WO2020129529A1 - Method for measuring temperature of glass article, and method for manufacturing glass article - Google Patents

Method for measuring temperature of glass article, and method for manufacturing glass article Download PDF

Info

Publication number
WO2020129529A1
WO2020129529A1 PCT/JP2019/045489 JP2019045489W WO2020129529A1 WO 2020129529 A1 WO2020129529 A1 WO 2020129529A1 JP 2019045489 W JP2019045489 W JP 2019045489W WO 2020129529 A1 WO2020129529 A1 WO 2020129529A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ribbon
glass
temperature
glass article
emissivity
Prior art date
Application number
PCT/JP2019/045489
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 奥野
邦男 小梶
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2020129529A1 publication Critical patent/WO2020129529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry

Definitions

  • the present invention relates to a method for measuring the temperature of a glass article and a method for manufacturing a glass article.
  • an overflow downdraw method or a float method can be mentioned.
  • molten glass is poured into an overflow groove provided in the upper part of a molded body having a substantially wedge-shaped cross section, and the molten glass overflowing from the overflow groove to both sides along side walls on both sides of the molded body. While flowing down, they are fused and integrated at the lower end of the molded body to continuously mold a glass ribbon.
  • a forming furnace having a formed body therein, an annealing furnace installed below the forming furnace, and an annealing furnace installed below the annealing furnace are provided. Some have a cooling part and a cutting part.
  • This manufacturing device forms a glass ribbon with a molded body, passes this glass ribbon through an annealing furnace to remove its internal strain, cools it to room temperature in the cooling unit, and then cuts this glass ribbon in the cutting unit. , Manufacture glass plates of specified dimensions.
  • the glass ribbon is formed by supplying the molten glass heated and melted in the melting furnace onto the molten tin in the float bath through the supply channel.
  • Patent Document 2 there is an apparatus for manufacturing a glass plate using the float method, which includes a float bath for molding a glass ribbon and an annealing furnace connected to a molding furnace.
  • the slow cooling furnace includes a transfer unit such as a roll arranged inside, and a carry-out port open to the atmosphere.
  • a glass ribbon formed by a float bath is introduced into a slow cooling furnace and gradually cooled while being conveyed by a conveying means, and then the glass ribbon is taken out from a carry-out port and further cooled.
  • Patent Document 2 discloses an infrared radiation thermometer (infrared thermometer) for measuring the temperature of a glass ribbon conveyed in a slow cooling furnace (see paragraph 0040 of the same document).
  • the present invention has been made in view of the above circumstances, and has a technical problem of accurately measuring the temperature of a glass article using a radiation thermometer.
  • the present invention is to solve the above problems, in a method of measuring the temperature of a glass article by a radiation thermometer, to determine the emissivity of the glass article based on the amount of water vapor in the space in which the glass article is present. And a step of measuring the temperature of the glass article by the radiation thermometer based on the determined emissivity.
  • the energy emitted from the glass article is somewhat absorbed by the water vapor (H 2 O) contained in the space in which the glass article resides.
  • the amount of water vapor in the space where the glass article is present is determined, and the emissivity of the glass article is determined based on the amount of water vapor, thereby minimizing the measurement error of the radiation thermometer due to the energy absorption by the water vapor. It can be reduced. Thereby, the temperature of the glass article can be accurately measured.
  • the emissivity can be determined based on the distance from the glass article to the radiation thermometer. The farther the radiation thermometer is from the glass article, the more energy is absorbed by the water vapor. If the emissivity is determined according to the distance (optical path length) from the glass article to the radiation thermometer as in the present invention, the measurement error of the radiation thermometer due to the energy absorption by water vapor can be reduced as much as possible, and the accuracy can be improved. It enables good temperature measurement.
  • the emissivity can be determined based on an approximate expression representing the relationship between the emissivity and the amount of water vapor. Thereby, the emissivity can be efficiently determined.
  • the radiation thermometer may measure the temperature of the glass article by detecting infrared rays having a wavelength of 7.5 to 8.5 ⁇ m. Since the glass article has a high emissivity in this wavelength range, it is not necessary to consider the influence of energy transmission and reflection. Thereby, the temperature of the glass article can be accurately measured. Further, in the above wavelength range, the transmittance of the atmosphere is high to some extent, so that the temperature of the glass article can be stably measured.
  • the present invention is to solve the above problems, a method of manufacturing a glass ribbon as a glass article, the step of molding the glass ribbon, and a step of conveying the molded glass ribbon, Measuring the temperature of the glass ribbon conveyed by the above-mentioned temperature measuring method for glass articles.
  • the glass ribbon in the step of forming the glass ribbon, is formed inside a forming furnace by a down draw method, and the glass ribbon is formed in the step of conveying the glass ribbon.
  • a slow cooling furnace having a slow cooling space for slow cooling the ribbon and a cooling space for cooling the slow-cooled glass ribbon are passed, and the cooling space communicates with the slow cooling furnace at a position below the slow cooling furnace, and the glass
  • the temperature of the glass ribbon passing through the annealing furnace is measured, and in the step of determining the emissivity, the amount of water vapor obtained from the temperature and humidity of the cooling space may be used. ..
  • the inside of the slow-cooling furnace in the downdraw method is at a high temperature, and due to the effect of the rising airflow from the cooling space, it is difficult to accurately measure the humidity for calculating the amount of water vapor.
  • the cooling space communicates with the slow cooling furnace, the amount of water vapor in the slow cooling furnace is substantially equal to the amount of water vapor in the cooling space. Therefore, for example, if the amount of water vapor in the slow cooling furnace is used as the amount of water vapor in the cooling space, it is possible to measure the temperature of the glass article with high accuracy. Therefore, it is preferable to measure the temperature and humidity in the cooling space and calculate the amount of water vapor in the cooling space based on the temperature and humidity.
  • the slow cooling furnace includes a wall portion that partitions the slow cooling space, and the wall portion has a window portion arranged between the glass ribbon and the radiation thermometer.
  • the step of measuring the temperature of the glass ribbon may include the step of correcting the emissivity based on the transmittance of the window portion.
  • the radiation thermometer can accurately measure the temperature of the glass article even when detecting infrared rays passing through the window.
  • the glass ribbon in the step of forming the glass ribbon, may be formed by a pair of forming rolls by a roll-out method. With this configuration, the temperature of the glass ribbon formed by the forming roll can be accurately measured.
  • the temperature of a glass article can be accurately measured using a radiation thermometer.
  • 1 to 5 show a first embodiment of a temperature measuring method and a manufacturing method for a glass article according to the present invention.
  • FIG. 1 is a vertical sectional view showing a glass article manufacturing apparatus.
  • This manufacturing apparatus 1 continuously manufactures a glass ribbon GR by an overflow down draw method and cuts the glass ribbon GR to manufacture a glass plate GS.
  • the method of forming the glass ribbon GR is not limited to the overflow downdraw method, and may be another downdraw method such as a slot downdraw method or a redraw method.
  • the glass plate GS obtained by cutting the glass ribbon GR is used as a glass article such as a substrate or a cover for various devices such as flat panel displays such as liquid crystal displays and organic EL displays, solar cells, touch panels, and lighting.
  • the “glass article” includes the glass ribbon GS as well as the glass plate GS.
  • the manufacturing apparatus 1 includes a forming furnace 2 for continuously forming a molten glass GM into a glass ribbon GR, an annealing furnace 3 (annealer) provided below the forming furnace 2, and an annealing furnace 3 below the annealing furnace 3.
  • the cooling unit 4 is provided, and the cutting unit 5 is provided below the cooling unit 4.
  • the molding furnace 2 includes a molded body 6 and an edge roller 7 in an internal space defined by a furnace wall (wall portion) 2a.
  • the molded body 6 has a substantially wedge shape in cross section with an overflow groove 6a formed in the upper end portion.
  • the edge roller 7 is arranged immediately below the molded body 6 and is a pair of rollers that sandwich the molten glass GM molded by the molded body 6 from both front and back sides.
  • the molten glass GM overflowing from above the overflow groove 6a of the molded body 6 is made to flow down along both side surfaces and merge at the lower end portion 6b to form a plate shape.
  • the edge roller 7 regulates shrinkage of the molten glass GM in the width direction to form a glass ribbon GR having a predetermined width. At both ends in the width direction of the glass ribbon GR that are in contact with the edge roller 7, ear portions that are relatively thicker than the center portion (product portion) in the width direction are formed.
  • the slow cooling furnace 3 gradually cools the glass ribbon GR formed in the forming furnace 2 to a temperature equal to or lower than the strain point, and removes internal strain of the glass ribbon GR.
  • the slow cooling furnace 3 has a furnace wall (wall portion) 3 a that is integrally formed with the furnace wall 2 a of the forming furnace 2. As shown in FIG. 1, the slow cooling furnace 3 has an internal space (slow cooling space) defined by the furnace wall 3 a and communicating with the internal space of the forming furnace 2.
  • a heater 8 for forming a temperature gradient in the vertical direction is provided on the inner surface of the furnace wall 3a of the slow cooling furnace 3.
  • the furnace wall 3a has a hole 9 penetrating in the thickness direction and a window portion 10 closing the hole 9.
  • the window 10 is made of a material having a high transmittance at the measurement wavelength of the radiation thermometer 12.
  • the window 10 is formed into a plate shape, for example, with calcium fluoride or barium fluoride, but the shape and material of the window 10 are not limited to this mode.
  • An annealing roller 11 is arranged inside the annealing furnace 3.
  • the anneal roller 11 is a pair of rollers arranged in a plurality of stages at intervals along the vertical direction.
  • the anneal roller 11 holds both ends of the glass ribbon GR in the width direction from both front and back sides and guides (conveys) the glass ribbon GR downward.
  • a radiation thermometer 12 for measuring the temperature of the glass ribbon GR and an arithmetic unit 13 connected to the radiation thermometer 12 are arranged outside the annealing furnace 3 (outside the furnace wall 3a).
  • the radiation thermometer 12 is composed of a thermography camera.
  • the thermography camera has a condenser lens, a detection element, a microcomputer, and the like built-in, detects infrared rays emitted from the glass ribbon GR, and converts the amount of energy into temperature, thereby measuring the position of the glass ribbon GR at the measurement position. Obtain heat distribution map data.
  • the radiation thermometer 12 is not limited to the thermography camera, and another thermometer can be used.
  • the radiation thermometer 12 can transmit data related to the measured heat distribution map to the arithmetic unit 13.
  • the radiation thermometer 12 is arranged so as to face the window 10 of the annealing furnace 3.
  • the radiation thermometer 12 is arranged so as to be in contact with or close to the window 10.
  • the arithmetic unit 13 includes, for example, a computer (PC or the like) that implements various hardware such as a CPU, ROM, RAM, HDD, monitor, and input/output interface.
  • the arithmetic unit 13 includes an arithmetic processing unit (CPU) that executes various arithmetic operations, a storage unit (ROM, RAM, HDD, etc.) that stores various data, and a display unit 13a (monitor) that displays the arithmetic results.
  • the cooling unit 4 cools the glass ribbon GR gradually cooled in the annealing furnace 3 to near room temperature.
  • the internal space (cooling space) of the cooling unit 4 communicates with the slow cooling furnace 3.
  • the cooling unit 4 includes a support roller 14 that holds both widthwise ends of the glass ribbon GR from both front and back sides.
  • the support rollers 14 are a pair of rollers arranged in a plurality of stages at intervals along the vertical direction.
  • the support roller 14 guides (conveys) the glass ribbon GR to the cutting section 5 below.
  • thermometer 15 and a hygrometer 16 are provided in the internal space of the cooling unit 4.
  • thermometer 15 and the hygrometer 16 for example, a bimetal type is used, but the thermometer 15 and the hygrometer 16 are not limited to this mode.
  • the thermometer 15 measures the temperature of the internal space of the cooling unit 4, and the hygrometer 16 measures the relative humidity of the internal space.
  • the cutting unit 5 has a breaking device 17 for cutting the glass ribbon GR transferred downward from the cooling unit 4.
  • the breaking device 17 cuts the glass ribbon GR to form a rectangular glass plate GS.
  • the internal space of the cutting part 5 communicates with the internal space of the upper cooling part 4.
  • this method includes a forming step S1, a slow cooling step S2, a measuring step S3, a cooling step S4, and a cutting step S5.
  • the molten glass GM supplied to the molded body 6 in the molding furnace 2 overflows from the overflow groove 6a and flows down on both side surfaces of the molded body 6.
  • the molten glass GM flowing downward is fused and integrated at the lower end 6b of the molded body 6 and molded into a plate shape.
  • the edge roller 7 holds the end portion in the width direction of the molten glass GM and guides it downward.
  • the glass ribbon GR having a predetermined width is sent to the slow cooling furnace 3.
  • the glass ribbon GR descended from the forming furnace 2 passes through the internal space (slow cooling space) of the slow cooling furnace 3.
  • the glass ribbon GR is gradually cooled by a predetermined temperature gradient while being conveyed downward by the anneal roller 11, and its internal strain is removed.
  • the temperature and humidity inside the cooling unit 4 are measured by the thermometer 15 and the hygrometer 16 arranged in the cooling unit 4.
  • the data related to the measured temperature and humidity are input to the arithmetic unit 13.
  • the temperature and humidity data may be input to the arithmetic unit 13 by an operator of the arithmetic unit 13, and digital data of temperature (° C.) and humidity (relative humidity, unit: %) can be input by the thermometer 15 and the hygrometer 16. It may be acquired and directly input to the arithmetic unit 13 by wire communication or wireless communication.
  • the arithmetic processing unit of the arithmetic unit 13 uses the arithmetic program stored in the storage unit to determine the saturated water vapor amount (g/m 3 ) in the cooling unit 4 based on the temperature of the cooling unit 4. calculate. Furthermore, the arithmetic processing unit calculates the amount of water vapor in the cooling unit 4 (absolute humidity, unit: g/m 3 ) based on the humidity in the cooling unit 4 and the amount of saturated water vapor.
  • the forming furnace 2, the slow cooling furnace 3, the cooling unit 4 and the cutting unit 5 communicate with each other as described above, these constituent elements 2 to 5 are integrally formed in the building of the manufacturing apparatus 1.
  • One space that includes it is formed.
  • the amount of water vapor becomes constant. Therefore, the amount of water vapor in the slow cooling furnace 3 is substantially equal to the amount of water vapor in the cooling unit 4.
  • FIG. 4 is a graph showing the relationship between the wavelength of infrared rays emitted and the emissivity for each material of alkali-free glass, crystallized glass, and soda glass.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, the weight ratio of the alkali components is 3000 ppm or less. It is glass.
  • the weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the wavelength measured by the radiation thermometer 12 is preferably 5 to 8.5 ⁇ m.
  • the wavelength is more preferably 8.35 ⁇ m or less from the viewpoint of emissivity of 90% or more, and most preferably the wavelength of 8.25 ⁇ m or less from the viewpoint of emissivity of 95% or more. If the wavelength is 7.5 or more, the transmittance of the atmosphere is high to some extent, so that the temperature of the glass article can be stably measured. Therefore, the wavelength is more preferably 7.5 ⁇ m or more.
  • the energy radiated from the glass ribbon GR is absorbed by the water present in the internal space of the annealing furnace 3, and the temperature of the glass ribbon GR is accurately measured. Was difficult.
  • the wavelength is 5 to 8.5 ⁇ m, the absorption of energy due to moisture is further increased. Therefore, in the temperature measurement of the glass ribbon GR according to the present embodiment, in order to suppress a measurement error of the radiation thermometer 12 due to the absorption of energy by the water vapor, the amount of water vapor in the slow cooling furnace 3 where the measurement position of the glass ribbon GR exists is set. Based on this, the emissivity is determined by the arithmetic unit 13 (determination step).
  • the arithmetic processing unit of the arithmetic device 13 multiplies the distance D (m) between the radiation thermometer 12 and the glass ribbon GR by the amount of water vapor (g/m 3 ) in the slow cooling furnace 3 to obtain the glass ribbon.
  • the water content (g/m 2 ) in the space from the GR to the radiation thermometer 12 is calculated.
  • the water content represents the amount of water vapor per unit area existing in the space from the glass ribbon GR to the radiation thermometer 12.
  • the amount of water vapor in the slow cooling furnace 3 is substantially equal to the amount of water vapor in the cooling unit 4. Therefore, the arithmetic processing unit of the arithmetic unit 13 determines the amount of water vapor in the slow cooling furnace 3 as the amount of water vapor in the cooling unit 4 (cooling space). May be substituted. Strictly speaking, since the temperature of the slow cooling furnace 3 is higher than the temperature of the cooling unit 4, the amount of steam per unit volume of the slow cooling furnace 3 is lower than the amount of steam per unit volume of the cooling unit 4 due to the effect of thermal expansion.
  • the amount of water vapor in the cooling unit 4 based on the temperature difference between the temperature of the annealing chamber 3 and the temperature of the cooling unit 4 to obtain the amount of water vapor in the annealing unit 3.
  • the accuracy of measuring the temperature of the glass ribbon GR can be further improved.
  • M2 is the amount of water vapor in the cooling unit 4 (g/m 3 )
  • D is the distance D (m) of the glass ribbon GR
  • T1 is the temperature of the cooling unit 4 (K)
  • T2 is the temperature of the annealing furnace 3 (K).
  • a thermometer for measuring the temperature of the internal atmosphere of the slow cooling furnace 3 is installed around the installation position of the radiation thermometer 12 in the slow cooling furnace 3, and the measured value may be used. ..
  • the distance D from the glass ribbon GR to the radiation thermometer 12 is the sum of the distance from the glass ribbon GR to the window 10 and the distance from the window 10 to the radiation thermometer 12.
  • the distance from the glass ribbon GR to the window 10 may be the distance D.
  • a data table showing the relationship between the water content and emissivity in the space from the glass ribbon GR to the radiation thermometer 12 is stored in the storage unit of the arithmetic unit 13. This data is obtained by measuring the specimen placed in the test furnace with a radiation thermometer while changing the moisture content in the space from the specimen to the radiation thermometer by setting the humidity and temperature inside the test furnace. It was obtained by doing.
  • FIG. 5 is a graph showing the relationship between the water content and the emissivity in the space from the glass ribbon GR to the radiation thermometer 12, which is drawn based on the data table stored in the storage unit.
  • the arithmetic processing unit causes the display unit 13a to display this graph based on the data table stored in the storage unit.
  • This graph includes a curve relating to the measurement data (shown by a solid line), an approximate curve AC based on the measurement data (shown by a chain double-dashed line), and an approximate expression AF representing the approximate curve.
  • the arithmetic processing unit of the arithmetic unit 13 determines the emissivity of the glass ribbon GR based on the calculated water content and this approximate expression AF.
  • the emissivity of the glass ribbon GR is calculated in consideration of energy absorption by the window 10. Correct by 13.
  • Data relating to the transmittance of the window 10 is stored in the storage unit of the arithmetic unit 13.
  • the arithmetic processing unit of the arithmetic unit 13 corrects the emissivity by multiplying the emissivity obtained by the above calculation by the transmittance of the window 10.
  • the corrected emissivity is input to the radiation thermometer 12 by the arithmetic unit 13.
  • the infrared rays radiated from the glass ribbon GR pass through the window 10 and are detected by the radiation thermometer 12 located outside the furnace wall 3a.
  • the radiation thermometer 12 measures the temperature of the glass ribbon GR based on the emissivity determined by the arithmetic processing unit.
  • the radiation thermometer 12 transmits the measured temperature data to the arithmetic unit 13.
  • the arithmetic processing unit of the arithmetic unit 13 causes the display unit 13a to display the heat distribution map at the measurement position of the glass ribbon GR based on the received temperature data.
  • the glass ribbon GR that has passed through the slow cooling furnace 3 is introduced into the cooling unit 4.
  • the glass ribbon GR is further cooled by natural cooling while being conveyed downward by the support roller 14.
  • the glass ribbon GR that has passed through the cooling unit 4 is introduced into the cutting unit 5.
  • the glass ribbon GR is cut by the breaking device 17, whereby a glass plate GS having a predetermined size is formed. Then, if necessary, a process of cutting and removing the ears formed on both ends of the glass plate GS in the width direction, and an inspection of the glass plate GS are performed.
  • the radiant temperature accompanying the energy absorption by the water vapor is determined.
  • the measurement error of the total 12 can be reduced as much as possible. Therefore, the temperature of the glass ribbon GR as a glass article can be accurately measured. Further, by accurately measuring the temperature of the glass ribbon GR, it is possible to accurately control the temperature of the glass ribbon GR in the slow cooling step S2. Thereby, the glass ribbon GR and the glass plate GS with stable quality can be efficiently manufactured.
  • FIG. 6 shows a second embodiment of the present invention.
  • the glass ribbon GR is formed by the overflow downdraw method, but in the present embodiment, the glass ribbon GR is formed by the roll-out method.
  • the manufacturing apparatus 1 of the present embodiment includes a radiation thermometer 12, an arithmetic unit 13 connected to the radiation thermometer 12, a thermometer 15, and a hygrometer 16.
  • the manufacturing apparatus 1 of the present embodiment further includes a pair of forming rolls 18 and a plurality of conveying rolls 19 that conveys the formed glass ribbon GR in a predetermined direction.
  • the pair of forming rolls 18 are arranged at a constant interval, and the molten glass GM is passed between them to form the glass ribbon GR.
  • the plurality of transport rolls 19 are arranged at intervals in the horizontal direction.
  • the carrying roll 19 changes the carrying direction of the glass ribbon GR formed by the forming roll 18 from the vertical direction to the horizontal direction.
  • the molten glass GM is supplied to the forming roll 18 to form the glass ribbon GR (forming step).
  • the glass ribbon GR formed by the forming roll 18 is horizontally conveyed by the conveying roll 19.
  • the temperature of the glass ribbon GR is measured by the radiation thermometer 12 during the transportation process (measurement process).
  • the arithmetic unit 13 calculates the saturated water vapor amount in the carrying space based on the temperature of the carrying space in which the glass ribbon GR is carried, which is measured by the thermometer 15. Further, the arithmetic unit 13 calculates the amount of water vapor in the transfer space based on the relative humidity of the transfer space measured by the hygrometer 16 and the calculated amount of saturated water vapor.
  • the computing device 13 calculates the amount of water in the space from the glass ribbon GR to the radiation thermometer 12 by multiplying the calculated amount of water vapor by the distance D between the radiation thermometer 12 and the glass ribbon GR, and based on the amount of water To determine the emissivity of the glass ribbon GR.
  • the radiation thermometer 12 measures the temperature of the glass ribbon GR moving below the molding roll 18 based on the determined (input) emissivity of the glass ribbon GR.
  • the window portion 10 exemplified in the first embodiment does not exist. Therefore, in this embodiment, the emissivity is not corrected based on the transmittance of the window 10.
  • the glass plate is formed through the slow cooling process by the slow cooling furnace, the cooling process by the cooling unit, and the cutting process by the cutting unit, as in the first embodiment.
  • the one using the relationship between the water content in the space from the glass ribbon GR to the radiation thermometer 12 and the emissivity is illustrated, but the present invention is not limited to this configuration. If the distance D from the glass ribbon GR to the radiation thermometer 12 is constant and there is no need to consider the change in the distance D, the amount of water vapor and the emissivity of the space where the glass ribbon GR (glass article) exists Relationships may be used.
  • the relationship between the amount of water vapor and the emissivity is, for example, when the distance between the test body and the radiation thermometer 12 is the same as the distance D from the glass ribbon GR to the radiation thermometer 12, the amount of water vapor in the test furnace is changed. However, it may be obtained by measuring the test body placed in the test furnace with the radiation thermometer 12.
  • the method of manufacturing the glass article using the overflow downdraw method and the rollout method is illustrated, but the present invention is not limited to this configuration.
  • the glass ribbon (glass article) can be manufactured by utilizing the float method and various other forming methods.
  • the glass article may be a tube glass, and a Danner method or a bellows method can be adopted for forming the tube glass.
  • the emissivity is determined by the arithmetic unit 13, but the emissivity may be determined and input to the radiation thermometer 12 without using the arithmetic unit 13. In this case, for example, the operator may calculate and determine the amount of water vapor, the amount of water, and the emissivity from the temperature and the humidity. Further, in the above-described embodiment, the heat distribution diagram of the glass ribbon GR is displayed on the display unit 13a of the arithmetic unit 13. However, when the radiation thermometer 12 has a display unit, the glass ribbon is displayed on the display unit of the radiation thermometer 12. A GR heat distribution map may be displayed.
  • the cutting step S5 of cutting the glass ribbon GR to form the glass plate GS is illustrated, but the present invention is not limited to this configuration.
  • the method for manufacturing a glass article according to the present invention may include a step (winding step) of winding the glass ribbon GR in a roll shape to form a glass roll instead of the cutting step S5.
  • the radiation thermometer 12 may be provided outside the annealing furnace 3 at a position away from the window 10.
  • the range (area) of the glass ribbon GR that can be measured by the radiation thermometer 12 is small when the area of the window 10 is small.
  • the difference in the amount of water vapor between the outside and inside of the slow cooling furnace 3 may cause the temperature measurement accuracy of the glass ribbon GR to slightly deteriorate.

Abstract

A method for measuring the temperature of a glass article comprises the steps of: determining the emissivity of the glass article on the basis of the amount of water vapor in a space where the glass article is placed; and measuring the temperature of the glass article with a radiation thermometer 12 on the basis of the determined emissivity.

Description

ガラス物品の温度測定方法及び製造方法Glass article temperature measuring method and manufacturing method
 本発明は、ガラス物品の温度を測定する方法及びガラス物品を製造する方法に関する。 The present invention relates to a method for measuring the temperature of a glass article and a method for manufacturing a glass article.
 ガラス板等のガラス物品を製造する方法として、例えばオーバーフローダウンドロー法やフロート法が挙げられる。 As a method for manufacturing glass articles such as a glass plate, for example, an overflow downdraw method or a float method can be mentioned.
 オーバーフローダウンドロー法では、断面が略くさび形の成形体の上部に設けられたオーバーフロー溝に溶融ガラスを流し込み、このオーバーフロー溝から両側に溢れ出た溶融ガラスを成形体の両側の側壁部に沿って流下させながら、成形体の下端部で融合一体化し、ガラスリボンを連続成形する。 In the overflow down draw method, molten glass is poured into an overflow groove provided in the upper part of a molded body having a substantially wedge-shaped cross section, and the molten glass overflowing from the overflow groove to both sides along side walls on both sides of the molded body. While flowing down, they are fused and integrated at the lower end of the molded body to continuously mold a glass ribbon.
 オーバーフローダウンドロー法を用いるガラス板の製造装置としては、特許文献1に開示されるように、成形体を内部に有する成形炉と、成形炉の下方に設置される徐冷炉と、徐冷炉の下方に設けられる冷却部及び切断部とを備えたものがある。この製造装置は、成形体によってガラスリボンを成形し、このガラスリボンを徐冷炉に通過させてその内部歪みを除去し、冷却部で室温まで冷却した後に、切断部でこのガラスリボンを切断することで、所定寸法のガラス板を製造する。 As a glass plate manufacturing apparatus using the overflow down draw method, as disclosed in Patent Document 1, a forming furnace having a formed body therein, an annealing furnace installed below the forming furnace, and an annealing furnace installed below the annealing furnace are provided. Some have a cooling part and a cutting part. This manufacturing device forms a glass ribbon with a molded body, passes this glass ribbon through an annealing furnace to remove its internal strain, cools it to room temperature in the cooling unit, and then cuts this glass ribbon in the cutting unit. , Manufacture glass plates of specified dimensions.
 フロート法では、溶融炉で加熱溶融された溶融ガラスを、供給流路を通じてフロートバスの溶融錫上に供給することでガラスリボンを成形する。 In the float method, the glass ribbon is formed by supplying the molten glass heated and melted in the melting furnace onto the molten tin in the float bath through the supply channel.
 フロート法を用いるガラス板の製造装置としては、特許文献2に開示されるように、ガラスリボンを成形するフロートバスと、成形炉に接続される徐冷炉とを備えたものがある。徐冷炉は、内部に配置されるロール等の搬送手段と、大気開放された搬出口とを備える。この製造装置は、フロートバスで成形されたガラスリボンを徐冷炉内に導入して搬送手段によって搬送しながら徐冷し、その後、当該ガラスリボンを搬出口から取り出してさらに冷却する。 As disclosed in Patent Document 2, there is an apparatus for manufacturing a glass plate using the float method, which includes a float bath for molding a glass ribbon and an annealing furnace connected to a molding furnace. The slow cooling furnace includes a transfer unit such as a roll arranged inside, and a carry-out port open to the atmosphere. In this manufacturing apparatus, a glass ribbon formed by a float bath is introduced into a slow cooling furnace and gradually cooled while being conveyed by a conveying means, and then the glass ribbon is taken out from a carry-out port and further cooled.
 ガラスリボンの徐冷処理が適切に行われるために、ガラスリボンの温度を測定する工程が必要となる場合がある。例えば特許文献2では、徐冷炉内で搬送されるガラスリボンの温度を測定するための赤外放射温度計(赤外線温度計)が開示されている(同文献の段落0040参照)。 In some cases, a step of measuring the temperature of the glass ribbon may be necessary in order to properly perform the gradual cooling treatment of the glass ribbon. For example, Patent Document 2 discloses an infrared radiation thermometer (infrared thermometer) for measuring the temperature of a glass ribbon conveyed in a slow cooling furnace (see paragraph 0040 of the same document).
特開2012-197185号公報JP 2012-197185 A 特開2011-157234号公報JP, 2011-157234, A
 上記のように放射温度計を使用して温度測定を行う場合、当該ガラスリボンの温度を正確に測定することが困難であった。 When using a radiation thermometer to measure temperature as described above, it was difficult to accurately measure the temperature of the glass ribbon.
 本発明は、上記の事情に鑑みて為されたものであり、放射温度計を使用してガラス物品の温度を精度良く測定することを技術的課題とする。 The present invention has been made in view of the above circumstances, and has a technical problem of accurately measuring the temperature of a glass article using a radiation thermometer.
 本発明は上記の課題を解決するためのものであり、ガラス物品の温度を放射温度計により測定する方法において、前記ガラス物品が存在する空間の水蒸気量に基づいて前記ガラス物品の放射率を決定する工程と、決定された前記放射率に基づいて前記放射温度計により前記ガラス物品の前記温度を測定する工程と、を備えることを特徴とする。 The present invention is to solve the above problems, in a method of measuring the temperature of a glass article by a radiation thermometer, to determine the emissivity of the glass article based on the amount of water vapor in the space in which the glass article is present. And a step of measuring the temperature of the glass article by the radiation thermometer based on the determined emissivity.
 ガラス物品から放射されるエネルギはガラス物品が存在する空間に含まれる水蒸気(HO)によって幾分吸収される。本発明では、ガラス物品が存在する空間の水蒸気量を求め、当該水蒸気量に基づいてガラス物品の放射率を決定することで、水蒸気によるエネルギ吸収に伴う放射温度計の測定誤差を可及的に低減できる。これにより、ガラス物品の温度を精度良く測定できる。 The energy emitted from the glass article is somewhat absorbed by the water vapor (H 2 O) contained in the space in which the glass article resides. In the present invention, the amount of water vapor in the space where the glass article is present is determined, and the emissivity of the glass article is determined based on the amount of water vapor, thereby minimizing the measurement error of the radiation thermometer due to the energy absorption by the water vapor. It can be reduced. Thereby, the temperature of the glass article can be accurately measured.
 前記放射率を決定する工程では、前記ガラス物品から前記放射温度計までの距離に基づいて前記放射率を決定できる。ガラス物品から放射温度計が離れる程、水蒸気に吸収されるエネルギが増大する。本発明のように、ガラス物品から放射温度計までの距離(光路長)に応じて放射率を決定すれば、水蒸気によるエネルギ吸収に伴う放射温度計の測定誤差を可及的に低減でき、精度の良い温度測定が可能になる。 In the step of determining the emissivity, the emissivity can be determined based on the distance from the glass article to the radiation thermometer. The farther the radiation thermometer is from the glass article, the more energy is absorbed by the water vapor. If the emissivity is determined according to the distance (optical path length) from the glass article to the radiation thermometer as in the present invention, the measurement error of the radiation thermometer due to the energy absorption by water vapor can be reduced as much as possible, and the accuracy can be improved. It enables good temperature measurement.
 前記放射率を決定する工程では、前記放射率と前記水蒸気量との関係を表す近似式に基づいて前記放射率を決定できる。これにより、放射率を効率良く決定できる。 In the step of determining the emissivity, the emissivity can be determined based on an approximate expression representing the relationship between the emissivity and the amount of water vapor. Thereby, the emissivity can be efficiently determined.
 前記放射温度計は、7.5~8.5μmの波長を有する赤外線を検出することにより前記ガラス物品の前記温度を測定してもよい。この波長域ではガラス物品の放射率が高いため、エネルギの透過、反射の影響を考慮する必要がなくなる。これにより、ガラス物品の温度を精度良く測定できる。また、上記波長域では、大気の透過率がある程度高いので、ガラス物品の温度を安定して測定できる。 The radiation thermometer may measure the temperature of the glass article by detecting infrared rays having a wavelength of 7.5 to 8.5 μm. Since the glass article has a high emissivity in this wavelength range, it is not necessary to consider the influence of energy transmission and reflection. Thereby, the temperature of the glass article can be accurately measured. Further, in the above wavelength range, the transmittance of the atmosphere is high to some extent, so that the temperature of the glass article can be stably measured.
 本発明は上記の課題を解決するためのものであり、ガラス物品としてのガラスリボンを製造する方法であって、前記ガラスリボンを成形する工程と、成形された前記ガラスリボンを搬送する工程と、搬送される前記ガラスリボンの温度を、上記したガラス物品の温度測定方法により測定する工程と、を備えることを特徴とする。 The present invention is to solve the above problems, a method of manufacturing a glass ribbon as a glass article, the step of molding the glass ribbon, and a step of conveying the molded glass ribbon, Measuring the temperature of the glass ribbon conveyed by the above-mentioned temperature measuring method for glass articles.
 かかる構成によれば、成形されたガラスリボンの温度を精度良く測定することで、ガラスリボンの温度管理を正確に行うことができる。これにより、製造されるガラスリボンの品質を向上できる。 With this configuration, it is possible to accurately control the temperature of the glass ribbon by accurately measuring the temperature of the molded glass ribbon. Thereby, the quality of the glass ribbon manufactured can be improved.
 本発明に係るガラス物品の製造方法において、前記ガラスリボンを成形する工程では、ダウンドロー法によって成形炉の内部で前記ガラスリボンを成形し、前記ガラスリボンを搬送する工程では、成形された前記ガラスリボンを徐冷する徐冷空間を有する徐冷炉と、徐冷された前記ガラスリボンを冷却する冷却空間と、を通過させ、前記冷却空間は、前記徐冷炉の下方位置で前記徐冷炉と連通し、前記ガラスリボンの温度を測定する工程では、前記徐冷炉を通過する前記ガラスリボンの温度を測定し、前記放射率を決定する工程では、前記冷却空間の温度及び湿度から求めた前記水蒸気量を用いてもよい。 In the method for manufacturing a glass article according to the present invention, in the step of forming the glass ribbon, the glass ribbon is formed inside a forming furnace by a down draw method, and the glass ribbon is formed in the step of conveying the glass ribbon. A slow cooling furnace having a slow cooling space for slow cooling the ribbon and a cooling space for cooling the slow-cooled glass ribbon are passed, and the cooling space communicates with the slow cooling furnace at a position below the slow cooling furnace, and the glass In the step of measuring the temperature of the ribbon, the temperature of the glass ribbon passing through the annealing furnace is measured, and in the step of determining the emissivity, the amount of water vapor obtained from the temperature and humidity of the cooling space may be used. ..
 つまり、ダウンドロー法における徐冷炉の内部は高温であり、冷却空間からの上昇気流の影響もあって、水蒸気量を算出するための湿度の正確な測定が困難となる。冷却空間は徐冷炉と連通していることから、この徐冷炉内の水蒸気量は、冷却空間内の水蒸気量とほぼ等しい。このため、例えば、冷却空間の水蒸気量として徐冷炉内の水蒸気量を代用すれば、ガラス物品の高精度な温度測定が可能となる。そのため、冷却空間における温度及び湿度を測定し、当該温度及び湿度に基づいて冷却空間の水蒸気量を算出することが好ましい。 In other words, the inside of the slow-cooling furnace in the downdraw method is at a high temperature, and due to the effect of the rising airflow from the cooling space, it is difficult to accurately measure the humidity for calculating the amount of water vapor. Since the cooling space communicates with the slow cooling furnace, the amount of water vapor in the slow cooling furnace is substantially equal to the amount of water vapor in the cooling space. Therefore, for example, if the amount of water vapor in the slow cooling furnace is used as the amount of water vapor in the cooling space, it is possible to measure the temperature of the glass article with high accuracy. Therefore, it is preferable to measure the temperature and humidity in the cooling space and calculate the amount of water vapor in the cooling space based on the temperature and humidity.
 本発明に係るガラス物品の製造方法において、前記徐冷炉は、前記徐冷空間を区画する壁部を備え、前記壁部は、前記ガラスリボンと前記放射温度計との間に配される窓部を備え、前記ガラスリボンの前記温度を測定する工程は、前記窓部の透過率に基づいて前記放射率を補正する工程を備えてもよい。これにより、放射温度計は、窓部を通過する赤外線を検出する場合であっても、ガラス物品の温度を精度良く測定できる。 In the method for manufacturing a glass article according to the present invention, the slow cooling furnace includes a wall portion that partitions the slow cooling space, and the wall portion has a window portion arranged between the glass ribbon and the radiation thermometer. The step of measuring the temperature of the glass ribbon may include the step of correcting the emissivity based on the transmittance of the window portion. Thereby, the radiation thermometer can accurately measure the temperature of the glass article even when detecting infrared rays passing through the window.
 本発明に係るガラス物品の製造方法において、前記ガラスリボンを成形する工程では、ロールアウト法により一対の成形用ロールで前記ガラスリボンを成形してもよい。かかる構成によれば、成形用ロールによって成形されたガラスリボンの温度を精度良く測定できる。 In the glass article manufacturing method according to the present invention, in the step of forming the glass ribbon, the glass ribbon may be formed by a pair of forming rolls by a roll-out method. With this configuration, the temperature of the glass ribbon formed by the forming roll can be accurately measured.
 本発明によれば、放射温度計を使用してガラス物品の温度を精度良く測定することができる。 According to the present invention, the temperature of a glass article can be accurately measured using a radiation thermometer.
第一実施形態に係るガラス物品の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the glass article which concerns on 1st embodiment. ガラス物品の製造装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing apparatus of a glass article. ガラス物品の製造方法に係るフローチャートである。It is a flowchart which concerns on the manufacturing method of a glass article. 水分量と放射率との関係を表すグラフである。It is a graph showing the relationship between water content and emissivity. ガラス材料が放出する赤外線の波長と、放射率との関係を表すグラフである。It is a graph showing the relationship between the wavelength of infrared rays emitted by the glass material and the emissivity. 第二実施形態に係るガラス物品の製造装置を示す斜視図である。It is a perspective view which shows the manufacturing apparatus of the glass article which concerns on 2nd embodiment.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図5は、本発明に係るガラス物品の温度測定方法及び製造方法の第一実施形態を示す。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment of a temperature measuring method and a manufacturing method for a glass article according to the present invention.
 図1は、ガラス物品の製造装置を示す縦断面図である。この製造装置1は、オーバーフローダウンドロー法によって、ガラスリボンGRを連続成形し、当該ガラスリボンGRを切断してガラス板GSを製造するものである。ガラスリボンGRの成形方法は、オーバーフローダウンドロー法に限定されるものではなく、スロットダウンドロー法やリドロー法などの他のダウンドロー法であってもよい。 FIG. 1 is a vertical sectional view showing a glass article manufacturing apparatus. This manufacturing apparatus 1 continuously manufactures a glass ribbon GR by an overflow down draw method and cuts the glass ribbon GR to manufacture a glass plate GS. The method of forming the glass ribbon GR is not limited to the overflow downdraw method, and may be another downdraw method such as a slot downdraw method or a redraw method.
 ガラスリボンGRを切断して得られるガラス板GSは、例えば液晶ディスプレイ、有機ELディスプレイなどのフラットパネルディスプレイ、太陽電池、タッチパネル、照明などの各種デバイスの基板やカバー等のガラス物品として利用される。本実施形態において、「ガラス物品」には、このガラス板GSの他、ガラスリボンGRも含まれるものとする。 The glass plate GS obtained by cutting the glass ribbon GR is used as a glass article such as a substrate or a cover for various devices such as flat panel displays such as liquid crystal displays and organic EL displays, solar cells, touch panels, and lighting. In the present embodiment, the “glass article” includes the glass ribbon GS as well as the glass plate GS.
 図1に示すように、製造装置1は、溶融ガラスGMをガラスリボンGRに連続的に成形する成形炉2と、成形炉2の下方に設けられる徐冷炉3(アニーラ)と、徐冷炉3の下方に設けられる冷却部4と、冷却部4の下方に設けられる切断部5と、を備える。 As shown in FIG. 1, the manufacturing apparatus 1 includes a forming furnace 2 for continuously forming a molten glass GM into a glass ribbon GR, an annealing furnace 3 (annealer) provided below the forming furnace 2, and an annealing furnace 3 below the annealing furnace 3. The cooling unit 4 is provided, and the cutting unit 5 is provided below the cooling unit 4.
 成形炉2は、炉壁(壁部)2aにより区画される内部空間に成形体6とエッジローラ7とを備える。成形体6は、上端部にオーバーフロー溝6aが形成された断面視略楔形状を有する。エッジローラ7は、成形体6の直下に配置されており、当該成形体6により成形された溶融ガラスGMを表裏両側から挟む対のローラである。 The molding furnace 2 includes a molded body 6 and an edge roller 7 in an internal space defined by a furnace wall (wall portion) 2a. The molded body 6 has a substantially wedge shape in cross section with an overflow groove 6a formed in the upper end portion. The edge roller 7 is arranged immediately below the molded body 6 and is a pair of rollers that sandwich the molten glass GM molded by the molded body 6 from both front and back sides.
 成形炉2は、成形体6のオーバーフロー溝6aの上方から溢出した溶融ガラスGMを、両側面に沿ってそれぞれ流下させ、下端部6bで合流させて板状に成形する。エッジローラ7は、溶融ガラスGMの幅方向収縮を規制して所定幅のガラスリボンGRとする。エッジローラ7と接触するガラスリボンGRの幅方向両端部には、その幅方向中央部(製品部)よりも相対的に厚肉となる耳部が形成される。 In the molding furnace 2, the molten glass GM overflowing from above the overflow groove 6a of the molded body 6 is made to flow down along both side surfaces and merge at the lower end portion 6b to form a plate shape. The edge roller 7 regulates shrinkage of the molten glass GM in the width direction to form a glass ribbon GR having a predetermined width. At both ends in the width direction of the glass ribbon GR that are in contact with the edge roller 7, ear portions that are relatively thicker than the center portion (product portion) in the width direction are formed.
 徐冷炉3は、成形炉2で成形されたガラスリボンGRを歪点以下の温度まで徐冷しながら、ガラスリボンGRの内部歪を除去する。徐冷炉3は、成形炉2の炉壁2aと一体に構成される炉壁(壁部)3aを有する。図1に示すように、徐冷炉3は、この炉壁3aにより区画されるとともに成形炉2の内部空間と連通する内部空間(徐冷空間)を有する。 The slow cooling furnace 3 gradually cools the glass ribbon GR formed in the forming furnace 2 to a temperature equal to or lower than the strain point, and removes internal strain of the glass ribbon GR. The slow cooling furnace 3 has a furnace wall (wall portion) 3 a that is integrally formed with the furnace wall 2 a of the forming furnace 2. As shown in FIG. 1, the slow cooling furnace 3 has an internal space (slow cooling space) defined by the furnace wall 3 a and communicating with the internal space of the forming furnace 2.
 図1及び図2に示すように、徐冷炉3の炉壁3aの内面には、上下方向に温度勾配を構成するためのヒータ8が設けられている。炉壁3aは、厚さ方向に貫通する孔9と、この孔9を閉塞する窓部10とを有する。窓部10は、放射温度計12の測定波長における透過率が高い材料により構成される。窓部10は、例えばフッ化カルシウム又はフッ化バリウムにより板状に構成されるが、窓部10の形状及び材料はこの態様に限定されない。 As shown in FIGS. 1 and 2, a heater 8 for forming a temperature gradient in the vertical direction is provided on the inner surface of the furnace wall 3a of the slow cooling furnace 3. The furnace wall 3a has a hole 9 penetrating in the thickness direction and a window portion 10 closing the hole 9. The window 10 is made of a material having a high transmittance at the measurement wavelength of the radiation thermometer 12. The window 10 is formed into a plate shape, for example, with calcium fluoride or barium fluoride, but the shape and material of the window 10 are not limited to this mode.
 徐冷炉3の内部にはアニーラローラ11が配されている。アニーラローラ11は、上下方向に沿って間隔をおいて複数段に配列される対のローラである。アニーラローラ11は、ガラスリボンGRの幅方向両端部を表裏両側から挟持し、当該ガラスリボンGRを下方に案内(搬送)する。 An annealing roller 11 is arranged inside the annealing furnace 3. The anneal roller 11 is a pair of rollers arranged in a plurality of stages at intervals along the vertical direction. The anneal roller 11 holds both ends of the glass ribbon GR in the width direction from both front and back sides and guides (conveys) the glass ribbon GR downward.
 徐冷炉3の外部(炉壁3aの外側)には、ガラスリボンGRの温度を測定する放射温度計12と、放射温度計12に接続される演算装置13とが配置されている。 A radiation thermometer 12 for measuring the temperature of the glass ribbon GR and an arithmetic unit 13 connected to the radiation thermometer 12 are arranged outside the annealing furnace 3 (outside the furnace wall 3a).
 放射温度計12は、サーモグラフィカメラにより構成される。サーモグラフィカメラは、集光レンズ、検知素子及びマイクロコンピュータ等を内蔵しており、ガラスリボンGRから放射される赤外線を検出し、そのエネルギ量を温度に変換することで、ガラスリボンGRの測定位置における熱分布図のデータを取得する。なお、放射温度計12としては、サーモグラフィカメラに限定されず、他の温度計を用いることができる。放射温度計12は、測定した熱分布図に係るデータを演算装置13に送信できる。 The radiation thermometer 12 is composed of a thermography camera. The thermography camera has a condenser lens, a detection element, a microcomputer, and the like built-in, detects infrared rays emitted from the glass ribbon GR, and converts the amount of energy into temperature, thereby measuring the position of the glass ribbon GR at the measurement position. Obtain heat distribution map data. The radiation thermometer 12 is not limited to the thermography camera, and another thermometer can be used. The radiation thermometer 12 can transmit data related to the measured heat distribution map to the arithmetic unit 13.
 放射温度計12は、徐冷炉3の窓部10に対向するように配置される。放射温度計12は、窓部10に接触し、又は近接するように配置される。 The radiation thermometer 12 is arranged so as to face the window 10 of the annealing furnace 3. The radiation thermometer 12 is arranged so as to be in contact with or close to the window 10.
 演算装置13は、例えばCPU、ROM、RAM、HDD、モニタ、入出力インターフェース等の各種ハードウェアを実装するコンピュータ(PC等)を含む。演算装置13は、各種の演算を実行する演算処理部(CPU)と、各種のデータを格納する記憶部(ROM、RAM、HDD等)と、演算結果を表示する表示部13a(モニタ)とを備える。 The arithmetic unit 13 includes, for example, a computer (PC or the like) that implements various hardware such as a CPU, ROM, RAM, HDD, monitor, and input/output interface. The arithmetic unit 13 includes an arithmetic processing unit (CPU) that executes various arithmetic operations, a storage unit (ROM, RAM, HDD, etc.) that stores various data, and a display unit 13a (monitor) that displays the arithmetic results. Prepare
 冷却部4は、徐冷炉3で徐冷されたガラスリボンGRを室温付近まで冷却する。冷却部4の内部空間(冷却空間)は、徐冷炉3と連通している。冷却部4は、ガラスリボンGRの幅方向両端部を表裏両側から挟持する支持ローラ14を備える。支持ローラ14は、上下方向に沿って間隔をおいて複数段に配列される対のローラである。支持ローラ14は、ガラスリボンGRを下方の切断部5へと案内(搬送)する。 The cooling unit 4 cools the glass ribbon GR gradually cooled in the annealing furnace 3 to near room temperature. The internal space (cooling space) of the cooling unit 4 communicates with the slow cooling furnace 3. The cooling unit 4 includes a support roller 14 that holds both widthwise ends of the glass ribbon GR from both front and back sides. The support rollers 14 are a pair of rollers arranged in a plurality of stages at intervals along the vertical direction. The support roller 14 guides (conveys) the glass ribbon GR to the cutting section 5 below.
 冷却部4の内部空間には、温度計15と湿度計16とが設けられている。温度計15及び湿度計16は、例えばバイメタル式のものが使用されるが、この態様に限定されない。温度計15は、冷却部4の内部空間の温度を測定し、湿度計16は、当該内部空間の相対湿度を測定する。 A thermometer 15 and a hygrometer 16 are provided in the internal space of the cooling unit 4. As the thermometer 15 and the hygrometer 16, for example, a bimetal type is used, but the thermometer 15 and the hygrometer 16 are not limited to this mode. The thermometer 15 measures the temperature of the internal space of the cooling unit 4, and the hygrometer 16 measures the relative humidity of the internal space.
 切断部5は、冷却部4から下方に移送されるガラスリボンGRを切断する折割装置17を有する。折割装置17は、ガラスリボンGRを切断することで、矩形状のガラス板GSを形成する。切断部5の内部空間は、上方の冷却部4における内部空間と連通している。 The cutting unit 5 has a breaking device 17 for cutting the glass ribbon GR transferred downward from the cooling unit 4. The breaking device 17 cuts the glass ribbon GR to form a rectangular glass plate GS. The internal space of the cutting part 5 communicates with the internal space of the upper cooling part 4.
 以下、上記構成の製造装置1によりガラス板GS(ガラスリボンGR)を製造する方法について説明する。 Hereinafter, a method of manufacturing the glass plate GS (glass ribbon GR) by the manufacturing apparatus 1 having the above configuration will be described.
 本方法は、図3に示すように、成形工程S1、徐冷工程S2、測定工程S3、冷却工程S4、および切断工程S5を備える。 As shown in FIG. 3, this method includes a forming step S1, a slow cooling step S2, a measuring step S3, a cooling step S4, and a cutting step S5.
 成形工程S1では、成形炉2内の成形体6に供給された溶融ガラスGMがオーバーフロー溝6aから溢れ出て、当該成形体6の両側面を伝って流下する。下方に流れる溶融ガラスGMは、成形体6の下端部6bにおいて融合一体化し、板状に成形される。エッジローラ7は、この溶融ガラスGMの幅方向端部を挟持して下方に案内する。これにより、所定幅のガラスリボンGRが徐冷炉3へと送られる。 In the molding step S1, the molten glass GM supplied to the molded body 6 in the molding furnace 2 overflows from the overflow groove 6a and flows down on both side surfaces of the molded body 6. The molten glass GM flowing downward is fused and integrated at the lower end 6b of the molded body 6 and molded into a plate shape. The edge roller 7 holds the end portion in the width direction of the molten glass GM and guides it downward. As a result, the glass ribbon GR having a predetermined width is sent to the slow cooling furnace 3.
 徐冷工程S2では、成形炉2から下降してきたガラスリボンGRが徐冷炉3の内部空間(徐冷空間)を通過する。ガラスリボンGRは、アニーラローラ11によって下方に搬送されながら所定の温度勾配に従い徐冷され、その内部歪みが除去される。 In the slow cooling step S2, the glass ribbon GR descended from the forming furnace 2 passes through the internal space (slow cooling space) of the slow cooling furnace 3. The glass ribbon GR is gradually cooled by a predetermined temperature gradient while being conveyed downward by the anneal roller 11, and its internal strain is removed.
 測定工程S3では、冷却部4に配置されている温度計15及び湿度計16により、冷却部4内の温度及び湿度が測定される。測定された温度及び湿度に係るデータは、演算装置13に入力される。温度及び湿度のデータは、演算装置13のオペレータにより当該演算装置13に入力されてもよく、温度計15及び湿度計16により温度(℃)及び湿度(相対湿度、単位:%)のデジタルデータを取得し、有線通信又は無線通信により演算装置13に直接入力されてもよい。 In the measurement step S3, the temperature and humidity inside the cooling unit 4 are measured by the thermometer 15 and the hygrometer 16 arranged in the cooling unit 4. The data related to the measured temperature and humidity are input to the arithmetic unit 13. The temperature and humidity data may be input to the arithmetic unit 13 by an operator of the arithmetic unit 13, and digital data of temperature (° C.) and humidity (relative humidity, unit: %) can be input by the thermometer 15 and the hygrometer 16. It may be acquired and directly input to the arithmetic unit 13 by wire communication or wireless communication.
 データが入力されると、演算装置13の演算処理部は、記憶部に保存されている演算プログラムにより、冷却部4の温度に基づいて冷却部4内の飽和水蒸気量(g/m)を算出する。さらに演算処理部は、冷却部4内の湿度及び飽和水蒸気量に基づいて、冷却部4内の水蒸気量(絶対湿度、単位:g/m)を算出する。 When the data is input, the arithmetic processing unit of the arithmetic unit 13 uses the arithmetic program stored in the storage unit to determine the saturated water vapor amount (g/m 3 ) in the cooling unit 4 based on the temperature of the cooling unit 4. calculate. Furthermore, the arithmetic processing unit calculates the amount of water vapor in the cooling unit 4 (absolute humidity, unit: g/m 3 ) based on the humidity in the cooling unit 4 and the amount of saturated water vapor.
 上記のように成形炉2、徐冷炉3、冷却部4及び切断部5が相互に連通していることから、製造装置1に係る建屋の内部には、これらの構成要素2~5を一体的に含む一つの空間が形成されている。製造装置1の建屋内では、成形炉2、徐冷炉3、冷却部4及び切断部5の間で空気の対流が生じていることから、水蒸気量が一定となる。したがって、徐冷炉3の水蒸気量は、冷却部4の水蒸気量とほぼ等しい。 Since the forming furnace 2, the slow cooling furnace 3, the cooling unit 4 and the cutting unit 5 communicate with each other as described above, these constituent elements 2 to 5 are integrally formed in the building of the manufacturing apparatus 1. One space that includes it is formed. In the building of the manufacturing apparatus 1, since the convection of air occurs between the forming furnace 2, the slow cooling furnace 3, the cooling unit 4 and the cutting unit 5, the amount of water vapor becomes constant. Therefore, the amount of water vapor in the slow cooling furnace 3 is substantially equal to the amount of water vapor in the cooling unit 4.
 図4は、無アルカリガラス、結晶化ガラス、及びソーダガラスの各材料に関し、放射される赤外線の波長と放射率との関係を表すグラフである。なお、本明細書において、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 FIG. 4 is a graph showing the relationship between the wavelength of infrared rays emitted and the emissivity for each material of alkali-free glass, crystallized glass, and soda glass. In the present specification, the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, the weight ratio of the alkali components is 3000 ppm or less. It is glass. The weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 図4から明らかなように、いずれのガラスについても、波長が5~8.5μmの範囲で高い放射率(80%以上)を示す。放射率が高いと、ガラスリボンGRの透過率、反射率を考慮する必要がなく、効率的で高精度な温度測定を行うことができる。したがって、放射温度計12で測定する場合における波長は、5~8.5μmが好ましい。放射率を90%以上とする観点から波長が8.35μm以下であることがより好ましく、放射率を95%以上とする観点から波長が8.25μm以下であることが最も好ましい。波長が7.5以上であれば、大気の透過率がある程度高いので、ガラス物品の温度を安定して測定できる。このため、波長は、7.5μm以上であることがより好ましい。 As is clear from FIG. 4, all glasses show high emissivity (80% or more) in the wavelength range of 5 to 8.5 μm. When the emissivity is high, it is not necessary to consider the transmittance and reflectance of the glass ribbon GR, and efficient and highly accurate temperature measurement can be performed. Therefore, the wavelength measured by the radiation thermometer 12 is preferably 5 to 8.5 μm. The wavelength is more preferably 8.35 μm or less from the viewpoint of emissivity of 90% or more, and most preferably the wavelength of 8.25 μm or less from the viewpoint of emissivity of 95% or more. If the wavelength is 7.5 or more, the transmittance of the atmosphere is high to some extent, so that the temperature of the glass article can be stably measured. Therefore, the wavelength is more preferably 7.5 μm or more.
 従来の放射温度計12によるガラスリボンGRの温度測定では、ガラスリボンGRから放射されたエネルギが徐冷炉3の内部空間に存在する水分により吸収されてしまい、ガラスリボンGRの温度を正確に測定することが困難であった。波長が5~8.5μmである場合、水分によるエネルギの吸収がさらに大きくなる。このため、本実施形態によるガラスリボンGRの温度測定では、この水蒸気によるエネルギの吸収による放射温度計12の測定誤差を抑制すべく、ガラスリボンGRの測定箇所が存在する徐冷炉3内の水蒸気量に基づいて放射率を演算装置13により決定する(決定工程)。 In the temperature measurement of the glass ribbon GR by the conventional radiation thermometer 12, the energy radiated from the glass ribbon GR is absorbed by the water present in the internal space of the annealing furnace 3, and the temperature of the glass ribbon GR is accurately measured. Was difficult. When the wavelength is 5 to 8.5 μm, the absorption of energy due to moisture is further increased. Therefore, in the temperature measurement of the glass ribbon GR according to the present embodiment, in order to suppress a measurement error of the radiation thermometer 12 due to the absorption of energy by the water vapor, the amount of water vapor in the slow cooling furnace 3 where the measurement position of the glass ribbon GR exists is set. Based on this, the emissivity is determined by the arithmetic unit 13 (determination step).
 放射温度計12は、ガラスリボンGRから離れる程、水蒸気によるエネルギ吸収の影響を受けやすくなる。このため、ガラスリボンGRから放射温度計12までの距離D(図2参照)を加味して放射率を決定することが好ましい。そこで、本実施形態では、演算装置13の演算処理部は、放射温度計12とガラスリボンGRの距離D(m)に徐冷炉3内部の水蒸気量(g/m)に乗じることにより、ガラスリボンGRから放射温度計12までの空間の水分量(g/m)を算出する。ここで、本明細書において、水分量は、ガラスリボンGRから放射温度計12までの空間に存在する単位面積当たりの水蒸気量を表す。 The farther the radiation thermometer 12 is from the glass ribbon GR, the more easily it is affected by energy absorption by water vapor. Therefore, it is preferable to determine the emissivity in consideration of the distance D (see FIG. 2) from the glass ribbon GR to the radiation thermometer 12. Therefore, in the present embodiment, the arithmetic processing unit of the arithmetic device 13 multiplies the distance D (m) between the radiation thermometer 12 and the glass ribbon GR by the amount of water vapor (g/m 3 ) in the slow cooling furnace 3 to obtain the glass ribbon. The water content (g/m 2 ) in the space from the GR to the radiation thermometer 12 is calculated. Here, in this specification, the water content represents the amount of water vapor per unit area existing in the space from the glass ribbon GR to the radiation thermometer 12.
 前述の通り、徐冷炉3の水蒸気量は、冷却部4の水蒸気量とほぼ等しいので、演算装置13の演算処理部は、徐冷炉3内部の水蒸気量として、冷却部4(冷却空間)内の水蒸気量を代用してもよい。厳密には、徐冷炉3の温度は冷却部4の温度よりも高いので、熱膨張の影響で徐冷炉3の単位体積当たりの水蒸気量は冷却部4の単位体積当たりの水蒸気量よりも低い。このため、徐冷炉3の温度と冷却部4の温度との温度差に基づいて冷却部4の水蒸気量を補正して徐冷炉3の水蒸気量とすることが好ましい。これにより、ガラスリボンGRの温度測定の精度をより高めることができる。温度差に基づく水蒸気量の補正を行う場合、例えばM1=M2×D×(T1/T2)^(1/3)によって水分量M1(g/m)を算出すればよい。ここで、M2は冷却部4の水蒸気量(g/m)、DはガラスリボンGRの距離D(m)、T1は冷却部4の温度(K)、T2は徐冷炉3の温度(K)である。徐冷炉3の温度T2(K)には、例えば、徐冷炉3のうちで放射温度計12の設置位置周辺に徐冷炉3の内部雰囲気の温度を測定する温度計を設置し、その測定値を用いればよい。 As described above, the amount of water vapor in the slow cooling furnace 3 is substantially equal to the amount of water vapor in the cooling unit 4. Therefore, the arithmetic processing unit of the arithmetic unit 13 determines the amount of water vapor in the slow cooling furnace 3 as the amount of water vapor in the cooling unit 4 (cooling space). May be substituted. Strictly speaking, since the temperature of the slow cooling furnace 3 is higher than the temperature of the cooling unit 4, the amount of steam per unit volume of the slow cooling furnace 3 is lower than the amount of steam per unit volume of the cooling unit 4 due to the effect of thermal expansion. Therefore, it is preferable to correct the amount of water vapor in the cooling unit 4 based on the temperature difference between the temperature of the annealing chamber 3 and the temperature of the cooling unit 4 to obtain the amount of water vapor in the annealing unit 3. Thereby, the accuracy of measuring the temperature of the glass ribbon GR can be further improved. When the amount of water vapor is corrected based on the temperature difference, the amount of water M1 (g/m 2 ) may be calculated by, for example, M1=M2×D×(T1/T2)^(1/3). Here, M2 is the amount of water vapor in the cooling unit 4 (g/m 3 ), D is the distance D (m) of the glass ribbon GR, T1 is the temperature of the cooling unit 4 (K), and T2 is the temperature of the annealing furnace 3 (K). Is. For the temperature T2 (K) of the slow cooling furnace 3, for example, a thermometer for measuring the temperature of the internal atmosphere of the slow cooling furnace 3 is installed around the installation position of the radiation thermometer 12 in the slow cooling furnace 3, and the measured value may be used. ..
 ガラスリボンGRから放射温度計12までの距離Dは、ガラスリボンGRから窓部10までの距離と、窓部10から放射温度計12までの距離の和である。放射温度計12を窓部10に接触させている場合、或いはガラスリボンGRから窓部10までの距離(水分量)に対して窓部10から放射温度計12までの距離(水分量)が占める割合が十分に小さい場合(放射温度計12を窓部10に近接させている場合)には、ガラスリボンGRから窓部10までの距離を当該距離Dとしてもよい。 The distance D from the glass ribbon GR to the radiation thermometer 12 is the sum of the distance from the glass ribbon GR to the window 10 and the distance from the window 10 to the radiation thermometer 12. When the radiation thermometer 12 is in contact with the window 10, or the distance (water content) from the window 10 to the radiation thermometer 12 occupies the distance (water content) from the glass ribbon GR to the window 10. When the ratio is sufficiently small (when the radiation thermometer 12 is close to the window 10), the distance from the glass ribbon GR to the window 10 may be the distance D.
 演算装置13の記憶部には、ガラスリボンGRから放射温度計12までの空間の水分量と放射率との関係を示すデータテーブルが保存されている。このデータは、試験炉内を所定の湿度及び温度に設定することで試験体から放射温度計までの空間の水分量を変化させながら、試験炉内に配置される試験体を放射温度計で測定することにより取得されたものである。 A data table showing the relationship between the water content and emissivity in the space from the glass ribbon GR to the radiation thermometer 12 is stored in the storage unit of the arithmetic unit 13. This data is obtained by measuring the specimen placed in the test furnace with a radiation thermometer while changing the moisture content in the space from the specimen to the radiation thermometer by setting the humidity and temperature inside the test furnace. It was obtained by doing.
 図5は、記憶部に保存されるデータテーブルに基づいて作図されたガラスリボンGRから放射温度計12までの空間の水分量と放射率との関係を示すグラフである。演算処理部は、記憶部に保存されているデータテーブルに基づいて、このグラフを表示部13aに表示させる。このグラフには、測定データに係る曲線(実線で示す)、測定データに基づく近似曲線AC(二点鎖線で示す)、近似曲線を表す近似式AFが含まれる。演算装置13の演算処理部は、算出した水分量及びこの近似式AFにより、ガラスリボンGRの放射率を決定する。 FIG. 5 is a graph showing the relationship between the water content and the emissivity in the space from the glass ribbon GR to the radiation thermometer 12, which is drawn based on the data table stored in the storage unit. The arithmetic processing unit causes the display unit 13a to display this graph based on the data table stored in the storage unit. This graph includes a curve relating to the measurement data (shown by a solid line), an approximate curve AC based on the measurement data (shown by a chain double-dashed line), and an approximate expression AF representing the approximate curve. The arithmetic processing unit of the arithmetic unit 13 determines the emissivity of the glass ribbon GR based on the calculated water content and this approximate expression AF.
 測定工程S3では、放射温度計12とガラスリボンGRとの間に窓部10を介在させて測定を行うため、当該窓部10によるエネルギの吸収を考慮し、ガラスリボンGRの放射率を演算装置13により補正する。演算装置13の記憶部には、窓部10の透過率に係るデータが保存されている。演算装置13の演算処理部は、上記の演算により求めた放射率に、窓部10の透過率を乗じて当該放射率を補正する。補正された放射率は演算装置13によって放射温度計12に入力される。 In the measurement step S3, since the window 10 is interposed between the radiation thermometer 12 and the glass ribbon GR for measurement, the emissivity of the glass ribbon GR is calculated in consideration of energy absorption by the window 10. Correct by 13. Data relating to the transmittance of the window 10 is stored in the storage unit of the arithmetic unit 13. The arithmetic processing unit of the arithmetic unit 13 corrects the emissivity by multiplying the emissivity obtained by the above calculation by the transmittance of the window 10. The corrected emissivity is input to the radiation thermometer 12 by the arithmetic unit 13.
 ガラスリボンGRから放射された赤外線は、窓部10を透過して炉壁3aの外側に位置する放射温度計12に検出される。放射温度計12は、演算処理部により決定された放射率に基づいてガラスリボンGRの温度を測定する。放射温度計12は、測定した温度データを演算装置13に送信する。演算装置13の演算処理部は、受信した温度データに基づいて、ガラスリボンGRの測定位置における熱分布図を表示部13aに表示させる。 The infrared rays radiated from the glass ribbon GR pass through the window 10 and are detected by the radiation thermometer 12 located outside the furnace wall 3a. The radiation thermometer 12 measures the temperature of the glass ribbon GR based on the emissivity determined by the arithmetic processing unit. The radiation thermometer 12 transmits the measured temperature data to the arithmetic unit 13. The arithmetic processing unit of the arithmetic unit 13 causes the display unit 13a to display the heat distribution map at the measurement position of the glass ribbon GR based on the received temperature data.
 冷却工程S4において、徐冷炉3を通過したガラスリボンGRが冷却部4に導入される。ガラスリボンGRは、支持ローラ14によって下方に搬送されながら、自然冷却によってさらに冷却される。 In the cooling step S4, the glass ribbon GR that has passed through the slow cooling furnace 3 is introduced into the cooling unit 4. The glass ribbon GR is further cooled by natural cooling while being conveyed downward by the support roller 14.
 切断工程S5では、冷却部4を通過したガラスリボンGRが切断部5に導入される。ガラスリボンGRは折割装置17により切断され、これにより所定寸法のガラス板GSが形成される。その後、必要に応じ、ガラス板GSの幅方向の両端に形成された耳部を切断して除去する処理や、ガラス板GSの検査が行われる。 In the cutting step S5, the glass ribbon GR that has passed through the cooling unit 4 is introduced into the cutting unit 5. The glass ribbon GR is cut by the breaking device 17, whereby a glass plate GS having a predetermined size is formed. Then, if necessary, a process of cutting and removing the ears formed on both ends of the glass plate GS in the width direction, and an inspection of the glass plate GS are performed.
 以上説明した本実施形態によれば、測定工程S3において、ガラスリボンGRが存在する徐冷空間の水蒸気量に応じてガラスリボンGRの放射率を決定することで、水蒸気によるエネルギ吸収に伴う放射温度計12の測定誤差を可及的に低減できる。したがって、ガラス物品としてのガラスリボンGRの温度を精度良く測定できる。また、ガラスリボンGRの温度を正確に測定することで、徐冷工程S2におけるガラスリボンGRの温度管理を精度良く行うことができる。これにより、品質が安定したガラスリボンGR及びガラス板GSを効率良く製造できる。 According to the present embodiment described above, in the measurement step S3, by determining the emissivity of the glass ribbon GR in accordance with the amount of water vapor in the slow cooling space in which the glass ribbon GR is present, the radiant temperature accompanying the energy absorption by the water vapor is determined. The measurement error of the total 12 can be reduced as much as possible. Therefore, the temperature of the glass ribbon GR as a glass article can be accurately measured. Further, by accurately measuring the temperature of the glass ribbon GR, it is possible to accurately control the temperature of the glass ribbon GR in the slow cooling step S2. Thereby, the glass ribbon GR and the glass plate GS with stable quality can be efficiently manufactured.
 図6は、本発明の第二実施形態を示す。上記の第一実施形態では、オーバーフローダウンドロー法によってガラスリボンGRを成形する例を示したが、本実施形態では、ロールアウト法によってガラスリボンGRを成形する。 FIG. 6 shows a second embodiment of the present invention. In the above-described first embodiment, an example in which the glass ribbon GR is formed by the overflow downdraw method has been shown, but in the present embodiment, the glass ribbon GR is formed by the roll-out method.
 本実施形態の製造装置1は、第一実施形態と同様に、放射温度計12と、放射温度計12に接続された演算装置13と、温度計15と、湿度計16と、を備える。本実施形態の製造装置1は、一対の成形用ロール18と、成形されたガラスリボンGRを所定の方向に搬送する複数の搬送ロール19と、をさらに備える。 Like the first embodiment, the manufacturing apparatus 1 of the present embodiment includes a radiation thermometer 12, an arithmetic unit 13 connected to the radiation thermometer 12, a thermometer 15, and a hygrometer 16. The manufacturing apparatus 1 of the present embodiment further includes a pair of forming rolls 18 and a plurality of conveying rolls 19 that conveys the formed glass ribbon GR in a predetermined direction.
 一対の成形用ロール18は、一定の間隔をおいて配置されており、その間に溶融ガラスGMを通過させることで、ガラスリボンGRを成形する。複数の搬送ロール19は、水平方向に間隔をおいて配置されている。搬送ロール19は、成形用ロール18によって成形されたガラスリボンGRの搬送方向を鉛直方向から水平方向に変更する。 The pair of forming rolls 18 are arranged at a constant interval, and the molten glass GM is passed between them to form the glass ribbon GR. The plurality of transport rolls 19 are arranged at intervals in the horizontal direction. The carrying roll 19 changes the carrying direction of the glass ribbon GR formed by the forming roll 18 from the vertical direction to the horizontal direction.
 以下、本実施形態に係る製造装置1によってガラスリボンGR及びガラス板を製造する方法について説明する。まず、成形用ロール18に溶融ガラスGMを供給してガラスリボンGRを成形する(成形工程)。成形用ロール18によって成形されたガラスリボンGRは、搬送ロール19によって水平方向に搬送される。 Hereinafter, a method of manufacturing the glass ribbon GR and the glass plate by the manufacturing apparatus 1 according to this embodiment will be described. First, the molten glass GM is supplied to the forming roll 18 to form the glass ribbon GR (forming step). The glass ribbon GR formed by the forming roll 18 is horizontally conveyed by the conveying roll 19.
 放射温度計12によるガラスリボンGRの温度測定は、搬送過程で行われる(測定工程)。この測定工程において、演算装置13は、温度計15により測定されるガラスリボンGRが搬送される搬送空間の温度に基づいて、当該搬送空間内の飽和水蒸気量を算出する。また、演算装置13は、湿度計16によって測定された搬送空間の相対湿度と、算出した飽和水蒸気量とに基づいて搬送空間の水蒸気量を算出する。演算装置13は、算出した水蒸気量に放射温度計12とガラスリボンGRとの距離Dを乗じることにより、ガラスリボンGRから放射温度計12までの空間の水分量を算出し、その水分量に基づいてガラスリボンGRの放射率を決定する。放射温度計12は、決定(入力)されたガラスリボンGRの放射率に基づいて、成形用ロール18の下方を移動するガラスリボンGRの温度を測定する。 The temperature of the glass ribbon GR is measured by the radiation thermometer 12 during the transportation process (measurement process). In this measuring step, the arithmetic unit 13 calculates the saturated water vapor amount in the carrying space based on the temperature of the carrying space in which the glass ribbon GR is carried, which is measured by the thermometer 15. Further, the arithmetic unit 13 calculates the amount of water vapor in the transfer space based on the relative humidity of the transfer space measured by the hygrometer 16 and the calculated amount of saturated water vapor. The computing device 13 calculates the amount of water in the space from the glass ribbon GR to the radiation thermometer 12 by multiplying the calculated amount of water vapor by the distance D between the radiation thermometer 12 and the glass ribbon GR, and based on the amount of water To determine the emissivity of the glass ribbon GR. The radiation thermometer 12 measures the temperature of the glass ribbon GR moving below the molding roll 18 based on the determined (input) emissivity of the glass ribbon GR.
 本実施形態では、第一実施形態において例示した窓部10が存在しない。したがって、本実施形態では、窓部10の透過率に基づく放射率の補正は行われない。上記の測定工程の後、第一実施形態と同様に、徐冷炉による徐冷工程、冷却部による冷却工程、及び切断部による切断工程を経て、ガラス板が形成される。 In this embodiment, the window portion 10 exemplified in the first embodiment does not exist. Therefore, in this embodiment, the emissivity is not corrected based on the transmittance of the window 10. After the above-described measurement process, the glass plate is formed through the slow cooling process by the slow cooling furnace, the cooling process by the cooling unit, and the cutting process by the cutting unit, as in the first embodiment.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 It should be noted that the present invention is not limited to the configurations of the above-described embodiments, and is not limited to the above-described operational effects. The present invention can be variously modified without departing from the scope of the present invention.
 上記の実施形態では、ガラスリボンGRから放射温度計12までの空間の水分量と放射率との関係を用いたものを例示したが、本発明は、この構成に限定されるものではない。ガラスリボンGRから放射温度計12までの距離Dが一定であり、距離Dの変化を考慮する必要がないのであれば、ガラスリボンGR(ガラス物品)が存在する空間の水蒸気量と放射率との関係を用いてもよい。水蒸気量と放射率との関係は、例えば、試験体と放射温度計12の距離をガラスリボンGRから放射温度計12までの距離Dと同じにした状態で、試験炉内の水蒸気量を変化させながら、試験炉内に配置される試験体を放射温度計12で測定することにより取得すればよい。 In the above-described embodiment, the one using the relationship between the water content in the space from the glass ribbon GR to the radiation thermometer 12 and the emissivity is illustrated, but the present invention is not limited to this configuration. If the distance D from the glass ribbon GR to the radiation thermometer 12 is constant and there is no need to consider the change in the distance D, the amount of water vapor and the emissivity of the space where the glass ribbon GR (glass article) exists Relationships may be used. The relationship between the amount of water vapor and the emissivity is, for example, when the distance between the test body and the radiation thermometer 12 is the same as the distance D from the glass ribbon GR to the radiation thermometer 12, the amount of water vapor in the test furnace is changed. However, it may be obtained by measuring the test body placed in the test furnace with the radiation thermometer 12.
 上記の実施形態では、ガラス物品の製造方法として、オーバーフローダウンドロー法、ロールアウト法を利用したものを例示したが、本発明は、この構成に限定されるものではない。ガラスリボン(ガラス物品)は、フロート法その他の各種成形法を利用して製造され得る。また、ガラス物品は、管ガラスであってもよく、管ガラスの成形には、ダンナー法やベロー法を採用できる。 In the above embodiment, the method of manufacturing the glass article using the overflow downdraw method and the rollout method is illustrated, but the present invention is not limited to this configuration. The glass ribbon (glass article) can be manufactured by utilizing the float method and various other forming methods. Further, the glass article may be a tube glass, and a Danner method or a bellows method can be adopted for forming the tube glass.
 上記の実施形態では、演算装置13によって放射率を決定したが、演算装置13を用いることなく、放射率を決定し、放射温度計12に入力してもよい。この場合、例えば、作業者が温度及び湿度から水蒸気量や水分量、放射率を計算して決定してもよい。また、上記の実施形態では、演算装置13の表示部13aにガラスリボンGRの熱分布図を表示したが、放射温度計12が表示部を有する場合は、放射温度計12の表示部にガラスリボンGRの熱分布図を表示してもよい。 In the above embodiment, the emissivity is determined by the arithmetic unit 13, but the emissivity may be determined and input to the radiation thermometer 12 without using the arithmetic unit 13. In this case, for example, the operator may calculate and determine the amount of water vapor, the amount of water, and the emissivity from the temperature and the humidity. Further, in the above-described embodiment, the heat distribution diagram of the glass ribbon GR is displayed on the display unit 13a of the arithmetic unit 13. However, when the radiation thermometer 12 has a display unit, the glass ribbon is displayed on the display unit of the radiation thermometer 12. A GR heat distribution map may be displayed.
 上記の第一実施形態では、ガラスリボンGRを切断してガラス板GSを形成する切断工程S5を例示したが、本発明はこの構成に限定されるものではない。本発明に係るガラス物品の製造方法は、切断工程S5に替えて、ガラスリボンGRをロール状に巻き取って、ガラスロールを構成する工程(巻取工程)を備えてもよい。 In the above first embodiment, the cutting step S5 of cutting the glass ribbon GR to form the glass plate GS is illustrated, but the present invention is not limited to this configuration. The method for manufacturing a glass article according to the present invention may include a step (winding step) of winding the glass ribbon GR in a roll shape to form a glass roll instead of the cutting step S5.
 上記の第一実施形態では、放射温度計12を窓部10に近接して配置した例を示しが、本発明は、この構成に限定されるものではない。放射温度計12は、徐冷炉3の外部において窓部10から離れた位置に設けられてもよい。窓部10から放射温度計12までの距離が大きいと、窓部10の面積が小さい場合に放射温度計12で測定できるガラスリボンGRの範囲(面積)が小さくなる。また、徐冷炉3の外部と内部での水蒸気量の差によってガラスリボンGRの温度測定の精度が若干低下するおそれがある。これらを防止するため、放射温度計12は、窓部10に近接させていることが好ましく、放射温度計12を窓部10に接触させていることがより好ましい。 In the above-described first embodiment, an example in which the radiation thermometer 12 is arranged close to the window 10 is shown, but the present invention is not limited to this configuration. The radiation thermometer 12 may be provided outside the annealing furnace 3 at a position away from the window 10. When the distance from the window 10 to the radiation thermometer 12 is large, the range (area) of the glass ribbon GR that can be measured by the radiation thermometer 12 is small when the area of the window 10 is small. Further, the difference in the amount of water vapor between the outside and inside of the slow cooling furnace 3 may cause the temperature measurement accuracy of the glass ribbon GR to slightly deteriorate. In order to prevent these, it is preferable that the radiation thermometer 12 is close to the window portion 10, and it is more preferable that the radiation thermometer 12 is in contact with the window portion 10.
 2      成形炉
 2a     炉壁(壁部)
 3      徐冷炉
 3a     炉壁(壁部)
 4      冷却部(冷却空間)
10      窓部
12      放射温度計
18      成形用ロール
 AF     近似式
 D      ガラスリボンから放射温度計までの距離
 GR     ガラスリボン(ガラス物品)
 GS     ガラス板(ガラス物品)
 S4     測定工程
 
2 Molding furnace 2a Furnace wall (wall part)
3 Annealing furnace 3a Furnace wall (wall)
4 Cooling part (cooling space)
10 window 12 radiation thermometer 18 forming roll AF approximate expression D distance from glass ribbon to radiation thermometer GR glass ribbon (glass article)
GS glass plate (glass article)
S4 measurement process

Claims (8)

  1.  ガラス物品の温度を放射温度計により測定する方法において、
     前記ガラス物品が存在する空間の水蒸気量に基づいて前記ガラス物品の放射率を決定する工程と、
     決定された前記放射率に基づいて前記放射温度計により前記ガラス物品の前記温度を測定する工程と、を備えることを特徴とするガラス物品の温度測定方法。
    In the method of measuring the temperature of a glass article by a radiation thermometer,
    Determining the emissivity of the glass article based on the amount of water vapor in the space in which the glass article is present,
    Measuring the temperature of the glass article by the radiation thermometer on the basis of the determined emissivity.
  2.  前記放射率を決定する工程では、前記ガラス物品から前記放射温度計までの距離に基づいて前記放射率を決定する請求項1に記載のガラス物品の温度測定方法。 The temperature measuring method for a glass article according to claim 1, wherein in the step of determining the emissivity, the emissivity is determined based on a distance from the glass article to the radiation thermometer.
  3.  前記放射率を決定する工程では、前記放射率と前記水蒸気量との関係を表す近似式に基づいて前記放射率を決定する請求項1又は2に記載のガラス物品の温度測定方法。 The temperature measuring method for a glass article according to claim 1 or 2, wherein in the step of determining the emissivity, the emissivity is determined based on an approximate expression representing a relationship between the emissivity and the amount of water vapor.
  4.  前記放射温度計は、7.5~8.5μmの波長を有する赤外線を検出することにより前記ガラス物品の前記温度を測定する請求項1から3のいずれか一項に記載のガラス物品の温度測定方法。 The temperature measurement of the glass article according to any one of claims 1 to 3, wherein the radiation thermometer measures the temperature of the glass article by detecting infrared rays having a wavelength of 7.5 to 8.5 µm. Method.
  5.  ガラス物品としてのガラスリボンを製造する方法であって、
     前記ガラスリボンを成形する工程と、
     成形された前記ガラスリボンを搬送する工程と、
     搬送される前記ガラスリボンの温度を請求項1から4のいずれか一項に記載のガラス物品の温度測定方法により測定する工程と、を備えることを特徴とするガラス物品の製造方法。
    A method of manufacturing a glass ribbon as a glass article, comprising:
    A step of forming the glass ribbon,
    A step of conveying the molded glass ribbon,
    A step of measuring the temperature of the conveyed glass ribbon by the method for measuring a temperature of a glass article according to claim 1, wherein the glass ribbon is manufactured.
  6.  前記ガラスリボンを成形する工程では、ダウンドロー法によって成形炉の内部で前記ガラスリボンを成形し、
     前記ガラスリボンを搬送する工程では、成形された前記ガラスリボンを徐冷する徐冷空間を有する徐冷炉と、徐冷された前記ガラスリボンを冷却する冷却空間と、を通過させ、
     前記冷却空間は、前記徐冷炉の下方位置で前記徐冷炉と連通し、
     前記ガラスリボンの温度を測定する工程では、前記徐冷炉を通過する前記ガラスリボンの温度を測定し、
     前記放射率を決定する工程では、前記冷却空間の温度及び湿度から求めた前記水蒸気量を用いる請求項5に記載のガラス物品の製造方法。
    In the step of forming the glass ribbon, the glass ribbon is formed inside a forming furnace by a down draw method,
    In the step of conveying the glass ribbon, a slow cooling furnace having a slow cooling space for slow cooling the molded glass ribbon, and a cooling space for cooling the slow cooled glass ribbon are passed through,
    The cooling space communicates with the annealing furnace at a position below the annealing furnace,
    In the step of measuring the temperature of the glass ribbon, measuring the temperature of the glass ribbon passing through the annealing furnace,
    The method for manufacturing a glass article according to claim 5, wherein the amount of water vapor obtained from the temperature and humidity of the cooling space is used in the step of determining the emissivity.
  7.  前記徐冷炉は、前記徐冷空間を区画する壁部を備え、
     前記壁部は、前記ガラスリボンと前記放射温度計との間に配される窓部を備え、
     前記ガラスリボンの前記温度を測定する工程は、前記窓部の透過率に基づいて前記放射率を補正する工程を備える請求項5又は6に記載のガラス物品の製造方法。
    The annealing furnace includes a wall portion that partitions the annealing space,
    The wall portion includes a window portion arranged between the glass ribbon and the radiation thermometer,
    The method for manufacturing a glass article according to claim 5, wherein the step of measuring the temperature of the glass ribbon comprises a step of correcting the emissivity based on the transmittance of the window portion.
  8.  前記ガラスリボンを成形する工程では、ロールアウト法により一対の成形用ロールで前記ガラスリボンを成形する請求項5に記載のガラス物品の製造方法。
     
    The method for producing a glass article according to claim 5, wherein in the step of forming the glass ribbon, the glass ribbon is formed by a pair of forming rolls by a roll-out method.
PCT/JP2019/045489 2018-12-21 2019-11-20 Method for measuring temperature of glass article, and method for manufacturing glass article WO2020129529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239408 2018-12-21
JP2018239408A JP7324416B2 (en) 2018-12-21 2018-12-21 Temperature measuring method and manufacturing method for glass article

Publications (1)

Publication Number Publication Date
WO2020129529A1 true WO2020129529A1 (en) 2020-06-25

Family

ID=71101257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045489 WO2020129529A1 (en) 2018-12-21 2019-11-20 Method for measuring temperature of glass article, and method for manufacturing glass article

Country Status (2)

Country Link
JP (1) JP7324416B2 (en)
WO (1) WO2020129529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791229A (en) * 2022-03-30 2022-07-26 彩虹显示器件股份有限公司 System and method for detecting inflow airflow at fire hole of glass forming annealing furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928620A (en) * 2016-04-14 2016-09-07 中国科学院地理科学与资源研究所 Thermal-infrared atmosphere correction parameterization method based on look-up table
WO2016170634A1 (en) * 2015-04-22 2016-10-27 旭硝子株式会社 Method for manufacturing float glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170634A1 (en) * 2015-04-22 2016-10-27 旭硝子株式会社 Method for manufacturing float glass
CN105928620A (en) * 2016-04-14 2016-09-07 中国科学院地理科学与资源研究所 Thermal-infrared atmosphere correction parameterization method based on look-up table

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA, HAJIME: "Basics of Infrared Thermometers", THERMAL ENGINEERING DIVISION COURSE, ''HEAT FLOW MEASUREMENT TECHNOLOGIES TO SUPPORT THERMAL DESIGN, 29 July 2009 (2009-07-29), JP, pages 1 - 31, XP009522210 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791229A (en) * 2022-03-30 2022-07-26 彩虹显示器件股份有限公司 System and method for detecting inflow airflow at fire hole of glass forming annealing furnace

Also Published As

Publication number Publication date
JP2020101436A (en) 2020-07-02
JP7324416B2 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
US9199869B2 (en) Method for producing glass substrate and glass substrate
JP5288386B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
TWI579248B (en) Method for manufacturing glass substrates
TWI422539B (en) Manufacturing method and apparatus for glass plate
JP5752787B2 (en) Glass substrate manufacturing method and molding apparatus
CN111511695A (en) Thin glass substrate, in particular borosilicate glass thin glass substrate, and method and device for the production thereof
JP2009520679A (en) Method and apparatus for characterizing glass strips
US20120111055A1 (en) Method of producing uniform light transmission fusion drawn glass
JP7372601B2 (en) Glass plate manufacturing method and its manufacturing device
TWI522324B (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
WO2012026136A1 (en) Device for manufacturing glass substrate and method for manufacturing glass substrate
US9010148B2 (en) Method of reducing distortion in a sheet of glass
TWI605022B (en) Glass substrate for display
JP4967046B2 (en) Curvature control of glass ribbon
EP2690072B1 (en) Float glass and process for producing same
JP2015151282A (en) Float glass manufacturing apparatus and float glass manufacturing method
TW201328992A (en) Temperature control of glass ribbons during forming
WO2020129529A1 (en) Method for measuring temperature of glass article, and method for manufacturing glass article
CN107735369B (en) Method for manufacturing glass substrate and glass substrate manufacturing apparatus
TWI705943B (en) Manufacturing method of glass substrate
JP6285180B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
WO2011136149A1 (en) Production method for glass plate and glass plate
JP2017065981A (en) Method and device for measuring thermal shrinkage rate of glass substrate, and method for manufacturing glass substrate
WO2009081741A1 (en) Process and apparatus for producing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897738

Country of ref document: EP

Kind code of ref document: A1