WO2015093432A1 - Apparatus for manufacturing float glass and method for manufacturing float glass - Google Patents

Apparatus for manufacturing float glass and method for manufacturing float glass Download PDF

Info

Publication number
WO2015093432A1
WO2015093432A1 PCT/JP2014/083120 JP2014083120W WO2015093432A1 WO 2015093432 A1 WO2015093432 A1 WO 2015093432A1 JP 2014083120 W JP2014083120 W JP 2014083120W WO 2015093432 A1 WO2015093432 A1 WO 2015093432A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ribbon
glass
float glass
molten metal
ribbon
Prior art date
Application number
PCT/JP2014/083120
Other languages
French (fr)
Japanese (ja)
Inventor
信之 伴
白石 喜裕
海 郡司
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020167006739A priority Critical patent/KR20160098163A/en
Priority to CN201480055542.7A priority patent/CN105612130A/en
Publication of WO2015093432A1 publication Critical patent/WO2015093432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/10Changing or regulating the dimensions of the molten glass ribbon using electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method.
  • the float glass manufacturing apparatus includes a forming apparatus for forming a plate-shaped glass ribbon on the molten metal in the bathtub, and a slow cooling apparatus for gradually cooling the glass ribbon (for example, see Patent Document 1).
  • the glass ribbon has a flat portion between both side edges. Since both side edges of the glass ribbon are thicker than the flat part of the glass ribbon, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
  • the float glass manufacturing apparatus includes an interface device that connects a molding apparatus and a slow cooling apparatus.
  • the interface device has a lift-out roll that pulls the glass ribbon from the molten metal and conveys the glass ribbon toward the slow cooling device.
  • the glass ribbon Since the molten metal stores heat, the glass ribbon is difficult to cool while it is in contact with the molten metal, but it is likely to cool away from the molten metal. Since the flat part of the glass ribbon is thinner than both side edges of the glass ribbon, it is easier to cool. Therefore, temperature unevenness in the width direction of the glass ribbon occurs. Moreover, this temperature unevenness is also a cause of temperature unevenness in the flow direction of the glass ribbon.
  • the temperature of the glass ribbon is near the transition point.
  • the linear expansion coefficient of glass changes greatly at the transition point of glass.
  • the temperature irregularity of the glass ribbon was large, the glass ribbon was largely deformed, and the glass ribbon was sometimes broken.
  • the present invention has been made in view of the above problems, and its main object is to provide a float glass manufacturing apparatus capable of preventing the glass ribbon from cracking in the interface device.
  • a molding apparatus for molding a plate-shaped glass ribbon on the molten metal in the bathtub A slow cooling device for slowly cooling the glass ribbon; An interface device for connecting the molding device and the slow cooling device; The interface device A lift-out roll that pulls up the glass ribbon from the molten metal and conveys it toward the slow cooling device, A cooling member for cooling the downstream end of the bathtub;
  • a float glass manufacturing apparatus including a heat insulating member that blocks cold radiation of the glass ribbon by the cooling member.
  • a float glass manufacturing apparatus capable of preventing the glass ribbon from being broken in the interface device.
  • FIG. 1 is a diagram showing a float glass manufacturing apparatus according to an embodiment of the present invention.
  • the float glass manufacturing apparatus includes a forming apparatus 10, a slow cooling apparatus 20, and an interface apparatus 30.
  • the forming apparatus 10 forms a plate-like glass ribbon G on the molten metal M in the bathtub 11.
  • the glass ribbon G gradually hardens while flowing on the molten metal M.
  • the glass ribbon G is pulled up from the molten metal M in the downstream region of the bathtub 11 and sent toward the slow cooling device 20.
  • the molding apparatus 10 includes a bathtub 11, a roof 15, a heater 16, a pipe 17, and the like.
  • the bathtub 11 accommodates the molten metal M.
  • the molten metal M may be a common one, and may be, for example, molten tin or a molten tin alloy.
  • the bathtub 11 is composed of, for example, a metal casing 12 and a brick layer 13.
  • the metal casing 12 suppresses mixing of outside air into the bathtub 11.
  • the metal casing 12 is formed by welding a plurality of metal plates, for example.
  • the brick layer 13 covers the inner surface of the metal casing 12.
  • the brick layer 13 may be an assembly in which a plurality of bricks are assembled in a box shape, and contains the molten metal M therein.
  • the roof 15 is disposed above the bathtub 11 and covers the upper space of the bathtub 11.
  • reducing gas or the like is supplied from the through hole 15 a of the roof 15 in order to prevent the molten metal M from being oxidized.
  • the reducing gas for example, a mixed gas of nitrogen gas and hydrogen gas is used.
  • the upper space of the bathtub 11 is set to a positive pressure higher than the atmospheric pressure in order to prevent outside air from being mixed.
  • the heater 16 is inserted into the through hole 15a of the roof 15, protrudes downward from the roof 15, and heats the glass ribbon G and the like.
  • the heater 16 may be a general one, for example, a SiC heater.
  • a plurality of heaters 16 are arranged at intervals in the width direction of the glass ribbon G (the vertical direction in FIG. 1) and the flow direction of the glass ribbon G (the left-right direction in FIG. 1).
  • the pipe 17 forms an airflow film at the outlet of the molding apparatus 10 by injecting an inert gas such as nitrogen gas.
  • an inert gas such as nitrogen gas.
  • the outflow of reducing gas can be suppressed.
  • a partition plate may be provided instead of the pipe 17. The partition plate is disposed above the glass ribbon G and forms a slight gap with the glass ribbon G.
  • the slow cooling device 20 cools the glass ribbon G slowly.
  • the slow cooling device 20 includes a slow cooling furnace 21, a transport roll 22, and the like.
  • the transport roll 22 is rotatable about its center line, is driven to rotate by a motor or the like, and transports the glass ribbon G horizontally in the slow cooling furnace 21.
  • the glass ribbon G is gradually cooled while being conveyed.
  • the glass ribbon G has a flat part between both side edge parts. Since both side edges of the glass ribbon G are thicker than the flat part of the glass ribbon G, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
  • the interface device 30 connects the molding device 10 and the slow cooling device 20 to limit the temperature drop of the glass ribbon G away from the molten metal M. Since the molten metal M stores heat, the glass ribbon G is difficult to cool while being in contact with the molten metal M, but is likely to be cooled away from the molten metal M.
  • the interface device 30 includes a dross box 31, a sealing 32, lift-out rolls 33-1 to 33-3, drapes 34-1 to 34-3, seal blocks 35-1 to 35-3, a cooling member 36, a heat insulating member 37, And heaters 38-1 to 38-8.
  • the dross box 31 is disposed below the glass ribbon G and collects molten metal M debris (called dross) adhering to the bottom surface of the glass ribbon G.
  • the inner surface of the dross box 31 is covered with a heat insulating material 41, and heat radiation from the dross box 31 to the outside is limited.
  • the dross box 31 may connect the downstream end portion 11 a of the bathtub 11 and the upstream end portion of the slow cooling furnace 21.
  • the gap may be filled with a heat insulating material.
  • the sealing 32 is disposed above the glass ribbon G.
  • the upper surface of the ceiling 32 is covered with a heat insulating material 42, and heat radiation from the ceiling 32 to the outside is limited.
  • the sealing 32 may connect the downstream end of the roof 15 and the upstream end of the slow cooling furnace 21.
  • the gap may be filled with a heat insulating material.
  • the lift-out rolls 33-1 to 33-3 pull up the glass ribbon G from the molten metal M and convey it toward the slow cooling device 20.
  • the lift-out rolls 33-1 to 33-3 are rotatable around the center line, and are driven to rotate by a motor or the like.
  • the drapes 34-1 to 34-3 are suspended from the ceiling 32 and block the gas flow above the glass ribbon G. Thereby, mixing of the hydrogen gas from the shaping
  • the drapes 34-1 to 34-3 are provided above the lift-out rolls 33-1 to 33-3.
  • the seal blocks 35-1 to 35-3 come into contact with the lift-out rolls 33-1 to 33-3, thereby blocking the gas flow below the glass ribbon G and the lift-out rolls 33-1 to 33-3. Scrape off the dross attached to the surface. The dross is collected in the dross box 31.
  • the seal blocks 35-1 to 35-3 are made of carbon, for example.
  • the cooling member 36 forms a refrigerant flow path 36a.
  • the refrigerant in the refrigerant flow path 36a may be either gas or liquid.
  • the cooling member 36 cools the downstream end portion 11 a of the bathtub 11. Melting of the metal casing 12 at the downstream end 11a can be prevented.
  • the cooling member 36 may be attached to the inner surface of the dross box 31, for example, and may form a refrigerant flow path 36 a between the inner surface of the dross box 31.
  • the cooling member 36 may cool the downstream end portion 11 a of the bathtub 11 through the dross box 31.
  • the heat insulating member 37 covers the cooling member 36 from the downstream side and blocks the cold radiation of the glass ribbon G by the cooling member 36.
  • Cold radiation means that heat is taken away.
  • the temperature drop of the flat portion of the glass ribbon G from the take-off position P1 where the glass ribbon G is separated from the molten metal M to the contact position P2 where the glass ribbon G contacts the most upstream lift-out roll 33-1 is moderate. Become. Therefore, the temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be reduced between the take-off position P1 and the contact position P2, and the deformation of the glass ribbon G due to the temperature unevenness can be reduced.
  • the glass ribbon G can be prevented from cracking to some extent.
  • the thermal conductivity of the heat insulating member 37 is, for example, 1.0 W / mK or less, preferably 0.4 W / mK or less, and more preferably 0.05 W / mK or less.
  • the thickness of the heat insulating material can be set as appropriate according to the equipment, but is preferably 5 mm to 50 mm.
  • the heat insulating member 37 may have a fine porous structure in order to prevent heat transfer due to gas flow.
  • the heat insulating member 37 may be an aggregate of fine particles, and a void may be formed between the fine particles. Since heat transfer by air convection is limited and the heat transfer path is thin and long, heat insulation is good.
  • the fine particles for example, silica fine particles are used, and preferably amorphous silica fine particles are used.
  • the heat insulating member 37 may have a flexible heat-resistant exterior, and the exterior may hold fine particles.
  • Each heater 38-1 to 38-8 heats the glass ribbon G.
  • the plurality of heaters 38-1 to 38-8 may be controlled independently.
  • Each heater 38-1 to 38-8 may be divided into a plurality of heating elements in the width direction of the glass ribbon G in order to adjust the temperature distribution in the width direction of the glass ribbon G.
  • the plurality of divided heating elements may be controlled independently.
  • At least one of the plurality of heaters 38-1 to 38-8 is upstream of the center line of the most upstream lift-out roll 33-1 ( It may be arranged in the left direction in FIG.
  • heaters 38-1 and 38-2 are disposed upstream of the center line of the most upstream lift-out roll 33-1. Thereby, the temperature drop of the flat part of the glass ribbon G between the take-off position P1 and the contact position P2 is further moderated. Therefore, the deformation of the glass ribbon G due to temperature unevenness can be further reduced, and the occurrence of fine deformation such as wrinkles, waviness and warpage can be suppressed.
  • the heater 38-1 is disposed below the glass ribbon G, like the cooling member 36. Contact between the cold air of the cooling member 36 and the glass ribbon G can be suppressed.
  • the heater 38-2 is disposed above the glass ribbon G.
  • the glass ribbon G cooled from below by the cooling member 36 can be heated from above.
  • At least one of the plurality of heaters 38-1 to 38-8 is located downstream of the center line of the most downstream liftout roll 33-3 ( It may be arranged in the right direction in FIG.
  • the heater 38-7 is disposed below the glass ribbon G, and the heater 38-8 is disposed above the glass ribbon G.
  • the heaters 38-7 and 38-8 are disposed downstream of the center line of the most downstream lift-out roll 33-3. Thereby, the rapid temperature drop of the glass ribbon G in the vicinity of the inlet of the slow cooling furnace 21 can be restricted, and the occurrence of fine deformation can be further suppressed.
  • the float glass manufacturing method has a forming step of forming a plate-shaped glass ribbon G on the molten metal M in the bathtub 11 and a slow cooling step of gradually cooling the glass ribbon G.
  • the glass ribbon G gradually hardens while flowing on the molten metal M.
  • the glass ribbon G is pulled up from the molten metal M in the downstream area of the bathtub 11 and is conveyed toward the slow cooling furnace 21 on the lift-out rolls 33-1 to 33-3. Thereafter, the glass ribbon G is gradually cooled while being transported on the transport roll 22 in the slow cooling furnace 21.
  • the glass ribbon G has a flat part between both side edge parts. Since both side edges of the glass ribbon G are thicker than the flat part of the glass ribbon G, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
  • the flat portion and both side edge portions of the glass ribbon G are used. Temperature unevenness due to the difference in thickness between the two.
  • the temperature of the glass ribbon G between the take-off position P1 and the contact position P2 is a temperature near the glass transition point. In general, the linear expansion coefficient of glass changes greatly at the transition point of glass.
  • the temperature unevenness caused by the difference in thickness between the flat portion and both side edge portions of the glass ribbon G causes the heat insulating member 37 to block the cooling radiation of the glass ribbon G by the cooling member 36, so that the contact position P2 from the take-off position P1.
  • the temperature drop of the flat portion of the glass ribbon G during the period becomes moderate. Therefore, temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be reduced, deformation of the glass ribbon G due to temperature unevenness can be reduced to some extent, and cracking of the glass ribbon G can be prevented. .
  • heaters 38-1 and 38-2 are disposed upstream of the center line of the most upstream lift-out roll 33-1, contact is made from the take-off position P1.
  • the temperature drop of the flat portion of the glass ribbon G until the position P2 is further moderated. Therefore, the deformation of the glass ribbon G due to temperature unevenness can be further reduced, and the occurrence of fine deformation can be suppressed.
  • the viscosity of the flat portion of the glass ribbon G is, for example, 10 10.7 dPa ⁇ s to 10 12.3 dPa ⁇ s. Both the hardness that can pull the glass ribbon G from the molten metal M and the softness that the glass ribbon G is not broken by the pulling from the molten metal M are obtained.
  • the viscosity of the flat portion of the glass ribbon G is represented by the viscosity at the center in the width direction of the glass ribbon G.
  • the viscosity of the flat portion of the glass ribbon G at the take-off position P1 is preferably 10 11.3 dPa ⁇ s to 10 12.3 dPa ⁇ s.
  • the temperature range of the alkali-free glass corresponding to this viscosity range is, for example, 740 ° C. to 770 ° C.
  • the viscosity of the flat part of the glass ribbon G at the take-off position P1 is preferably 10 10.7 dPa ⁇ s to 10 11.8 dPa ⁇ s.
  • the temperature range of soda lime glass corresponding to this viscosity range is, for example, 590 ° C. to 620 ° C.
  • the temperature change width of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2 is, for example, 40 ° C. or less, preferably 20 ° C. or less, more preferably 10 ° C. or less.
  • the temperature change width may be zero degrees Celsius. If the said temperature change width is 40 degrees C or less, the crack of the glass ribbon G can be prevented. If the temperature change width is 30 ° C. or less, there is almost no occurrence of fine deformation.
  • the temperature of the flat part of the glass ribbon G may gradually decrease from the take-off position P1 to the contact position P2.
  • the temperature of the flat portion of the glass ribbon G has been too low at the contact position P2 and tends to increase from the contact position P2 toward the downstream, but gradually decreases from the contact position P2 to the inlet of the slow cooling furnace 21 in this embodiment. It may be. This is because the temperature change width of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2 is small and the temperature of the flat portion of the glass ribbon G is high at the contact position P2.
  • the thickness of the manufactured float glass is, for example, 0.8 mm or less. In this case, the thickness of the flat part of the glass ribbon G is 0.8 mm or less.
  • the plate thickness of general-purpose float glass is about 2 mm to 6 mm. In this case, the thickness of the flat portion of the glass ribbon is about 2 mm to 6 mm.
  • the glass ribbon G having a flat portion thickness of 0.8 mm or less has a smaller heat capacity than a glass ribbon having a flat portion thickness of about 2 mm to 6 mm. Therefore, the sensible heat (amount of heat) that the glass ribbon G brings into the interface device 30 from the molding apparatus 10 is small, and the glass ribbon G has conventionally been easy to cool. For this reason, the float glass having a flat portion thickness of 0.8 mm or less has a remarkable effect of suppressing the temperature drop of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2. That is, temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be suppressed.
  • the smaller the plate thickness of the manufactured float glass the more remarkable the above-mentioned effects.
  • the plate thickness is more preferably 0.6 mm or less, and further preferably 0.3 mm or less.
  • the manufactured float glass is used as a glass substrate for display, a cover glass for display, and a window glass, for example.
  • the float glass produced may be alkali-free glass when used as a glass substrate for a display.
  • the alkali-free glass is a glass that does not substantially contain an alkali metal oxide such as Na 2 O, K 2 O, or Li 2 O.
  • the alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
  • the alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50% to 73%, Al 2 O 3 : 10.5% to 24%, B 2 O 3 : 0% to 12%, MgO : 0% to 10%, CaO: 0% to 14.5%, SrO: 0% to 24%, BaO: 0% to 13.5%, MgO + CaO + SrO + BaO: 8% to 29.5%, ZrO 2 : 0% Contains ⁇ 5%.
  • SiO 2 58% to 66%
  • Al 2 O 3 15% to 22%, expressed by mass% based on oxide.
  • B 2 O 3 5% to 12%, MgO: 0% to 8%, CaO: 0% to 9%, SrO: 3% to 12.5%, BaO: 0% to 2%, MgO + CaO + SrO + BaO: 9% to Contains 18%.
  • the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54% to 73%, Al 2 O 3 : 10.5% to 22.5%, B 2 O 3 : 0% to 5.5%, MgO: 0% to 10%, CaO: 0% to 9%, SrO: 0% to 16%, BaO: 0% to 2.5%, MgO + CaO + SrO + BaO: 8 % To 26%.
  • the manufactured float glass may be a chemically strengthened glass when used as a cover glass for a display. What chemically-strengthened the glass for chemical strengthening is used as a cover glass.
  • ions having a small ion radius for example, Li ions or Na ions
  • ions having a large ion radius for example, K ions
  • the glass for chemical strengthening is, for example, expressed in mol% based on oxide, SiO 2 : 62% to 68%, Al 2 O 3 : 6% to 12%, MgO: 7% to 13%, Na 2 O: 9% 17%, K 2 O: 0% to 7%, the difference of subtracting Al 2 O 3 content from the total content of Na 2 O and K 2 O is less than 10%, ZrO 2 When it contains, the content is 0.8% or less.
  • Another glass for chemical strengthening is expressed in terms of mol% based on oxide, SiO 2 : 65% to 85%, Al 2 O 3 : 3% to 15%, Na 2 O: 5% to 15%, K 2 O : 0% to less than 2%, MgO: 0% to 15%, ZrO 2 : 0% to 1%, the total content of SiO 2 and Al 2 O 3 SiO 2 + Al 2 O 3 is 88% or less It is.
  • the float glass produced may be soda lime glass when used as a window glass.
  • Soda lime glass is, for example, expressed in terms of mass% based on oxide, SiO 2 : 65% to 75%, Al 2 O 3 : 0% to 3%, CaO: 5% to 15%, MgO: 0% to 15% Na 2 O: 10% to 20%, K 2 O: 0% to 3%, Li 2 O: 0% to 5%, Fe 2 O 3 : 0% to 3%, TiO 2 : 0% to 5% CeO 2 : 0% to 3%, BaO: 0% to 5%, SrO: 0% to 5%, B 2 O 3 : 0% to 5%, ZnO: 0% to 5%, ZrO 2 : 0% -5%, SnO 2 : 0% to 3%, SO 3 : 0% to 0.5%.
  • Example 1 float glass was manufactured using the float glass manufacturing apparatus shown in FIG.
  • the interface device has a heat insulating member that blocks the cold radiation of the cooling member, and a heater that is disposed upstream of the center line of the most upstream lift-out roll.
  • the thickness of the float glass was 0.2 mm, and the type of float glass was non-alkali glass.
  • As the alkali-free glass AN100 manufactured by Asahi Glass was used.
  • Example 2 In the second embodiment, except that the output of the heater arranged upstream of the center line of the uppermost liftout roll among the plurality of heaters included in the interface device is reduced to 50% of the first embodiment.
  • Float glass was produced in the same manner as in Example 1.
  • Example 3 In the third embodiment, the output of the heater arranged upstream of the center line of the uppermost liftout roll among the plurality of heaters included in the interface device is set to 0% of the first embodiment. Float glass was produced in the same manner as in Example 1.
  • Table 1 The results of the float glass evaluation are shown in Table 1.
  • “A” indicates that the glass ribbon was not cracked and there was no fine deformation such as wrinkles
  • “B” was that the glass ribbon was not cracked, but there was a fine deformation. Respectively. The presence or absence of cracks and fine deformation of the glass ribbon was confirmed visually.
  • Table 1 also shows the results of measuring the temperature in the center of the glass ribbon width direction with a radiation thermometer.
  • T1 means the temperature in the center of the glass ribbon width direction at the take-off position P1
  • “T2” means the temperature in the center of the glass ribbon width direction at the contact position P2 with the most upstream lift-out roll.
  • the temperature difference in the flat part of the glass ribbon G is smaller than the temperature difference (temperature unevenness) between the flat part and both side edges, the temperature of the flat part of the glass ribbon G is the temperature at the center in the glass ribbon width direction. Represented.
  • the interface device has a heat insulating member that blocks the cooling member's cooling radiation, so that the center of the glass ribbon in the width direction between the take-off position P1 and the contact position P2 is used.
  • the temperature change width was 40 ° C. or less. As a result, the glass ribbon was not cracked.
  • the said temperature change width was 30 degrees C or less. As a result, the glass ribbon did not crack and there was no fine deformation such as wrinkles.
  • the heat insulating member 37 of the above embodiment contacts the cooling member 36, but a gap may be formed between the heat insulating member 37 and the cooling member 36.

Abstract

[Solution] An apparatus for manufacturing float glass, provided with a forming device for forming a sheet-shaped glass ribbon on a molten metal in a bath, an annealing device for annealing the glass ribbon, and an interface device for connecting the forming device and the annealing device, the interface device having a lift-out roller for drawing the glass ribbon up from the molten metal and conveying the glass ribbon toward the annealing device, a cooling member for cooling the downstream end part of the bath, and a heat-insulating member for blocking cold radiation of the glass ribbon by the cooling member.

Description

フロートガラス製造装置、およびフロートガラス製造方法Float glass manufacturing apparatus and float glass manufacturing method
 本発明は、フロートガラス製造装置、およびフロートガラス製造方法に関する。 The present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method.
 フロートガラス製造装置は、浴槽内の溶融金属上において板状のガラスリボンを成形する成形装置、およびガラスリボンを徐冷する徐冷装置を備える(例えば特許文献1参照)。ガラスリボンは、両側縁部の間に平坦部を有する。ガラスリボンの両側縁部は、ガラスリボンの平坦部よりも厚いため、徐冷後に切除される。これにより、略均一な板厚のフロートガラスが得られる。 The float glass manufacturing apparatus includes a forming apparatus for forming a plate-shaped glass ribbon on the molten metal in the bathtub, and a slow cooling apparatus for gradually cooling the glass ribbon (for example, see Patent Document 1). The glass ribbon has a flat portion between both side edges. Since both side edges of the glass ribbon are thicker than the flat part of the glass ribbon, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
日本国特開平6-227831号公報Japanese Unexamined Patent Publication No. 6-227831
 フロートガラス製造装置は、成形装置と徐冷装置とを接続するインターフェース装置を備える。インターフェース装置は、ガラスリボンを溶融金属から引き上げると共に、徐冷装置に向けて搬送するリフトアウトロールを有する。 The float glass manufacturing apparatus includes an interface device that connects a molding apparatus and a slow cooling apparatus. The interface device has a lift-out roll that pulls the glass ribbon from the molten metal and conveys the glass ribbon toward the slow cooling device.
 溶融金属は熱を溜め込んでいるため、ガラスリボンは溶融金属と接触している間は冷えにくいが、溶融金属から離れると冷えやすい。ガラスリボンの平坦部は、ガラスリボンの両側縁部よりも薄いため、より冷えやすい。そのため、ガラスリボンの幅方向における温度ムラが生じる。また、この温度ムラはガラスリボンの流動方向における温度ムラの原因ともなっている。 Since the molten metal stores heat, the glass ribbon is difficult to cool while it is in contact with the molten metal, but it is likely to cool away from the molten metal. Since the flat part of the glass ribbon is thinner than both side edges of the glass ribbon, it is easier to cool. Therefore, temperature unevenness in the width direction of the glass ribbon occurs. Moreover, this temperature unevenness is also a cause of temperature unevenness in the flow direction of the glass ribbon.
 インターフェース装置において、ガラスリボンの温度は転移点付近の温度である。一般的に、ガラスの線膨張係数は、ガラスの転移点を境に大きく変化する。従来、インターフェース装置において、ガラスリボンの温度ムラが大きかったため、ガラスリボンの変形が大きく、ガラスリボンが割れることがあった。 In the interface device, the temperature of the glass ribbon is near the transition point. In general, the linear expansion coefficient of glass changes greatly at the transition point of glass. Conventionally, in an interface device, since the temperature irregularity of the glass ribbon was large, the glass ribbon was largely deformed, and the glass ribbon was sometimes broken.
 本発明は、上記課題に鑑みてなされたものであって、インターフェース装置でのガラスリボンの割れを防止できるフロートガラス製造装置の提供を主な目的とする。 The present invention has been made in view of the above problems, and its main object is to provide a float glass manufacturing apparatus capable of preventing the glass ribbon from cracking in the interface device.
 上記課題を解決するため、本発明の一態様によれば、
 浴槽内の溶融金属上において板状のガラスリボンを成形する成形装置と、
 前記ガラスリボンを徐冷する徐冷装置と、
 前記成形装置と前記徐冷装置とを接続するインターフェース装置とを備え、
 前記インターフェース装置は、
 前記溶融金属から前記ガラスリボンを引き上げると共に前記徐冷装置に向けて搬送するリフトアウトロールと、
 前記浴槽の下流端部を冷却する冷却部材と、
 前記冷却部材による前記ガラスリボンの冷輻射を遮る断熱部材とを有する、フロートガラス製造装置が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A molding apparatus for molding a plate-shaped glass ribbon on the molten metal in the bathtub;
A slow cooling device for slowly cooling the glass ribbon;
An interface device for connecting the molding device and the slow cooling device;
The interface device
A lift-out roll that pulls up the glass ribbon from the molten metal and conveys it toward the slow cooling device,
A cooling member for cooling the downstream end of the bathtub;
There is provided a float glass manufacturing apparatus including a heat insulating member that blocks cold radiation of the glass ribbon by the cooling member.
 本発明によれば、インターフェース装置でのガラスリボンの割れを防止できるフロートガラス製造装置が提供される。 According to the present invention, there is provided a float glass manufacturing apparatus capable of preventing the glass ribbon from being broken in the interface device.
本発明の一実施形態によるフロートガラス製造装置を示す図である。It is a figure which shows the float glass manufacturing apparatus by one Embodiment of this invention.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。以下の説明において、数値範囲を表す「~」はその前後の数値を含む範囲を意味する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In the following description, “˜” representing a numerical range means a range including numerical values before and after that.
 図1は、本発明の一実施形態によるフロートガラス製造装置を示す図である。フロートガラス製造装置は、成形装置10、徐冷装置20、およびインターフェース装置30を備える。 FIG. 1 is a diagram showing a float glass manufacturing apparatus according to an embodiment of the present invention. The float glass manufacturing apparatus includes a forming apparatus 10, a slow cooling apparatus 20, and an interface apparatus 30.
 成形装置10は、浴槽11内の溶融金属M上において板状のガラスリボンGを成形する。ガラスリボンGは、溶融金属M上を流動しながら徐々に固くなる。ガラスリボンGは、浴槽11の下流域において溶融金属Mから引き上げられ、徐冷装置20に向けて送られる。成形装置10は、浴槽11、ルーフ15、ヒータ16、およびパイプ17などを有する。 The forming apparatus 10 forms a plate-like glass ribbon G on the molten metal M in the bathtub 11. The glass ribbon G gradually hardens while flowing on the molten metal M. The glass ribbon G is pulled up from the molten metal M in the downstream region of the bathtub 11 and sent toward the slow cooling device 20. The molding apparatus 10 includes a bathtub 11, a roof 15, a heater 16, a pipe 17, and the like.
 浴槽11は、溶融金属Mを収容する。溶融金属Mは、一般的なものでよく、例えば溶融スズまたは溶融スズ合金であってよい。浴槽11は、例えば金属ケーシング12およびレンガ層13で構成される。 The bathtub 11 accommodates the molten metal M. The molten metal M may be a common one, and may be, for example, molten tin or a molten tin alloy. The bathtub 11 is composed of, for example, a metal casing 12 and a brick layer 13.
 金属ケーシング12は、浴槽11内への外気の混入を抑制する。金属ケーシング12は、例えば複数の金属板を溶接してなる。 The metal casing 12 suppresses mixing of outside air into the bathtub 11. The metal casing 12 is formed by welding a plurality of metal plates, for example.
 レンガ層13は、金属ケーシング12の内面を覆う。レンガ層13は、複数のレンガを箱形状に組み立てた組立体であってよく、内部に溶融金属Mを収容する。 The brick layer 13 covers the inner surface of the metal casing 12. The brick layer 13 may be an assembly in which a plurality of bricks are assembled in a box shape, and contains the molten metal M therein.
 ルーフ15は、浴槽11の上方に配設され、浴槽11の上方空間を覆う。浴槽11の上方空間には、溶融金属Mの酸化を防止するため、ルーフ15の貫通孔15aから還元性ガスなどが供給される。還元性ガスとしては、例えば窒素ガスと水素ガスの混合ガスが用いられる。浴槽11の上方空間は、外気の混入を防止するため、大気圧よりも高い正圧とされる。 The roof 15 is disposed above the bathtub 11 and covers the upper space of the bathtub 11. In the upper space of the bathtub 11, reducing gas or the like is supplied from the through hole 15 a of the roof 15 in order to prevent the molten metal M from being oxidized. As the reducing gas, for example, a mixed gas of nitrogen gas and hydrogen gas is used. The upper space of the bathtub 11 is set to a positive pressure higher than the atmospheric pressure in order to prevent outside air from being mixed.
 ヒータ16は、ルーフ15の貫通孔15aに挿通され、ルーフ15から下方に突出し、ガラスリボンGなどを加熱する。ヒータ16は、一般的なものであってよく、例えばSiCヒータであってよい。 The heater 16 is inserted into the through hole 15a of the roof 15, protrudes downward from the roof 15, and heats the glass ribbon G and the like. The heater 16 may be a general one, for example, a SiC heater.
 ヒータ16は、ガラスリボンGの幅方向(図1において紙面垂直方向)、およびガラスリボンGの流動方向(図1において左右方向)に間隔をおいて複数配設される。 A plurality of heaters 16 are arranged at intervals in the width direction of the glass ribbon G (the vertical direction in FIG. 1) and the flow direction of the glass ribbon G (the left-right direction in FIG. 1).
 パイプ17は、窒素ガスなどの不活性ガスを噴射することにより、成形装置10の出口に気流の膜を形成する。還元性ガスの流出が抑制できる。パイプ17の代わりに、仕切板が設けられてもよい。仕切板は、ガラスリボンGの上方に配設され、ガラスリボンGとの間に僅かな隙間を形成する。 The pipe 17 forms an airflow film at the outlet of the molding apparatus 10 by injecting an inert gas such as nitrogen gas. The outflow of reducing gas can be suppressed. A partition plate may be provided instead of the pipe 17. The partition plate is disposed above the glass ribbon G and forms a slight gap with the glass ribbon G.
 徐冷装置20は、ガラスリボンGを徐冷する。徐冷装置20は、徐冷炉21、搬送ロール22などを有する。搬送ロール22は、その中心線を中心に回転自在とされ、モータなどによって回転駆動され、徐冷炉21内においてガラスリボンGを水平に搬送する。ガラスリボンGは、搬送されながら徐冷される。ガラスリボンGは、両側縁部の間に平坦部を有する。ガラスリボンGの両側縁部は、ガラスリボンGの平坦部よりも厚いため、徐冷後に切除される。これにより、略均一な板厚のフロートガラスが得られる。 The slow cooling device 20 cools the glass ribbon G slowly. The slow cooling device 20 includes a slow cooling furnace 21, a transport roll 22, and the like. The transport roll 22 is rotatable about its center line, is driven to rotate by a motor or the like, and transports the glass ribbon G horizontally in the slow cooling furnace 21. The glass ribbon G is gradually cooled while being conveyed. The glass ribbon G has a flat part between both side edge parts. Since both side edges of the glass ribbon G are thicker than the flat part of the glass ribbon G, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
 インターフェース装置30は、成形装置10と徐冷装置20とを接続し、溶融金属Mから離れたガラスリボンGの温度低下を制限する。溶融金属Mは熱を溜め込んでいるため、ガラスリボンGは溶融金属Mと接触している間は冷えにくいが、溶融金属Mから離れると冷えやすい。 The interface device 30 connects the molding device 10 and the slow cooling device 20 to limit the temperature drop of the glass ribbon G away from the molten metal M. Since the molten metal M stores heat, the glass ribbon G is difficult to cool while being in contact with the molten metal M, but is likely to be cooled away from the molten metal M.
 インターフェース装置30は、ドロスボックス31、シーリング32、リフトアウトロール33-1~33-3、ドレープ34-1~34-3、シールブロック35-1~35-3、冷却部材36、断熱部材37、およびヒータ38-1~38-8を有する。 The interface device 30 includes a dross box 31, a sealing 32, lift-out rolls 33-1 to 33-3, drapes 34-1 to 34-3, seal blocks 35-1 to 35-3, a cooling member 36, a heat insulating member 37, And heaters 38-1 to 38-8.
 ドロスボックス31は、ガラスリボンGの下方に配設され、ガラスリボンGのボトム面に付着した溶融金属Mのカス(ドロスと呼ばれる)を回収する。ドロスボックス31の内面は断熱材41で覆われ、ドロスボックス31から外部への放熱が制限される。 The dross box 31 is disposed below the glass ribbon G and collects molten metal M debris (called dross) adhering to the bottom surface of the glass ribbon G. The inner surface of the dross box 31 is covered with a heat insulating material 41, and heat radiation from the dross box 31 to the outside is limited.
 ドロスボックス31は、浴槽11の下流端部11aと、徐冷炉21の上流端部とを接続してよい。ドロスボックス31と、徐冷炉21の上流端部との間に僅かな隙間が形成される場合、その隙間は断熱材で埋められてよい。 The dross box 31 may connect the downstream end portion 11 a of the bathtub 11 and the upstream end portion of the slow cooling furnace 21. When a slight gap is formed between the dross box 31 and the upstream end portion of the slow cooling furnace 21, the gap may be filled with a heat insulating material.
 シーリング32は、ガラスリボンGの上方に配設される。シーリング32の上面は断熱材42で覆われ、シーリング32から外部への放熱が制限される。 The sealing 32 is disposed above the glass ribbon G. The upper surface of the ceiling 32 is covered with a heat insulating material 42, and heat radiation from the ceiling 32 to the outside is limited.
 シーリング32は、ルーフ15の下流端部と、徐冷炉21の上流端部とを接続してよい。シーリング32と、徐冷炉21の上流端部との間に僅かな隙間が形成される場合、その隙間は断熱材で埋められてよい。 The sealing 32 may connect the downstream end of the roof 15 and the upstream end of the slow cooling furnace 21. When a slight gap is formed between the sealing 32 and the upstream end of the slow cooling furnace 21, the gap may be filled with a heat insulating material.
 リフトアウトロール33-1~33-3は、ガラスリボンGを溶融金属Mから引き上げると共に、徐冷装置20に向けて搬送する。リフトアウトロール33-1~33-3は、その中心線を中心に回転自在とされ、モータなどによって回転駆動される。 The lift-out rolls 33-1 to 33-3 pull up the glass ribbon G from the molten metal M and convey it toward the slow cooling device 20. The lift-out rolls 33-1 to 33-3 are rotatable around the center line, and are driven to rotate by a motor or the like.
 ドレープ34-1~34-3は、シーリング32から吊り下げられ、ガラスリボンGの上方におけるガスの流れを遮る。これにより、成形装置10からの水素ガスの混入が抑制でき、水素ガスの燃焼による温度変動が抑制できる。ドレープ34-1~34-3は、リフトアウトロール33-1~33-3の上方に設けられる。 The drapes 34-1 to 34-3 are suspended from the ceiling 32 and block the gas flow above the glass ribbon G. Thereby, mixing of the hydrogen gas from the shaping | molding apparatus 10 can be suppressed, and the temperature fluctuation by combustion of hydrogen gas can be suppressed. The drapes 34-1 to 34-3 are provided above the lift-out rolls 33-1 to 33-3.
 シールブロック35-1~35-3は、リフトアウトロール33-1~33-3と接触することにより、ガラスリボンGの下方におけるガスの流れを遮ると共に、リフトアウトロール33-1~33-3に付着したドロスをこそぎ落とす。ドロスは、ドロスボックス31に回収される。シールブロック35-1~35-3は、例えばカーボンで形成される。 The seal blocks 35-1 to 35-3 come into contact with the lift-out rolls 33-1 to 33-3, thereby blocking the gas flow below the glass ribbon G and the lift-out rolls 33-1 to 33-3. Scrape off the dross attached to the surface. The dross is collected in the dross box 31. The seal blocks 35-1 to 35-3 are made of carbon, for example.
 冷却部材36は、冷媒流路36aを形成する。冷媒流路36aの冷媒は、気体、液体のいずれでもよい。冷却部材36は、浴槽11の下流端部11aを冷却する。下流端部11aの金属ケーシング12の溶融が防止できる。 The cooling member 36 forms a refrigerant flow path 36a. The refrigerant in the refrigerant flow path 36a may be either gas or liquid. The cooling member 36 cools the downstream end portion 11 a of the bathtub 11. Melting of the metal casing 12 at the downstream end 11a can be prevented.
 冷却部材36は、例えばドロスボックス31の内面に取り付けられ、ドロスボックス31の内面との間に冷媒流路36aを形成してよい。冷却部材36は、ドロスボックス31を介して、浴槽11の下流端部11aを冷却してよい。 The cooling member 36 may be attached to the inner surface of the dross box 31, for example, and may form a refrigerant flow path 36 a between the inner surface of the dross box 31. The cooling member 36 may cool the downstream end portion 11 a of the bathtub 11 through the dross box 31.
 断熱部材37は、冷却部材36を下流側から覆い、冷却部材36によるガラスリボンGの冷輻射を遮る。冷輻射とは、熱が奪われることをいう。ガラスリボンGが溶融金属Mから離れるテイクオフ位置P1から、ガラスリボンGが最上流のリフトアウトロール33-1と接触する接触位置P2までの間における、ガラスリボンGの平坦部の温度低下が緩やかになる。よって、テイクオフ位置P1から接触位置P2までの間において、ガラスリボンGの平坦部と両側縁部との間の厚さの違いに起因する温度ムラが低減でき、温度ムラによるガラスリボンGの変形がある程度低減でき、ガラスリボンGの割れが防止できる。 The heat insulating member 37 covers the cooling member 36 from the downstream side and blocks the cold radiation of the glass ribbon G by the cooling member 36. Cold radiation means that heat is taken away. The temperature drop of the flat portion of the glass ribbon G from the take-off position P1 where the glass ribbon G is separated from the molten metal M to the contact position P2 where the glass ribbon G contacts the most upstream lift-out roll 33-1 is moderate. Become. Therefore, the temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be reduced between the take-off position P1 and the contact position P2, and the deformation of the glass ribbon G due to the temperature unevenness can be reduced. The glass ribbon G can be prevented from cracking to some extent.
 断熱部材37の熱伝導率は、例えば1.0W/mK以下、好ましくは0.4W/mK以下、さらに好ましくは0.05W/mK以下である。また、断熱材の厚さは設備に適合させて適宜設定可能であるが5mm~50mm好ましい。 The thermal conductivity of the heat insulating member 37 is, for example, 1.0 W / mK or less, preferably 0.4 W / mK or less, and more preferably 0.05 W / mK or less. The thickness of the heat insulating material can be set as appropriate according to the equipment, but is preferably 5 mm to 50 mm.
 断熱部材37は、ガスの流れによる熱の移動を防止するため、微細な多孔構造を有してよい。例えば、断熱部材37は微粒子の集合体であってよく、微粒子同士の間に空隙が形成されてよい。空気の対流による熱の移動が制限されるため、また、伝熱経路が細く長いため、断熱性が良い。微粒子としては、例えばシリカ微粒子が用いられ、好ましくは非晶質シリカ微粒子が用いられる。断熱部材37はフレキシブルな耐熱性の外装を有してよく、該外装が微粒子を保持してよい。 The heat insulating member 37 may have a fine porous structure in order to prevent heat transfer due to gas flow. For example, the heat insulating member 37 may be an aggregate of fine particles, and a void may be formed between the fine particles. Since heat transfer by air convection is limited and the heat transfer path is thin and long, heat insulation is good. As the fine particles, for example, silica fine particles are used, and preferably amorphous silica fine particles are used. The heat insulating member 37 may have a flexible heat-resistant exterior, and the exterior may hold fine particles.
 各ヒータ38-1~38-8は、ガラスリボンGを加熱する。複数のヒータ38-1~38-8は独立に制御されてよい。 Each heater 38-1 to 38-8 heats the glass ribbon G. The plurality of heaters 38-1 to 38-8 may be controlled independently.
 各ヒータ38-1~38-8は、ガラスリボンGの幅方向の温度分布を調整するため、ガラスリボンGの幅方向に複数の発熱体に分割されてもよい。分割された複数の発熱体は独立に制御されてよい。 Each heater 38-1 to 38-8 may be divided into a plurality of heating elements in the width direction of the glass ribbon G in order to adjust the temperature distribution in the width direction of the glass ribbon G. The plurality of divided heating elements may be controlled independently.
 複数のヒータ38-1~38-8のうちの少なくとも1つ(本実施形態では2つのヒータ38-1、38-2)は、最上流のリフトアウトロール33-1の中心線よりも上流(図1において左方向)に配設されてよい。 At least one of the plurality of heaters 38-1 to 38-8 (two heaters 38-1 and 38-2 in the present embodiment) is upstream of the center line of the most upstream lift-out roll 33-1 ( It may be arranged in the left direction in FIG.
 最上流のリフトアウトロール33-1の中心線よりも上流には、従来ヒータが配設されていなかったが、本実施形態ではヒータ38-1、38-2が配設される。これにより、テイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度低下がさらに緩やかになる。よって、温度ムラによるガラスリボンGの変形がさらに低減でき、シワ、うねり、反りなどの微細な変形の発生も抑制できる。 In the present embodiment, heaters 38-1 and 38-2 are disposed upstream of the center line of the most upstream lift-out roll 33-1. Thereby, the temperature drop of the flat part of the glass ribbon G between the take-off position P1 and the contact position P2 is further moderated. Therefore, the deformation of the glass ribbon G due to temperature unevenness can be further reduced, and the occurrence of fine deformation such as wrinkles, waviness and warpage can be suppressed.
 ヒータ38-1は、冷却部材36と同じく、ガラスリボンGの下方に配設される。冷却部材36の冷気とガラスリボンGとの接触が抑制できる。 The heater 38-1 is disposed below the glass ribbon G, like the cooling member 36. Contact between the cold air of the cooling member 36 and the glass ribbon G can be suppressed.
 ヒータ38-2は、冷却部材36と異なり、ガラスリボンGの上方に配設される。冷却部材36によって下方から冷却されるガラスリボンGを上方から加熱できる。 Unlike the cooling member 36, the heater 38-2 is disposed above the glass ribbon G. The glass ribbon G cooled from below by the cooling member 36 can be heated from above.
 複数のヒータ38-1~38-8のうちの少なくとも1つ(本実施形態では2つのヒータ38-7、38-8)は、最下流のリフトアウトロール33-3の中心線よりも下流(図1において右方向)に配設されてよい。ヒータ38-7はガラスリボンGの下方に配設され、ヒータ38-8はガラスリボンGの上方に配設される。 At least one of the plurality of heaters 38-1 to 38-8 (two heaters 38-7 and 38-8 in the present embodiment) is located downstream of the center line of the most downstream liftout roll 33-3 ( It may be arranged in the right direction in FIG. The heater 38-7 is disposed below the glass ribbon G, and the heater 38-8 is disposed above the glass ribbon G.
 最下流のリフトアウトロール33-3の中心線よりも下流には、従来ヒータが配設されていなかったが、本実施形態ではヒータ38-7、38-8が配設される。これにより、徐冷炉21の入口付近でのガラスリボンGの急激な温度低下が制限でき、微細な変形の発生がさらに抑制できる。 In the present embodiment, the heaters 38-7 and 38-8 are disposed downstream of the center line of the most downstream lift-out roll 33-3. Thereby, the rapid temperature drop of the glass ribbon G in the vicinity of the inlet of the slow cooling furnace 21 can be restricted, and the occurrence of fine deformation can be further suppressed.
 次に、図1を再度参照して、上記構成のフロートガラス製造装置を用いたフロートガラス製造方法について説明する。 Next, with reference to FIG. 1 again, a float glass manufacturing method using the float glass manufacturing apparatus having the above configuration will be described.
 フロートガラス製造方法は、浴槽11内の溶融金属M上において板状のガラスリボンGを成形する成形工程、およびガラスリボンGを徐冷する徐冷工程を有する。ガラスリボンGは溶融金属M上を流動しながら徐々に固くなる。ガラスリボンGは、浴槽11の下流域において溶融金属Mから引き上げられ、リフトアウトロール33-1~33-3上を徐冷炉21に向けて搬送される。その後、ガラスリボンGは、徐冷炉21内において、搬送ロール22上を搬送されながら徐冷される。ガラスリボンGは、両側縁部の間に平坦部を有する。ガラスリボンGの両側縁部は、ガラスリボンGの平坦部よりも厚いため、徐冷後に切除される。これにより、略均一な板厚のフロートガラスが得られる。 The float glass manufacturing method has a forming step of forming a plate-shaped glass ribbon G on the molten metal M in the bathtub 11 and a slow cooling step of gradually cooling the glass ribbon G. The glass ribbon G gradually hardens while flowing on the molten metal M. The glass ribbon G is pulled up from the molten metal M in the downstream area of the bathtub 11 and is conveyed toward the slow cooling furnace 21 on the lift-out rolls 33-1 to 33-3. Thereafter, the glass ribbon G is gradually cooled while being transported on the transport roll 22 in the slow cooling furnace 21. The glass ribbon G has a flat part between both side edge parts. Since both side edges of the glass ribbon G are thicker than the flat part of the glass ribbon G, they are cut off after slow cooling. Thereby, the float glass of substantially uniform board thickness is obtained.
 ところで、ガラスリボンGが溶融金属Mから離れるテイクオフ位置P1から、ガラスリボンGが最上流のリフトアウトロール33-1と接触する接触位置P2までの間において、ガラスリボンGの平坦部と両側縁部との間の厚さの違いに起因する温度ムラが生じうる。テイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの温度は、ガラスの転移点付近の温度である。一般的に、ガラスの線膨張係数は、ガラスの転移点を境に大きく変化する。 By the way, between the take-off position P1 where the glass ribbon G is separated from the molten metal M and the contact position P2 where the glass ribbon G is in contact with the most upstream lift-out roll 33-1, the flat portion and both side edge portions of the glass ribbon G are used. Temperature unevenness due to the difference in thickness between the two. The temperature of the glass ribbon G between the take-off position P1 and the contact position P2 is a temperature near the glass transition point. In general, the linear expansion coefficient of glass changes greatly at the transition point of glass.
 ガラスリボンGの平坦部と両側縁部との間の厚さの違いに起因する温度ムラが、断熱部材37が冷却部材36によるガラスリボンGの冷輻射を遮るため、テイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度低下が緩やかになる。よって、ガラスリボンGの平坦部と両側縁部との間の厚さの違いに起因する温度ムラが低減でき、温度ムラによるガラスリボンGの変形がある程度低減でき、ガラスリボンGの割れが防止できる。 The temperature unevenness caused by the difference in thickness between the flat portion and both side edge portions of the glass ribbon G causes the heat insulating member 37 to block the cooling radiation of the glass ribbon G by the cooling member 36, so that the contact position P2 from the take-off position P1. The temperature drop of the flat portion of the glass ribbon G during the period becomes moderate. Therefore, temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be reduced, deformation of the glass ribbon G due to temperature unevenness can be reduced to some extent, and cracking of the glass ribbon G can be prevented. .
 また、少なくとも1つ(本実施形態では2つ)のヒータ38-1、38-2が最上流のリフトアウトロール33-1の中心線よりも上流に配設されるため、テイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度低下がさらに緩やかになる。よって、温度ムラによるガラスリボンGの変形がさらに低減でき、微細な変形の発生も抑制できる。 In addition, since at least one (two in the present embodiment) heaters 38-1 and 38-2 are disposed upstream of the center line of the most upstream lift-out roll 33-1, contact is made from the take-off position P1. The temperature drop of the flat portion of the glass ribbon G until the position P2 is further moderated. Therefore, the deformation of the glass ribbon G due to temperature unevenness can be further reduced, and the occurrence of fine deformation can be suppressed.
 テイクオフ位置P1において、ガラスリボンGの平坦部の粘度は例えば1010.7dPa・s~1012.3dPa・sである。ガラスリボンGを溶融金属Mから引き上げできる程度の硬さと、溶融金属Mからの引き上げによってガラスリボンGが割れない程度の柔らかさとの両方が得られる。ガラスリボンGの平坦部の粘度は、ガラスリボンGの幅方向中央の粘度で代表する。 At the take-off position P1, the viscosity of the flat portion of the glass ribbon G is, for example, 10 10.7 dPa · s to 10 12.3 dPa · s. Both the hardness that can pull the glass ribbon G from the molten metal M and the softness that the glass ribbon G is not broken by the pulling from the molten metal M are obtained. The viscosity of the flat portion of the glass ribbon G is represented by the viscosity at the center in the width direction of the glass ribbon G.
 製造されるフロートガラスの種類が無アルカリガラスの場合、テイクオフ位置P1におけるガラスリボンGの平坦部の粘度は、好ましくは1011.3dPa・s~1012.3dPa・sである。この粘度範囲に相当する無アルカリガラスの温度範囲は例えば740℃~770℃である。 When the type of float glass to be produced is non-alkali glass, the viscosity of the flat portion of the glass ribbon G at the take-off position P1 is preferably 10 11.3 dPa · s to 10 12.3 dPa · s. The temperature range of the alkali-free glass corresponding to this viscosity range is, for example, 740 ° C. to 770 ° C.
 また、製造されるフロートガラスの種類がソーダライムガラスの場合、テイクオフ位置P1におけるガラスリボンGの平坦部の粘度は、好ましくは1010.7dPa・s~1011.8dPa・sである。この粘度範囲に相当するソーダライムガラスの温度範囲は例えば590℃~620℃である。 When the type of float glass produced is soda lime glass, the viscosity of the flat part of the glass ribbon G at the take-off position P1 is preferably 10 10.7 dPa · s to 10 11.8 dPa · s. The temperature range of soda lime glass corresponding to this viscosity range is, for example, 590 ° C. to 620 ° C.
 テイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度変化幅は、例えば40℃以下、好ましくは20℃以下、より好ましくは10℃以下である。上記温度変化幅はゼロ℃でもよい。上記温度変化幅が40℃以下であれば、ガラスリボンGの割れが防止できる。上記温度変化幅が30℃以下であれば、微細な変形の発生もほとんどない。 The temperature change width of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2 is, for example, 40 ° C. or less, preferably 20 ° C. or less, more preferably 10 ° C. or less. The temperature change width may be zero degrees Celsius. If the said temperature change width is 40 degrees C or less, the crack of the glass ribbon G can be prevented. If the temperature change width is 30 ° C. or less, there is almost no occurrence of fine deformation.
 ガラスリボンGの平坦部の温度は、テイクオフ位置P1から接触位置P2にかけて、徐々に低くなってよい。 The temperature of the flat part of the glass ribbon G may gradually decrease from the take-off position P1 to the contact position P2.
 ガラスリボンGの平坦部の温度は、従来は接触位置P2において低すぎ接触位置P2から下流に向けて高くなる傾向にあったが、本実施形態では接触位置P2から徐冷炉21の入口まで徐々に低くなってもよい。本実施形態によればテイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度変化幅が小さく、接触位置P2においてガラスリボンGの平坦部の温度が高いためである。 Conventionally, the temperature of the flat portion of the glass ribbon G has been too low at the contact position P2 and tends to increase from the contact position P2 toward the downstream, but gradually decreases from the contact position P2 to the inlet of the slow cooling furnace 21 in this embodiment. It may be. This is because the temperature change width of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2 is small and the temperature of the flat portion of the glass ribbon G is high at the contact position P2.
 製造されるフロートガラスの板厚は、例えば0.8mm以下である。この場合、ガラスリボンGの平坦部の厚さが0.8mm以下である。一方、汎用のフロートガラスの板厚は2mm~6mm程度であり、この場合、ガラスリボンの平坦部の厚さが2mm~6mm程度である。 The thickness of the manufactured float glass is, for example, 0.8 mm or less. In this case, the thickness of the flat part of the glass ribbon G is 0.8 mm or less. On the other hand, the plate thickness of general-purpose float glass is about 2 mm to 6 mm. In this case, the thickness of the flat portion of the glass ribbon is about 2 mm to 6 mm.
 平坦部の厚さが0.8mm以下のガラスリボンGは、平坦部の厚さが2mm~6mm程度のガラスリボンに比べて、熱容量が小さい。従って、ガラスリボンGが成形装置10からインターフェース装置30へ持ち込む顕熱(熱量)が少なく、従来はガラスリボンGが冷えやすかった。このため、平坦部の厚さが0.8mm以下のフロートガラスはテイクオフ位置P1から接触位置P2までの間におけるガラスリボンGの平坦部の温度低下を抑制する効果が顕著に得られる。即ち、ガラスリボンGの平坦部と両側縁部との間の厚さの違いに起因する温度ムラが抑制できる。製造されるフロートガラスの板厚が薄くなればなるほど前述の効果は顕著であり、その板厚は0.6mm以下がより好ましく、0.3mm以下がさらに好ましい。 The glass ribbon G having a flat portion thickness of 0.8 mm or less has a smaller heat capacity than a glass ribbon having a flat portion thickness of about 2 mm to 6 mm. Therefore, the sensible heat (amount of heat) that the glass ribbon G brings into the interface device 30 from the molding apparatus 10 is small, and the glass ribbon G has conventionally been easy to cool. For this reason, the float glass having a flat portion thickness of 0.8 mm or less has a remarkable effect of suppressing the temperature drop of the flat portion of the glass ribbon G between the take-off position P1 and the contact position P2. That is, temperature unevenness due to the difference in thickness between the flat portion and both side edge portions of the glass ribbon G can be suppressed. The smaller the plate thickness of the manufactured float glass, the more remarkable the above-mentioned effects. The plate thickness is more preferably 0.6 mm or less, and further preferably 0.3 mm or less.
 製造されるフロートガラスは、例えばディスプレイ用のガラス基板、ディスプレイ用のカバーガラス、窓ガラスとして用いられる。 The manufactured float glass is used as a glass substrate for display, a cover glass for display, and a window glass, for example.
 製造されるフロートガラスは、ディスプレイ用のガラス基板として用いられる場合、無アルカリガラスであってよい。無アルカリガラスは、NaO、KO、LiOなどのアルカリ金属酸化物を実質的に含有しないガラスである。無アルカリガラスは、アルカリ金属酸化物の含有量の合量が0.1質量%以下でよい。 The float glass produced may be alkali-free glass when used as a glass substrate for a display. The alkali-free glass is a glass that does not substantially contain an alkali metal oxide such as Na 2 O, K 2 O, or Li 2 O. The alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
 無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50%~73%、Al:10.5%~24%、B:0%~12%、MgO:0%~10%、CaO:0%~14.5%、SrO:0%~24%、BaO:0%~13.5%、MgO+CaO+SrO+BaO:8%~29.5%、ZrO:0%~5%を含有する。 The alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50% to 73%, Al 2 O 3 : 10.5% to 24%, B 2 O 3 : 0% to 12%, MgO : 0% to 10%, CaO: 0% to 14.5%, SrO: 0% to 24%, BaO: 0% to 13.5%, MgO + CaO + SrO + BaO: 8% to 29.5%, ZrO 2 : 0% Contains ~ 5%.
 無アルカリガラスは、高い歪点と高い溶解性とを両立する場合、好ましくは、酸化物基準の質量%表示で、SiO:58%~66%、Al:15%~22%、B:5%~12%、MgO:0%~8%、CaO:0%~9%、SrO:3%~12.5%、BaO:0%~2%、MgO+CaO+SrO+BaO:9%~18%を含有する。 When the alkali-free glass has both a high strain point and a high solubility, it is preferable that SiO 2 : 58% to 66%, Al 2 O 3 : 15% to 22%, expressed by mass% based on oxide. B 2 O 3 : 5% to 12%, MgO: 0% to 8%, CaO: 0% to 9%, SrO: 3% to 12.5%, BaO: 0% to 2%, MgO + CaO + SrO + BaO: 9% to Contains 18%.
 無アルカリガラスは、特に高い歪点を得たい場合、好ましくは、酸化物基準の質量%表示で、SiO:54%~73%、Al:10.5%~22.5%、B:0%~5.5%、MgO:0%~10%、CaO:0%~9%、SrO:0%~16%、BaO:0%~2.5%、MgO+CaO+SrO+BaO:8%~26%を含有する。 When it is desired to obtain a particularly high strain point, the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54% to 73%, Al 2 O 3 : 10.5% to 22.5%, B 2 O 3 : 0% to 5.5%, MgO: 0% to 10%, CaO: 0% to 9%, SrO: 0% to 16%, BaO: 0% to 2.5%, MgO + CaO + SrO + BaO: 8 % To 26%.
 製造されるフロートガラスは、ディスプレイ用のカバーガラスとして用いられる場合、化学強化用ガラスであってよい。化学強化用ガラスを化学強化処理したものがカバーガラスとして用いられる。化学強化処理は、ガラス表面に含まれるアルカリイオンのうち小さなイオン半径のイオン(例えばLiイオンやNaイオン)を大きなイオン半径のイオン(例えばKイオン)に置換することにより、ガラス表面から所定の深さの圧縮応力層を形成する。 The manufactured float glass may be a chemically strengthened glass when used as a cover glass for a display. What chemically-strengthened the glass for chemical strengthening is used as a cover glass. In the chemical strengthening treatment, ions having a small ion radius (for example, Li ions or Na ions) among alkali ions contained on the glass surface are replaced with ions having a large ion radius (for example, K ions) to obtain a predetermined depth from the glass surface. A compressive stress layer is formed.
 化学強化用ガラスは、例えば酸化物基準のモル%表示で、SiO:62%~68%、Al:6%~12%、MgO:7%~13%、NaO:9%~17%、KO:0%~7%を含有し、NaOおよびKOの含有量の合計からAl含有量を減じた差が10%未満であり、ZrOを含有する場合、その含有量が0.8%以下である。 The glass for chemical strengthening is, for example, expressed in mol% based on oxide, SiO 2 : 62% to 68%, Al 2 O 3 : 6% to 12%, MgO: 7% to 13%, Na 2 O: 9% 17%, K 2 O: 0% to 7%, the difference of subtracting Al 2 O 3 content from the total content of Na 2 O and K 2 O is less than 10%, ZrO 2 When it contains, the content is 0.8% or less.
 別の化学強化用ガラスは、酸化物基準のモル%表示で、SiO:65%~85%、Al:3%~15%、NaO:5%~15%、KO:0%~2%未満、MgO:0%~15%、ZrO:0%~1%を含有し、SiOおよびAlの含有量の合計SiO+Alが88%以下である。 Another glass for chemical strengthening is expressed in terms of mol% based on oxide, SiO 2 : 65% to 85%, Al 2 O 3 : 3% to 15%, Na 2 O: 5% to 15%, K 2 O : 0% to less than 2%, MgO: 0% to 15%, ZrO 2 : 0% to 1%, the total content of SiO 2 and Al 2 O 3 SiO 2 + Al 2 O 3 is 88% or less It is.
 製造されるフロートガラスは、窓ガラスとして用いられる場合、ソーダライムガラスであってよい。ソーダライムガラスは、例えば酸化物基準の質量%表示で、SiO:65%~75%、Al:0%~3%、CaO:5%~15%、MgO:0%~15%、NaO:10%~20%、KO:0%~3%、LiO:0%~5%、Fe:0%~3%、TiO:0%~5%、CeO:0%~3%、BaO:0%~5%、SrO:0%~5%、B:0%~5%、ZnO:0%~5%、ZrO:0%~5%、SnO:0%~3%、SO:0%~0.5%を含有する。 The float glass produced may be soda lime glass when used as a window glass. Soda lime glass is, for example, expressed in terms of mass% based on oxide, SiO 2 : 65% to 75%, Al 2 O 3 : 0% to 3%, CaO: 5% to 15%, MgO: 0% to 15% Na 2 O: 10% to 20%, K 2 O: 0% to 3%, Li 2 O: 0% to 5%, Fe 2 O 3 : 0% to 3%, TiO 2 : 0% to 5% CeO 2 : 0% to 3%, BaO: 0% to 5%, SrO: 0% to 5%, B 2 O 3 : 0% to 5%, ZnO: 0% to 5%, ZrO 2 : 0% -5%, SnO 2 : 0% to 3%, SO 3 : 0% to 0.5%.
 [実施例1]
 実施例1では、図1に示すフロートガラス製造装置を用いてフロートガラスを製造した。インターフェース装置は、冷却部材の冷輻射を遮る断熱部材、および最上流のリフトアウトロールの中心線よりも上流に配設されるヒータを有していた。フロートガラスの板厚は0.2mmとし、フロートガラスの種類は無アルカリガラスとした。この無アルカリガラスは、旭硝子製のAN100を用いた。
[Example 1]
In Example 1, float glass was manufactured using the float glass manufacturing apparatus shown in FIG. The interface device has a heat insulating member that blocks the cold radiation of the cooling member, and a heater that is disposed upstream of the center line of the most upstream lift-out roll. The thickness of the float glass was 0.2 mm, and the type of float glass was non-alkali glass. As the alkali-free glass, AN100 manufactured by Asahi Glass was used.
 [実施例2]
 実施例2では、インターフェース装置が有する複数のヒータのうちの最上流のリフトアウトロールの中心線よりも上流に配設されるヒータの出力を実施例1の50%に低減したことを除き、実施例1と同様にしてフロートガラスを製造した。
[Example 2]
In the second embodiment, except that the output of the heater arranged upstream of the center line of the uppermost liftout roll among the plurality of heaters included in the interface device is reduced to 50% of the first embodiment. Float glass was produced in the same manner as in Example 1.
 [実施例3]
 実施例3では、インターフェース装置が有する複数のヒータのうちの最上流のリフトアウトロールの中心線よりも上流に配設されるヒータの出力を実施例1の0%としたことを除き、実施例1と同様にしてフロートガラスを製造した。
[Example 3]
In the third embodiment, the output of the heater arranged upstream of the center line of the uppermost liftout roll among the plurality of heaters included in the interface device is set to 0% of the first embodiment. Float glass was produced in the same manner as in Example 1.
 [評価]
 フロートガラスの評価の結果を表1に示す。表1において、「A」はガラスリボンに割れが生じず、シワ等の微細な変形も無かったことを、「B」はガラスリボンに割れが生じなかったが、微細な変形が有ったことをそれぞれ表す。ガラスリボンの割れ及び微細な変形の有無は目視で確認した。表1には、ガラスリボン幅方向中央の温度を放射温度計により測定した結果についても示す。表1において、「T1」はテイクオフ位置P1におけるガラスリボン幅方向中央の温度、「T2」は最上流のリフトアウトロールとの接触位置P2におけるガラスリボン幅方向中央の温度を意味する。なお、ガラスリボンGの平坦部内での温度差は平坦部と両側縁部との温度差(温度ムラ)に比べると小さいため、ガラスリボンGの平坦部の温度はガラスリボン幅方向中央の温度で代表した。
[Evaluation]
The results of the float glass evaluation are shown in Table 1. In Table 1, “A” indicates that the glass ribbon was not cracked and there was no fine deformation such as wrinkles, and “B” was that the glass ribbon was not cracked, but there was a fine deformation. Respectively. The presence or absence of cracks and fine deformation of the glass ribbon was confirmed visually. Table 1 also shows the results of measuring the temperature in the center of the glass ribbon width direction with a radiation thermometer. In Table 1, “T1” means the temperature in the center of the glass ribbon width direction at the take-off position P1, and “T2” means the temperature in the center of the glass ribbon width direction at the contact position P2 with the most upstream lift-out roll. In addition, since the temperature difference in the flat part of the glass ribbon G is smaller than the temperature difference (temperature unevenness) between the flat part and both side edges, the temperature of the flat part of the glass ribbon G is the temperature at the center in the glass ribbon width direction. Represented.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~実施例3では、インターフェース装置が冷却部材の冷輻射を遮る断熱部材を有するため、テイクオフ位置P1から接触位置P2までの間におけるガラスリボン幅方向中央の温度変化幅が40℃以下であった。その結果、ガラスリボンに割れは生じなかった。また、実施例1及び実施例2では、インターフェース装置が最上流のリフトアウトロールの中心線よりも上流にヒータを有するため、上記温度変化幅が30℃以下であった。その結果、ガラスリボンに割れは生じず、シワ等の微細な変形も無かった
 なお、断熱部材を用いないこと以外を実施例3と同様の条件でフロートガラスを成形しようとした場合、テイクオフ位置P1から接触位置P2までの間にガラスリボンが割れる可能性が非常に高く、そのような条件でガラスリボンを製造することは難しい。
Figure JPOXMLDOC01-appb-T000001
As is clear from Table 1, in Examples 1 to 3, the interface device has a heat insulating member that blocks the cooling member's cooling radiation, so that the center of the glass ribbon in the width direction between the take-off position P1 and the contact position P2 is used. The temperature change width was 40 ° C. or less. As a result, the glass ribbon was not cracked. Moreover, in Example 1 and Example 2, since the interface apparatus had a heater upstream from the centerline of the most upstream lift-out roll, the said temperature change width was 30 degrees C or less. As a result, the glass ribbon did not crack and there was no fine deformation such as wrinkles. Note that when the float glass was formed under the same conditions as in Example 3 except that the heat insulating member was not used, the take-off position P1 The glass ribbon is very likely to break between the contact point P2 and the contact position P2, and it is difficult to manufacture the glass ribbon under such conditions.
 以上、フロートガラス製造装置およびフロートガラス製造方法の実施形態などを説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 As mentioned above, although embodiment of the float glass manufacturing apparatus and the float glass manufacturing method was described, this invention is not limited to the said embodiment etc., In the range of the summary of this invention described in the claim, various Can be modified and improved.
 例えば、上記実施形態の断熱部材37は、冷却部材36と接触するが、冷却部材36との間に隙間を形成してもよい。 For example, the heat insulating member 37 of the above embodiment contacts the cooling member 36, but a gap may be formed between the heat insulating member 37 and the cooling member 36.
 本出願は、2013年12月18日に日本国特許庁に出願された特願2013-260798号に基づく優先権を主張するものであり、特願2013-260798号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-260798 filed with the Japan Patent Office on December 18, 2013. The entire contents of Japanese Patent Application No. 2013-260798 are incorporated herein by reference. To do.
10 成形装置
11 浴槽
11a 下流端部
12 金属ケーシング
13 レンガ層
20 徐冷装置
30 インターフェース装置
31 ドロスボックス
32 シーリング
33-1~33-3 リフトアウトロール
36 冷却部材
37 断熱部材
38-1~38-8 ヒータ
G ガラスリボン
M 溶融金属
DESCRIPTION OF SYMBOLS 10 Forming apparatus 11 Bath 11a Downstream end 12 Metal casing 13 Brick layer 20 Slow cooling apparatus 30 Interface apparatus 31 Dross box 32 Sealing 33-1 to 33-3 Lift-out roll 36 Cooling member 37 Thermal insulation member 38-1 to 38-8 Heater G Glass ribbon M Molten metal

Claims (7)

  1.  浴槽内の溶融金属上において板状のガラスリボンを成形する成形装置と、
     前記ガラスリボンを徐冷する徐冷装置と、
     前記成形装置と前記徐冷装置とを接続するインターフェース装置とを備え、
     前記インターフェース装置は、
     前記溶融金属から前記ガラスリボンを引き上げると共に前記徐冷装置に向けて搬送するリフトアウトロールと、
     前記浴槽の下流端部を冷却する冷却部材と、
     前記冷却部材による前記ガラスリボンの冷輻射を遮る断熱部材とを有する、フロートガラス製造装置。
    A molding apparatus for molding a plate-shaped glass ribbon on the molten metal in the bathtub;
    A slow cooling device for slowly cooling the glass ribbon;
    An interface device for connecting the molding device and the slow cooling device;
    The interface device
    A lift-out roll that pulls up the glass ribbon from the molten metal and conveys it toward the slow cooling device,
    A cooling member for cooling the downstream end of the bathtub;
    A float glass manufacturing apparatus, comprising: a heat insulating member that blocks cold radiation of the glass ribbon by the cooling member.
  2.  前記インターフェース装置は、前記ガラスリボンを加熱するヒータを有し、
     該ヒータの少なくとも1つが、最上流のリフトアウトロールの中心線よりも上流に配設される、請求項1に記載のフロートガラス製造装置。
    The interface device has a heater for heating the glass ribbon,
    The float glass manufacturing apparatus according to claim 1, wherein at least one of the heaters is disposed upstream of a center line of the most upstream lift-out roll.
  3.  請求項1または2に記載のフロートガラス製造装置を用いてフロートガラスを製造する、フロートガラス製造方法。 A float glass production method for producing float glass using the float glass production apparatus according to claim 1 or 2.
  4.  前記ガラスリボンが前記溶融金属から離れるテイクオフ位置において、前記ガラスリボンの幅方向中央の粘度が1010.7dPa・s~1012.3dPa・sである、請求項3に記載のフロートガラス製造方法。 The float glass production according to claim 3, wherein the glass ribbon has a viscosity in the center in the width direction of 10 10.7 dPa · s to 10 12.3 dPa · s at a take-off position where the glass ribbon is separated from the molten metal. Method.
  5.  前記ガラスリボンが前記溶融金属から離れるテイクオフ位置から、前記ガラスリボンが最上流のリフトアウトロールと接触する接触位置までの間における、前記ガラスリボンの幅方向中央の温度変化幅が40℃以下である、請求項3または4に記載のフロートガラス製造方法。 The temperature change width at the center in the width direction of the glass ribbon between the take-off position where the glass ribbon is separated from the molten metal and the contact position where the glass ribbon is in contact with the most upstream lift-out roll is 40 ° C. or less. The float glass manufacturing method according to claim 3 or 4.
  6.  前記ガラスリボンが前記溶融金属から離れるテイクオフ位置から、前記ガラスリボンが最上流のリフトアウトロールと接触する接触位置までの間における、前記ガラスリボンの幅方向中央の温度変化幅が30℃以下である、請求項3または4に記載のフロートガラス製造方法。 The temperature change width at the center in the width direction of the glass ribbon between the take-off position where the glass ribbon is separated from the molten metal and the contact position where the glass ribbon is in contact with the most upstream lift-out roll is 30 ° C. or less. The float glass manufacturing method according to claim 3 or 4.
  7.  製造されるフロートガラスの板厚が0.8mm以下である、請求項3~6のいずれか1項に記載のフロートガラス製造方法。 The float glass manufacturing method according to any one of claims 3 to 6, wherein the thickness of the manufactured float glass is 0.8 mm or less.
PCT/JP2014/083120 2013-12-18 2014-12-15 Apparatus for manufacturing float glass and method for manufacturing float glass WO2015093432A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167006739A KR20160098163A (en) 2013-12-18 2014-12-15 Apparatus for manufacturing float glass and method for manufacturing float glass
CN201480055542.7A CN105612130A (en) 2013-12-18 2014-12-15 Apparatus for manufacturing float glass and method for manufacturing float glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013260798A JP2017030978A (en) 2013-12-18 2013-12-18 Manufacturing apparatus of float glass, and manufacturing method of float glass
JP2013-260798 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093432A1 true WO2015093432A1 (en) 2015-06-25

Family

ID=53402778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083120 WO2015093432A1 (en) 2013-12-18 2014-12-15 Apparatus for manufacturing float glass and method for manufacturing float glass

Country Status (4)

Country Link
JP (1) JP2017030978A (en)
KR (1) KR20160098163A (en)
CN (1) CN105612130A (en)
WO (1) WO2015093432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042183A1 (en) * 2016-09-02 2018-03-08 Pilkington Group Limited Float bath exit seal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127393A (en) * 2017-02-09 2018-08-16 Agc株式会社 Float glass manufacturing apparatus, and float glass manufacturing method
EP3795544A4 (en) * 2018-05-17 2022-03-02 Agc Inc. Float glass production device and float glass production method
KR102644497B1 (en) * 2019-06-28 2024-03-08 주식회사 엘지화학 Apparatus for manufacturing glass plate
CN110862219A (en) * 2019-12-28 2020-03-06 蚌埠中光电科技有限公司 Float glass tin bath broken plate lifting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130809A (en) * 1976-04-23 1977-11-02 Saint Gobain Glass strip pischarging apparatus
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JPH06227831A (en) * 1993-02-05 1994-08-16 Asahi Glass Co Ltd Production of float glass and apparatus therefor
JP2003261341A (en) * 2002-03-06 2003-09-16 Carl Zeiss:Fa Method for manufacturing float glass
WO2009148139A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus for producing plate glass and process for producing plate glass
WO2012066889A1 (en) * 2010-11-18 2012-05-24 旭硝子株式会社 Apparatus for manufacturing glass sheet and method for manufacturing glass sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130809A (en) * 1976-04-23 1977-11-02 Saint Gobain Glass strip pischarging apparatus
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JPH06227831A (en) * 1993-02-05 1994-08-16 Asahi Glass Co Ltd Production of float glass and apparatus therefor
JP2003261341A (en) * 2002-03-06 2003-09-16 Carl Zeiss:Fa Method for manufacturing float glass
WO2009148139A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus for producing plate glass and process for producing plate glass
WO2012066889A1 (en) * 2010-11-18 2012-05-24 旭硝子株式会社 Apparatus for manufacturing glass sheet and method for manufacturing glass sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042183A1 (en) * 2016-09-02 2018-03-08 Pilkington Group Limited Float bath exit seal
US11339078B2 (en) 2016-09-02 2022-05-24 Pilkington Group Limited Float bath exit seal

Also Published As

Publication number Publication date
CN105612130A (en) 2016-05-25
KR20160098163A (en) 2016-08-18
JP2017030978A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2015093432A1 (en) Apparatus for manufacturing float glass and method for manufacturing float glass
JP5838966B2 (en) Glass plate manufacturing apparatus and glass plate manufacturing method
JP5574454B2 (en) Manufacturing method of glass substrate
TWI422539B (en) Manufacturing method and apparatus for glass plate
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
JP5752787B2 (en) Glass substrate manufacturing method and molding apparatus
JP2015151282A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP6144740B2 (en) Manufacturing method of glass substrate for display
JPWO2012026136A1 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP2015105216A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP5848329B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2013139342A (en) Method for manufacturing glass sheet
WO2005063635A1 (en) Float bath and float manufacturing process
JP2014189457A (en) Glass plate manufacturing method and glass plate manufacturing device
WO2022130928A1 (en) Method for producing glass article
JP5508466B2 (en) Manufacturing method of glass substrate
JP6577215B2 (en) Manufacturing method of glass substrate
TWI576318B (en) Method for manufacturing glass substrates
JP2014214062A (en) Method and apparatus for manufacturing glass plate
TW201309606A (en) Float glass production device, and float glass production method employing same
WO2009081741A1 (en) Process and apparatus for producing glass plate
US20140331717A1 (en) Plate glass production device, and plate glass production method
JP2015134691A (en) Float glass manufacturing method and float glass manufacturing apparatus
JP2015160796A (en) Method and apparatus for manufacturing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006739

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP