.5%、MgO:0~8%、CaO:0~9%、SrO:0~16%、BaO:0~2.5%、及びMgO+CaO+SrO+BaO:8~26%、を含有する無アルカリガラスが好ましい。
In addition, it does not specifically limit as float glass manufactured using the manufacturing apparatus 1, For example, soda-lime glass and an alkali free glass are mentioned, An alkali free glass is preferable.
Examples of the alkali-free glass include SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO in terms of mass percentage based on oxide. : 0-8%, CaO: 0-14.5%, SrO: 0-24%, BaO: 0-13.5%, MgO + CaO + SrO + BaO: 8-29.5%, and ZrO 2 : 0-5% An alkali-free glass to be contained is mentioned.
At this time, when the strain point is high and the solubility is taken into consideration, the oxide-based mass percentage display is SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to An alkali-free glass containing 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, and MgO + CaO + SrO + BaO: 9 to 18% is preferable.
When a high strain point is taken into consideration, the oxide-based mass percentage display is SiO 2 : 54 to 73, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5 Preferred is an alkali-free glass containing 5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, and MgO + CaO + SrO + BaO: 8 to 26%. .
 次に、上記構成のフロートガラスの製造装置1を用いた本実施形態のフロートガラスの製造方法について説明する。 Next, a method for manufacturing a float glass according to this embodiment using the float glass manufacturing apparatus 1 having the above-described configuration will be described.
 まず、溶解炉から溶融ガラスGを供給通路11に供給し、リップ12の上を流れる溶融ガラスGの流量をツイール13の堰き止め量により調整しながらフロートバス2の入口部2aの溶融金属浴3上に溶融ガラスGを供給する。
 フロートバス2においては、溶融金属浴3の上に流動させた溶融ガラスGを所定幅、所定厚さの帯板状のガラスリボン5に成形する。このガラスリボン5をリフトアウトロール7で溶融金属浴3の液面から牽引して引き上げ、ドロスボックス部6側に移動させ、次いでレヤーロール9により徐冷炉10の内部を搬送しながらガラスリボン5を冷却する。徐冷炉10において冷却されたガラスリボン5を、冷却後、切断工程において必要な長さ、幅に切断することで目的の幅と長さのフロートガラスを製造できる。
First, molten glass G is supplied from the melting furnace to the supply passage 11, and the molten metal bath 3 at the inlet 2 a of the float bath 2 is adjusted by adjusting the flow rate of the molten glass G flowing on the lip 12 by the amount of damming of the twill 13. Molten glass G is supplied on top.
In the float bath 2, the molten glass G flowed on the molten metal bath 3 is formed into a strip-like glass ribbon 5 having a predetermined width and a predetermined thickness. The glass ribbon 5 is pulled up from the liquid level of the molten metal bath 3 by the lift-out roll 7 and moved to the dross box 6 side, and then the glass ribbon 5 is cooled while being conveyed through the slow cooling furnace 10 by the layer roll 9. . After the glass ribbon 5 cooled in the slow cooling furnace 10 is cooled, the glass ribbon 5 having a desired width and length can be manufactured by cutting the glass ribbon 5 into a length and a width necessary for the cutting step.
 溶融金属浴3に溶融ガラスGを供給してガラスリボン5に成形するに際し、フロートバス2内に、上部構造体2Bに設けられたパイプ(図示略)から窒素ガスおよび水素ガスを送り還元性雰囲気としながら、かつ、ヒータ(図示略)を制御して下流側が低温となるように徐々に温度を低下させて、ガラスリボン5に成形する。 When supplying the molten glass G to the molten metal bath 3 and forming it into the glass ribbon 5, nitrogen gas and hydrogen gas are sent into the float bath 2 from a pipe (not shown) provided in the upper structure 2B, and a reducing atmosphere. In addition, the glass ribbon 5 is formed by gradually lowering the temperature so that the downstream side becomes a low temperature by controlling a heater (not shown).
 そして、本実施形態においては、フロートバス2内において、テイクオフ部TOの温度を600℃超とすることが好ましく、かつ、ガス供給管2Abおよびガス供給管2Acを介してアセチレン(C22)を含むガスを供給し、中でもテイクオフ部TOのスペースSPにアセチレン(C22)を含むガスを供給することが好ましい。
 これにより、フロートバス2内を単に水素(H2)ガスの雰囲気とするよりも、溶融金属浴3の液面に生成した酸化錫の分解速度が向上する。また、フロートバス2内に漏入して酸化錫を生成させる原因となる酸素も、錫と反応する前にアセチレン(C22)と反応して、CO2やH2Oとなり錫と反応しなくなる。
In the present embodiment, in the float bath 2, it is preferable that the temperature of the take-off portion TO exceeds 600 ° C., and acetylene (C 2 H 2 ) is provided via the gas supply pipe 2Ab and the gas supply pipe 2Ac. It is preferable to supply a gas containing acetylene (C 2 H 2 ) to the space SP of the take-off portion TO.
As a result, the decomposition rate of tin oxide generated on the liquid surface of the molten metal bath 3 is improved rather than simply making the atmosphere of the hydrogen (H 2 ) gas inside the float bath 2. In addition, oxygen that leaks into the float bath 2 and produces tin oxide also reacts with acetylene (C 2 H 2 ) before reacting with tin to become CO 2 or H 2 O to react with tin. No longer.
 酸化錫の還元は、まず、SnO→SnOのように還元が進行するが、フロートバス内の温度が600℃以下の場合には、アセチレン(C)を用いてもSnOからSnへの還元がさらに進まない。しかし、600℃超の温度にすることで、SnOがSnに還元分解される。
 なお、アセチレン(C)は、まず、2C+Hとなった後に、酸化錫に作用して、還元分解すると考えられる。
 また、酸素(O)の反応は、まず、一酸化炭素(CO)となった後に、最終的に二酸化炭素(CO)となる。
The reduction of tin oxide first proceeds as SnO 2 → SnO. When the temperature in the float bath is 600 ° C. or lower, SnO can be converted to Sn even if acetylene (C 2 H 2 ) is used. The reduction does not progress further. However, SnO is reductively decomposed into Sn by setting the temperature above 600 ° C.
Acetylene (C 2 H 2 ) is considered to undergo reductive decomposition by acting on tin oxide after first becoming 2C + H 2 .
Further, the reaction of oxygen (O 2 ) first becomes carbon monoxide (CO), and finally becomes carbon dioxide (CO 2 ).
 こうして、溶融金属浴3の液面の酸化錫が分解され、かつ、酸化錫の生成も抑制されるため、テイクオフ部TOにおいてガラスリボン5を引き上げる際に酸化錫が転写されることが抑制され、その結果、溶融金属浴3の錫が酸化錫とともに運ばれてガラスリボン5に錫滴が付着することが抑制される。そして、このガラスリボン5を徐冷および切断することで、錫滴の付着が抑制されたフロートガラスを得ることができる。 Thus, the tin oxide on the liquid surface of the molten metal bath 3 is decomposed and the production of tin oxide is also suppressed, so that the transfer of tin oxide when the glass ribbon 5 is pulled up at the take-off portion TO is suppressed, As a result, the tin in the molten metal bath 3 is carried along with the tin oxide, and tin droplets are prevented from adhering to the glass ribbon 5. Then, by slowly cooling and cutting the glass ribbon 5, a float glass in which the adhesion of tin droplets is suppressed can be obtained.
 フロートバス2内の温度は、600℃超であれば特に限定されず、テイクオフ部TOの温度は600℃超が好ましい。フロートバス内の温度、とりわけ、テイクオフ部TOの温度は、酸化錫や酸素を分解する効果により優れるという理由から、620℃以上がなお好ましく、650℃以上がより好ましく、700℃以上がさらに好ましく、750℃以上が特に好ましい。上限の温度は特に限定されないが、周囲の金属部材の変更を考慮すると、例えば、850℃以下が好適に挙げられる。
 したがって、好ましいテイクオフ部TOは、フロートバス2内における600℃超850℃以下の温度の領域と言い換えることもできる。
The temperature in the float bath 2 is not particularly limited as long as it exceeds 600 ° C, and the temperature of the take-off portion TO is preferably more than 600 ° C. The temperature in the float bath, in particular, the temperature of the take-off portion TO is more preferably 620 ° C. or higher, more preferably 650 ° C. or higher, more preferably 700 ° C. or higher, because it is superior in the effect of decomposing tin oxide and oxygen. 750 degreeC or more is especially preferable. Although the upper limit temperature is not particularly limited, for example, 850 ° C. or less is preferable when considering changes in surrounding metal members.
Therefore, the preferred take-off portion TO can be rephrased as a region in the float bath 2 having a temperature of more than 600 ° C. and 850 ° C. or less.
 アセチレン(C22)は、例えば、窒素(N2)との混合ガスとして、ガス供給管2Abおよびガス供給管2Acから供給される。
 このとき、混合ガスにおけるアセチレンの濃度は、0.5モル%以上が好ましく、1モル%以上がより好ましく、2モル%以上がさらに好ましい。上限は特に限定されないが、アセチレン(C22)の分解時に生成したカーボン(C)が凝集体にならないようにする観点から、50モル%以下が好ましい。
Acetylene (C 2 H 2 ) is supplied from, for example, the gas supply pipe 2Ab and the gas supply pipe 2Ac as a mixed gas with nitrogen (N 2 ).
At this time, the concentration of acetylene in the mixed gas is preferably 0.5 mol% or more, more preferably 1 mol% or more, and further preferably 2 mol% or more. The upper limit is not particularly limited, from the viewpoint of acetylene carbon produced during the decomposition of (C 2 H 2) (C ) are prevented from becoming aggregates, preferably 50 mol% or less.
 アセチレンは、テイクオフ部TOのスペースSPを含む上部構造体2Bに設けられたパイプ(図示略)からフロートバス2内に全体的に供給してもよいが、フロートバス2内に炭素が付着することを回避する観点からは、スペースSPのみに供給するのが好ましい。 Acetylene may be supplied to the entire float bath 2 from a pipe (not shown) provided in the upper structure 2B including the space SP of the take-off portion TO, but carbon adheres to the float bath 2. From the viewpoint of avoiding this, it is preferable to supply only to the space SP.
 以下、本発明に係る実施例を説明し、本願発明をさらに説明する。 Hereinafter, examples according to the present invention will be described to further explain the present invention.
 <実施例1~2および比較例1>
 図1の製造装置1を用いて、錫浴である溶融金属浴3の液面に溶融ガラスGを供給してガラスリボン5に成形し、徐冷および切断を行なって、フロートガラス(無アルカリガラス)を製造した。
 なお、溶融ガラスGの組成は、酸化物基準の質量百分率表示で、SiO2:59.70%、Al23:16.90%、B23:7.90%、MgO:3.27%、CaO:4.00%、SrO:7.69%、BaO:0.10%、MgO+CaO+SrO+BaO:15.06%であり、実質的にSO3を含有しなかった。
<Examples 1 and 2 and Comparative Example 1>
Using the manufacturing apparatus 1 of FIG. 1, molten glass G is supplied to the liquid surface of a molten metal bath 3 which is a tin bath, formed into a glass ribbon 5, slowly cooled and cut, and float glass (non-alkali glass) ) Was manufactured.
The composition of the molten glass G is expressed in terms of mass percentage on the basis of oxides: SiO 2 : 59.70%, Al 2 O 3 : 16.90%, B 2 O 3 : 7.90%, MgO: 3. They were 27%, CaO: 4.00%, SrO: 7.69%, BaO: 0.10%, MgO + CaO + SrO + BaO: 15.06%, and contained substantially no SO 3 .
 このとき、実施例1~2および比較例1においては、テイクオフ部TOのスペースSPに、ガス供給管2Abおよびガス供給管2Acから、アセチレン(C22)と窒素(N2)との混合ガス(C22濃度:2モル%)(下記第1表では単に「C22」と表記)を供給した。
 なお、いずれの例においても、上部構造体2Bに設けられたパイプ(図示略)からは、水素(H2)と窒素(N2)との混合ガス(H2濃度:2モル%)を供給した。
 そして、各例ごとに、フロートバス2内のヒータ(図示略)を制御して、テイクオフ部TOの温度を、下記第1表に示すように異ならせた。
At this time, in Examples 1-2 and Comparative Example 1, mixing of acetylene (C 2 H 2 ) and nitrogen (N 2 ) from the gas supply pipe 2Ab and the gas supply pipe 2Ac into the space SP of the take-off portion TO. Gas (C 2 H 2 concentration: 2 mol%) (simply indicated as “C 2 H 2 ” in Table 1 below) was supplied.
In each example, a mixed gas (H 2 concentration: 2 mol%) of hydrogen (H 2 ) and nitrogen (N 2 ) is supplied from a pipe (not shown) provided in the upper structure 2B. did.
For each example, a heater (not shown) in the float bath 2 was controlled to vary the temperature of the take-off portion TO as shown in Table 1 below.
 <比較例2>
 ガス供給管2Abおよびガス供給管2AcからスペースSPに供給するガス種を、水素(H2)と窒素(N2)との混合ガス(H2濃度:2モル%)(下記第1表では単に「H2」と表記)に変更した以外は、実施例1と同様にして、フロートガラスを製造した。
<Comparative example 2>
The gas species supplied to the space SP from the gas supply pipe 2Ab and the gas supply pipe 2Ac is a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ) (H 2 concentration: 2 mol%) (in Table 1 below, Float glass was produced in the same manner as in Example 1 except that it was changed to “H 2 ”.
 <評価>
 このように製造された実施例1~2および比較例1~2のフロートガラスについて、溶融金属浴3側の表面における任意の一視野範囲(1000mm×1000mm)における錫滴の個数を測定した。下記基準により「◎」または「○」であれば、錫滴の付着が抑制されたフロートガラスが得られたものとして評価できる。結果を下記第1表に示す。
・「◎」:錫滴の個数が5個以下であった。
・「○」:錫滴の個数が5個超20個以下であった。
・「×」:錫滴の個数が20個超であった。
<Evaluation>
For the float glasses of Examples 1 and 2 and Comparative Examples 1 and 2 manufactured in this way, the number of tin droplets in an arbitrary visual field range (1000 mm × 1000 mm) on the surface on the molten metal bath 3 side was measured. If it is “◎” or “◯” according to the following criteria, it can be evaluated that a float glass in which the adhesion of tin droplets is suppressed is obtained. The results are shown in Table 1 below.
-“◎”: The number of tin droplets was 5 or less.
-"(Circle)": The number of tin droplets was more than 5 and 20 or less.
-"X": The number of tin droplets was more than 20.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記第1表に示す結果から明らかなように、アセチレンを供給し、かつ、温度を600℃超とした実施例1および2では、錫滴の付着が抑制されていた。
 このとき、温度を650℃とした実施例1よりも、温度を750℃とした実施例2の方が、錫滴の付着をより抑制できたことが分かった。
 これに対して、温度が600℃以下である比較例1、および、温度は600℃超であるがアセチレンを供給しなかった比較例2では、錫滴の付着を抑制する効果が不十分であることが分かった。
As is clear from the results shown in Table 1 above, in Examples 1 and 2 in which acetylene was supplied and the temperature exceeded 600 ° C., the adhesion of tin droplets was suppressed.
At this time, it was found that the adhesion of tin droplets could be suppressed more in Example 2 in which the temperature was 750 ° C. than in Example 1 in which the temperature was 650 ° C.
On the other hand, Comparative Example 1 in which the temperature is 600 ° C. or lower and Comparative Example 2 in which the temperature is higher than 600 ° C. but no acetylene is supplied have an insufficient effect of suppressing the adhesion of tin droplets. I understood that.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。なお、2013年11月11日出願の日本特許出願(特願2013-233004)の内容は本出願に参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The contents of the Japanese patent application filed on November 11, 2013 (Japanese Patent Application No. 2013-233004) are incorporated in this application as a reference.
 本発明の技術は、フロート法によるガラスの製造技術一般に広く適用できる。 The technology of the present invention can be widely applied to glass manufacturing technology in general by the float method.
 G…溶融ガラス
 SP…スペース
 TO…テイクオフ部
 1…フロートガラスの製造装置
 2…フロートバス
 2A…溶融金属浴槽
 2Aa…浴槽後端壁
 2Ab…ガス供給管
 2Ac…ガス供給管
 2B…上部構造体
 2a…入口部
 3…溶融金属浴
 5…ガラスリボン
 6…ドロスボックス部
 6A…下部ケーシング
 6B…上部ケーシング
 6a…側壁
 6b…側壁
 6c…底壁
 7…リフトアウトロール
 9…レヤーロール
 10…徐冷炉
 11…供給通路
 12…リップ
 13…ツイール
 15…フロントリンテル
 16…天井壁
 17…後端壁
 18…出口部
 21…シールブロック
 22…台座
 23…供給管
 24…天井壁
 25…ドレープ
100…溶融金属浴
101…フロートバス
102…ドロスボックス
103…徐冷炉
105…リフトアウトロール
106…レヤーロール
108…ガラスリボン
G ... Molten glass SP ... Space TO ... Take-off part 1 ... Float glass manufacturing device 2 ... Float bath 2A ... Molten metal bathtub 2Aa ... Bath rear end wall 2Ab ... Gas supply pipe 2Ac ... Gas supply pipe 2B ... Upper structure 2a ... Inlet part 3 ... Molten metal bath 5 ... Glass ribbon 6 ... Dross box part 6A ... Lower casing 6B ... Upper casing 6a ... Side wall 6b ... Side wall 6c ... Bottom wall 7 ... Lift-out roll 9 ... Layer roll 10 ... Slow cooling furnace 11 ... Supply passage 12 ... Lip 13 ... Twill 15 ... Front lintel 16 ... Ceiling wall 17 ... Rear end wall 18 ... Outlet 21 ... Seal block 22 ... Base 23 ... Supply pipe 24 ... Ceiling wall 25 ... Drape 100 ... Molten metal bath 101 ... Float bath 102 ... Dross box 103 ... Slow cooling furnace 105 ... Lift out roll 106 ... Layer low 108 ... glass ribbon

Claims (4)

  1.  フロートバスに湛えられた錫浴である溶融金属浴の液面に溶融ガラスを供給してガラスリボンに成形し、前記ガラスリボンを前記溶融金属浴の液面から引き上げて前記フロートバスから引き出した後に徐冷および切断してフロートガラスを得る、フロートガラスの製造方法であって、
     前記フロートバス内の温度が600℃超であり、かつ
     前記フロートバス内にアセチレンを供給する、フロートガラスの製造方法。
    After molten glass is supplied to the liquid surface of the molten metal bath, which is a tin bath provided in the float bath, and formed into a glass ribbon, the glass ribbon is pulled up from the liquid surface of the molten metal bath and pulled out from the float bath A method for producing float glass, which is slowly cooled and cut to obtain float glass,
    A method for producing float glass, wherein the temperature in the float bath is over 600 ° C., and acetylene is supplied into the float bath.
  2.  前記フロートバス内における前記ガラスリボンを前記溶融金属浴の液面から引き上げる領域であるテイクオフ部の温度が、600℃超である、請求項1に記載のフロートガラスの製造方法。 The method for producing a float glass according to claim 1, wherein a temperature of a take-off portion, which is a region where the glass ribbon in the float bath is pulled up from the liquid surface of the molten metal bath, is over 600 ° C.
  3.  前記テイクオフ部に、アセチレンを供給する、請求項2に記載のフロートガラスの製造方法。 The method for producing a float glass according to claim 2, wherein acetylene is supplied to the take-off portion.
  4.  前記テイクオフ部における前記溶融金属浴の液面と前記ガラスリボンとの間のスペースに、アセチレンを供給する、請求項2または3に記載のフロートガラスの製造方法。 The method for producing float glass according to claim 2 or 3, wherein acetylene is supplied to a space between the liquid surface of the molten metal bath and the glass ribbon in the take-off portion.
PCT/JP2015/062312 2015-04-22 2015-04-22 Method for manufacturing float glass WO2016170634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580078995.6A CN107531541B (en) 2015-04-22 2015-04-22 Method for producing float glass
PCT/JP2015/062312 WO2016170634A1 (en) 2015-04-22 2015-04-22 Method for manufacturing float glass
KR1020177030154A KR20170138441A (en) 2015-04-22 2015-04-22 Process for producing float glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062312 WO2016170634A1 (en) 2015-04-22 2015-04-22 Method for manufacturing float glass

Publications (1)

Publication Number Publication Date
WO2016170634A1 true WO2016170634A1 (en) 2016-10-27

Family

ID=57143819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062312 WO2016170634A1 (en) 2015-04-22 2015-04-22 Method for manufacturing float glass

Country Status (3)

Country Link
KR (1) KR20170138441A (en)
CN (1) CN107531541B (en)
WO (1) WO2016170634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129529A1 (en) * 2018-12-21 2020-06-25 日本電気硝子株式会社 Method for measuring temperature of glass article, and method for manufacturing glass article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014028A1 (en) * 2007-07-23 2009-01-29 Asahi Glass Co., Ltd. Float glass making process and float glass making equipment
WO2014069372A1 (en) * 2012-10-31 2014-05-08 旭硝子株式会社 Float glass production method and production device
WO2015025569A1 (en) * 2013-08-22 2015-02-26 旭硝子株式会社 Float glass production device and float glass production method using the same
JP2015093794A (en) * 2013-11-11 2015-05-18 旭硝子株式会社 Float glass manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007972B (en) * 1985-08-14 1990-05-16 圣戈班玻璃制造公司 Method and device for extraction of a glass ribbon at the outlet of a float furnace, and the flat glass obtained
DE102004045666B4 (en) * 2004-09-18 2007-04-19 Schott Ag Special floated glass and process for its production
KR101383603B1 (en) * 2010-06-03 2014-04-11 주식회사 엘지화학 Apparatus and method for manufacturing float glass
CN103221352B (en) * 2010-11-18 2015-07-29 旭硝子株式会社 The manufacturing installation of sheet glass and the manufacture method of sheet glass
JP5024487B1 (en) * 2011-02-01 2012-09-12 旭硝子株式会社 Manufacturing method of glass substrate for magnetic disk
CN203429048U (en) * 2013-09-16 2014-02-12 四川旭虹光电科技有限公司 Cooling structure applicable to outlet lip plate in float line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014028A1 (en) * 2007-07-23 2009-01-29 Asahi Glass Co., Ltd. Float glass making process and float glass making equipment
WO2014069372A1 (en) * 2012-10-31 2014-05-08 旭硝子株式会社 Float glass production method and production device
WO2015025569A1 (en) * 2013-08-22 2015-02-26 旭硝子株式会社 Float glass production device and float glass production method using the same
JP2015093794A (en) * 2013-11-11 2015-05-18 旭硝子株式会社 Float glass manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129529A1 (en) * 2018-12-21 2020-06-25 日本電気硝子株式会社 Method for measuring temperature of glass article, and method for manufacturing glass article
JP2020101436A (en) * 2018-12-21 2020-07-02 日本電気硝子株式会社 Temperature measurement method and manufacturing method of glass article
JP7324416B2 (en) 2018-12-21 2023-08-10 日本電気硝子株式会社 Temperature measuring method and manufacturing method for glass article

Also Published As

Publication number Publication date
KR20170138441A (en) 2017-12-15
CN107531541B (en) 2021-04-02
CN107531541A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
TWI527777B (en) Manufacture of glass plate and manufacturing method of glass plate
US8322161B2 (en) Process and apparatus for producing glass sheet
JP4949858B2 (en) Flat lead glass manufactured by floating on metal bath
JP5459213B2 (en) Float glass manufacturing apparatus and manufacturing method
CN102092921A (en) Producing method and producing device of float glass
JP2015160804A (en) Float process for producing float plate glass and float plate glass
US10392289B2 (en) Method for manufacturing float glass, and float glass
JP2017001899A (en) Manufacturing method of float glass, and manufacturing apparatus of float glass
WO2015093432A1 (en) Apparatus for manufacturing float glass and method for manufacturing float glass
WO2013187179A1 (en) Plate-glass production device and plate-glass production method
WO2016170634A1 (en) Method for manufacturing float glass
JP2015093794A (en) Float glass manufacturing method
US3351450A (en) Apparatus for the manufacture of flat glass on a molten metal bath
CN104743776B (en) The manufacture method of float flat glass
US3352657A (en) Method of attenuating a ribbon of glass on a molten metal bath
WO2015025569A1 (en) Float glass production device and float glass production method using the same
JPWO2013145922A1 (en) Manufacturing method of glass plate
US3594148A (en) Refractory tank structure for floating glass on molten metal
US3356475A (en) Method of protecting the surface of the molten metal in a glass flotation operation
JP2024030123A (en) Stainless roll, glass production device, and glass production method
US4115092A (en) Method and apparatus for preventing bubble nucleation and growth in a molten glass delivery facility
JP2022188662A (en) Method for manufacturing float glass
CN115572045A (en) Float glass manufacturing device and float glass manufacturing method
JP2007302509A (en) Method for manufacturing glass and apparatus related to manufacturing of glass
TW201410622A (en) Method for producing glass plate, and glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15889873

Country of ref document: EP

Kind code of ref document: A1