WO2015025569A1 - Float glass production device and float glass production method using the same - Google Patents

Float glass production device and float glass production method using the same Download PDF

Info

Publication number
WO2015025569A1
WO2015025569A1 PCT/JP2014/063380 JP2014063380W WO2015025569A1 WO 2015025569 A1 WO2015025569 A1 WO 2015025569A1 JP 2014063380 W JP2014063380 W JP 2014063380W WO 2015025569 A1 WO2015025569 A1 WO 2015025569A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
float glass
space
gas
protruding
Prior art date
Application number
PCT/JP2014/063380
Other languages
French (fr)
Japanese (ja)
Inventor
信之 伴
伊賀 元一
白石 喜裕
東生 米盛
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157033389A priority Critical patent/KR20160045041A/en
Priority to CN201480039245.3A priority patent/CN105377778B/en
Publication of WO2015025569A1 publication Critical patent/WO2015025569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method using the same.
  • the float glass manufacturing method includes a forming step of flowing a glass ribbon on a liquid surface of a molten metal (for example, molten tin) in a bathtub to form a plate (for example, refer to Patent Document 1).
  • a molten metal for example, molten tin
  • the molding space between the bathtub and the ceiling is filled with a reducing gas in order to suppress the oxidation of the molten metal.
  • the forming space contains a small amount of gas evaporated from the molten metal. This gas contains the metal element evaporated from the molten metal in the form of a simple substance or a compound. Examples of the compound include metal oxides and metal sulfides.
  • the gas evaporated from the molten metal is cooled to form foreign matters such as droplets and particles, and the foreign matters fall on the upper surface of the glass ribbon, resulting in many defects.
  • the present invention has been made in view of the above problems, and has as its main object to provide a float glass manufacturing apparatus with a reduced number of defects.
  • a bathtub containing molten metal An entrance wall located above the upstream portion of the bathtub; An outlet wall located above the downstream part of the bathtub; A ceiling extending from the entrance wall to the exit wall above the bathtub;
  • the glass ribbon flowing on the liquid surface of the molten metal is provided at intervals in the flow direction, and is surrounded by the ceiling, the bathtub, the inlet wall, and the outlet wall by protruding from the lower surface of the ceiling.
  • a plurality of partition walls that partition the molding space;
  • the horizontal distance between the upstream end of the first partition wall counted from the entrance wall and the upstream end of the entrance wall is 3.5 to 6.5 times the reference distance,
  • a vertical distance between a lower end of the first partition wall and a lower surface of the ceiling is 0.4 to 0.9 times the reference distance;
  • Float glass manufacturing wherein an exhaust part for exhausting gas from the first space to the outside of the molding space is provided on a side wall of a first space formed between the first partition wall and the inlet wall.
  • a float glass manufacturing apparatus with a reduced number of defects is provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. It is a top view which shows the lower structure of the shaping
  • FIG. 5 is a cross-sectional view of the forming apparatus taken along line VV in FIG. 4. It is a top view which shows the positional relationship of the protrusion wall and glass ribbon by a 1st modification.
  • the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
  • the “width direction” means a direction orthogonal to the flow direction of the glass ribbon in the forming step.
  • FIG. 1 is a sectional view showing a forming apparatus of a float glass manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 2, the heater, the upper side wall, and the top roll are not shown in order to make the drawing easier to see.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the float glass manufacturing apparatus has a forming apparatus 10.
  • the forming apparatus 10 causes the glass ribbon 14 to flow on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape.
  • the glass ribbon 14 is pulled up from the molten metal 11 in the downstream area of the bathtub 20, and is sent from the outlet formed between the bathtub 20 and the outlet wall 28 to the slow cooling furnace.
  • a plate-like float glass is obtained by cutting the glass ribbon 14 that has been gradually cooled in the slow cooling furnace.
  • the molding apparatus 10 includes a bathtub 20, a spout trip 22, a twill 23, restrictor tiles 24 and 25, an inlet wall 26, an outlet wall 28, a ceiling 30, upper side walls 32 and 33, Air passages 34-1 to 34-6, heater 36, top roll 40, partition walls 42-1 to 42-5, exhaust passages 44-1 to 44-6, and the like are provided.
  • the bathtub 20 accommodates the molten metal 11 as shown in FIGS.
  • the molten metal 11 for example, molten tin or a molten tin alloy can be used as long as it can float the glass ribbon 14.
  • the spout trip 22 continuously supplies the molten glass 12 on the liquid surface of the molten metal 11.
  • the molten glass 12 passes between the spout trip 22 and the twill 23, is supplied onto the liquid surface of the molten metal 11, and becomes a glass ribbon 14.
  • the twill 23 is movable up and down with respect to the spout trip 22 in order to make the flow rate of the molten glass 12 variable.
  • the restrictor tiles 24 and 25 are in contact with the glass ribbon 14 as shown in FIG. 2 and regulate the width of the glass ribbon 14.
  • the restrictor tiles 24 and 25 expand toward the downstream side. Therefore, between the restrictor tiles 24 and 25, the glass ribbon 14 is widened while flowing toward the downstream.
  • the glass ribbon 14 flows at a distance from the side wall of the bathtub 20, and the width can be freely changed between the side walls of the bathtub 20.
  • the entrance wall 26 is located above the upstream part of the bathtub 20 as shown in FIG.
  • the inlet wall 26 is disposed on the downstream side of the spout trip 22 and is disposed above the restrictor tiles 24 and 25.
  • the entire liquid surface of the molten metal 11 is covered with the glass ribbon 14 on the upstream side of the inlet wall 26.
  • most of the liquid level of the molten metal 11 is covered with the glass ribbon 14 on the downstream side of the inlet wall 26, but a part of the liquid level of the molten metal 11 is not covered with the glass ribbon 14.
  • the exit wall 28 is located above the downstream part of the bathtub 20 as shown in FIG.
  • the ceiling 30 is provided above the bathtub 20 as shown in FIG. 1 and extends from the entrance wall 26 to the exit wall 28.
  • the forming space 50 surrounded by the bathtub 20, the ceiling 30, the inlet wall 26 and the outlet wall 28 is filled with a reducing gas in order to suppress oxidation of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14. May be.
  • the pressure in the molding space 50 may be higher than the atmospheric pressure.
  • the upper side walls 32 and 33 block the gap between the side wall of the bathtub 20 and the ceiling 30 as shown in FIG.
  • the upper side walls 32, 33 extend from the inlet wall 26 to the outlet wall 28.
  • the upper side walls 32 and 33 are formed with a through-hole through which the rotation shaft of the top roll 40 is inserted, and ends of the exhaust passages 44-1 to 44-6.
  • the heater 36 is inserted into the air supply passages 34-1 to 34-6 of the ceiling 30, and the heat generating portion of the heater 36 is disposed in the molding space 50.
  • the heater 36 heats the molten metal 11 and the glass ribbon 14 from above.
  • a plurality of heaters 36 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon 14. The output of the heater 36 is controlled so that the temperature of the glass ribbon 14 becomes lower toward the downstream side.
  • the top rolls 40 are used in pairs, pressing the end of the glass ribbon 14 in the width direction, and applying tension to the glass ribbon 14 in the width direction.
  • a plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the glass ribbon 14.
  • the top roll 40 has a rotating member in contact with the glass ribbon 14 at the tip. While the plurality of pairs of top rolls 40 apply tension to the glass ribbon 14, the glass ribbon 14 gradually cools and hardens while flowing in the downstream direction.
  • the top roll 40 may have a refrigerant flow path inside to suppress deterioration due to heat.
  • a coolant such as water flowing through the coolant channel absorbs the heat of the top roll 40 and transports it to the outside, thereby cooling the top roll 40.
  • the partition walls 42-1 to 42-5 partition the molding space 50 by projecting downward from the ceiling 30, and a plurality of partition walls 42-1 to 42-5 are provided at intervals in the flow direction of the glass ribbon 14. .
  • Each partition wall 42-1 to 42-5 may extend from one upper side wall 32 to the other upper side wall 33 as shown in FIG.
  • the molding space 50 is divided into a plurality of (six in FIG. 1) spaces 50-1 to 50-6 by a plurality (five in FIG. 1) of partition walls 42-1 to 42-5.
  • the plurality of partition walls 42-1 to 42-5 of the present embodiment have the same shape and the same size, but may have different shapes and different sizes. Moreover, although the number of partition walls is five in FIG. 1, what is necessary is just two or more.
  • gas is supplied from the outside of the molding apparatus 10 through an air supply path formed on each ceiling.
  • This gas may be a reducing gas in order to limit oxidation of the exposed portion of the liquid surface of the molten metal 11.
  • the reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas.
  • the reducing gas may be preheated in the preheating space 53 surrounded by the roof casing 31 and the ceiling 30, and then supplied to the spaces 50-1 to 50-6 via the air supply passages 34-1 to 34-6. . Note that the gas in the preheating space 53 enters the spaces 50-1 to 50-6 not only via the air supply passages 34-1 to 34-6 but also via brick joints that form the ceiling 30. Inflow.
  • the preheating space 53 is divided into a plurality of (five in FIG. 1) dividing walls 43-1 to 43-5 (FIG. 1) so that the amount of gas supplied to each of the spaces 50-1 to 50-6 can be adjusted independently. May be divided into six spaces 53-1 to 53-6.
  • a plurality of dividing walls may be provided at intervals in the flow direction of the glass ribbon 14, and one dividing wall may be provided immediately above each partition wall.
  • the same type of gas is supplied to the spaces 50-1 to 50-6 of the present embodiment through the air supply passages formed on the respective ceilings, but even if different types of gas are supplied. Good. Further, in the present embodiment, the number of partition walls and the number of partition walls are the same number, but may not be the same number.
  • the most upstream space 50-1 is formed between the twill 23 and the inlet wall 26 in addition to the air supply path 34-1 formed on the ceiling. Gas is supplied from outside the molding apparatus 10 through the spout space 27.
  • the gas may be supplied to the spout space 27 from at least one of the upper side and the side.
  • This gas may be either an inert gas or a reducing gas.
  • An exhaust path is not connected to the spout space 27, and most of the gas supplied to the spout space 27 passes below the inlet wall 26 and is supplied to the upstream space 50-1.
  • Exhaust passages are formed on the side walls of the spaces 50-1 to 50-6 (that is, the upper side walls 32 and 33) as exhaust portions for exhausting gas from the spaces to the outside of the molding apparatus.
  • the exhaust passages 44-1 to 44-6 (see FIG. 2) discharge the gas in the space to which the exhaust passages are connected to the outside of the molding apparatus 10.
  • Each of the exhaust passages 44-1 to 44-6 may discharge gas using a pressure difference between the space to which each exhaust passage is connected and the outside of the molding apparatus 10, or may use suction force such as a pump. Then, the gas may be discharged.
  • the float glass manufacturing method has a forming step in which the glass ribbon 14 is flowed on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape.
  • the forming step the end portion in the width direction of the glass ribbon 14 that has passed between the liquid surface of the molten metal 11 and the inlet wall 26 is pressed by the top roll 40.
  • the molding space 50 contains gas evaporated from the molten metal 11 in the bathtub 20.
  • This gas contains the metal element evaporated from the molten metal 11 in the form of at least one of a simple substance and a compound.
  • the compound include metal oxides and metal sulfides.
  • this gas is referred to as a metal-containing gas.
  • the metal-containing gas is likely to be generated in the high temperature region of the bathtub 20 and is likely to be generated in the upstream region of the bathtub 20.
  • the flow of the metal-containing gas from the upstream region to the downstream region can be suppressed, cooling of the metal-containing gas can be suppressed. Therefore, the number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas can be reduced. As a result, it is possible to reduce the number of defects caused by the foreign matter falling on the surface of the glass ribbon 14.
  • the molding apparatus 10 of the present embodiment satisfies the following conditions (1) to (3) in order to suppress the flow of the metal-containing gas from the upstream region to the downstream region.
  • the horizontal distance L1 between the upstream end of the first partition wall 42-1 counted from the inlet wall 26 and the upstream end of the inlet wall 26 is 3.5 to 6.5 times the reference distance H0.
  • the reference distance H0 is a vertical distance between the exposed portion of the liquid surface of the molten metal 11 and the lower surface of the ceiling 30.
  • the horizontal distance L1 is a distance in the flow direction of the glass ribbon 14.
  • the horizontal distance L1 is not more than 6.5 times the reference distance H0, the distance between the first partition wall 42-1 and the inlet wall 26 is short, and convection may occur due to the temperature difference between the upper layer and the lower layer of the molding space 50. Is easily divided and the speed of convection is slow enough.
  • the horizontal distance L1 is preferably not more than 6.0 times the reference distance H0, more preferably not more than 5.5 times the reference distance H0.
  • the horizontal distance L1 is 3.5 times or more of the reference distance H0, the number of partition walls and division walls is small, and the configuration of the molding apparatus 10 can be simplified.
  • the horizontal distance L1 is preferably 4.0 times or more of the reference distance H0, more preferably 4.5 times or more of the reference distance H0.
  • the first partition wall 42-1 may be movable in the horizontal direction with respect to the ceiling 30.
  • the flow in the X direction in the upper layer of the molding space 50 is likely to be divided.
  • Convection that can be caused by a temperature difference between the upper layer and the lower layer of the molding space 50 is mainly composed of a flow from the lower layer to the upper layer, a flow in the X direction in the upper layer, a flow from the upper layer to the lower layer, and a flow in the X direction in the lower layer. Is done. Of these flows, most of the flow in the X direction in the upper layer is divided, and convection can be suppressed.
  • the glass ribbon downstream from the first partition wall 42-1 can be monitored from the uppermost stream of the forming space 50.
  • the vertical distance H1 is preferably 0.8 times or less of the reference distance H0, more preferably 0.7 times or less of the reference distance H0.
  • the first partition wall 42-1 may be movable in the vertical direction with respect to the ceiling 30.
  • An exhaust passage 44-1 is provided on the side wall of a space 50-1 (hereinafter referred to as “first space 50-1”) formed between the first partition wall 42-1 and the entrance wall 26. It is done.
  • the gas discharge amount Qout1 to the outside of the molding apparatus 10 in the first space 50-1 is 0.5 to 1 of the gas supply amount Qin1 from the outside of the molding apparatus 10. Can be 5 times larger.
  • Qout1 is preferably 0.7 to 1.3 times Qin1.
  • Qin1 is the normal flow rate (Nm 3 / hr) of the gas supplied to the first space 50-1 from at least one of the upper, side, and upstream (from the upper and upstream in this embodiment). means.
  • the amount of gas supplied from the downstream is not included in Qin1.
  • the reason why the amount of gas supplied from the upstream (that is, the spout space 27) is included in Qin1 is that most of the gas supplied from the outside of the molding apparatus 10 to the spout space 27 is supplied as it is to the first space 50-1. Because. When gas is supplied to the first space 50-1 from the side, an air supply path may be provided in the upper side walls 32 and 33.
  • the product (Nm 3 ) of Qin1 (Nm 3 / hr) and time is, for example, 5 to 30 times, preferably 10 to 25 times the volume V1 (m 3 ) of the first space 50-1. More preferably, it is 15 to 20 times.
  • the volume V1 of the first space 50-1 can be approximately calculated by multiplying H1, L1, and W1. W1 represents the width of the first space 50-1.
  • Qout1 means the normal flow rate (Nm 3 / hr) of the gas discharged from the first space 50-1 to at least one of the upper side and the side (side in this embodiment).
  • the amount of gas discharged downstream and upstream is not included in Qout2. Note that the amount of gas discharged to the upstream (that is, the spout space 27) is very small. This is because the exhaust path is not connected to the spout space 27.
  • an exhaust path may be provided in the ceiling 30.
  • the convection speed in the first space 50-1 is sufficiently low. Therefore, if the condition (3) is satisfied, most of the gas supplied from the outside of the molding apparatus 10 to the first space 50-1 can be discharged to the outside of the molding apparatus 10 as it is. There is almost no outflow of the metal-containing gas from the first space 50-1 to the low temperature space on the downstream side. Therefore, the number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas can be reduced, and the number of defects that can be caused by the foreign matters falling on the surface of the glass ribbon 14 can be reduced.
  • the molding apparatus 10 of the present embodiment satisfies the following conditions (4) to (6) in order to further suppress the flow of the metal-containing gas from the upstream region to the downstream region.
  • the horizontal distance L2 between the upstream end of the first partition wall 42-1 and the upstream end of the second partition wall 42-2 counted from the inlet wall 26 is the same as the horizontal distance L1. It is 3.5 to 6.5 times the reference distance H0, preferably 4.0 to 6.0 times, and more preferably 4.5 to 5.5 times.
  • At least one of the first partition wall 42-1 and the second partition wall 42-2 may be movable in the horizontal direction with respect to the ceiling 30.
  • the vertical distance H2 between the lower end of the second partition wall 42-2 and the lower surface of the ceiling 30 is 0.4 to 0.9 times the reference distance H0, similar to the vertical distance H1.
  • the ratio is preferably 0.4 to 0.8 times, more preferably 0.4 to 0.7 times.
  • the second partition wall 42-2 may be movable in the vertical direction with respect to the ceiling 30.
  • An exhaust passage is formed on the side wall of a space 50-2 (hereinafter referred to as “second space 50-2”) formed between the first partition wall 42-1 and the second partition wall 42-2. 44-2 is provided.
  • the gas discharge amount Qout2 to the outside of the molding apparatus 10 in the second space is the same as the first space 50-1, and the gas supply amount from the outside of the molding apparatus 10 is the same. It can be 0.5 to 1.5 times Qin2.
  • Qout2 is preferably 0.7 to 1.3 times Qin2.
  • Qin2 means the normal flow rate (Nm 3 / hr) of the gas supplied from at least one of the upper side and the side (from the upper side in this embodiment) to the second space 50-1.
  • the amount of gas supplied from upstream and downstream is not included in Qin2.
  • the product (Nm 3 ) of Qin2 (Nm 3 / hr) and time is, for example, 5 to 30 times, preferably 10 to 25 times the volume V2 (m 3 ) of the second space 50-2. More preferably, it is 15 to 20 times.
  • the volume V2 of the second space 50-2 can be approximately calculated by multiplying H2, L2, and W2. W2 represents the width of the second space 50-2.
  • Qout2 means the normal flow rate (Nm 3 / hr) of the gas discharged from the second space 50-1 to at least one of the upper side and the side (side in this embodiment). The amount of gas discharged upstream and downstream is not included in Qout2.
  • the molding apparatus 10 of the present embodiment may satisfy the following conditions (7) to (9) in order to further suppress the flow of the metal-containing gas from the upstream region to the downstream region.
  • the horizontal distance Ln between the upstream end of the n-th partition wall (n is a natural number of 3 or more) counted from the inlet wall 26 and the (n + 1) -th partition wall is the same as the horizontal distance L1.
  • the distance H0 is 3.5 to 6.5 times, preferably 4.0 to 6.0 times, and more preferably 4.5 to 5.5 times.
  • the vertical distance Hn between the lower end of the nth partition wall and the lower surface of the ceiling 30 is 0.4 to 0.9 times the reference distance H0, like the vertical distance H1, preferably 0.4 to 0.8 times, more preferably 0.4 to 0.7 times.
  • An exhaust passage 44-n is provided on a side wall of a space (hereinafter referred to as “nth space”) formed between the nth partition wall and the (n + 1) th partition wall.
  • nth space a space formed between the nth partition wall and the (n + 1) th partition wall.
  • Qinn means the normal flow rate (Nm 3 / hr) of the gas supplied to the nth space from at least one of the upper side and the side (from the upper side in this embodiment). The amount of gas supplied from upstream and downstream is not included in Qinn.
  • the product (Nm 3 ) of Qinn (Nm 3 / hr) and time is, for example, 5 to 30 times the volume Vn (m 3 ) of the nth space, preferably 10 to 25 times, more preferably 15 to 20 times.
  • the volume Vn of the nth space can be approximately calculated by multiplying Hn, Ln, and Wn. Wn represents the width of the nth space.
  • Qoutn means a normal flow rate (Nm 3 / hr) of gas discharged from at least one of the upper side and the side from the n-th space (side in this embodiment). The amount of gas discharged upstream and downstream is not included in Qoutn.
  • the manufactured float glass may be, for example, an alkali-free glass.
  • the alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O, etc.).
  • the alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
  • the alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 8 to 29.5%.
  • the alkali-free glass has both a high strain point and high solubility, it is preferably expressed in terms of mass% on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
  • the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26%.
  • the molding temperature of these alkali-free glasses is 100 ° C. or more higher than the molding temperature of general soda lime glass. Therefore, the amount of the metal-containing gas that evaporates from the molten metal 11 is large, and it is significant to divide the convection that may be caused by the temperature difference between the upper layer and the lower layer of the molding space 50 by the partition walls 42-1 to 42-5.
  • the molding apparatus according to the second embodiment and the molding apparatus according to the first embodiment have different lower structures and substantially the same upper structure. Hereinafter, description will be made centering on the lower structure of the molding apparatus of the second embodiment.
  • FIG. 4 is a plan view showing the lower structure of the molding apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the molding apparatus taken along line VV in FIG.
  • the bathtub 120 is configured in the same manner as the bathtub 20 shown in FIG. As shown in FIG. 5, the bath 120 accommodates the molten metal 111 and causes the glass ribbon 114 to flow on the liquid surface of the molten metal 111.
  • the bathtub 120 includes a metal casing 161 that opens upward, and a bottom brick 162 and a side brick 163 that are installed in the casing 161.
  • the casing 161 is for preventing external air from being mixed.
  • the lower surface of the casing 161 is exposed to the outside air and naturally cooled.
  • the bottom brick 162 protects the inner bottom surface of the casing 161, and the side brick 163 protects the inner side surface of the casing 161.
  • a plurality of bottom bricks 162 are two-dimensionally arranged in the X direction and the Y direction.
  • a plurality of side bricks 163 are arranged in a square ring along the inner side surface of the casing 161 so as to surround the plurality of bottom bricks 162.
  • the liquid level of the molten metal 111 in the bath 120 includes a wide area Z1, a middle area Z2 that gradually decreases in width, and a narrow area Z3 that narrows from the upstream side.
  • the temperature of the wide area Z1 is set to 700 ° C. or higher in the case of alkali-containing glass. Further, the temperature of the wide area Z1 is set to 900 ° C. or more in the case of alkali-free glass.
  • the liquid level of the molten metal 111 in the bathtub 120 includes an exposed portion that is not covered with the glass ribbon 114 and a covered portion that is covered with the glass ribbon 114.
  • the exposed portion exists on both sides in the width direction of the covering portion as shown in FIG.
  • the protruding wall 170 protrudes from the upper part of the side brick 163 of the bathtub 120, and forms a gap 178 between the protruding surface of the molten metal 111 and the liquid surface.
  • the protruding wall 170 has, for example, a plate shape, and is provided horizontally above the molten metal 111.
  • the protrusion wall 170 of this embodiment is provided horizontally with respect to the liquid level of the molten metal 111, for example, it may be provided obliquely with respect to the liquid level of the molten metal 111.
  • the protruding wall 170 restricts the contact between the oxygen gas mixed from the outside into the space above the protruding wall 170 and the molten metal 111, and suppresses an increase in the oxygen concentration in the molten metal 111. Further, the protruding wall 170 receives the foreign matter 117 falling from above, and prevents the foreign matter 117 from dropping onto the molten metal 111.
  • the air supply pipe 158 supplies reducing gas to the gap 178 from the outside of the molding apparatus through the through hole of the protruding wall 170, in other words, from the outside of the molding space 50.
  • the reducing gas in the supply pipe 158 includes hydrogen gas as a gas having a reducing power, for example.
  • the reducing gas in the supply pipe 158 may be a mixed gas further containing an inert gas such as nitrogen gas.
  • an inert gas such as nitrogen gas.
  • the same type of gas may be used.
  • the reducing gas in the supply pipe 158 may be a high-temperature gas so as not to cool the molten metal 111 and the glass ribbon 114, and a band heater may be wound around the supply pipe 158.
  • the supply pipe 158 can adjust the composition of the atmosphere in contact with the exposed portion of the liquid surface of the molten metal 111 to a desired composition by supplying the reducing gas to the gap 178. Therefore, as will be described in detail later, diffusion of the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 can be suppressed, and the oxygen concentration in the molten metal 111 can be reduced.
  • the reducing gas supplied to the gap 178 by the supply pipe 158 reacts with the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 to generate a metal element gas and water vapor.
  • the amount of the metal element gas in the gap 178 exceeds the saturated vapor amount, the newly generated metal element gas is liquefied, and the metal element droplets fall on the molten metal 111.
  • the water vapor is exhausted to the outside of the molding apparatus through the exhaust passages 44-1 to 44-6 shown in FIG.
  • the reducing gas supplied to the gap 178 by the air supply pipe 158 decomposes the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 and suppresses the diffusion of the metal oxide gas. Therefore, the fall of the metal oxide particles that can be generated by cooling the metal oxide gas onto the glass ribbon 114 can be suppressed.
  • the molten metal 111 is molten tin
  • evaporation of tin oxide such as stannous oxide (SnO) from the liquid surface is likely to occur at 700 ° C. or higher, is remarkable at 800 ° C. or higher, and is particularly remarkable at 1000 ° C. or higher. It is.
  • the reducing gas supplied to the gap 178 by the supply pipe 158 comes into contact with the exposed portion of the liquid surface of the molten metal 111 and reacts with oxygen in the molten metal 111 to generate water vapor.
  • This water vapor is exhausted to the outside of the molding apparatus through exhaust passages 44-1 to 44-6 shown in FIG.
  • the reducing gas supplied to the gap 178 by the air supply pipe 158 reduces the oxygen concentration in the molten metal 111. Therefore, the amount of metal oxide gas that evaporates from the exposed surface of the molten metal 111 can be reduced.
  • the hydrogen gas concentration (volume%) in the reducing gas supplied to the gap 178 by the supply pipe 158 is the hydrogen in the reducing gas supplied to the forming space 50 by the supply passages 34-1 to 34-6 shown in FIG. It is preferably higher than the gas concentration (volume%).
  • the reducing gas supplied from the supply pipe 158 to the gap 178 may be substantially composed of only hydrogen gas, and may have a hydrogen gas concentration of 99% by volume or more.
  • the reducing gas of the supply pipe 158 of this embodiment contains hydrogen gas as gas which has a reducing power
  • the gas which has a reducing power is not limited to hydrogen gas.
  • the reducing gas in the supply pipe 158 may include acetylene gas (C 2 H 2 ) as a gas having a reducing power.
  • Acetylene gas has a higher reducing power than hydrogen gas.
  • the acetylene gas concentration (volume%) in the reducing gas supplied to the gap 178 by the supply pipe 158 is the reducing gas supplied to the molding space 50 by the supply passages 34-1 to 34-6 shown in FIG. It may be lower than the hydrogen gas concentration (volume%) inside.
  • the reducing power of the atmosphere in contact with the exposed portion of the liquid surface of the molten metal 111 may be increased.
  • a plurality of air supply pipes 158 may be provided at intervals in the flow direction of the glass ribbon 114.
  • the amount of gas supplied through the supply pipe 158 is included in Qin1.
  • the amount of gas supplied through the supply pipe 158 is included in Qin2.
  • the amount of gas supplied from each air supply pipe 158 is, for example, 0.01 to 10% of Qin1, and is set to a flow rate that does not affect the gas flow in the first space 50-1.
  • the amount of gas supplied from each air supply pipe 158 is preferably 0.05 to 1% of Qin1, and more preferably 0.1 to 0.5% of Qin1.
  • the protruding wall 170 may be formed of carbon (C) and exposed to a reducing gas supplied from the supply pipe 158 to the gap 178.
  • Carbon has a reducing power and generates carbon monoxide gas (CO) in an environment having a low oxygen concentration. Carbon reacts with the metal oxide gas evaporated from the molten metal 111 to generate a metal element gas and a carbon monoxide gas.
  • the carbon monoxide gas is exhausted to the outside of the molding apparatus through exhaust passages 44-1 to 44-6 shown in FIG.
  • the protruding wall 170 formed of carbon decomposes the metal oxide gas evaporated from the molten metal 111 and suppresses diffusion of the metal oxide gas. Therefore, the fall of the metal oxide particles that can be generated by cooling the metal oxide gas onto the glass ribbon 114 can be suppressed.
  • the reduction reaction with carbon tends to proceed at 450 ° C. or higher.
  • the protruding wall 170 made of carbon has good wettability with the glass ribbon 114. Therefore, when the flow of the glass ribbon 114 is disturbed and the glass ribbon 114 comes into contact with the protruding wall 170, the fluidity of the glass ribbon 114 is not easily lowered.
  • the protruding wall 170 may be divided into a plurality of blocks 170-1 to 170-6 that are continuously arranged along the flow direction (X direction) of the glass ribbon 114 as shown in FIG. Since each block 170-1 to 170-6 can be installed, the installation work is easy.
  • the protruding wall 170 may be provided above the high temperature wide area Z1.
  • the temperature of the wide area Z1 is higher than the temperature at which the metal oxide gas starts to evaporate from the molten metal 111.
  • the X direction dimension X1 of the protruding wall 170 may be 10% or more of the X direction dimension (X2 in FIG. 1) of the molten metal 111, preferably 30% or more, more preferably 50% or more, and even more preferably 70%. Above, especially preferably 90% or more.
  • the protruding wall 170 may be provided at a position that does not overlap the glass ribbon 114 when viewed from above. An operator can confirm the position of the side end of the glass ribbon 114.
  • An interval Y1 (see FIG. 5) in the Y direction between the front end of the protruding wall 170 and the side end of the glass ribbon 114 is, for example, 150 mm or less in order to sufficiently obtain the effect of reducing gas supplied to the gap 178. Preferably it is 100 mm or less, More preferably, it is 50 mm or less, Most preferably, it is 25 mm or less. Further, the interval Y1 is, for example, larger than 0 mm, preferably 10 mm or more, and more preferably 15 mm or more in order to confirm the position of the side end of the glass ribbon 114.
  • An interval h1 (see FIG. 5) between the lower surface of the protruding wall 170 and the exposed portion of the liquid surface of the molten metal 111 is, for example, 100 mm or less, preferably 50 mm or less, more preferably, in order to suppress an increase in the number of ventilations described later. Is 25 mm or less, more preferably 10 mm or less. Further, the interval h1 may be larger than 7 mm, which is an equilibrium plate thickness of the glass ribbon, in order to prevent contact between the protruding wall 170 and the glass ribbon 114 due to disturbance of the amount of molten glass supplied to the molding apparatus.
  • the equilibrium thickness of the glass ribbon means the thickness of the glass ribbon in a natural state with no external force.
  • the number of ventilations per hour in the gap 178 is preferably 3 to 20 times, more preferably 8 to 10 times because the purification process is not sufficiently performed if the number is too small and the cost is increased if the number is too large.
  • the ventilation frequency is expressed as a ratio between the volume (Nm 3 ) of the reducing gas supplied to the gap 178 in one hour in a standard state (1 atm, 25 ° C.) and the volume of the gap 178.
  • FIG. 6 is a plan view showing the positional relationship between the protruding wall and the glass ribbon according to the first modification.
  • the protruding wall 270 of the first modification is used in place of the protruding wall 170 shown in FIGS. 4 and 5.
  • the tip of the protruding wall 270 has both a portion that overlaps with the glass ribbon 114 and a portion that does not overlap with the glass ribbon 114 when viewed from above, and has an uneven shape. As described above, a portion of the side end of the glass ribbon 114 that does not require position confirmation may be hidden under the protruding wall 270.
  • the Y-direction dimension Y2 of the portion overlapping the glass ribbon 114 when viewed from the upper end of the protruding wall 270 is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less. If the Y-direction dimension Y2 is 150 mm or less, the glass ribbon 114 can be prevented from being exposed to a reducing gas having a strong reducing power supplied from the air supply pipe 158 shown in FIG.
  • the distance Y3 in the Y direction between the portion of the tip of the protruding wall 270 that does not overlap the glass ribbon 114 when viewed from above and the side edge of the glass ribbon 114 is the same as the distance Y1 shown in FIG.
  • it is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less.
  • interval Y3 is larger than 0 mm, for example, Preferably it is 10 mm or more, More preferably, it is 15 mm or more.
  • FIG. 7 is a cross-sectional view showing a main part of a molding apparatus according to a second modification.
  • the molding apparatus of the second modified example has a vertical wall 179 as a wall protruding from the lower surface of the protruding wall 170 in addition to the protruding wall 170 shown in FIGS.
  • Other configurations are the same as those of the molding apparatus shown in FIGS.
  • the vertical wall 179 protrudes from the lower surface of the protruding wall 170 and is perpendicular to the liquid level of the molten metal 111.
  • an oblique wall with respect to the liquid level of the molten metal 111 may be provided on the lower surface of the protruding wall 170.
  • the vertical wall 179 may extend downward from the tip of the protruding wall 170 as shown in FIG. Note that the vertical wall 179 may extend downward from the middle between the distal end and the proximal end of the protruding wall 170.
  • the vertical wall 179 may be formed from the upstream end to the downstream end of the protruding wall 170 along the side edge of the glass ribbon 114.
  • the air supply pipe 158 supplies the reducing gas to the gap 178 from the outside of the molding apparatus through the through hole of the protruding wall 170 as described above.
  • the reducing gas in the supply pipe 158 includes hydrogen gas as a gas having a reducing power, for example.
  • the through hole of the protruding wall 170 to which the tip of the air supply pipe 158 is connected is located between the side brick 163 that supports the protruding wall 170 and the vertical wall 179.
  • the glass ribbon 114 is not easily exposed to reducing gas having a high reducing power supplied to the gap 178 by the air supply pipe 158.
  • the vertical wall 179 may be provided at a position that does not overlap the glass ribbon 114 when viewed from above.
  • the interval Y4 in the Y direction between the vertical wall 179 and the side edge of the glass ribbon 114 is, for example, 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably, similarly to the interval Y1 shown in FIG. 25 mm or less.
  • interval Y4 is larger than 0 mm, for example, Preferably it is 10 mm or more, More preferably, it is 15 mm or more.
  • the vertical wall 179 of this embodiment protrudes on the lower surface of the protrusion wall 170 shown in FIG. 4 and FIG. 5, it may protrude on the lower surface of the protrusion wall 270 shown in FIG. In this case, the vertical wall 179 may have a portion that overlaps the glass ribbon 114 when viewed from above. This portion projects inward in the width direction of the glass ribbon 114 from the side end of the glass ribbon 114 when viewed from above.
  • the protrusion distance is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less, similarly to the Y-direction dimension Y2 shown in FIG.
  • the vertical wall 179 is provided above the molten metal 111 and the glass ribbon 114 so as not to hinder the flow of the molten metal 111 and the glass ribbon 114.
  • the distance h2 between the lower end of the vertical wall 179 and the exposed portion of the liquid surface of the molten metal 111 is preferably 50 mm or less, more preferably 25 mm or less, and even more preferably 10 mm or less. Further, the distance h2 is preferably larger than 7 mm because the equilibrium thickness of the glass ribbon in a natural state without external force is about 7 mm.
  • FIG. 8 is a cross-sectional view showing a main part of a molding apparatus according to a third modification.
  • an exhaust pipe 159 as an exhaust unit is connected to the protruding wall 170 of the second modified example.
  • the exhaust pipe 159 may be connected to the protruding wall 170 shown in FIGS. 4 and 5 or the protruding wall 270 of the first modified example.
  • the exhaust pipe 159 is connected to the protruding wall 170 and discharges gas from the gap 178 to the outside of the molding apparatus through the through hole of the protruding wall 170.
  • the through hole of the protruding wall 170 through which the gas passes is located between the side brick 163 that supports the protruding wall 170 and the vertical wall 179.
  • a plurality of exhaust pipes 159 may be provided at intervals in the flow direction of the glass ribbon 114.
  • the opening of the exhaust pipe 159 exists in the first space 50-1 shown in FIG. 1, the amount of gas exhausted by the exhaust pipe 159 is included in Qout1.
  • the opening of the exhaust pipe 159 exists in the second space 50-2 shown in FIG. 1, the amount of gas exhausted by the exhaust pipe 159 is included in Qout2.
  • An exhaust path may or may not be provided on the side wall of the space where the opening of the exhaust pipe 159 is provided. That is, the gas in each of the spaces 50-1 to 50-6 shown in FIG. 1 may be discharged to the outside of the molding apparatus through either the exhaust passages 44-1 to 44-6 or the exhaust pipe 159, and from both You may discharge
  • FIG. 9 is a cross-sectional view showing a main part of a molding apparatus according to a fourth modification.
  • the protruding wall 370 of the fourth modified example is used instead of the protruding walls 170 and 270.
  • the protruding wall 370 includes a protruding wall body 371 made of carbon and an antioxidant film 372 that protects the protruding wall body 371.
  • the protruding wall body 371 is made of carbon.
  • An antioxidant film 372 is provided on the surface of the protruding wall body 371 in order to suppress the burning of carbon.
  • the antioxidant film 372 is formed of ceramics such as silicon carbide (SiC). As a method for forming the antioxidant film 372, for example, there is a spraying method. The antioxidant film 372 may cover the entire surface of the protruding wall 370.
  • the vertical wall when a vertical wall protrudes from the lower surface of the protruding wall 370, the vertical wall may be composed of a vertical wall body made of carbon and an antioxidant film that protects the vertical wall body.
  • the protruding wall main body and the vertical wall main body may be integrally formed.
  • Examples 1 to 4 float glass plates were manufactured using the molding apparatus shown in FIGS. In Examples 1 to 4, float glass plates were produced under the same production conditions except that Qout1 / Qin1 and Qin1 / V1 were changed. Production conditions are shown in Tables 1 to 3. Table 1 shows the ratio between H1 to H5 and H0. Table 2 shows the ratio between L1 to L5 and H0. Table 3 shows Qout1 / Qin1 and Qin1 / V1.
  • the float glass plate was manufactured on the same conditions as Example 1 except not using the partition wall shown in FIG.
  • the number of defects of the float glass plates obtained in Examples 1 to 4 was 1/10 or less of the number of defects of the float glass plates obtained in Comparative Example 1.
  • the protruding wall 170 of the above embodiment is formed of carbon, but may be formed of ceramics, and the material of the protruding wall 170 may be a material having heat resistance.

Abstract

[Solution] A float glass production device has a bath containing a molten metal, a ceiling extending above the bath from an entrance wall to an exit wall, and a plurality of dividing walls provided spaced apart in the flow direction of a glass ribbon flowing above the liquid level of the molten metal and protruding from the lower surface of the ceiling thereby dividing a forming space enclosed by the ceiling, the bath, the entrance wall and the exit wall. The horizontal distance between the upstream extremity of a first dividing wall, counting from the entrance wall, and the upstream extremity of the entrance wall is 3.5 to 6.5 times a reference distance, and the distance in the vertical direction between the lower extremity of the first dividing wall and the lower surface of the ceiling is 0.4 to 0.9 times the reference distance. An exhaust portion is provided on a side wall of a first space formed between the first dividing wall and the entrance wall, said exhaust portion exhausting gas from the first space to the exterior of the forming space.

Description

フロートガラス製造装置およびそれを用いたフロートガラス製造方法Float glass manufacturing apparatus and float glass manufacturing method using the same
 本発明は、フロートガラス製造装置およびそれを用いたフロートガラス製造方法に関する。 The present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method using the same.
 フロートガラス製造方法は、浴槽内の溶融金属(例えば溶融スズ)の液面の上においてガラスリボンを流動させて板状に成形する成形工程を有する(例えば、特許文献1参照)。浴槽と天井との間の成形空間は、溶融金属の酸化を抑制するため、還元性ガスで満たされる。成形空間は、溶融金属から蒸発したガスを僅かに含む。このガスは、溶融金属から蒸発した金属元素を、単体および化合物の少なくともいずれかの形態で含有する。化合物としては、金属酸化物、金属硫化物などが挙げられる。 The float glass manufacturing method includes a forming step of flowing a glass ribbon on a liquid surface of a molten metal (for example, molten tin) in a bathtub to form a plate (for example, refer to Patent Document 1). The molding space between the bathtub and the ceiling is filled with a reducing gas in order to suppress the oxidation of the molten metal. The forming space contains a small amount of gas evaporated from the molten metal. This gas contains the metal element evaporated from the molten metal in the form of a simple substance or a compound. Examples of the compound include metal oxides and metal sulfides.
日本国特開昭50-3414号公報Japanese Unexamined Patent Publication No. 50-3414
 従来、溶融金属から蒸発したガスが冷えて液滴や粒子などの異物を形成し、その異物がガラスリボンの上面に落下し、多くの欠点が生じるという問題があった。 Conventionally, the gas evaporated from the molten metal is cooled to form foreign matters such as droplets and particles, and the foreign matters fall on the upper surface of the glass ribbon, resulting in many defects.
 本発明は、上記課題に鑑みてなされたものであって、欠点の数を低減したフロートガラス製造装置の提供を主な目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide a float glass manufacturing apparatus with a reduced number of defects.
 上記課題を解決するため、本発明の一態様によれば、
 溶融金属を収容する浴槽と、
 前記浴槽の上流部の上方に位置する入口壁と、
 前記浴槽の下流部の上方に位置する出口壁と、
 前記浴槽の上方において前記入口壁から前記出口壁まで延びる天井と、
 前記溶融金属の液面の上を流動するガラスリボンの流動方向に間隔をおいて設けられ、前記天井の下面から突出することによって前記天井、前記浴槽、前記入口壁および前記出口壁で囲まれた成形空間を仕切る複数の仕切壁とを有し、
 前記溶融金属の液面のうち前記ガラスリボンによって覆われない露出部分と前記天井の下面との間の上下方向距離を基準距離とすると、
 前記入口壁から数えて1番目の仕切壁の上流端と前記入口壁の上流端との間の水平方向距離が前記基準距離の3.5~6.5倍であり、
 前記1番目の仕切壁の下端と前記天井の下面との間の上下方向距離が前記基準距離の0.4~0.9倍であり、
 前記1番目の仕切壁と前記入口壁との間に形成される第1の空間の側壁に、前記第1の空間から前記成形空間の外部にガスを排気する排気部が設けられる、フロートガラス製造装置を提供する。
In order to solve the above problems, according to one aspect of the present invention,
A bathtub containing molten metal;
An entrance wall located above the upstream portion of the bathtub;
An outlet wall located above the downstream part of the bathtub;
A ceiling extending from the entrance wall to the exit wall above the bathtub;
The glass ribbon flowing on the liquid surface of the molten metal is provided at intervals in the flow direction, and is surrounded by the ceiling, the bathtub, the inlet wall, and the outlet wall by protruding from the lower surface of the ceiling. A plurality of partition walls that partition the molding space;
When the vertical distance between the exposed portion of the liquid surface of the molten metal that is not covered by the glass ribbon and the lower surface of the ceiling is a reference distance,
The horizontal distance between the upstream end of the first partition wall counted from the entrance wall and the upstream end of the entrance wall is 3.5 to 6.5 times the reference distance,
A vertical distance between a lower end of the first partition wall and a lower surface of the ceiling is 0.4 to 0.9 times the reference distance;
Float glass manufacturing, wherein an exhaust part for exhausting gas from the first space to the outside of the molding space is provided on a side wall of a first space formed between the first partition wall and the inlet wall. Providing equipment.
 本発明の一態様によれば、欠点の数を低減したフロートガラス製造装置が提供される。 According to one aspect of the present invention, a float glass manufacturing apparatus with a reduced number of defects is provided.
本発明の第1実施形態によるフロートガラス製造装置の成形装置を示す断面図である。It is sectional drawing which shows the shaping | molding apparatus of the float glass manufacturing apparatus by 1st Embodiment of this invention. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図1のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 本発明の第2実施形態による成形装置の下部構造を示す平面図である。It is a top view which shows the lower structure of the shaping | molding apparatus by 2nd Embodiment of this invention. 図4のV-V線に沿った成形装置の断面図である。FIG. 5 is a cross-sectional view of the forming apparatus taken along line VV in FIG. 4. 第1変形例による突出壁とガラスリボンとの位置関係を示す平面図である。It is a top view which shows the positional relationship of the protrusion wall and glass ribbon by a 1st modification. 第2変形例による成形装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the shaping | molding apparatus by a 2nd modification. 第3変形例による成形装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the shaping | molding apparatus by a 3rd modification. 第4変形例による成形装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the shaping | molding apparatus by a 4th modification.
 以下、本発明を実施するための形態について図面を参照して説明する。尚、各図面において、同一のまたは対応する構成要素には同一の又は対応する符号を付して説明を省略する。本明細書において、「幅方向」とは、成形工程におけるガラスリボンの流動方向と直交する方向を意味する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In this specification, the “width direction” means a direction orthogonal to the flow direction of the glass ribbon in the forming step.
 [第1実施形態]
 図1は、本発明の第1実施形態によるフロートガラス製造装置の成形装置を示す断面図である。図2は、図1のII-II線に沿った断面図である。図2において、図面を見やすくするため、ヒータ、上部側壁、およびトップロールの図示を省略する。図3は、図1のIII-III線に沿った断面図である。
[First Embodiment]
FIG. 1 is a sectional view showing a forming apparatus of a float glass manufacturing apparatus according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 2, the heater, the upper side wall, and the top roll are not shown in order to make the drawing easier to see. FIG. 3 is a sectional view taken along line III-III in FIG.
 フロートガラス製造装置は、成形装置10を有する。成形装置10は、浴槽20内の溶融金属11の液面の上においてガラスリボン14を流動させて板状に成形する。ガラスリボン14は、浴槽20の下流域において溶融金属11から引き上げられ、浴槽20と出口壁28との間に形成される出口から徐冷炉に送られる。徐冷炉内において徐冷されたガラスリボン14を切断することにより板状のフロートガラスが得られる。 The float glass manufacturing apparatus has a forming apparatus 10. The forming apparatus 10 causes the glass ribbon 14 to flow on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape. The glass ribbon 14 is pulled up from the molten metal 11 in the downstream area of the bathtub 20, and is sent from the outlet formed between the bathtub 20 and the outlet wall 28 to the slow cooling furnace. A plate-like float glass is obtained by cutting the glass ribbon 14 that has been gradually cooled in the slow cooling furnace.
 成形装置10は、例えば図1~3に示すように、浴槽20、スパウトリップ22、ツイール23、リストリクタータイル24、25、入口壁26、出口壁28、天井30、上部側壁32、33、給気路34-1~34-6、ヒータ36、トップロール40、仕切壁42-1~42-5、排気路44-1~44-6などを有する。 As shown in FIGS. 1 to 3, for example, the molding apparatus 10 includes a bathtub 20, a spout trip 22, a twill 23, restrictor tiles 24 and 25, an inlet wall 26, an outlet wall 28, a ceiling 30, upper side walls 32 and 33, Air passages 34-1 to 34-6, heater 36, top roll 40, partition walls 42-1 to 42-5, exhaust passages 44-1 to 44-6, and the like are provided.
 浴槽20は、図1~3に示すように、溶融金属11を収容する。溶融金属11としては、例えば溶融スズまたは溶融スズ合金が使用可能であり、ガラスリボン14を浮かばせることができるものであればよい。 The bathtub 20 accommodates the molten metal 11 as shown in FIGS. As the molten metal 11, for example, molten tin or a molten tin alloy can be used as long as it can float the glass ribbon 14.
 スパウトリップ22は、図1に示すように、溶融金属11の液面の上に溶融ガラス12を連続的に供給する。溶融ガラス12は、スパウトリップ22とツイール23との間を通り、溶融金属11の液面の上に供給され、ガラスリボン14となる。 As shown in FIG. 1, the spout trip 22 continuously supplies the molten glass 12 on the liquid surface of the molten metal 11. The molten glass 12 passes between the spout trip 22 and the twill 23, is supplied onto the liquid surface of the molten metal 11, and becomes a glass ribbon 14.
 ツイール23は、溶融ガラス12の流量を可変とするため、スパウトリップ22に対して上下方向に移動自在とされる。スパウトリップ22とツイール23との間隔が大きいほど、溶融ガラス12の流量が多い。 The twill 23 is movable up and down with respect to the spout trip 22 in order to make the flow rate of the molten glass 12 variable. The larger the distance between the spout trip 22 and the twill 23, the greater the flow rate of the molten glass 12.
 リストリクタータイル24、25は、図2に示すようにガラスリボン14と接触し、ガラスリボン14の幅を規制する。リストリクタータイル24、25は、下流に向けて拡開する。そのため、リストリクタータイル24、25の間において、ガラスリボン14は下流に向けて流動しながら幅を広げる。リストリクタータイル24、25よりも下流側において、ガラスリボン14は、浴槽20の側壁と間隔をおいて流動し、浴槽20の側壁同士の間において自由に幅を変えることができる。 The restrictor tiles 24 and 25 are in contact with the glass ribbon 14 as shown in FIG. 2 and regulate the width of the glass ribbon 14. The restrictor tiles 24 and 25 expand toward the downstream side. Therefore, between the restrictor tiles 24 and 25, the glass ribbon 14 is widened while flowing toward the downstream. On the downstream side of the restrictor tiles 24 and 25, the glass ribbon 14 flows at a distance from the side wall of the bathtub 20, and the width can be freely changed between the side walls of the bathtub 20.
 入口壁26は、図1に示すように浴槽20の上流部の上方に位置する。例えば、入口壁26は、スパウトリップ22よりも下流側に配設され、リストリクタータイル24、25の上方に配設される。図2に示すように入口壁26よりも上流側において、溶融金属11の液面の全部がガラスリボン14によって覆われる。一方、入口壁26よりも下流側において、溶融金属11の液面の大部分はガラスリボン14によって覆われるが、溶融金属11の液面の一部はガラスリボン14によって覆われない。 The entrance wall 26 is located above the upstream part of the bathtub 20 as shown in FIG. For example, the inlet wall 26 is disposed on the downstream side of the spout trip 22 and is disposed above the restrictor tiles 24 and 25. As shown in FIG. 2, the entire liquid surface of the molten metal 11 is covered with the glass ribbon 14 on the upstream side of the inlet wall 26. On the other hand, most of the liquid level of the molten metal 11 is covered with the glass ribbon 14 on the downstream side of the inlet wall 26, but a part of the liquid level of the molten metal 11 is not covered with the glass ribbon 14.
 出口壁28は、図1に示すように浴槽20の下流部の上方に位置する。 The exit wall 28 is located above the downstream part of the bathtub 20 as shown in FIG.
 天井30は、図1に示すように浴槽20の上方に設けられ、入口壁26から出口壁28まで延びる。浴槽20、天井30、入口壁26および出口壁28で囲まれる成形空間50は、溶融金属11の液面のうちガラスリボン14によって覆われない露出部分の酸化を抑制するため、還元性ガスで満たされてよい。外気の混入を低減するため、成形空間50の気圧は大気圧よりも高くてよい。 The ceiling 30 is provided above the bathtub 20 as shown in FIG. 1 and extends from the entrance wall 26 to the exit wall 28. The forming space 50 surrounded by the bathtub 20, the ceiling 30, the inlet wall 26 and the outlet wall 28 is filled with a reducing gas in order to suppress oxidation of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14. May be. In order to reduce the mixing of outside air, the pressure in the molding space 50 may be higher than the atmospheric pressure.
 上部側壁32、33は、図3に示すように浴槽20の側壁と天井30との間の隙間を塞ぎ、外気の混入を抑制する。上部側壁32、33は、入口壁26から出口壁28まで延びる。上部側壁32、33には、トップロール40の回転軸を挿通させる貫通孔、および排気路44-1~44-6の端部などが形成される。 The upper side walls 32 and 33 block the gap between the side wall of the bathtub 20 and the ceiling 30 as shown in FIG. The upper side walls 32, 33 extend from the inlet wall 26 to the outlet wall 28. The upper side walls 32 and 33 are formed with a through-hole through which the rotation shaft of the top roll 40 is inserted, and ends of the exhaust passages 44-1 to 44-6.
 ヒータ36は図1に示すように天井30の給気路34-1~34-6に挿通され、ヒータ36の発熱部は成形空間50に配設される。ヒータ36は、溶融金属11およびガラスリボン14を上方から加熱する。ヒータ36は、ガラスリボン14の流動方向(X方向)および幅方向(Y方向)に間隔をおいて複数設けられる。下流側ほどガラスリボン14の温度が低くなるように、ヒータ36の出力が制御される。 As shown in FIG. 1, the heater 36 is inserted into the air supply passages 34-1 to 34-6 of the ceiling 30, and the heat generating portion of the heater 36 is disposed in the molding space 50. The heater 36 heats the molten metal 11 and the glass ribbon 14 from above. A plurality of heaters 36 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon 14. The output of the heater 36 is controlled so that the temperature of the glass ribbon 14 becomes lower toward the downstream side.
 トップロール40は、図3に示すように、対で用いられ、ガラスリボン14の幅方向端部を押さえ、ガラスリボン14に対して幅方向に張力を加える。複数対のトップロール40が、ガラスリボン14の流動方向に沿って間隔をおいて配設される。 As shown in FIG. 3, the top rolls 40 are used in pairs, pressing the end of the glass ribbon 14 in the width direction, and applying tension to the glass ribbon 14 in the width direction. A plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the glass ribbon 14.
 トップロール40は、ガラスリボン14と接触する回転部材を先端部に有する。複数対のトップロール40がガラスリボン14に対して張力を加える間に、ガラスリボン14は下流方向に流動しながら、徐々に冷却され固くなる。 The top roll 40 has a rotating member in contact with the glass ribbon 14 at the tip. While the plurality of pairs of top rolls 40 apply tension to the glass ribbon 14, the glass ribbon 14 gradually cools and hardens while flowing in the downstream direction.
 トップロール40は、熱による劣化を抑制するため、内部に冷媒流路を有してよい。冷媒流路を流れる水などの冷媒は、トップロール40の熱を吸収し、外部に運ぶことにより、トップロール40を冷却する。 The top roll 40 may have a refrigerant flow path inside to suppress deterioration due to heat. A coolant such as water flowing through the coolant channel absorbs the heat of the top roll 40 and transports it to the outside, thereby cooling the top roll 40.
 仕切壁42-1~42-5は、図1に示すように、天井30から下方に突出することによって成形空間50を仕切るものであり、ガラスリボン14の流動方向に間隔をおいて複数設けられる。各仕切壁42-1~42-5は、図3に示すように一方の上部側壁32から他方の上部側壁33まで延びてよく、成形空間50を横切ってよい。成形空間50は、複数(図1では5つ)の仕切壁42-1~42-5によって複数(図1では6つ)の空間50-1~50-6に仕切られる。 As shown in FIG. 1, the partition walls 42-1 to 42-5 partition the molding space 50 by projecting downward from the ceiling 30, and a plurality of partition walls 42-1 to 42-5 are provided at intervals in the flow direction of the glass ribbon 14. . Each partition wall 42-1 to 42-5 may extend from one upper side wall 32 to the other upper side wall 33 as shown in FIG. The molding space 50 is divided into a plurality of (six in FIG. 1) spaces 50-1 to 50-6 by a plurality (five in FIG. 1) of partition walls 42-1 to 42-5.
 尚、本実施形態の複数の仕切壁42-1~42-5は、同じ形状、同じ寸法であるが、異なる形状、異なる寸法でもよい。また、仕切壁の数は図1では5つであるが、2つ以上であればよい。 The plurality of partition walls 42-1 to 42-5 of the present embodiment have the same shape and the same size, but may have different shapes and different sizes. Moreover, although the number of partition walls is five in FIG. 1, what is necessary is just two or more.
 各空間50-1~50-6には、それぞれの天井に形成される給気路を介して、成形装置10の外部からガスが供給される。なお、成形装置10の外部からとは、以下、成形空間50の外部からに読み替えることができる。このガスは、溶融金属11の液面の露出部分の酸化を制限するため、還元性ガスであってよい。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含む。還元性ガスは、ルーフケーシング31および天井30によって囲まれた予熱空間53において予熱された後、給気路34-1~34-6を介して空間50-1~50-6に供給されてよい。なお、予熱空間53内のガスは、給気路34-1~34-6を介してだけでなく、天井30を形成するレンガの目地等を介しても空間50-1~50-6内に流入する。 In each of the spaces 50-1 to 50-6, gas is supplied from the outside of the molding apparatus 10 through an air supply path formed on each ceiling. Note that, from the outside of the molding apparatus 10, hereinafter, it can be read from the outside of the molding space 50. This gas may be a reducing gas in order to limit oxidation of the exposed portion of the liquid surface of the molten metal 11. The reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas. The reducing gas may be preheated in the preheating space 53 surrounded by the roof casing 31 and the ceiling 30, and then supplied to the spaces 50-1 to 50-6 via the air supply passages 34-1 to 34-6. . Note that the gas in the preheating space 53 enters the spaces 50-1 to 50-6 not only via the air supply passages 34-1 to 34-6 but also via brick joints that form the ceiling 30. Inflow.
 各空間50-1~50-6へのガスの供給量が独立に調整できるように、予熱空間53は複数(図1では5つ)の分割壁43-1~43-5によって複数(図1では6つ)の空間53-1~53-6に分割されてよい。分割壁は、ガラスリボン14の流動方向に間隔をおいて複数配設されてよく、各仕切壁の真上に1つずつ設けられてよい。 The preheating space 53 is divided into a plurality of (five in FIG. 1) dividing walls 43-1 to 43-5 (FIG. 1) so that the amount of gas supplied to each of the spaces 50-1 to 50-6 can be adjusted independently. May be divided into six spaces 53-1 to 53-6. A plurality of dividing walls may be provided at intervals in the flow direction of the glass ribbon 14, and one dividing wall may be provided immediately above each partition wall.
 尚、本実施形態の各空間50-1~50-6には、それぞれの天井に形成される給気路を介して同じ種類のガスが供給されるが、異なる種類のガスが供給されてもよい。また、本実施形態では、仕切壁の数と分割壁の数とが同数であるが、同数でなくてもよい。 Note that the same type of gas is supplied to the spaces 50-1 to 50-6 of the present embodiment through the air supply passages formed on the respective ceilings, but even if different types of gas are supplied. Good. Further, in the present embodiment, the number of partition walls and the number of partition walls are the same number, but may not be the same number.
 複数の空間50-1~50-6のうち最上流の空間50-1には、その天井に形成される給気路34-1の他、ツイール23と入口壁26との間に形成されるスパウト空間27を介して、成形装置10の外部からガスが供給される。 Of the plurality of spaces 50-1 to 50-6, the most upstream space 50-1 is formed between the twill 23 and the inlet wall 26 in addition to the air supply path 34-1 formed on the ceiling. Gas is supplied from outside the molding apparatus 10 through the spout space 27.
 スパウト空間27には、上方および側方の少なくとも一方からガスが供給されてよい。このガスは、不活性ガス、還元性ガスのいずれでもよい。スパウト空間27には排気路が接続されておらず、スパウト空間27に供給されたガスの大部分は入口壁26の下を通り最上流の空間50-1に供給される。 The gas may be supplied to the spout space 27 from at least one of the upper side and the side. This gas may be either an inert gas or a reducing gas. An exhaust path is not connected to the spout space 27, and most of the gas supplied to the spout space 27 passes below the inlet wall 26 and is supplied to the upstream space 50-1.
 各空間50-1~50-6の側壁(つまり、上部側壁32、33)には、各空間から成形装置の外部にガスを排気する排気部としての排気路が形成される。各排気路44-1~44-6(図2参照)は、各排気路が接続される空間のガスを成形装置10の外部に排出する。各排気路44-1~44-6は、各排気路が接続される空間と成形装置10の外部との気圧差を利用してガスを排出してもよいし、ポンプなどの吸引力を利用してガスを排出してもよい。 Exhaust passages are formed on the side walls of the spaces 50-1 to 50-6 (that is, the upper side walls 32 and 33) as exhaust portions for exhausting gas from the spaces to the outside of the molding apparatus. The exhaust passages 44-1 to 44-6 (see FIG. 2) discharge the gas in the space to which the exhaust passages are connected to the outside of the molding apparatus 10. Each of the exhaust passages 44-1 to 44-6 may discharge gas using a pressure difference between the space to which each exhaust passage is connected and the outside of the molding apparatus 10, or may use suction force such as a pump. Then, the gas may be discharged.
 次に、図1~3を再度参照して、上記構成のフロートガラス装置を用いたフロートガラス製造方法について説明する。 Next, with reference to FIGS. 1 to 3 again, a method for manufacturing a float glass using the float glass apparatus having the above configuration will be described.
 フロートガラス製造方法は、浴槽20内の溶融金属11の液面の上においてガラスリボン14を流動させて板状に成形する成形工程を有する。成形工程では、溶融金属11の液面と入口壁26との間を通過したガラスリボン14の幅方向端部をトップロール40によって押さえる。 The float glass manufacturing method has a forming step in which the glass ribbon 14 is flowed on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape. In the forming step, the end portion in the width direction of the glass ribbon 14 that has passed between the liquid surface of the molten metal 11 and the inlet wall 26 is pressed by the top roll 40.
 ところで、成形空間50は、浴槽20内の溶融金属11から蒸発したガスを含む。このガスは、溶融金属11から蒸発した金属元素を、単体および化合物の少なくともいずれかの形態で含有する。化合物としては、金属酸化物、金属硫化物などが挙げられる。以下、このガスを金属含有ガスと呼ぶ。金属含有ガスは、浴槽20の高温域で発生しやすく、浴槽20の上流域で発生しやすい。 By the way, the molding space 50 contains gas evaporated from the molten metal 11 in the bathtub 20. This gas contains the metal element evaporated from the molten metal 11 in the form of at least one of a simple substance and a compound. Examples of the compound include metal oxides and metal sulfides. Hereinafter, this gas is referred to as a metal-containing gas. The metal-containing gas is likely to be generated in the high temperature region of the bathtub 20 and is likely to be generated in the upstream region of the bathtub 20.
 上流域から下流域へ向かう金属含有ガスの流れが抑制できれば、金属含有ガスの冷却が抑制できる。よって、金属含有ガスの冷却によって形成されうる液滴や粒子などの異物の数が低減できる。その結果、異物がガラスリボン14の表面に落下することによって発生する欠点の数が低減できる。 If the flow of the metal-containing gas from the upstream region to the downstream region can be suppressed, cooling of the metal-containing gas can be suppressed. Therefore, the number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas can be reduced. As a result, it is possible to reduce the number of defects caused by the foreign matter falling on the surface of the glass ribbon 14.
 そこで、本実施形態の成形装置10は、上流域から下流域へ向かう金属含有ガスの流れを抑制すべく、以下の(1)~(3)の条件を満たす。 Therefore, the molding apparatus 10 of the present embodiment satisfies the following conditions (1) to (3) in order to suppress the flow of the metal-containing gas from the upstream region to the downstream region.
 (1)入口壁26から数えて1番目の仕切壁42-1の上流端と入口壁26の上流端との間の水平方向距離L1が基準距離H0の3.5~6.5倍である。ここで、基準距離H0は、溶融金属11の液面の露出部分と天井30の下面との間の上下方向距離のことである。また、水平方向距離L1は、ガラスリボン14の流動方向における距離のことである。 (1) The horizontal distance L1 between the upstream end of the first partition wall 42-1 counted from the inlet wall 26 and the upstream end of the inlet wall 26 is 3.5 to 6.5 times the reference distance H0. . Here, the reference distance H0 is a vertical distance between the exposed portion of the liquid surface of the molten metal 11 and the lower surface of the ceiling 30. The horizontal distance L1 is a distance in the flow direction of the glass ribbon 14.
 水平方向距離L1が基準距離H0の6.5倍以下であれば、1番目の仕切壁42-1と入口壁26の間隔が短く、成形空間50の上層と下層との温度差によって生じうる対流が分断されやすく、対流の速度が十分に遅い。水平方向距離L1は、好ましくは基準距離H0の6.0倍以下、より好ましくは基準距離H0の5.5倍以下である。 If the horizontal distance L1 is not more than 6.5 times the reference distance H0, the distance between the first partition wall 42-1 and the inlet wall 26 is short, and convection may occur due to the temperature difference between the upper layer and the lower layer of the molding space 50. Is easily divided and the speed of convection is slow enough. The horizontal distance L1 is preferably not more than 6.0 times the reference distance H0, more preferably not more than 5.5 times the reference distance H0.
 また、水平方向距離L1が基準距離H0の3.5倍以上であれば、仕切壁や分割壁の数が少なく、成形装置10の構成が簡略化できる。水平方向距離L1は、好ましくは基準距離H0の4.0倍以上、より好ましくは基準距離H0の4.5倍以上である。 Further, if the horizontal distance L1 is 3.5 times or more of the reference distance H0, the number of partition walls and division walls is small, and the configuration of the molding apparatus 10 can be simplified. The horizontal distance L1 is preferably 4.0 times or more of the reference distance H0, more preferably 4.5 times or more of the reference distance H0.
 水平方向距離L1を可変とするため、1番目の仕切壁42-1が天井30に対して水平方向に移動可能であってよい。 In order to make the horizontal distance L1 variable, the first partition wall 42-1 may be movable in the horizontal direction with respect to the ceiling 30.
 (2)1番目の仕切壁42-1の下端と天井30の下面との間の上下方向距離H1が基準距離H0の0.4~0.9倍である。 (2) The vertical distance H1 between the lower end of the first partition wall 42-1 and the lower surface of the ceiling 30 is 0.4 to 0.9 times the reference distance H0.
 上下方向距離H1が基準距離H0の0.4倍以上であれば、成形空間50の上層におけるX方向の流れが分断しやすい。成形空間50の上層と下層との温度差によって生じうる対流は、主に、下層から上層に向かう流れ、上層におけるX方向の流れ、上層から下層に向かう流れ、および下層におけるX方向の流れで構成される。これらの流れのうち上層におけるX方向の流れの大部分が分断され、対流が抑制できる。 If the vertical distance H1 is 0.4 times or more the reference distance H0, the flow in the X direction in the upper layer of the molding space 50 is likely to be divided. Convection that can be caused by a temperature difference between the upper layer and the lower layer of the molding space 50 is mainly composed of a flow from the lower layer to the upper layer, a flow in the X direction in the upper layer, a flow from the upper layer to the lower layer, and a flow in the X direction in the lower layer. Is done. Of these flows, most of the flow in the X direction in the upper layer is divided, and convection can be suppressed.
 また、上下方向距離H1が基準距離H0の0.9倍以下であれば、成形空間50の最上流から、1番目の仕切壁42-1よりも下流のガラスリボンを監視することができる。上下方向距離H1は、好ましくは基準距離H0の0.8倍以下、より好ましくは基準距離H0の0.7倍以下である。 Further, if the vertical distance H1 is 0.9 times or less of the reference distance H0, the glass ribbon downstream from the first partition wall 42-1 can be monitored from the uppermost stream of the forming space 50. The vertical distance H1 is preferably 0.8 times or less of the reference distance H0, more preferably 0.7 times or less of the reference distance H0.
 上下方向距離H1を可変とするため、1番目の仕切壁42-1が天井30に対して上下方向に移動可能であってよい。 In order to make the vertical distance H1 variable, the first partition wall 42-1 may be movable in the vertical direction with respect to the ceiling 30.
 (3)1番目の仕切壁42-1と入口壁26との間に形成される空間50-1(以下、「第1の空間50-1」という)の側壁に排気路44-1が設けられる。排気路44-1が設けられることによって、第1の空間50-1において成形装置10の外部へのガスの排出量Qout1が成形装置10の外部からのガスの供給量Qin1の0.5~1.5倍になることができる。Qout1は、好ましくはQin1の0.7~1.3倍である。 (3) An exhaust passage 44-1 is provided on the side wall of a space 50-1 (hereinafter referred to as “first space 50-1”) formed between the first partition wall 42-1 and the entrance wall 26. It is done. By providing the exhaust passage 44-1, the gas discharge amount Qout1 to the outside of the molding apparatus 10 in the first space 50-1 is 0.5 to 1 of the gas supply amount Qin1 from the outside of the molding apparatus 10. Can be 5 times larger. Qout1 is preferably 0.7 to 1.3 times Qin1.
 ここで、Qin1は、第1の空間50-1に上方、側方、および上流の少なくともいずれかから(本実施形態では上方および上流から)供給されるガスのノルマル流量(Nm/hr)を意味する。下流からのガスの供給量はQin1に含めない。上流(つまり、スパウト空間27)からのガスの供給量をQin1に含めるのは、成形装置10の外部からスパウト空間27に供給されたガスの大部分はそのまま第1の空間50-1に供給されるためである。尚、第1の空間50-1に側方からガスが供給される場合、上部側壁32、33に給気路が設けられてよい。 Here, Qin1 is the normal flow rate (Nm 3 / hr) of the gas supplied to the first space 50-1 from at least one of the upper, side, and upstream (from the upper and upstream in this embodiment). means. The amount of gas supplied from the downstream is not included in Qin1. The reason why the amount of gas supplied from the upstream (that is, the spout space 27) is included in Qin1 is that most of the gas supplied from the outside of the molding apparatus 10 to the spout space 27 is supplied as it is to the first space 50-1. Because. When gas is supplied to the first space 50-1 from the side, an air supply path may be provided in the upper side walls 32 and 33.
 Qin1(Nm/hr)と時間との積(Nm)は、例えば第1の空間50-1の体積V1(m)の5~30倍であり、好ましくは10~25倍であり、より好ましくは15~20倍である。第1の空間50-1の体積V1は、H1とL1とW1とを乗算して近似的に算出できる。W1は、第1の空間50-1の幅を表す。 The product (Nm 3 ) of Qin1 (Nm 3 / hr) and time is, for example, 5 to 30 times, preferably 10 to 25 times the volume V1 (m 3 ) of the first space 50-1. More preferably, it is 15 to 20 times. The volume V1 of the first space 50-1 can be approximately calculated by multiplying H1, L1, and W1. W1 represents the width of the first space 50-1.
 一方、Qout1は、第1の空間50-1から上方および側方の少なくともいずれかに(本実施形態では側方に)排出されるガスのノルマル流量(Nm/hr)を意味する。下流および上流へのガスの排出量はQout2に含めない。尚、上流(つまり、スパウト空間27)へのガスの排出量は微量である。スパウト空間27には排気路が接続されないためである。尚、第1の空間50-1から上方にガスが排出される場合、天井30に排気路が設けられてよい。 On the other hand, Qout1 means the normal flow rate (Nm 3 / hr) of the gas discharged from the first space 50-1 to at least one of the upper side and the side (side in this embodiment). The amount of gas discharged downstream and upstream is not included in Qout2. Note that the amount of gas discharged to the upstream (that is, the spout space 27) is very small. This is because the exhaust path is not connected to the spout space 27. When gas is discharged upward from the first space 50-1, an exhaust path may be provided in the ceiling 30.
 上記(1)~(2)の条件が成立すれば、第1の空間50-1における対流の速度が十分に遅い。そのため、上記(3)の条件が成立すれば、成形装置10の外部から第1の空間50-1に供給されたガスの大部分をそのまま成形装置10の外部に排出することができる。第1の空間50-1から下流側の低温の空間への金属含有ガスの流出がほとんどない。よって、金属含有ガスの冷却によって形成されうる液滴や粒子などの異物の数が低減でき、異物がガラスリボン14の表面に落下することによって発生しうる欠点の数が低減できる。 If the conditions (1) and (2) are satisfied, the convection speed in the first space 50-1 is sufficiently low. Therefore, if the condition (3) is satisfied, most of the gas supplied from the outside of the molding apparatus 10 to the first space 50-1 can be discharged to the outside of the molding apparatus 10 as it is. There is almost no outflow of the metal-containing gas from the first space 50-1 to the low temperature space on the downstream side. Therefore, the number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas can be reduced, and the number of defects that can be caused by the foreign matters falling on the surface of the glass ribbon 14 can be reduced.
 また、本実施形態の成形装置10は、上流域から下流域へ向かう金属含有ガスの流れをより抑制すべく、以下の(4)~(6)の条件を満たす。 Further, the molding apparatus 10 of the present embodiment satisfies the following conditions (4) to (6) in order to further suppress the flow of the metal-containing gas from the upstream region to the downstream region.
 (4)入口壁26から数えて1番目の仕切壁42-1の上流端と2番目の仕切壁42-2の上流端との間の水平方向距離L2は、水平方向距離L1と同様に、基準距離H0の3.5~6.5倍であり、好ましくは4.0~6.0倍であり、より好ましくは4.5~5.5倍である。 (4) The horizontal distance L2 between the upstream end of the first partition wall 42-1 and the upstream end of the second partition wall 42-2 counted from the inlet wall 26 is the same as the horizontal distance L1. It is 3.5 to 6.5 times the reference distance H0, preferably 4.0 to 6.0 times, and more preferably 4.5 to 5.5 times.
 水平方向距離L2を可変とするため、1番目の仕切壁42-1および2番目の仕切壁42-2の少なくとも一方が天井30に対して水平方向に移動可能であってよい。 In order to make the horizontal distance L2 variable, at least one of the first partition wall 42-1 and the second partition wall 42-2 may be movable in the horizontal direction with respect to the ceiling 30.
 (5)2番目の仕切壁42-2の下端と天井30の下面との間の上下方向距離H2は、上下方向距離H1と同様に、基準距離H0の0.4~0.9倍であり、好ましくは0.4~0.8倍であり、より好ましくは0.4~0.7倍である。 (5) The vertical distance H2 between the lower end of the second partition wall 42-2 and the lower surface of the ceiling 30 is 0.4 to 0.9 times the reference distance H0, similar to the vertical distance H1. The ratio is preferably 0.4 to 0.8 times, more preferably 0.4 to 0.7 times.
 上下方向距離H2を可変とするため、2番目の仕切壁42-2が天井30に対して上下方向に移動可能であってよい。 In order to make the vertical distance H2 variable, the second partition wall 42-2 may be movable in the vertical direction with respect to the ceiling 30.
 (6)1番目の仕切壁42-1と2番目の仕切壁42-2との間に形成される空間50-2(以下、「第2の空間50-2」という)の側壁に排気路44-2が設けられる。排気路44-2が設けられることによって、第2の空間において第1の空間50-1と同様に成形装置10の外部へのガスの排出量Qout2が成形装置10の外部からのガスの供給量Qin2の0.5~1.5倍になることができる。Qout2は、好ましくはQin2の0.7~1.3倍である。 (6) An exhaust passage is formed on the side wall of a space 50-2 (hereinafter referred to as “second space 50-2”) formed between the first partition wall 42-1 and the second partition wall 42-2. 44-2 is provided. By providing the exhaust passage 44-2, the gas discharge amount Qout2 to the outside of the molding apparatus 10 in the second space is the same as the first space 50-1, and the gas supply amount from the outside of the molding apparatus 10 is the same. It can be 0.5 to 1.5 times Qin2. Qout2 is preferably 0.7 to 1.3 times Qin2.
 ここで、Qin2は、第2の空間50-1に上方および側方の少なくともいずれかから(本実施形態では上方から)供給されるガスのノルマル流量(Nm/hr)を意味する。上流および下流からのガスの供給量はQin2に含めない。 Here, Qin2 means the normal flow rate (Nm 3 / hr) of the gas supplied from at least one of the upper side and the side (from the upper side in this embodiment) to the second space 50-1. The amount of gas supplied from upstream and downstream is not included in Qin2.
 Qin2(Nm/hr)と時間との積(Nm)は、例えば第2の空間50-2の体積V2(m)の5~30倍であり、好ましくは10~25倍であり、より好ましくは15~20倍である。第2の空間50-2の体積V2は、H2とL2とW2とを乗算して近似的に算出できる。W2は、第2の空間50-2の幅を表す。 The product (Nm 3 ) of Qin2 (Nm 3 / hr) and time is, for example, 5 to 30 times, preferably 10 to 25 times the volume V2 (m 3 ) of the second space 50-2. More preferably, it is 15 to 20 times. The volume V2 of the second space 50-2 can be approximately calculated by multiplying H2, L2, and W2. W2 represents the width of the second space 50-2.
 一方、Qout2は、第2の空間50-1から上方および側方の少なくともいずれかに(本実施形態では側方に)排出されるガスのノルマル流量(Nm/hr)を意味する。上流および下流へのガスの排出量はQout2に含めない。 On the other hand, Qout2 means the normal flow rate (Nm 3 / hr) of the gas discharged from the second space 50-1 to at least one of the upper side and the side (side in this embodiment). The amount of gas discharged upstream and downstream is not included in Qout2.
 さらに、本実施形態の成形装置10は、上流域から下流域へ向かう金属含有ガスの流れをさらに抑制すべく、以下の(7)~(9)の条件を満たしてよい。 Furthermore, the molding apparatus 10 of the present embodiment may satisfy the following conditions (7) to (9) in order to further suppress the flow of the metal-containing gas from the upstream region to the downstream region.
 (7)入口壁26から数えてn(nは3以上の自然数)番目の仕切壁の上流端とn+1番目の仕切壁との間の水平方向距離Lnは、水平方向距離L1と同様に、基準距離H0の3.5~6.5倍であり、好ましくは4.0~6.0倍であり、より好ましくは4.5~5.5倍である。 (7) The horizontal distance Ln between the upstream end of the n-th partition wall (n is a natural number of 3 or more) counted from the inlet wall 26 and the (n + 1) -th partition wall is the same as the horizontal distance L1. The distance H0 is 3.5 to 6.5 times, preferably 4.0 to 6.0 times, and more preferably 4.5 to 5.5 times.
 (8)n番目の仕切壁の下端と天井30の下面との間の上下方向距離Hnは、上下方向距離H1と同様に、基準距離H0の0.4~0.9倍であり、好ましくは0.4~0.8倍であり、より好ましくは0.4~0.7倍である。 (8) The vertical distance Hn between the lower end of the nth partition wall and the lower surface of the ceiling 30 is 0.4 to 0.9 times the reference distance H0, like the vertical distance H1, preferably 0.4 to 0.8 times, more preferably 0.4 to 0.7 times.
 (9)n番目の仕切壁とn+1番目の仕切壁との間に形成される空間(以下、「第nの空間」という)の側壁に排気路44-nが設けられる。排気路44-nが設けられることによって、第nの空間において第1の空間50-1と同様に成形装置10の外部へのガスの排出量Qoutnが成形装置10の外部からのガスの供給量Qinnの0.5~1.5倍になることができる。Qoutnは、好ましくはQinnの0.7~1.3倍である。 (9) An exhaust passage 44-n is provided on a side wall of a space (hereinafter referred to as “nth space”) formed between the nth partition wall and the (n + 1) th partition wall. By providing the exhaust path 44-n, the gas discharge amount Qoutn to the outside of the molding apparatus 10 in the n-th space is the same as that of the first space 50-1, and the gas supply amount from the outside of the molding apparatus 10 is It can be 0.5 to 1.5 times Qinn. Qoutn is preferably 0.7 to 1.3 times Qinn.
 ここで、Qinnは、第nの空間に上方および側方の少なくともいずれかから(本実施形態では上方から)供給されるガスのノルマル流量(Nm/hr)を意味する。上流および下流からのガスの供給量はQinnに含めない。 Here, Qinn means the normal flow rate (Nm 3 / hr) of the gas supplied to the nth space from at least one of the upper side and the side (from the upper side in this embodiment). The amount of gas supplied from upstream and downstream is not included in Qinn.
 Qinn(Nm/hr)と時間との積(Nm)は、例えば第nの空間の体積Vn(m)の5~30倍であり、好ましくは10~25倍であり、より好ましくは15~20倍である。第nの空間の体積Vnは、HnとLnとWnとを乗算して近似的に算出できる。Wnは、第nの空間の幅を表す。 The product (Nm 3 ) of Qinn (Nm 3 / hr) and time is, for example, 5 to 30 times the volume Vn (m 3 ) of the nth space, preferably 10 to 25 times, more preferably 15 to 20 times. The volume Vn of the nth space can be approximately calculated by multiplying Hn, Ln, and Wn. Wn represents the width of the nth space.
 一方、Qoutnは、第nの空間から上方および側方の少なくともいずれかに(本実施形態では側方に)排出されるガスのノルマル流量(Nm/hr)を意味する。上流および下流へのガスの排出量はQoutnに含めない。 On the other hand, Qoutn means a normal flow rate (Nm 3 / hr) of gas discharged from at least one of the upper side and the side from the n-th space (side in this embodiment). The amount of gas discharged upstream and downstream is not included in Qoutn.
 製造されるフロートガラスは、例えば無アルカリガラスであってよい。無アルカリガラスは、アルカリ金属酸化物(NaO、KO、LiO等)を実質的に含有しないガラスである。無アルカリガラスは、アルカリ金属酸化物の含有量の合量が0.1質量%以下でよい。 The manufactured float glass may be, for example, an alkali-free glass. The alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O, etc.). The alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
 無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50~73%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、MgO+CaO+SrO+BaO:8~29.5%を含有する。 The alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 8 to 29.5%.
 無アルカリガラスは、高い歪点と高い溶解性とを両立する場合、好ましくは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%を含有する。 When the alkali-free glass has both a high strain point and high solubility, it is preferably expressed in terms of mass% on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
 無アルカリガラスは、特に高い歪点を得たい場合、好ましくは、酸化物基準の質量%表示で、SiO:54~73%、Al:10.5~22.5%、B:0~5.5%、MgO:0~8%、CaO:0~9%、SrO:0~16%、BaO:0~2.5%、MgO+CaO+SrO+BaO:8~26%を含有する。 When it is desired to obtain a particularly high strain point, the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26%.
 これらの無アルカリガラスの成形温度は、一般的なソーダライムガラスの成形温度よりも100℃以上高い。そのため、溶融金属11から蒸発する金属含有ガスの量が多く、成形空間50の上層と下層との温度差によって生じうる対流を仕切壁42-1~42-5によって分断する意義が大きい。 The molding temperature of these alkali-free glasses is 100 ° C. or more higher than the molding temperature of general soda lime glass. Therefore, the amount of the metal-containing gas that evaporates from the molten metal 11 is large, and it is significant to divide the convection that may be caused by the temperature difference between the upper layer and the lower layer of the molding space 50 by the partition walls 42-1 to 42-5.
 [第2実施形態]
 第2実施形態の成形装置と上記第1実施形態の成形装置とは、異なる下部構造を有し、略同じ上部構造を有する。以下、第2実施形態の成形装置の下部構造を中心に説明する。
[Second Embodiment]
The molding apparatus according to the second embodiment and the molding apparatus according to the first embodiment have different lower structures and substantially the same upper structure. Hereinafter, description will be made centering on the lower structure of the molding apparatus of the second embodiment.
 図4は、本発明の第2実施形態による成形装置の下部構造を示す平面図である。図5は、図4のV-V線に沿った成形装置の断面図である。 FIG. 4 is a plan view showing the lower structure of the molding apparatus according to the second embodiment of the present invention. FIG. 5 is a cross-sectional view of the molding apparatus taken along line VV in FIG.
 浴槽120は、図1に示す浴槽20と同様に構成される。浴槽120は、図5に示すように溶融金属111を収容し、溶融金属111の液面の上においてガラスリボン114を流動させる。浴槽120は、上方に開口する金属製のケーシング161、並びにケーシング161内に設置されるボトム煉瓦162及びサイド煉瓦163を含む。ケーシング161は、外気の混入を防止するためのものである。ケーシング161の下面は、外気に曝され、自然冷却される。ボトム煉瓦162はケーシング161の内側底面を保護し、サイド煉瓦163はケーシング161の内側側面を保護する。複数のボトム煉瓦162が、X方向およびY方向に2次元的に配列される。複数のボトム煉瓦162を囲むように、複数のサイド煉瓦163がケーシング161の内側側面に沿って四角環状に配列される。 The bathtub 120 is configured in the same manner as the bathtub 20 shown in FIG. As shown in FIG. 5, the bath 120 accommodates the molten metal 111 and causes the glass ribbon 114 to flow on the liquid surface of the molten metal 111. The bathtub 120 includes a metal casing 161 that opens upward, and a bottom brick 162 and a side brick 163 that are installed in the casing 161. The casing 161 is for preventing external air from being mixed. The lower surface of the casing 161 is exposed to the outside air and naturally cooled. The bottom brick 162 protects the inner bottom surface of the casing 161, and the side brick 163 protects the inner side surface of the casing 161. A plurality of bottom bricks 162 are two-dimensionally arranged in the X direction and the Y direction. A plurality of side bricks 163 are arranged in a square ring along the inner side surface of the casing 161 so as to surround the plurality of bottom bricks 162.
 浴槽120内の溶融金属111の液面は、図4に示すように、幅の広いワイド域Z1と、幅が徐々に狭くなる中間域Z2と、幅の狭いナロー域Z3とを上流側からこの順で備える。ワイド域Z1の温度は、アルカリ含有ガラスの場合、700℃以上に設定される。また、ワイド域Z1の温度は、無アルカリガラスの場合、900℃以上に設定される。 As shown in FIG. 4, the liquid level of the molten metal 111 in the bath 120 includes a wide area Z1, a middle area Z2 that gradually decreases in width, and a narrow area Z3 that narrows from the upstream side. Prepare in order. The temperature of the wide area Z1 is set to 700 ° C. or higher in the case of alkali-containing glass. Further, the temperature of the wide area Z1 is set to 900 ° C. or more in the case of alkali-free glass.
 浴槽120内の溶融金属111の液面は、図5に示すように、ガラスリボン114で覆われない露出部分と、ガラスリボン114で覆われる被覆部分とを含む。露出部分は、図4に示すように被覆部分の幅方向両側に存在する。 As shown in FIG. 5, the liquid level of the molten metal 111 in the bathtub 120 includes an exposed portion that is not covered with the glass ribbon 114 and a covered portion that is covered with the glass ribbon 114. The exposed portion exists on both sides in the width direction of the covering portion as shown in FIG.
 突出壁170は、浴槽120のサイド煉瓦163の上部から突出し、溶融金属111の液面の露出部分との間に隙間178を形成する。突出壁170は、例えば板状であって、溶融金属111の上方に水平に設けられる。 The protruding wall 170 protrudes from the upper part of the side brick 163 of the bathtub 120, and forms a gap 178 between the protruding surface of the molten metal 111 and the liquid surface. The protruding wall 170 has, for example, a plate shape, and is provided horizontally above the molten metal 111.
 尚、本実施形態の突出壁170は、溶融金属111の液面に対して水平に設けられるが、例えば、溶融金属111の液面に対して斜めに設けられてもよい。 In addition, although the protrusion wall 170 of this embodiment is provided horizontally with respect to the liquid level of the molten metal 111, for example, it may be provided obliquely with respect to the liquid level of the molten metal 111.
 突出壁170は、突出壁170よりも上方の空間に外部から混入した酸素ガスと溶融金属111との接触を制限し、溶融金属111中の酸素濃度の増加を抑制する。また、突出壁170は、上方から落下する異物117を受け止め、異物117の溶融金属111への落下を防止する。 The protruding wall 170 restricts the contact between the oxygen gas mixed from the outside into the space above the protruding wall 170 and the molten metal 111, and suppresses an increase in the oxygen concentration in the molten metal 111. Further, the protruding wall 170 receives the foreign matter 117 falling from above, and prevents the foreign matter 117 from dropping onto the molten metal 111.
 給気管158は、突出壁170の貫通孔を介して成形装置の外部から、言い換えると成形空間50の外部から隙間178に還元性ガスを供給する。給気管158の還元性ガスは、例えば還元力を有するガスとして水素ガスを含む。 The air supply pipe 158 supplies reducing gas to the gap 178 from the outside of the molding apparatus through the through hole of the protruding wall 170, in other words, from the outside of the molding space 50. The reducing gas in the supply pipe 158 includes hydrogen gas as a gas having a reducing power, for example.
 尚、給気管158の還元性ガスは、窒素ガスなどの不活性ガスをさらに含む混合ガスでもよく、コスト削減のため、図1に示す給気路34-1~34-6の還元性ガスと同じ種類のガスでもよい。給気管158の還元性ガスは、溶融金属111やガラスリボン114を冷却しないように高温のガスであってよく、給気管158にはバンドヒータが巻かれていてもよい。 The reducing gas in the supply pipe 158 may be a mixed gas further containing an inert gas such as nitrogen gas. For reducing costs, the reducing gas in the supply passages 34-1 to 34-6 shown in FIG. The same type of gas may be used. The reducing gas in the supply pipe 158 may be a high-temperature gas so as not to cool the molten metal 111 and the glass ribbon 114, and a band heater may be wound around the supply pipe 158.
 給気管158は、隙間178に還元性ガスを供給することで、溶融金属111の液面の露出部分と接触する雰囲気の組成を所望の組成に調整できる。よって、詳しくは後述するが、溶融金属111の液面の露出部分から蒸発した金属酸化物ガスの拡散を抑制することができ、また、溶融金属111中の酸素濃度を低減することができる。 The supply pipe 158 can adjust the composition of the atmosphere in contact with the exposed portion of the liquid surface of the molten metal 111 to a desired composition by supplying the reducing gas to the gap 178. Therefore, as will be described in detail later, diffusion of the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 can be suppressed, and the oxygen concentration in the molten metal 111 can be reduced.
 給気管158が隙間178に供給した還元性ガスは、溶融金属111の液面の露出部分から蒸発した金属酸化物ガスと反応し、金属元素ガスと水蒸気とを生成する。隙間178における金属元素ガスの量が飽和蒸気量を超えると、新たに生成した金属元素ガスは液化し、金属元素の液滴が溶融金属111上に落下する。一方、水蒸気は、図1に示す排気路44-1~44-6によって成形装置の外部に排気される。 The reducing gas supplied to the gap 178 by the supply pipe 158 reacts with the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 to generate a metal element gas and water vapor. When the amount of the metal element gas in the gap 178 exceeds the saturated vapor amount, the newly generated metal element gas is liquefied, and the metal element droplets fall on the molten metal 111. On the other hand, the water vapor is exhausted to the outside of the molding apparatus through the exhaust passages 44-1 to 44-6 shown in FIG.
 このように、給気管158が隙間178に供給した還元性ガスは、溶融金属111の液面の露出部分から蒸発した金属酸化物ガスを分解し、金属酸化物ガスの拡散を抑制する。よって、金属酸化物ガスの冷却によって生じうる金属酸化物粒子のガラスリボン114上への落下を抑制することができる。溶融金属111が溶融スズの場合、その液面からの酸化第一スズ(SnO)などの酸化スズの蒸発は、700℃以上で生じやすく、800℃以上で顕著であり、1000℃以上で特に顕著である。 Thus, the reducing gas supplied to the gap 178 by the air supply pipe 158 decomposes the metal oxide gas evaporated from the exposed portion of the liquid surface of the molten metal 111 and suppresses the diffusion of the metal oxide gas. Therefore, the fall of the metal oxide particles that can be generated by cooling the metal oxide gas onto the glass ribbon 114 can be suppressed. When the molten metal 111 is molten tin, evaporation of tin oxide such as stannous oxide (SnO) from the liquid surface is likely to occur at 700 ° C. or higher, is remarkable at 800 ° C. or higher, and is particularly remarkable at 1000 ° C. or higher. It is.
 また、給気管158が隙間178に供給した還元性ガスは、溶融金属111の液面の露出部分と接触し、溶融金属111中の酸素と反応し、水蒸気を生成する。この水蒸気は、図1に示す排気路44-1~44-6によって成形装置の外部に排気される。 Further, the reducing gas supplied to the gap 178 by the supply pipe 158 comes into contact with the exposed portion of the liquid surface of the molten metal 111 and reacts with oxygen in the molten metal 111 to generate water vapor. This water vapor is exhausted to the outside of the molding apparatus through exhaust passages 44-1 to 44-6 shown in FIG.
 このように、給気管158が隙間178に供給した還元性ガスは、溶融金属111中の酸素濃度を低減する。よって、溶融金属111の液面の露出部分から蒸発する金属酸化物ガスの量が低減できる。 Thus, the reducing gas supplied to the gap 178 by the air supply pipe 158 reduces the oxygen concentration in the molten metal 111. Therefore, the amount of metal oxide gas that evaporates from the exposed surface of the molten metal 111 can be reduced.
 給気管158が隙間178に供給する還元性ガス中の水素ガス濃度(体積%)は、図1に示す給気路34-1~34-6が成形空間50に供給する還元性ガス中の水素ガス濃度(体積%)よりも高いことが好ましい。給気管158が設けられない場合に比べて、溶融金属111の液面の露出部分と接触する雰囲気の還元力が高くなる。給気管158から隙間178に供給される還元性ガスは、実質的に水素ガスのみで構成されてもよく、99体積%以上の水素ガス濃度を有してよい。 The hydrogen gas concentration (volume%) in the reducing gas supplied to the gap 178 by the supply pipe 158 is the hydrogen in the reducing gas supplied to the forming space 50 by the supply passages 34-1 to 34-6 shown in FIG. It is preferably higher than the gas concentration (volume%). Compared with the case where the supply pipe 158 is not provided, the reducing power of the atmosphere in contact with the exposed portion of the liquid surface of the molten metal 111 is increased. The reducing gas supplied from the supply pipe 158 to the gap 178 may be substantially composed of only hydrogen gas, and may have a hydrogen gas concentration of 99% by volume or more.
 尚、本実施形態の給気管158の還元性ガスは、還元力を有するガスとして水素ガスを含むが、還元力を有するガスは水素ガスに限定されない。例えば、給気管158の還元性ガスは、還元力を有するガスとしてアセチレンガス(C)を含んでもよい。アセチレンガスは、水素ガスよりも高い還元力を有する。この場合、給気管158が隙間178に供給する還元性ガス中のアセチレンガス濃度(体積%)は、図1に示す給気路34-1~34-6が成形空間50に供給する還元性ガス中の水素ガス濃度(体積%)よりも低くてもよい。給気管158が設けられない場合に比べて、溶融金属111の液面の露出部分と接触する雰囲気の還元力が高くなればよい。 In addition, although the reducing gas of the supply pipe 158 of this embodiment contains hydrogen gas as gas which has a reducing power, the gas which has a reducing power is not limited to hydrogen gas. For example, the reducing gas in the supply pipe 158 may include acetylene gas (C 2 H 2 ) as a gas having a reducing power. Acetylene gas has a higher reducing power than hydrogen gas. In this case, the acetylene gas concentration (volume%) in the reducing gas supplied to the gap 178 by the supply pipe 158 is the reducing gas supplied to the molding space 50 by the supply passages 34-1 to 34-6 shown in FIG. It may be lower than the hydrogen gas concentration (volume%) inside. Compared with the case where the supply pipe 158 is not provided, the reducing power of the atmosphere in contact with the exposed portion of the liquid surface of the molten metal 111 may be increased.
 給気管158はガラスリボン114の流動方向に間隔をおいて複数設けられてよい。給気管158の供給口が図1に示す第1の空間50-1に存在する場合、給気管158によるガスの供給量はQin1に含める。また、給気管158の供給口が図1に示す第2の空間50-2に存在する場合、給気管158によるガスの供給量はQin2に含める。 A plurality of air supply pipes 158 may be provided at intervals in the flow direction of the glass ribbon 114. When the supply port of the supply pipe 158 exists in the first space 50-1 shown in FIG. 1, the amount of gas supplied through the supply pipe 158 is included in Qin1. When the supply port of the supply pipe 158 exists in the second space 50-2 shown in FIG. 1, the amount of gas supplied through the supply pipe 158 is included in Qin2.
 各給気管158からのガスの供給量は、例えばQin1の0.01~10%であり、第1の空間50-1におけるガスの流れに影響を与えない程度の流量とされる。各給気管158からのガスの供給量は、好ましくはQin1の0.05~1%であり、より好ましくはQin1の0.1~0.5%である。 The amount of gas supplied from each air supply pipe 158 is, for example, 0.01 to 10% of Qin1, and is set to a flow rate that does not affect the gas flow in the first space 50-1. The amount of gas supplied from each air supply pipe 158 is preferably 0.05 to 1% of Qin1, and more preferably 0.1 to 0.5% of Qin1.
 突出壁170は、カーボン(C)で形成され、給気管158が隙間178に供給する還元性ガスに曝されてよい。カーボンは、還元力を有し、酸素濃度の低い環境下で一酸化炭素ガス(CO)を生じさせる。カーボンは、溶融金属111から蒸発した金属酸化物ガスと反応し、金属元素ガスと、一酸化炭素ガスとを生成する。隙間178における金属元素ガスの量が飽和蒸気量を超えると、新たに生成した金属元素ガスは液化し、その液滴が浴槽120内の溶融金属111上に落下する。一方、一酸化炭素ガスは、図1に示す排気路44-1~44-6によって成形装置の外部に排気される。 The protruding wall 170 may be formed of carbon (C) and exposed to a reducing gas supplied from the supply pipe 158 to the gap 178. Carbon has a reducing power and generates carbon monoxide gas (CO) in an environment having a low oxygen concentration. Carbon reacts with the metal oxide gas evaporated from the molten metal 111 to generate a metal element gas and a carbon monoxide gas. When the amount of the metal element gas in the gap 178 exceeds the saturated vapor amount, the newly generated metal element gas is liquefied and the droplets fall on the molten metal 111 in the bathtub 120. On the other hand, the carbon monoxide gas is exhausted to the outside of the molding apparatus through exhaust passages 44-1 to 44-6 shown in FIG.
 このように、カーボンで形成される突出壁170は、溶融金属111から蒸発した金属酸化物ガスを分解し、金属酸化物ガスの拡散を抑制する。よって、金属酸化物ガスの冷却によって生じうる金属酸化物粒子のガラスリボン114上への落下が抑制できる。カーボンによる還元反応は、450℃以上で進みやすい。 Thus, the protruding wall 170 formed of carbon decomposes the metal oxide gas evaporated from the molten metal 111 and suppresses diffusion of the metal oxide gas. Therefore, the fall of the metal oxide particles that can be generated by cooling the metal oxide gas onto the glass ribbon 114 can be suppressed. The reduction reaction with carbon tends to proceed at 450 ° C. or higher.
 また、カーボンで形成される突出壁170は、ガラスリボン114との濡れ性が良い。そのため、ガラスリボン114の流れが乱れ、ガラスリボン114が突出壁170と接触した場合に、ガラスリボン114の流動性が低下しにくい。 Also, the protruding wall 170 made of carbon has good wettability with the glass ribbon 114. Therefore, when the flow of the glass ribbon 114 is disturbed and the glass ribbon 114 comes into contact with the protruding wall 170, the fluidity of the glass ribbon 114 is not easily lowered.
 突出壁170は、図4に示すようにガラスリボン114の流動方向(X方向)に沿って連続的に配置される複数のブロック170-1~170-6に分割されてよい。ブロック170-1~170-6毎の設置が可能であるので、設置作業が容易である。 The protruding wall 170 may be divided into a plurality of blocks 170-1 to 170-6 that are continuously arranged along the flow direction (X direction) of the glass ribbon 114 as shown in FIG. Since each block 170-1 to 170-6 can be installed, the installation work is easy.
 突出壁170は、高温のワイド域Z1の上方に設けられてよい。ワイド域Z1の温度は溶融金属111から金属酸化物ガスが蒸発し始める温度よりも高い。 The protruding wall 170 may be provided above the high temperature wide area Z1. The temperature of the wide area Z1 is higher than the temperature at which the metal oxide gas starts to evaporate from the molten metal 111.
 突出壁170のX方向寸法X1は、溶融金属111のX方向寸法(図1においてX2)の10%以上であってよく、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは70%以上、特に好ましくは90%以上である。 The X direction dimension X1 of the protruding wall 170 may be 10% or more of the X direction dimension (X2 in FIG. 1) of the molten metal 111, preferably 30% or more, more preferably 50% or more, and even more preferably 70%. Above, especially preferably 90% or more.
 突出壁170は、上方から見た場合にガラスリボン114と重ならない位置に設けられてよい。ガラスリボン114の側端の位置を作業者が確認できる。突出壁170の先端と、ガラスリボン114の側端との間のY方向における間隔Y1(図5参照)は、隙間178に供給される還元性ガスの効果を十分に得るため、例えば150mm以下、好ましくは100mm以下、より好ましくは50mm以下、特に好ましくは25mm以下である。また、間隔Y1は、ガラスリボン114の側端の位置の確認のため、例えば0mmよりも大きく、好ましくは10mm以上、より好ましくは15mm以上である。 The protruding wall 170 may be provided at a position that does not overlap the glass ribbon 114 when viewed from above. An operator can confirm the position of the side end of the glass ribbon 114. An interval Y1 (see FIG. 5) in the Y direction between the front end of the protruding wall 170 and the side end of the glass ribbon 114 is, for example, 150 mm or less in order to sufficiently obtain the effect of reducing gas supplied to the gap 178. Preferably it is 100 mm or less, More preferably, it is 50 mm or less, Most preferably, it is 25 mm or less. Further, the interval Y1 is, for example, larger than 0 mm, preferably 10 mm or more, and more preferably 15 mm or more in order to confirm the position of the side end of the glass ribbon 114.
 突出壁170の下面と、溶融金属111の液面の露出部分との間の間隔h1(図5参照)は、後述する換気回数の増加を抑えるため、例えば100mm以下、好ましくは50mm以下、より好ましくは25mm以下、さらに好ましくは10mm以下である。また、上記間隔h1は、成形装置への溶融ガラスの供給量の乱れによる突出壁170とガラスリボン114との接触防止のため、ガラスリボンの平衡板厚である7mmよりも大きくてよい。ガラスリボンの平衡板厚とは、外力のない自然状態におけるガラスリボンの板厚を意味する。 An interval h1 (see FIG. 5) between the lower surface of the protruding wall 170 and the exposed portion of the liquid surface of the molten metal 111 is, for example, 100 mm or less, preferably 50 mm or less, more preferably, in order to suppress an increase in the number of ventilations described later. Is 25 mm or less, more preferably 10 mm or less. Further, the interval h1 may be larger than 7 mm, which is an equilibrium plate thickness of the glass ribbon, in order to prevent contact between the protruding wall 170 and the glass ribbon 114 due to disturbance of the amount of molten glass supplied to the molding apparatus. The equilibrium thickness of the glass ribbon means the thickness of the glass ribbon in a natural state with no external force.
 隙間178の1時間当たりの換気回数は、少なすぎると浄化処理が十分に行われず、多すぎるとコストがかさむので、好ましくは3~20回、より好ましくは8~10回である。ここで、換気回数は、1時間の間に隙間178に供給される還元性ガスの標準状態(1気圧、25℃)での体積(Nm)と、隙間178の体積との比として表される。 The number of ventilations per hour in the gap 178 is preferably 3 to 20 times, more preferably 8 to 10 times because the purification process is not sufficiently performed if the number is too small and the cost is increased if the number is too large. Here, the ventilation frequency is expressed as a ratio between the volume (Nm 3 ) of the reducing gas supplied to the gap 178 in one hour in a standard state (1 atm, 25 ° C.) and the volume of the gap 178. The
 図6は、第1変形例による突出壁とガラスリボンとの位置関係を示す平面図である。第1変形例の突出壁270は、図4および図5に示す突出壁170に代えて用いられる。 FIG. 6 is a plan view showing the positional relationship between the protruding wall and the glass ribbon according to the first modification. The protruding wall 270 of the first modification is used in place of the protruding wall 170 shown in FIGS. 4 and 5.
 突出壁270の先端部は、上方から見た場合にガラスリボン114と重なる部分とガラスリボン114と重ならない部分とを両方有し、凹凸形状である。このように、ガラスリボン114の側端のうち位置確認が不要な部分は、突出壁270の下に隠れてよい。 The tip of the protruding wall 270 has both a portion that overlaps with the glass ribbon 114 and a portion that does not overlap with the glass ribbon 114 when viewed from above, and has an uneven shape. As described above, a portion of the side end of the glass ribbon 114 that does not require position confirmation may be hidden under the protruding wall 270.
 突出壁270の先端部のうち上方から見た場合にガラスリボン114と重なる部分のY方向寸法Y2は、150mm以下、好ましくは100mm以下、より好ましくは50mm以下、特に好ましくは25mm以下である。上記Y方向寸法Y2が150mm以下であれば、図5に示す給気管158から供給される還元力の強い還元性ガスにガラスリボン114が曝されるのを抑制することができる。 The Y-direction dimension Y2 of the portion overlapping the glass ribbon 114 when viewed from the upper end of the protruding wall 270 is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less. If the Y-direction dimension Y2 is 150 mm or less, the glass ribbon 114 can be prevented from being exposed to a reducing gas having a strong reducing power supplied from the air supply pipe 158 shown in FIG.
 突出壁270の先端部のうち上方から見た場合にガラスリボン114と重ならない部分と、ガラスリボン114の側端との間のY方向における間隔Y3は、図5に示す間隔Y1と同様に、例えば150mm以下、好ましくは100mm以下、より好ましくは50mm以下、特に好ましくは25mm以下である。また、間隔Y3は、例えば0mmよりも大きく、好ましくは10mm以上、より好ましくは15mm以上である。 The distance Y3 in the Y direction between the portion of the tip of the protruding wall 270 that does not overlap the glass ribbon 114 when viewed from above and the side edge of the glass ribbon 114 is the same as the distance Y1 shown in FIG. For example, it is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less. Moreover, the space | interval Y3 is larger than 0 mm, for example, Preferably it is 10 mm or more, More preferably, it is 15 mm or more.
 図7は、第2変形例による成形装置の要部を示す断面図である。第2変形例の成形装置は、図4および図5に示す突出壁170の他に、突出壁170の下面から突出する壁としての鉛直壁179を有する。その他の構成は、図4および図5に示す成形装置と同様である。 FIG. 7 is a cross-sectional view showing a main part of a molding apparatus according to a second modification. The molding apparatus of the second modified example has a vertical wall 179 as a wall protruding from the lower surface of the protruding wall 170 in addition to the protruding wall 170 shown in FIGS. Other configurations are the same as those of the molding apparatus shown in FIGS.
 鉛直壁179は、突出壁170の下面から突出し、溶融金属111の液面に対して鉛直とされる。尚、溶融金属111の液面に対して斜めの壁が突出壁170の下面に突設されてもよい。 The vertical wall 179 protrudes from the lower surface of the protruding wall 170 and is perpendicular to the liquid level of the molten metal 111. In addition, an oblique wall with respect to the liquid level of the molten metal 111 may be provided on the lower surface of the protruding wall 170.
 鉛直壁179は、図7に示すように突出壁170の先端から下方に延びてよい。尚、鉛直壁179は、突出壁170における先端と基端との途中から下方に延びていてもよい。 The vertical wall 179 may extend downward from the tip of the protruding wall 170 as shown in FIG. Note that the vertical wall 179 may extend downward from the middle between the distal end and the proximal end of the protruding wall 170.
 鉛直壁179は、ガラスリボン114の側縁に沿って、突出壁170の上流端から下流端まで形成されてよい。 The vertical wall 179 may be formed from the upstream end to the downstream end of the protruding wall 170 along the side edge of the glass ribbon 114.
 給気管158は、上述の如く、突出壁170の貫通孔を介して成形装置の外部から隙間178に還元性ガスを供給する。給気管158の還元性ガスは、例えば還元力を有するガスとして水素ガスを含む。 The air supply pipe 158 supplies the reducing gas to the gap 178 from the outside of the molding apparatus through the through hole of the protruding wall 170 as described above. The reducing gas in the supply pipe 158 includes hydrogen gas as a gas having a reducing power, for example.
 給気管158の先端部が接続される突出壁170の貫通孔は、突出壁170を支持するサイド煉瓦163と鉛直壁179との間に位置する。給気管158によって隙間178に供給される還元力の高い還元性ガスにガラスリボン114が曝されにくい。 The through hole of the protruding wall 170 to which the tip of the air supply pipe 158 is connected is located between the side brick 163 that supports the protruding wall 170 and the vertical wall 179. The glass ribbon 114 is not easily exposed to reducing gas having a high reducing power supplied to the gap 178 by the air supply pipe 158.
 鉛直壁179は、上方から見た場合にガラスリボン114と重ならない位置に設けられてよい。鉛直壁179と、ガラスリボン114の側端との間のY方向における間隔Y4は、図5に示す間隔Y1と同様に、例えば150mm以下、好ましくは100mm以下、より好ましくは50mm以下、特に好ましくは25mm以下である。また、間隔Y4は、例えば0mmよりも大きく、好ましくは10mm以上、より好ましくは15mm以上である。 The vertical wall 179 may be provided at a position that does not overlap the glass ribbon 114 when viewed from above. The interval Y4 in the Y direction between the vertical wall 179 and the side edge of the glass ribbon 114 is, for example, 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably, similarly to the interval Y1 shown in FIG. 25 mm or less. Moreover, the space | interval Y4 is larger than 0 mm, for example, Preferably it is 10 mm or more, More preferably, it is 15 mm or more.
 尚、本実施形態の鉛直壁179は、図4および図5に示す突出壁170の下面に突設されるが、図6に示す突出壁270の下面に突設されてもよい。この場合、鉛直壁179は、上方から見た場合にガラスリボン114と重なる部分を有してもよい。この部分は、上方から見た場合にガラスリボン114の側端からガラスリボン114の幅方向内側に突出する。その突出距離は、図6に示すY方向寸法Y2と同様に、150mm以下、好ましくは100mm以下、より好ましくは50mm以下、特に好ましくは25mm以下である。 In addition, although the vertical wall 179 of this embodiment protrudes on the lower surface of the protrusion wall 170 shown in FIG. 4 and FIG. 5, it may protrude on the lower surface of the protrusion wall 270 shown in FIG. In this case, the vertical wall 179 may have a portion that overlaps the glass ribbon 114 when viewed from above. This portion projects inward in the width direction of the glass ribbon 114 from the side end of the glass ribbon 114 when viewed from above. The protrusion distance is 150 mm or less, preferably 100 mm or less, more preferably 50 mm or less, and particularly preferably 25 mm or less, similarly to the Y-direction dimension Y2 shown in FIG.
 鉛直壁179は、溶融金属111及びガラスリボン114の流動を妨げないように、溶融金属111及びガラスリボン114よりも上方に設けられる。鉛直壁179の下端と、溶融金属111の液面の露出部分との間の間隔h2は、好ましくは50mm以下、より好ましくは25mm以下、さらに好ましくは10mm以下である。また、間隔h2は、外力のない自然状態でのガラスリボンの平衡板厚が約7mmであることから、好ましくは7mmよりも大きい。 The vertical wall 179 is provided above the molten metal 111 and the glass ribbon 114 so as not to hinder the flow of the molten metal 111 and the glass ribbon 114. The distance h2 between the lower end of the vertical wall 179 and the exposed portion of the liquid surface of the molten metal 111 is preferably 50 mm or less, more preferably 25 mm or less, and even more preferably 10 mm or less. Further, the distance h2 is preferably larger than 7 mm because the equilibrium thickness of the glass ribbon in a natural state without external force is about 7 mm.
 図8は、第3変形例による成形装置の要部を示す断面図である。第3変形例では、上記第2変形例の突出壁170に排気部としての排気管159が接続される。尚、排気管159は、図4や図5に示す突出壁170、または上記第1変形例の突出壁270に接続されてもよい。 FIG. 8 is a cross-sectional view showing a main part of a molding apparatus according to a third modification. In the third modified example, an exhaust pipe 159 as an exhaust unit is connected to the protruding wall 170 of the second modified example. The exhaust pipe 159 may be connected to the protruding wall 170 shown in FIGS. 4 and 5 or the protruding wall 270 of the first modified example.
 排気管159は、突出壁170に接続され、突出壁170の貫通孔を介して隙間178から成形装置の外部にガスを排出する。このガスが通る突出壁170の貫通孔は、突出壁170を支持するサイド煉瓦163と、鉛直壁179との間に位置する。 The exhaust pipe 159 is connected to the protruding wall 170 and discharges gas from the gap 178 to the outside of the molding apparatus through the through hole of the protruding wall 170. The through hole of the protruding wall 170 through which the gas passes is located between the side brick 163 that supports the protruding wall 170 and the vertical wall 179.
 排気管159は、ガラスリボン114の流動方向に間隔をおいて複数設けられてよい。排気管159の開口部が図1に示す第1の空間50-1に存在する場合、排気管159によるガスの排気量はQout1に含める。また、排気管159の開口部が図1に示す第2の空間50-2に存在する場合、排気管159によるガスの排気量はQout2に含める。 A plurality of exhaust pipes 159 may be provided at intervals in the flow direction of the glass ribbon 114. When the opening of the exhaust pipe 159 exists in the first space 50-1 shown in FIG. 1, the amount of gas exhausted by the exhaust pipe 159 is included in Qout1. When the opening of the exhaust pipe 159 exists in the second space 50-2 shown in FIG. 1, the amount of gas exhausted by the exhaust pipe 159 is included in Qout2.
 排気管159の開口部が設けられる空間の側壁には、排気路があってもよいし、なくてもよい。つまり、図1に示す各空間50-1~50-6のガスは、排気路44-1~44-6および排気管159のいずれかを通り成形装置の外部に排出されてもよく、両方から成形装置の外部に排出されてもよい。 An exhaust path may or may not be provided on the side wall of the space where the opening of the exhaust pipe 159 is provided. That is, the gas in each of the spaces 50-1 to 50-6 shown in FIG. 1 may be discharged to the outside of the molding apparatus through either the exhaust passages 44-1 to 44-6 or the exhaust pipe 159, and from both You may discharge | emit outside the shaping | molding apparatus.
 図9は、第4変形例による成形装置の要部を示す断面図である。第4変形例の突出壁370は、上記突出壁170、270に代えて用いられる。突出壁370は、カーボンで形成される突出壁本体371、および突出壁本体371を保護する酸化防止膜372を有する。 FIG. 9 is a cross-sectional view showing a main part of a molding apparatus according to a fourth modification. The protruding wall 370 of the fourth modified example is used instead of the protruding walls 170 and 270. The protruding wall 370 includes a protruding wall body 371 made of carbon and an antioxidant film 372 that protects the protruding wall body 371.
 突出壁本体371は、カーボンで形成される。突出壁本体371の表面には、カーボンの焼失を抑制するため、酸化防止膜372が設けられる。 The protruding wall body 371 is made of carbon. An antioxidant film 372 is provided on the surface of the protruding wall body 371 in order to suppress the burning of carbon.
 酸化防止膜372は、炭化ケイ素(SiC)等のセラミックスで形成される。酸化防止膜372の形成方法としては、例えば溶射法等がある。酸化防止膜372は、突出壁370の表面全体を覆っていてよい。 The antioxidant film 372 is formed of ceramics such as silicon carbide (SiC). As a method for forming the antioxidant film 372, for example, there is a spraying method. The antioxidant film 372 may cover the entire surface of the protruding wall 370.
 尚、突出壁370の下面に鉛直壁が突設される場合、鉛直壁は、カーボンで形成される鉛直壁本体、および鉛直壁本体を保護する酸化防止膜で構成されてよい。この場合、突出壁本体と鉛直壁本体とは一体に形成されてよい。 In addition, when a vertical wall protrudes from the lower surface of the protruding wall 370, the vertical wall may be composed of a vertical wall body made of carbon and an antioxidant film that protects the vertical wall body. In this case, the protruding wall main body and the vertical wall main body may be integrally formed.
 実施例1~4では、図1~3に示す成形装置を用いてフロートガラス板を製造した。実施例1~4では、Qout1/Qin1およびQin1/V1を変更した以外、同じ製造条件でフロートガラス板を製造した。製造条件を表1~3に示す。表1は、H1~H5と、H0との比を示す。表2は、L1~L5と、H0との比を示す。表3は、Qout1/Qin1およびQin1/V1を示す。 In Examples 1 to 4, float glass plates were manufactured using the molding apparatus shown in FIGS. In Examples 1 to 4, float glass plates were produced under the same production conditions except that Qout1 / Qin1 and Qin1 / V1 were changed. Production conditions are shown in Tables 1 to 3. Table 1 shows the ratio between H1 to H5 and H0. Table 2 shows the ratio between L1 to L5 and H0. Table 3 shows Qout1 / Qin1 and Qin1 / V1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 一方、比較例1では、図1に示す仕切壁を使用しない以外、実施例1と同じ条件でフロートガラス板を製造した。
Figure JPOXMLDOC01-appb-T000003
On the other hand, in the comparative example 1, the float glass plate was manufactured on the same conditions as Example 1 except not using the partition wall shown in FIG.
 実施例1~4で得られたフロートガラス板の欠点の数は、比較例1で得られたフロートガラス板の欠点の数の1/10以下であった。 The number of defects of the float glass plates obtained in Examples 1 to 4 was 1/10 or less of the number of defects of the float glass plates obtained in Comparative Example 1.
 以上、フロートガラスの成形装置の実施形態等を説明したが、本発明は上記実施形態等に限定されず、特許請求の範囲に記載された範囲で、種々の変形及び改良が可能である。 As mentioned above, although embodiment of the shaping | molding apparatus of float glass, etc. were demonstrated, this invention is not limited to the said embodiment etc., A various deformation | transformation and improvement are possible in the range described in the claim.
 例えば、上記実施形態の突出壁170は、カーボンで形成されるが、セラミックスで形成されてもよく、突出壁170の材料は耐熱性を有する材料であればよい。 For example, the protruding wall 170 of the above embodiment is formed of carbon, but may be formed of ceramics, and the material of the protruding wall 170 may be a material having heat resistance.
 本出願は、2013年8月22日に日本国特許庁に出願された特願2013-171983号に基づく優先権を主張するものであり、特願2013-171983号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-171983 filed with the Japan Patent Office on August 22, 2013. The entire contents of Japanese Patent Application No. 2013-171983 are incorporated herein by reference. To do.
10 成形装置
11 溶融金属
12 溶融ガラス
14 ガラスリボン
20 浴槽
22 スパウトリップ
26 入口壁
28 出口壁
30 天井
42-1~42-5 仕切壁
50 成形空間
DESCRIPTION OF SYMBOLS 10 Forming apparatus 11 Molten metal 12 Molten glass 14 Glass ribbon 20 Bathtub 22 Spaw trip 26 Entrance wall 28 Exit wall 30 Ceiling 42-1 to 42-5 Partition wall 50 Molding space

Claims (12)

  1.  溶融金属を収容する浴槽と、
     前記浴槽の上流部の上方に位置する入口壁と、
     前記浴槽の下流部の上方に位置する出口壁と、
     前記浴槽の上方において前記入口壁から前記出口壁まで延びる天井と、
     前記溶融金属の液面の上を流動するガラスリボンの流動方向に間隔をおいて設けられ、前記天井の下面から突出することによって前記天井、前記浴槽、前記入口壁および前記出口壁で囲まれた成形空間を仕切る複数の仕切壁とを有し、
     前記溶融金属の液面のうち前記ガラスリボンによって覆われない露出部分と前記天井の下面との間の上下方向距離を基準距離とすると、
     前記入口壁から数えて1番目の仕切壁の上流端と前記入口壁の上流端との間の水平方向距離が前記基準距離の3.5~6.5倍であり、
     前記1番目の仕切壁の下端と前記天井の下面との間の上下方向距離が前記基準距離の0.4~0.9倍であり、
     前記1番目の仕切壁と前記入口壁との間に形成される第1の空間の側壁に、前記第1の空間から前記成形空間の外部にガスを排気する排気部が設けられる、フロートガラス製造装置。
    A bathtub containing molten metal;
    An entrance wall located above the upstream portion of the bathtub;
    An outlet wall located above the downstream part of the bathtub;
    A ceiling extending from the entrance wall to the exit wall above the bathtub;
    The glass ribbon flowing on the liquid surface of the molten metal is provided at intervals in the flow direction, and is surrounded by the ceiling, the bathtub, the inlet wall, and the outlet wall by protruding from the lower surface of the ceiling. A plurality of partition walls that partition the molding space;
    When the vertical distance between the exposed portion of the liquid surface of the molten metal that is not covered by the glass ribbon and the lower surface of the ceiling is a reference distance,
    The horizontal distance between the upstream end of the first partition wall counted from the entrance wall and the upstream end of the entrance wall is 3.5 to 6.5 times the reference distance,
    A vertical distance between a lower end of the first partition wall and a lower surface of the ceiling is 0.4 to 0.9 times the reference distance;
    Float glass manufacturing, wherein an exhaust part for exhausting gas from the first space to the outside of the molding space is provided on a side wall of a first space formed between the first partition wall and the inlet wall. apparatus.
  2.  前記入口壁から数えて1番目の仕切壁の上流端と2番目の仕切壁の上流端との間の水平方向距離が前記基準距離の3.5~6.5倍であり、
     前記2番目の仕切壁の下端と前記天井の下面との間の上下方向距離が前記基準距離の0.4~0.9倍であり、
     前記1番目の仕切壁と前記2番目の仕切壁との間に形成される第2の空間の側壁に、前記第2の空間から前記成形空間の外部にガスを排気する排気部が設けられる、請求項1に記載のフロートガラス製造装置。
    The horizontal distance between the upstream end of the first partition wall and the upstream end of the second partition wall counted from the entrance wall is 3.5 to 6.5 times the reference distance,
    A vertical distance between a lower end of the second partition wall and a lower surface of the ceiling is 0.4 to 0.9 times the reference distance;
    An exhaust part that exhausts gas from the second space to the outside of the molding space is provided on the side wall of the second space formed between the first partition wall and the second partition wall. The float glass manufacturing apparatus according to claim 1.
  3.  前記浴槽のサイド煉瓦の上部から突出する突出壁が、前記溶融金属の液面の前記露出部分との間に隙間を形成し、
     前記突出壁の貫通孔を介して前記成形空間の外部から前記隙間に還元性ガスを供給する給気管が設けられる、請求項1または2に記載のフロートガラス製造装置。
    The protruding wall protruding from the upper part of the side brick of the bathtub forms a gap with the exposed portion of the liquid level of the molten metal,
    The float glass manufacturing apparatus according to claim 1 or 2, wherein an air supply pipe is provided for supplying a reducing gas to the gap from the outside of the molding space through a through hole of the protruding wall.
  4.  前記給気管によって前記隙間に供給される還元性ガス中の水素ガス濃度が、前記天井の給気路によって前記成形空間に供給される還元性ガス中の水素ガス濃度よりも高い、請求項3に記載のフロートガラス製造装置。 The hydrogen gas concentration in the reducing gas supplied to the gap by the air supply pipe is higher than the hydrogen gas concentration in the reducing gas supplied to the molding space by the ceiling air supply passage. The float glass manufacturing apparatus described.
  5.  前記突出壁の下面から突出する壁が設けられ、
     前記給気管の先端部が接続される前記突出壁の貫通孔は、前記突出壁を支持するサイド煉瓦と、前記突出壁の下面から突出する壁との間に位置する、請求項3または4に記載のフロートガラス製造装置。
    A wall protruding from the lower surface of the protruding wall is provided;
    The through hole of the protruding wall to which the tip of the air supply pipe is connected is located between a side brick that supports the protruding wall and a wall protruding from the lower surface of the protruding wall. The float glass manufacturing apparatus described.
  6.  前記突出壁は、カーボンで形成され、前記給気管によって前記隙間に供給される還元性ガスに曝される、請求項3~5のいずれか一項に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to any one of claims 3 to 5, wherein the protruding wall is made of carbon and exposed to a reducing gas supplied to the gap by the air supply pipe.
  7.  前記突出壁は、カーボンで形成される突出壁本体と、該突出壁本体を保護する酸化防止膜とを有する、請求項3~5のいずれか一項に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to any one of claims 3 to 5, wherein the protruding wall includes a protruding wall body made of carbon and an antioxidant film that protects the protruding wall body.
  8.  製造されるフロートガラスは無アルカリガラスである、請求項1~7のいずれか一項に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to any one of claims 1 to 7, wherein the float glass to be manufactured is alkali-free glass.
  9.  請求項1~8のいずれか一項に記載のフロートガラス製造装置を用いるフロートガラス製造方法であって、
     前記第1の空間において、前記成形空間の外部へのガスの排出量が、前記成形空間の外部からのガスの供給量の0.5~1.5倍である、フロートガラス製造方法。
    A float glass manufacturing method using the float glass manufacturing apparatus according to any one of claims 1 to 8,
    The float glass manufacturing method, wherein in the first space, the amount of gas discharged to the outside of the molding space is 0.5 to 1.5 times the amount of gas supplied from the outside of the molding space.
  10.  請求項2に記載のフロートガラス製造装置を用いるフロートガラス製造方法であって、
     前記第1の空間において、前記成形空間の外部へのガスの排出量が、前記成形空間の外部からのガスの供給量の0.5~1.5倍であり、
     前記第2の空間において、前記成形空間の外部へのガスの排出量が、前記成形空間の外部からのガスの供給量の0.5~1.5倍である、フロートガラス製造方法。
    A float glass manufacturing method using the float glass manufacturing apparatus according to claim 2,
    In the first space, the amount of gas discharged to the outside of the molding space is 0.5 to 1.5 times the amount of gas supplied from the outside of the molding space,
    The float glass manufacturing method, wherein in the second space, the amount of gas discharged to the outside of the molding space is 0.5 to 1.5 times the amount of gas supplied from the outside of the molding space.
  11.  請求項3に記載のフロートガラス製造装置を用い、
     前記給気管によって前記隙間に供給される還元性ガス中の水素ガス濃度が、前記天井の給気路によって前記成形空間に供給される還元性ガス中の水素ガス濃度よりも高い、フロートガラス製造方法。
    Using the float glass manufacturing apparatus according to claim 3,
    A method for producing a float glass, wherein a hydrogen gas concentration in the reducing gas supplied to the gap by the air supply pipe is higher than a hydrogen gas concentration in the reducing gas supplied to the molding space by the ceiling air supply passage. .
  12.  請求項1に記載のフロートガラス製造装置を用い、
     製造されるフロートガラスが無アルカリガラスである、フロートガラス製造方法。
    Using the float glass manufacturing apparatus according to claim 1,
    The float glass manufacturing method whose float glass manufactured is an alkali free glass.
PCT/JP2014/063380 2013-08-22 2014-05-20 Float glass production device and float glass production method using the same WO2015025569A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157033389A KR20160045041A (en) 2013-08-22 2014-05-20 Float glass production device and float glass production method using the same
CN201480039245.3A CN105377778B (en) 2013-08-22 2014-05-20 Float glass manufacturing device and the float glass making process using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013171983A JP2016183055A (en) 2013-08-22 2013-08-22 Float glass manufacturing apparatus and float glass manufacturing method using the same
JP2013-171983 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025569A1 true WO2015025569A1 (en) 2015-02-26

Family

ID=52483354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063380 WO2015025569A1 (en) 2013-08-22 2014-05-20 Float glass production device and float glass production method using the same

Country Status (5)

Country Link
JP (1) JP2016183055A (en)
KR (1) KR20160045041A (en)
CN (1) CN105377778B (en)
TW (1) TW201507983A (en)
WO (1) WO2015025569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170634A1 (en) * 2015-04-22 2016-10-27 旭硝子株式会社 Method for manufacturing float glass
CN106064878A (en) * 2015-04-21 2016-11-02 旭硝子株式会社 Manufacture device, the manufacture method of float glass of float glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102641190B1 (en) * 2019-03-20 2024-02-27 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Methods for Tin Bath Monitoring and Control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515321A (en) * 1974-05-30 1976-01-17 Ppg Industries Inc
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JP2010520848A (en) * 2007-03-13 2010-06-17 ショット・アーゲー Float bath apparatus and method for producing flat glass
JP2011219348A (en) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd Glass plate production apparatus and method for producing glass plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094942A (en) * 1997-06-13 2000-08-01 Ppg Industries Ohio, Inc. Method and apparatus for reducing tin defects in float glass
JP2011157234A (en) * 2010-02-01 2011-08-18 Asahi Glass Co Ltd Alkali-free glass substrate and manufacturing method therefor and manufacturing apparatus
JP6144622B2 (en) * 2011-03-23 2017-06-07 旭硝子株式会社 Float glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515321A (en) * 1974-05-30 1976-01-17 Ppg Industries Inc
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JP2010520848A (en) * 2007-03-13 2010-06-17 ショット・アーゲー Float bath apparatus and method for producing flat glass
JP2011219348A (en) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd Glass plate production apparatus and method for producing glass plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAKURA SHOTEN, GLASS KOGAKU HANDBOOK, 5 July 1999 (1999-07-05), pages 361 - 362 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064878A (en) * 2015-04-21 2016-11-02 旭硝子株式会社 Manufacture device, the manufacture method of float glass of float glass
CN106064878B (en) * 2015-04-21 2020-06-05 Agc株式会社 Float glass manufacturing device and float glass manufacturing method
WO2016170634A1 (en) * 2015-04-22 2016-10-27 旭硝子株式会社 Method for manufacturing float glass
CN107531541A (en) * 2015-04-22 2018-01-02 旭硝子株式会社 The manufacture method of float glass

Also Published As

Publication number Publication date
TW201507983A (en) 2015-03-01
JP2016183055A (en) 2016-10-20
CN105377778B (en) 2017-11-17
KR20160045041A (en) 2016-04-26
CN105377778A (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN101848874B (en) Sheet glass manufacturing method
JP5064526B2 (en) Float tank system for float glass production
WO2014080904A1 (en) Molding device for float glass and method for manufacturing float glass
WO2015025569A1 (en) Float glass production device and float glass production method using the same
TW201210965A (en) Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
JP2015134690A (en) Float glass manufacturing method and float glass manufacturing apparatus
JP2015105216A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP5549674B2 (en) Molten glass production apparatus, molten glass production method, and plate glass production method using them
WO2015025568A1 (en) Float glass production device and float glass production method using same
WO2013179862A1 (en) Device for molding float glass, and method for producing float glass
WO2014091814A1 (en) Plate glass production method and plate glass production device
JP2011251896A (en) Apparatus and method for manufacturing glass plate
JPWO2013145922A1 (en) Manufacturing method of glass plate
CN104743776A (en) Method for producing float plate glass
JP2015093794A (en) Float glass manufacturing method
JP2010189260A (en) Apparatus for manufacturing float glass
WO2016170634A1 (en) Method for manufacturing float glass
JP2015124131A (en) Molten glass feeding apparatus and glass plate manufacturing apparatus
KR102255639B1 (en) Melting method, and production method for alkali-free glass plate
JP2023108776A (en) Apparatus and method for manufacturing glass
WO2014013913A1 (en) Method for producing glass plate, and glass plate
JP2010070417A (en) Device and method for manufacturing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033389

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14837153

Country of ref document: EP

Kind code of ref document: A1