WO2014013913A1 - Method for producing glass plate, and glass plate - Google Patents

Method for producing glass plate, and glass plate Download PDF

Info

Publication number
WO2014013913A1
WO2014013913A1 PCT/JP2013/068777 JP2013068777W WO2014013913A1 WO 2014013913 A1 WO2014013913 A1 WO 2014013913A1 JP 2013068777 W JP2013068777 W JP 2013068777W WO 2014013913 A1 WO2014013913 A1 WO 2014013913A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
molten
less
total content
Prior art date
Application number
PCT/JP2013/068777
Other languages
French (fr)
Japanese (ja)
Inventor
史朗 谷井
竜麻 市川
泰夫 林
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380038234.9A priority Critical patent/CN104487390B/en
Priority to KR1020157001174A priority patent/KR102080003B1/en
Publication of WO2014013913A1 publication Critical patent/WO2014013913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • the present invention relates to a method for producing a glass plate and a glass plate.
  • the float method is widely used as a glass plate forming method.
  • molten glass continuously supplied onto molten tin in a float bath (hereinafter also simply referred to as “bath”) is flowed over molten tin and formed into a strip shape (for example, Patent Document 1). reference).
  • the atmosphere in the bath is a reducing atmosphere containing hydrogen gas in order to prevent oxidation of molten tin.
  • Hydrogen gas reacts with oxygen gas mixed from the outside to prevent oxidation of molten tin.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for producing a glass plate with good quality on the main surface in contact with the reducing atmosphere in the bus, and a glass plate.
  • a method for producing a glass plate according to the aspect (1) of the present invention comprises: In the method for producing a glass plate, including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin, The molten glass immediately before being supplied into the float bath is characterized in that the total content of impurities Au, Cu, and Ag is 0.5 mass ppm or less.
  • the manufacturing method of the glass plate by aspect (2) of this invention is the following.
  • the method for producing a glass plate including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin,
  • the molten glass immediately before being supplied into the float bath is characterized in that the total content of impurities F, Cl, Br and I is 200 ppm by mass or less.
  • the glass plate by aspect (3) of this invention is In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
  • the total content of impurities Au, Cu, and Ag is 0.5 mass ppm or less.
  • the glass plate by aspect (4) of this invention is In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
  • the total content of impurities F, Cl, Br and I is 200 mass ppm or less.
  • a glass plate manufacturing method and a glass plate with good quality of the main surface in contact with the reducing atmosphere in the bus are provided.
  • FIG. 1 is an explanatory view (1) of a glass plate manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view (2) of the glass plate manufacturing apparatus according to the embodiment of the present invention.
  • the method for producing a glass plate according to the present embodiment includes, for example, a melting step, a forming step, a slow cooling step, and a cutting step, and further includes a polishing step as necessary.
  • polishing process is performed according to the use of a glass plate.
  • glass raw materials prepared by mixing a plurality of types of raw materials are melted to obtain molten glass.
  • the glass raw material is put into the melting furnace, it is melted by the radiant heat of the flame injected from the burner to become molten glass.
  • the molten glass obtained in the melting step is continuously supplied onto the molten tin in the bath, and the molten glass is flowed on the molten tin and molded to obtain a plate-like glass (so-called glass ribbon).
  • This forming method is called a float method.
  • the atmosphere in the bath is a reducing atmosphere containing hydrogen gas in order to prevent oxidation of molten tin.
  • the glass sheet is cooled while flowing in a predetermined direction, and is pulled up from the molten tin in the vicinity of the exit of the bath.
  • the sheet glass obtained in the forming step is slowly cooled in a slow cooling furnace.
  • the plate glass is gradually cooled while being transported horizontally on the roll from the inlet to the outlet of the slow cooling furnace.
  • Sulfurous acid (SO 2 ) gas or the like is sprayed on the surface of the sheet glass near the inside of the inlet of the slow cooling furnace, and a scratch-proof film is formed on the surface layer of the sheet glass. Since the outlet of the slow cooling furnace is open to the atmosphere, the atmosphere in the slow cooling furnace is an air atmosphere.
  • the sheet glass slowly cooled in the slow cooling step is cut into a predetermined size by a cutting machine.
  • both edges (so-called ears) in the width direction of the sheet glass are cut off. This is because both edges in the width direction of the plate-like glass become thick due to the influence of surface tension and the like.
  • the main surface of the glass plate obtained in the cutting step is polished.
  • the main surface (hereinafter referred to as “bottom surface”) in contact with the molten tin in the bath is polished according to the use of the glass plate.
  • the main surface opposite to the bottom surface and in contact with the reducing atmosphere in the bus (hereinafter referred to as “top surface”) is not polished.
  • a glass plate is used as a window glass for vehicles, a window glass for buildings, a substrate for display, a cover glass for display, or a substrate for photomask, for example.
  • the “display” includes a flat panel display (FPD) such as a liquid crystal display (LCD), a plasma display (PDP), and an organic EL display.
  • FPD flat panel display
  • LCD liquid crystal display
  • PDP plasma display
  • organic EL display organic EL display.
  • the thickness of the substrate for display is exemplified by 1 mm or less.
  • the thickness of the glass plate used for flexible liquid crystal panels, such as a tablet terminal is 0.3 mm or less.
  • the glass type of the glass plate is selected according to the use of the glass plate.
  • a glass substrate for LCD alkali-free glass is used.
  • soda lime glass is used in the case of a window glass for a vehicle, a window glass for a building, and a glass substrate for a PDP.
  • soda lime glass is used in the case of a cover glass for display.
  • soda lime glass that can be chemically strengthened is mainly used in the case of a substrate for a photomask.
  • quartz glass having a low thermal expansion coefficient is mainly used.
  • the alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, SnO: 0 to 3%, MgO + CaO + SrO + BaO: 9 to 29.5%, and the total content of alkali metal oxides may be 0.1% or less.
  • the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8 %, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, SnO: 0 to 1%, MgO + CaO + SrO + BaO: 9 to 18%, The total content is 0.1% or less.
  • Soda lime glass is, for example, expressed in terms of mass% based on oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3% BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : Contains 0 to 0.5%.
  • FIG. 1 and 2 are explanatory diagrams of a glass plate manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a plan sectional view of the bus
  • FIG. 2 is a side sectional view of the bus.
  • the molten glass 30 is cooled while flowing on the molten tin 20 in the bath 10 and formed into a strip shape.
  • the upper space in the bath 10 is filled with a reducing atmosphere 40 containing hydrogen gas.
  • the upper space in the bus 10 is maintained at a positive pressure higher than the atmospheric pressure.
  • the bus 10 is provided with a spout trip 50, a heater 60, an air supply path 70, an exhaust path 80, and the like.
  • the spout trip 50 is a supply path for supplying the molten glass 30 into the bath 10, and is installed at the entrance 12 of the bus 10.
  • the spout trip 50 is connected to a melting furnace for producing the molten glass 30.
  • the heater 60 heats the inside of the bus 10, and is suspended from the ceiling of the bus 10, for example, as shown in FIG.
  • a plurality of heaters 60 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the molten glass 30 and are arranged in a matrix.
  • the X direction and the Y direction are horizontal directions orthogonal to each other.
  • the output of the heater 60 is controlled so that the temperature of the molten glass 30 decreases as it goes from the inlet 12 to the outlet 14 of the bus 10.
  • the output of the heater 60 is controlled so that the thickness of the molten glass 30 is uniform in the width direction (Y direction).
  • the air supply path 70 is a passage for supplying reducing gas into the bus 10 and is installed on the ceiling of the bus 10 as shown in FIG.
  • a plurality of air supply paths 70 are provided at intervals in a predetermined direction (X direction).
  • the reducing gas may be a mixed gas of hydrogen gas and nitrogen gas.
  • the proportion of hydrogen gas in the reducing gas is, for example, 0.1 to 15% by volume.
  • the exhaust path 80 is a passage for exhausting the reducing atmosphere 40, and is installed on the side wall of the bus 10 as shown in FIG.
  • a plurality of exhaust passages 80 are provided at intervals in a predetermined direction (X direction).
  • a plate glass obtained by forming the molten glass 30 into a strip shape is pulled up from the molten tin 20 near the outlet 14 of the bath 10. Thereafter, the plate-like glass becomes a product glass plate through a slow cooling step, a cutting step, and the like.
  • the reducing atmosphere 40 in the bus 10 contains components volatilized from the molten tin 20 and the molten glass 30 in addition to the reducing gas supplied from the air supply passage 70.
  • components including simple substances and compounds
  • components having a low vapor pressure are inherently difficult to volatilize and are not a problem.
  • the component with high vapor pressure is discharged out of the bath 10 as gas, there is usually no problem.
  • a component having a low vapor pressure has a higher vapor pressure and can be volatilized if it becomes a specific compound (for example, a halide), but once volatilized, it is immediately reduced by hydrogen gas in the reducing atmosphere 40, As a result, it may return to the original low vapor pressure component in the atmosphere. Then, since a component having a low vapor pressure is unlikely to exist as a gas, it becomes an agglomerate in the reducing atmosphere 40 and falls on the molten glass 30, which may be a defect.
  • the element having a low vapor pressure as a simple substance and easily becoming a halide include Group 11 elements such as Au, Cu, and Ag.
  • the Group 11 element has the same valence electron structure as the alkali metal element, and easily becomes a monovalent ion and easily becomes a halide. Therefore, as a halide, the group 11 element is changed from the molten tin 20 or the molten glass 30 to the reducing atmosphere 40. Easy to strip. Further, when Au, Cu, and Ag become monovalent ions, they easily diffuse in the molten tin 20 and the molten glass 30 and easily move to the interface with the reducing atmosphere 40, so that they easily volatilize in the reducing atmosphere 40. . When the gold halide, copper halide, and silver halide in the reducing atmosphere 40 are reduced by hydrogen gas, Au, Cu, and Ag with low original vapor pressure are generated. Since Au, Cu, and Ag hardly exist as a gas as a simple substance, they become aggregates in the reducing atmosphere 40.
  • the aggregate includes at least one element of Au, Cu, and Ag, and may further include an element other than Au, Cu, and Ag.
  • the molten glass 30 immediately before being supplied into the bath 10 has a total content of impurities Au, Cu, and Ag (hereinafter collectively referred to as “Au etc.”) of 0.5 mass ppm. It is as follows. When the total content of Au or the like is 0.5 mass ppm or less, there are few components in the molten glass 30 that volatilize from the molten glass 30 to the reducing atmosphere 40 and become aggregates. Therefore, the aggregate is difficult to grow in the reducing atmosphere 40 and the aggregate is difficult to fall on the upper surface of the molten glass 30. Therefore, the quality of the top surface of the glass plate is improved. A more preferable range is 0.3 mass ppm or less, and a still more preferable range is 0.1 mass ppm or less.
  • the total content of Au and the like in the molten glass 30 immediately before being supplied into the bath 10 is slightly smaller than the total content of Au and the like in the glass raw material charged into the melting furnace. This is because Au and the like gradually evaporate from the glass to the outside in the melting step.
  • the total content of Au and the like in the glass raw material is 1.0 mass so that the total content of Au and the like in the molten glass 30 immediately before being supplied into the bath 10 is 0.5 mass ppm or less. It is preferably at most ppm. A more preferable range is 0.5 mass ppm or less, and a further preferable range is 0.3 mass ppm or less.
  • the molten glass 30 immediately before being supplied into the bath 10 has a total content of impurities F, Cl, Br, and I (hereinafter collectively referred to as “F etc.”) of 200 mass. ppm or less.
  • F or the like as a simple substance has a boiling point lower than the glass forming temperature, and promotes volatilization of Au or the like.
  • the total content of F and the like in the molten glass 30 immediately before being supplied into the bath 10 is slightly smaller than the total content of F and the like in the glass raw material charged into the melting furnace. This is because F and the like gradually evaporate from the glass to the outside in the melting step.
  • the total content of F and the like in the glass raw material is 500 mass ppm or less so that the total content of F and the like in the molten glass 30 immediately before being supplied into the bath 10 is 200 mass ppm or less. It is preferable. A more preferable range is 300 mass ppm or less, and a further preferable range is 200 mass ppm or less.
  • the molten tin 20 in the bus 10 has a total content of impurities such as Au of 10 mass ppm or less and a total content of F or the like of 100 mass ppm or less in order to improve the quality of the top surface. It may be.
  • tin is used as a raw material of the molten tin 20 in the bath 10.
  • the glass plate has a total content of Au and the like of 0.5 mass ppm or less.
  • Au or the like is volatilized from the glass to the outside in the molding step and the slow cooling step, but the volatilization amount is small compared to the total amount.
  • the glass composition of a glass plate and the glass composition of the molten glass 30 in a formation process are substantially the same.
  • the total content of Au and the like in the glass plate is 0.5 mass ppm or less
  • the total content of Au and the like in the molten glass 30 in the molding process is small, and the molten glass 30 has the There are few components which volatilize in the reducing atmosphere 40 and become the core of the aggregate. Therefore, the aggregate is difficult to grow and the aggregate is difficult to fall on the upper surface of the molten glass 30. Therefore, the quality of the top surface of the glass plate is improved.
  • the glass plate has a total content of F or the like of 200 mass ppm or less. F and the like are volatilized from the glass to the outside in the molding step and the slow cooling step, but the volatilization amount is slight compared to the total amount.
  • the glass composition of a glass plate and the glass composition of the molten glass 30 in a formation process are substantially the same.
  • the content of F or the like in the glass plate is 200 mass ppm or less
  • the content of F or the like in the molten glass 30 in the molding process is small, and Au or the like in the molten glass 30 is difficult to volatilize in the reducing atmosphere 40. In the reducing atmosphere 40, the aggregates are difficult to grow and the aggregates are difficult to fall. Therefore, the quality of the top surface of the glass plate is improved.
  • the molten glass 30 of the above embodiment has a total content of (1) Au or the like of 0.5 mass ppm or less and (2) a total content of F or the like immediately before being supplied into the bath 10. However, it may satisfy only (1) or (2). This is because the deposit on the top surface occurs when there are too many impurities such as Au and impurities such as F. The same applies to the impurities of the molten tin 20 in the bath 10.
  • the glass plate of the above embodiment has (1) the total content of Au and the like is 0.5 mass ppm or less, and (2) the total content of F and the like is 200 mass ppm or less. Only 1) or (2) may be satisfied.
  • Example 1 a glass plate made of alkali-free glass was produced by the method shown in FIGS. Tin was used as a raw material for molten tin in the bath.
  • the alkali-free glass is expressed in terms of mass% based on oxide, SiO 2 : 59.5%, Al 2 O 3 : 17%, B 2 O 3 : 8%, MgO: 3.3%, CaO: 4%, SrO: 7.6%, BaO: 0.1%, ZrO 2 : 0.1%, MgO + CaO + SrO + BaO: 15%, the balance being inevitable impurities, the total content of alkali metal oxides The amount was 0.1% or less.
  • the content (mass%) of each element (including Au, F, etc.) contained in the glass raw material, the molten glass immediately before being supplied into the bath, and the glass plate was measured by wet analysis.
  • analysis was performed by dissolving a sample such as a glass raw material in an acid.
  • the molten glass sample immediately before being supplied into the bath was prepared by pumping the molten glass near the entrance of the bath with a sufficiently cooled iron handle and then rapidly cooling it.
  • the average density (pieces / m 2 ) of deposits on the top surface of the glass plate was measured by visually observing 40 glass plates having a top surface of 1.0 m ⁇ 1.0 m.
  • Table 1 shows the measurement results of the total content of Au and the like, the total content of F and the like, and the average density of the deposits.
  • Example 2 to 6 glass plates were produced in the same manner as in Example 1 except that equimolar amounts of trace amounts of CuO and Ag 2 S were added to the glass raw material.
  • Examples 1 to 4 are examples, and examples 5 to 6 are comparative examples.
  • Example 7 the glass plate which consists of an alkali free glass was manufactured like Example 1 except having changed the glass raw material.
  • the alkali-free glass is expressed in terms of mass% based on oxide, SiO 2 : 59.5%, Al 2 O 3 : 17%, B 2 O 3 : 8%, MgO: 3.3%, CaO: 4%, SrO: 7.6%, BaO: 0.1%, ZrO 2 : 0.1%, MgO + CaO + SrO + BaO: 15%, the balance being inevitable impurities, the total content of alkali metal oxides The amount was 0.1% or less.
  • Example 8 to 12 glass plates were produced in the same manner as in Example 7, except that a trace amount of CaF 2 was added to the glass raw material.
  • Examples 7 to 10 are examples, and examples 11 to 12 are comparative examples.
  • the total content of Au and the like is 0.5 mass ppm or less, and the total content of F and the like is 200. It can be seen that if the mass is less than or equal to ppm, the defects of the deposits are sufficiently reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides a method for producing a glass plate wherein a main surface, which has been in contact with a reducing atmosphere within a bath, has good quality. The present invention relates to a method for producing a glass plate which comprises a step wherein molten glass continuously supplied on molten tin within a float bath is molded by being flowed on the molten tin. This method for producing a glass plate is characterized in that molten glass right before being supplied into the float bath has a total content of Au, Cu and Ag, which are impurities, of 0.5 ppm or less.

Description

ガラス板の製造方法、及びガラス板Glass plate manufacturing method and glass plate
 本発明は、ガラス板の製造方法、及びガラス板に関する。 The present invention relates to a method for producing a glass plate and a glass plate.
 ガラス板の成形方法として、フロート法が広く用いられている。フロート法は、フロートバス(以下、単に「バス」ともいう)内の溶融スズ上に連続的に供給される溶融ガラスを溶融スズ上で流動させて帯板状に成形する(例えば、特許文献1参照)。バス内の雰囲気は、溶融スズの酸化を防止するため、水素ガスを含む還元雰囲気とされる。水素ガスは、外部から混入する酸素ガスと反応することで、溶融スズの酸化を防止する。 The float method is widely used as a glass plate forming method. In the float process, molten glass continuously supplied onto molten tin in a float bath (hereinafter also simply referred to as “bath”) is flowed over molten tin and formed into a strip shape (for example, Patent Document 1). reference). The atmosphere in the bath is a reducing atmosphere containing hydrogen gas in order to prevent oxidation of molten tin. Hydrogen gas reacts with oxygen gas mixed from the outside to prevent oxidation of molten tin.
日本国特開2010-053032公報Japanese Unexamined Patent Publication No. 2010-053032
 バス内で溶融ガラスを成形する際、還元雰囲気中の粒子が凝集し、溶融ガラスの上面に落下し、付着して欠点となることがあった。 When molding molten glass in a bath, particles in a reducing atmosphere aggregate and fall onto the upper surface of the molten glass, which may cause defects.
 本発明は、上記課題に鑑みてなされたものであって、バス内で還元雰囲気と接触した主面の品質が良好なガラス板の製造方法、及びガラス板の提供を目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for producing a glass plate with good quality on the main surface in contact with the reducing atmosphere in the bus, and a glass plate.
 上記目的を解決するため、本発明の態様(1)によるガラス板の製造方法は、
 フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形する工程を有するガラス板の製造方法において、
 前記フロートバス内に供給される直前の前記溶融ガラスは、不純物であるAu、Cu、及びAgの合計の含有量が0.5質量ppm以下であることを特徴とする。
In order to solve the above object, a method for producing a glass plate according to the aspect (1) of the present invention comprises:
In the method for producing a glass plate, including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin,
The molten glass immediately before being supplied into the float bath is characterized in that the total content of impurities Au, Cu, and Ag is 0.5 mass ppm or less.
 また、本発明の態様(2)によるガラス板の製造方法は、
 フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形する工程を有するガラス板の製造方法において、
 前記フロートバス内に供給される直前の前記溶融ガラスは、不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下であることを特徴とする。
Moreover, the manufacturing method of the glass plate by aspect (2) of this invention is the following.
In the method for producing a glass plate, including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin,
The molten glass immediately before being supplied into the float bath is characterized in that the total content of impurities F, Cl, Br and I is 200 ppm by mass or less.
 また、本発明の態様(3)によるガラス板は、
 フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形されるガラス板において、
 不純物であるAu、Cu、及びAgの合計の含有量が0.5質量ppm以下であることを特徴とする。
Moreover, the glass plate by aspect (3) of this invention is
In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
The total content of impurities Au, Cu, and Ag is 0.5 mass ppm or less.
 また、本発明の態様(4)によるガラス板は、
 フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形されるガラス板において、
 不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下であることを特徴とする。
Moreover, the glass plate by aspect (4) of this invention is
In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
The total content of impurities F, Cl, Br and I is 200 mass ppm or less.
 本発明によれば、バス内で還元雰囲気と接触した主面の品質が良好なガラス板の製造方法、及びガラス板が提供される。 According to the present invention, there are provided a glass plate manufacturing method and a glass plate with good quality of the main surface in contact with the reducing atmosphere in the bus.
図1は、本発明の一実施形態によるガラス板の製造装置の説明図(1)である。FIG. 1 is an explanatory view (1) of a glass plate manufacturing apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態によるガラス板の製造装置の説明図(2)である。FIG. 2 is an explanatory view (2) of the glass plate manufacturing apparatus according to the embodiment of the present invention.
 以下、本発明を実施するための形態について図面を参照して説明する。なお、以下の図面において、同一のまたは対応する構成には、同一のまたは対応する符号を付して、説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 本実施形態によるガラス板の製造方法は、例えば溶解工程、成形工程、徐冷工程、及び切断工程を有し、必要に応じて研磨工程をさらに有する。研磨工程は、ガラス板の用途に応じて行われる。 The method for producing a glass plate according to the present embodiment includes, for example, a melting step, a forming step, a slow cooling step, and a cutting step, and further includes a polishing step as necessary. A grinding | polishing process is performed according to the use of a glass plate.
 溶解工程は、複数種類の原料を混ぜて調製したガラス原料を溶解して、溶融ガラスを得る。ガラス原料は、溶解炉内に投入された後、バーナから噴射される火炎の輻射熱によって溶解され、溶融ガラスとなる。 In the melting step, glass raw materials prepared by mixing a plurality of types of raw materials are melted to obtain molten glass. After the glass raw material is put into the melting furnace, it is melted by the radiant heat of the flame injected from the burner to become molten glass.
 成形工程は、溶解工程で得られる溶融ガラスをバス内の溶融スズ上に連続的に供給し、溶融スズ上で溶融ガラスを流動させて成形し、板状ガラス(所謂ガラスリボン)を得る。この成形方法は、フロート法と呼ばれる。バス内の雰囲気は、溶融スズの酸化を防止するため、水素ガスを含む還元雰囲気とされる。板状ガラスは、所定方向に流動しながら冷却され、バスの出口付近で溶融スズから引き上げられる。 In the forming step, the molten glass obtained in the melting step is continuously supplied onto the molten tin in the bath, and the molten glass is flowed on the molten tin and molded to obtain a plate-like glass (so-called glass ribbon). This forming method is called a float method. The atmosphere in the bath is a reducing atmosphere containing hydrogen gas in order to prevent oxidation of molten tin. The glass sheet is cooled while flowing in a predetermined direction, and is pulled up from the molten tin in the vicinity of the exit of the bath.
 徐冷工程は、成形工程で得られる板状ガラスを徐冷炉内で徐冷する。板状ガラスは、徐冷炉の入口から出口に向けて、ロール上を水平に搬送されながら徐冷される。徐冷炉の入口の内側近傍で板状ガラスの表面に亜硫酸(SO)ガスなどが吹き付けられ、板状ガラスの表層に防傷膜が形成される。徐冷炉の出口は大気に開放されているので、徐冷炉内の雰囲気は大気雰囲気である。 In the slow cooling step, the sheet glass obtained in the forming step is slowly cooled in a slow cooling furnace. The plate glass is gradually cooled while being transported horizontally on the roll from the inlet to the outlet of the slow cooling furnace. Sulfurous acid (SO 2 ) gas or the like is sprayed on the surface of the sheet glass near the inside of the inlet of the slow cooling furnace, and a scratch-proof film is formed on the surface layer of the sheet glass. Since the outlet of the slow cooling furnace is open to the atmosphere, the atmosphere in the slow cooling furnace is an air atmosphere.
 切断工程は、徐冷工程で徐冷された板状ガラスを切断機で所定寸法に切断する。切断工程において、板状ガラスの幅方向両縁部(所謂耳部)が切除される。板状ガラスの幅方向両縁部は、表面張力等の影響で肉厚になるからである。 In the cutting step, the sheet glass slowly cooled in the slow cooling step is cut into a predetermined size by a cutting machine. In the cutting step, both edges (so-called ears) in the width direction of the sheet glass are cut off. This is because both edges in the width direction of the plate-like glass become thick due to the influence of surface tension and the like.
 研磨工程は、切断工程で得られるガラス板の主面を研磨する。研磨工程では、ガラス板の用途に応じて、バス内で溶融スズと接触した主面(以下、「ボトム面」という)が研磨される。ボトム面と反対側の主面であってバス内で還元雰囲気と接触した主面(以下、「トップ面」という)は研磨されない。 In the polishing step, the main surface of the glass plate obtained in the cutting step is polished. In the polishing step, the main surface (hereinafter referred to as “bottom surface”) in contact with the molten tin in the bath is polished according to the use of the glass plate. The main surface opposite to the bottom surface and in contact with the reducing atmosphere in the bus (hereinafter referred to as “top surface”) is not polished.
 このようにして、製品であるガラス板が得られる。ガラス板は、例えば車両用の窓ガラス、建築物用の窓ガラス、ディスプレイ用の基板、ディスプレイ用のカバーガラス、又はフォトマスク用の基板として用いられる。「ディスプレイ」は、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等のフラットパネルディスプレイ(FPD)を含む。ディスプレイ用の基板の厚さとしては1mm以下が例示される。また、タブレット端末等のフレキシブル液晶パネルに使われるガラス板の厚さは0.3mm以下であることが好ましい。 In this way, a product glass plate is obtained. A glass plate is used as a window glass for vehicles, a window glass for buildings, a substrate for display, a cover glass for display, or a substrate for photomask, for example. The “display” includes a flat panel display (FPD) such as a liquid crystal display (LCD), a plasma display (PDP), and an organic EL display. The thickness of the substrate for display is exemplified by 1 mm or less. Moreover, it is preferable that the thickness of the glass plate used for flexible liquid crystal panels, such as a tablet terminal, is 0.3 mm or less.
 ガラス板のガラスの種類は、ガラス板の用途に応じて選択される。例えばLCD用のガラス基板の場合、無アルカリガラスが用いられる。また、車両用の窓ガラス、建築物用の窓ガララス、及びPDP用のガラス基板の場合、ソーダライムガラスが用いられる。ディスプレイ用のカバーガラスの場合、化学強化可能なソーダライムガラスが主に用いられる。フォトマスク用の基板の場合、熱膨張係数の低い石英ガラスが主に用いられる。 The glass type of the glass plate is selected according to the use of the glass plate. For example, in the case of a glass substrate for LCD, alkali-free glass is used. In the case of a window glass for a vehicle, a window glass for a building, and a glass substrate for a PDP, soda lime glass is used. In the case of a cover glass for display, soda lime glass that can be chemically strengthened is mainly used. In the case of a substrate for a photomask, quartz glass having a low thermal expansion coefficient is mainly used.
 無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、SnO:0~3%を含有し、MgO+CaO+SrO+BaO:9~29.5%であって、アルカリ金属酸化物の含有量の合量が0.1%以下であってよい。 The alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, SnO: 0 to 3%, MgO + CaO + SrO + BaO: 9 to 29.5%, and the total content of alkali metal oxides may be 0.1% or less.
 無アルカリガラスは、好ましくは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、SnO:0~1%を含有し、MgO+CaO+SrO+BaO:9~18%であって、アルカリ金属酸化物の含有量の合量が0.1%以下である。 The alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8 %, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, SnO: 0 to 1%, MgO + CaO + SrO + BaO: 9 to 18%, The total content is 0.1% or less.
 ソーダライムガラスは、例えば、酸化物基準の質量%表示で、SiO:65~75%、Al:0~3%、CaO:5~15%、MgO:0~15%、NaO:10~20%、KO:0~3%、LiO:0~5%、Fe:0~3%、TiO:0~5%、CeO:0~3%、BaO:0~5%、SrO:0~5%、B:0~5%、ZnO:0~5%、ZrO:0~5%、SnO:0~3%、SO:0~0.5%を含有する。 Soda lime glass is, for example, expressed in terms of mass% based on oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3% BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : Contains 0 to 0.5%.
 次に、図1及び図2に基づいて、上記ガラス板の成形工程の詳細について説明する。 Next, based on FIG.1 and FIG.2, the detail of the formation process of the said glass plate is demonstrated.
 図1及び図2は、本発明の一実施形態によるガラス板の製造装置の説明図である。図1はバスの平面断面図、図2はバスの側面断面図である。 1 and 2 are explanatory diagrams of a glass plate manufacturing apparatus according to an embodiment of the present invention. FIG. 1 is a plan sectional view of the bus, and FIG. 2 is a side sectional view of the bus.
 成形工程では、バス10内の溶融スズ20上で溶融ガラス30を流動させながら冷却して帯板状に成形する。溶融スズ20の酸化を防止するため、バス10内の上部空間は水素ガスを含む還元雰囲気40で満たされている。外気の侵入を防止するため、バス10内の上部空間は大気圧よりも高い正圧に保たれている。バス10には、スパウトリップ50、ヒータ60、給気路70、及び排気路80等が設けられている。 In the forming step, the molten glass 30 is cooled while flowing on the molten tin 20 in the bath 10 and formed into a strip shape. In order to prevent the molten tin 20 from being oxidized, the upper space in the bath 10 is filled with a reducing atmosphere 40 containing hydrogen gas. In order to prevent intrusion of outside air, the upper space in the bus 10 is maintained at a positive pressure higher than the atmospheric pressure. The bus 10 is provided with a spout trip 50, a heater 60, an air supply path 70, an exhaust path 80, and the like.
 スパウトリップ50は、溶融ガラス30をバス10内に供給する供給路であって、バス10の入口12に設置される。スパウトリップ50は、溶融ガラス30を作製する溶解炉に接続されている。 The spout trip 50 is a supply path for supplying the molten glass 30 into the bath 10, and is installed at the entrance 12 of the bus 10. The spout trip 50 is connected to a melting furnace for producing the molten glass 30.
 ヒータ60は、バス10内を加熱するものであって、例えば図2に示すように、バス10の天井から吊り下げられている。ヒータ60は、例えば、溶融ガラス30の流動方向(X方向)及び幅方向(Y方向)に間隔をおいて複数設けられ、マトリックス状に配置されている。X方向及びY方向は互いに直交する水平方向である。 The heater 60 heats the inside of the bus 10, and is suspended from the ceiling of the bus 10, for example, as shown in FIG. For example, a plurality of heaters 60 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the molten glass 30 and are arranged in a matrix. The X direction and the Y direction are horizontal directions orthogonal to each other.
 ヒータ60の出力は、バス10の入口12から出口14に向かうほど溶融ガラス30の温度が低くなるように制御される。また、ヒータ60の出力は、溶融ガラス30の厚さが幅方向(Y方向)に均一になるように制御される。 The output of the heater 60 is controlled so that the temperature of the molten glass 30 decreases as it goes from the inlet 12 to the outlet 14 of the bus 10. The output of the heater 60 is controlled so that the thickness of the molten glass 30 is uniform in the width direction (Y direction).
 給気路70は、バス10内に還元性ガスを給気する通路であって、例えば図2に示すようにバス10の天井に設置される。給気路70は、所定方向(X方向)に間隔をおいて複数設けられている。 The air supply path 70 is a passage for supplying reducing gas into the bus 10 and is installed on the ceiling of the bus 10 as shown in FIG. A plurality of air supply paths 70 are provided at intervals in a predetermined direction (X direction).
 還元性ガスは、水素ガスと窒素ガスとの混合ガスであって良い。還元性ガス中に占める水素ガスの割合は、例えば0.1~15体積%である。 The reducing gas may be a mixed gas of hydrogen gas and nitrogen gas. The proportion of hydrogen gas in the reducing gas is, for example, 0.1 to 15% by volume.
 排気路80は、還元雰囲気40を排気する通路であって、例えば図2に示すようにバス10の側壁に設置される。排気路80は、所定方向(X方向)に間隔をおいて複数設けられている。 The exhaust path 80 is a passage for exhausting the reducing atmosphere 40, and is installed on the side wall of the bus 10 as shown in FIG. A plurality of exhaust passages 80 are provided at intervals in a predetermined direction (X direction).
 図2に示すように、溶融ガラス30を帯板状に成形した板状ガラス(所謂ガラスリボン)は、バス10の出口14付近で溶融スズ20から引き上げられる。その後、板状ガラスは、徐冷工程、切断工程等を経て、製品であるガラス板となる。 As shown in FIG. 2, a plate glass (so-called glass ribbon) obtained by forming the molten glass 30 into a strip shape is pulled up from the molten tin 20 near the outlet 14 of the bath 10. Thereafter, the plate-like glass becomes a product glass plate through a slow cooling step, a cutting step, and the like.
 ところで、バス10内の還元雰囲気40は、給気路70から供給される還元性ガスの他にも、溶融スズ20や溶融ガラス30から揮散した成分を含んでいる。溶融スズ20や溶融ガラス30から還元雰囲気40に揮散した成分(単体、化合物を含む)のうち、蒸気圧の低い成分は、もともと揮散しにくく少量であるため、問題とならない。一方、蒸気圧の高い成分は、ガスとしてバス10の外に排出されるため、通常は問題とならない。しかし、蒸気圧の低い成分は、特定の化合物(例えばハロゲン化物)になれば蒸気圧が高くなり揮散可能となるが、一旦揮散した後、還元雰囲気40中の水素ガスによってすぐに還元され、その結果、雰囲気中で元の蒸気圧の低い成分に戻ることがある。そうすると、蒸気圧の低い成分は、ガスとして存在しにくいので、還元雰囲気40中で凝集物となり、溶融ガラス30上に落下し、欠点となることがある。単体として蒸気圧が低く、ハロゲン化物になりやすい元素としては、例えばAu、Cu、Ag等の第11族元素が挙げられる。第11族元素は、アルカリ金属元素と同じ価電子の構成を有し、1価のイオンになりやすく、ハロゲン化物になりやすいので、ハロゲン化物として、溶融スズ20や溶融ガラス30から還元雰囲気40に揮散しやすい。また、Au、Cu、Agは、1価のイオンになると、溶融スズ20中や溶融ガラス30中を拡散しやすく、還元雰囲気40との界面まで移動しやすいので、還元雰囲気40中に揮散しやすい。還元雰囲気40中のハロゲン化金、ハロゲン化銅、ハロゲン化銀が水素ガスによって還元されると、元の蒸気圧の低いAu、Cu、Agが生じる。そして、Au、Cu、Agは、単体としてはガスとして存在しにくいので、還元雰囲気40中で凝集物となる。この凝集物は、Au、Cu、及びAgのうち少なくとも1つの元素を含み、Au、Cu、及びAg以外の元素をさらに含んでもよい。 Incidentally, the reducing atmosphere 40 in the bus 10 contains components volatilized from the molten tin 20 and the molten glass 30 in addition to the reducing gas supplied from the air supply passage 70. Of the components (including simple substances and compounds) volatilized from the molten tin 20 or the molten glass 30 to the reducing atmosphere 40, components having a low vapor pressure are inherently difficult to volatilize and are not a problem. On the other hand, since the component with high vapor pressure is discharged out of the bath 10 as gas, there is usually no problem. However, a component having a low vapor pressure has a higher vapor pressure and can be volatilized if it becomes a specific compound (for example, a halide), but once volatilized, it is immediately reduced by hydrogen gas in the reducing atmosphere 40, As a result, it may return to the original low vapor pressure component in the atmosphere. Then, since a component having a low vapor pressure is unlikely to exist as a gas, it becomes an agglomerate in the reducing atmosphere 40 and falls on the molten glass 30, which may be a defect. Examples of the element having a low vapor pressure as a simple substance and easily becoming a halide include Group 11 elements such as Au, Cu, and Ag. The Group 11 element has the same valence electron structure as the alkali metal element, and easily becomes a monovalent ion and easily becomes a halide. Therefore, as a halide, the group 11 element is changed from the molten tin 20 or the molten glass 30 to the reducing atmosphere 40. Easy to strip. Further, when Au, Cu, and Ag become monovalent ions, they easily diffuse in the molten tin 20 and the molten glass 30 and easily move to the interface with the reducing atmosphere 40, so that they easily volatilize in the reducing atmosphere 40. . When the gold halide, copper halide, and silver halide in the reducing atmosphere 40 are reduced by hydrogen gas, Au, Cu, and Ag with low original vapor pressure are generated. Since Au, Cu, and Ag hardly exist as a gas as a simple substance, they become aggregates in the reducing atmosphere 40. The aggregate includes at least one element of Au, Cu, and Ag, and may further include an element other than Au, Cu, and Ag.
 本実施形態では、バス10内に供給する直前の溶融ガラス30は、不純物であるAu、Cu、及びAg(以下、総称して「Au等」という)の合計の含有量が0.5質量ppm以下である。Au等の合計の含有量が0.5質量ppm以下であると、溶融ガラス30中に、溶融ガラス30から還元雰囲気40に揮散して凝集物となる成分が少ない。そのため、還元雰囲気40中で凝集物が成長し難く、凝集物が溶融ガラス30の上面に落下し難くなる。よって、ガラス板のトップ面の品質が良好になる。より好ましい範囲は0.3質量ppm以下、さらに好ましい範囲は0.1質量ppm以下である。 In the present embodiment, the molten glass 30 immediately before being supplied into the bath 10 has a total content of impurities Au, Cu, and Ag (hereinafter collectively referred to as “Au etc.”) of 0.5 mass ppm. It is as follows. When the total content of Au or the like is 0.5 mass ppm or less, there are few components in the molten glass 30 that volatilize from the molten glass 30 to the reducing atmosphere 40 and become aggregates. Therefore, the aggregate is difficult to grow in the reducing atmosphere 40 and the aggregate is difficult to fall on the upper surface of the molten glass 30. Therefore, the quality of the top surface of the glass plate is improved. A more preferable range is 0.3 mass ppm or less, and a still more preferable range is 0.1 mass ppm or less.
 バス10内に供給する直前の溶融ガラス30中のAu等の合計の含有量は、溶解炉に投入するガラス原料中のAu等の合計の含有量よりも僅かに少ない。Au等は、溶解工程において徐々にガラスから外部に揮散するためである。 The total content of Au and the like in the molten glass 30 immediately before being supplied into the bath 10 is slightly smaller than the total content of Au and the like in the glass raw material charged into the melting furnace. This is because Au and the like gradually evaporate from the glass to the outside in the melting step.
 そこで、バス10内に供給する直前の溶融ガラス30中のAu等の合計の含有量が0.5質量ppm以下となるように、ガラス原料中のAu等の合計の含有量は1.0質量ppm以下であることが好ましい。より好ましい範囲は0.5質量ppm以下、さらに好ましい範囲は0.3質量ppm以下である。 Therefore, the total content of Au and the like in the glass raw material is 1.0 mass so that the total content of Au and the like in the molten glass 30 immediately before being supplied into the bath 10 is 0.5 mass ppm or less. It is preferably at most ppm. A more preferable range is 0.5 mass ppm or less, and a further preferable range is 0.3 mass ppm or less.
 また、本実施形態では、バス10内に供給する直前の溶融ガラス30は、不純物であるF、Cl、Br及びI(以下、総称して「F等」という)の合計の含有量が200質量ppm以下である。F等は、単体としてはガラスの成形温度よりも沸点が低く、Au等の揮散を促す。 In the present embodiment, the molten glass 30 immediately before being supplied into the bath 10 has a total content of impurities F, Cl, Br, and I (hereinafter collectively referred to as “F etc.”) of 200 mass. ppm or less. F or the like as a simple substance has a boiling point lower than the glass forming temperature, and promotes volatilization of Au or the like.
 バス10内に供給する直前の溶融ガラス30中のF等の合計の含有量が200質量ppm以下であると、溶融ガラス30中のAu等が還元雰囲気40中に揮散し難いので、還元雰囲気40中で凝集物が成長し難く、凝集物が落下し難くなる。よって、ガラス板のトップ面の品質が良好になる。より好ましい範囲は100質量ppm以下、さらに好ましい範囲は50質量ppm以下である。 When the total content of F and the like in the molten glass 30 immediately before being supplied into the bath 10 is 200 mass ppm or less, Au or the like in the molten glass 30 is difficult to be volatilized in the reducing atmosphere 40, and thus the reducing atmosphere 40. Aggregates are difficult to grow and aggregates are difficult to fall. Therefore, the quality of the top surface of the glass plate is improved. A more preferable range is 100 mass ppm or less, and a further preferable range is 50 mass ppm or less.
 バス10内に供給する直前の溶融ガラス30中のF等の合計の含有量は、溶解炉に投入するガラス原料中のF等の合計の含有量よりも僅かに少ない。F等は、溶解工程において徐々にガラスから外部に揮散するためである。 The total content of F and the like in the molten glass 30 immediately before being supplied into the bath 10 is slightly smaller than the total content of F and the like in the glass raw material charged into the melting furnace. This is because F and the like gradually evaporate from the glass to the outside in the melting step.
 そこで、バス10内に供給する直前の溶融ガラス30中のF等の合計の含有量が200質量ppm以下となるように、ガラス原料中のF等の合計の含有量は500質量ppm以下であることが好ましい。より好ましい範囲は300質量ppm以下、さらに好ましい範囲は200質量ppm以下である。 Therefore, the total content of F and the like in the glass raw material is 500 mass ppm or less so that the total content of F and the like in the molten glass 30 immediately before being supplied into the bath 10 is 200 mass ppm or less. It is preferable. A more preferable range is 300 mass ppm or less, and a further preferable range is 200 mass ppm or less.
 バス10内の溶融スズ20は、トップ面の高品質化のため、不純物であるAu等の合計の含有量が10質量ppm以下であって、F等の合計の含有量が100質量ppm以下であってよい。バス10内の溶融スズ20の原料としては、例えばスズが用いられる。 The molten tin 20 in the bus 10 has a total content of impurities such as Au of 10 mass ppm or less and a total content of F or the like of 100 mass ppm or less in order to improve the quality of the top surface. It may be. For example, tin is used as a raw material of the molten tin 20 in the bath 10.
 次に、上記製造方法で得られるガラス板について説明する。 Next, the glass plate obtained by the above production method will be described.
 ガラス板は、Au等の合計の含有量が0.5質量ppm以下である。Au等は、成形工程及び徐冷工程においてガラスから外部に揮散するが、揮散量は全体量に比べて僅かである。ガラス板のガラス組成と、成形工程における溶融ガラス30のガラス組成とは略同一である。ガラス板中のAu等の合計の含有量が0.5質量ppm以下であると、成形工程における溶融ガラス30中のAu等の合計の含有量が少なく、溶融ガラス30中に、溶融ガラス30から還元雰囲気40に揮散して凝集物の核となる成分が少ない。そのため、凝集物が成長し難く、凝集物が溶融ガラス30の上面に落下し難くなる。よって、ガラス板のトップ面の品質が良好になる。 The glass plate has a total content of Au and the like of 0.5 mass ppm or less. Au or the like is volatilized from the glass to the outside in the molding step and the slow cooling step, but the volatilization amount is small compared to the total amount. The glass composition of a glass plate and the glass composition of the molten glass 30 in a formation process are substantially the same. When the total content of Au and the like in the glass plate is 0.5 mass ppm or less, the total content of Au and the like in the molten glass 30 in the molding process is small, and the molten glass 30 has the There are few components which volatilize in the reducing atmosphere 40 and become the core of the aggregate. Therefore, the aggregate is difficult to grow and the aggregate is difficult to fall on the upper surface of the molten glass 30. Therefore, the quality of the top surface of the glass plate is improved.
 また、ガラス板は、F等の合計の含有量が200質量ppm以下である。F等は、成形工程及び徐冷工程においてガラスから外部に揮散するが、揮散量は全体量に比べて僅かである。ガラス板のガラス組成と、成形工程における溶融ガラス30のガラス組成とは略同一である。ガラス板中のF等の含有量が200質量ppm以下であると、成形工程における溶融ガラス30中のF等の含有量が少なく、溶融ガラス30中のAu等が還元雰囲気40に揮散し難いので、還元雰囲気40中で凝集物が成長し難く、凝集物が落下し難くなる。よって、ガラス板のトップ面の品質が良好になる。 Further, the glass plate has a total content of F or the like of 200 mass ppm or less. F and the like are volatilized from the glass to the outside in the molding step and the slow cooling step, but the volatilization amount is slight compared to the total amount. The glass composition of a glass plate and the glass composition of the molten glass 30 in a formation process are substantially the same. When the content of F or the like in the glass plate is 200 mass ppm or less, the content of F or the like in the molten glass 30 in the molding process is small, and Au or the like in the molten glass 30 is difficult to volatilize in the reducing atmosphere 40. In the reducing atmosphere 40, the aggregates are difficult to grow and the aggregates are difficult to fall. Therefore, the quality of the top surface of the glass plate is improved.
 以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に制限されることはない。本発明の範囲を逸脱することなく、上記の実施形態に種々の変形及び置換を加えることができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. Various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the present invention.
 例えば、上記の実施形態の溶融ガラス30は、バス10内に供給する直前において、(1)Au等の合計の含有量が0.5質量ppm以下、且つ(2)F等の合計の含有量が200質量ppm以下であるが、(1)又は(2)のみを満たしていてもよい。トップ面の付着物は、Au等の不純物と、F等の不純物の両方が多すぎる場合に生じるからである。バス10内の溶融スズ20の不純物についても同様である。 For example, the molten glass 30 of the above embodiment has a total content of (1) Au or the like of 0.5 mass ppm or less and (2) a total content of F or the like immediately before being supplied into the bath 10. However, it may satisfy only (1) or (2). This is because the deposit on the top surface occurs when there are too many impurities such as Au and impurities such as F. The same applies to the impurities of the molten tin 20 in the bath 10.
 また、上記の実施形態のガラス板は、(1)Au等の合計の含有量が0.5質量ppm以下、且つ(2)F等の合計の含有量が200質量ppm以下であるが、(1)又は(2)のみを満たしていてもよい。 Further, the glass plate of the above embodiment has (1) the total content of Au and the like is 0.5 mass ppm or less, and (2) the total content of F and the like is 200 mass ppm or less. Only 1) or (2) may be satisfied.
 以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
 [例1]
 例1では、図1及び図2に示す方法で無アルカリガラスからなるガラス板を製造した。バス内の溶融スズの原料としては、スズを用いた。無アルカリガラスは、酸化物基準の質量%表示で、SiO:59.5%、Al:17%、B:8%、MgO:3.3%、CaO:4%、SrO:7.6%、BaO:0.1%、ZrO:0.1%を含有し、MgO+CaO+SrO+BaO:15%であって、残部が不可避的不純物であり、アルカリ金属酸化物の含有量の合量が0.1%以下であった。
[Example 1]
In Example 1, a glass plate made of alkali-free glass was produced by the method shown in FIGS. Tin was used as a raw material for molten tin in the bath. The alkali-free glass is expressed in terms of mass% based on oxide, SiO 2 : 59.5%, Al 2 O 3 : 17%, B 2 O 3 : 8%, MgO: 3.3%, CaO: 4%, SrO: 7.6%, BaO: 0.1%, ZrO 2 : 0.1%, MgO + CaO + SrO + BaO: 15%, the balance being inevitable impurities, the total content of alkali metal oxides The amount was 0.1% or less.
 ガラス原料、バス内に供給する直前の溶融ガラス、及びガラス板にそれぞれ含まれる各元素(Au等、F等を含む)の含有量(質量%)は、湿式分析により測定した。湿式分析では、ガラス原料等のサンプルを酸に溶解して分析を行った。尚、バス内に供給する直前の溶融ガラスのサンプルは、バスの入口近傍の溶融ガラスを十分に冷却した鉄製の柄杓で汲み出した後、急冷して作製した。 The content (mass%) of each element (including Au, F, etc.) contained in the glass raw material, the molten glass immediately before being supplied into the bath, and the glass plate was measured by wet analysis. In the wet analysis, analysis was performed by dissolving a sample such as a glass raw material in an acid. The molten glass sample immediately before being supplied into the bath was prepared by pumping the molten glass near the entrance of the bath with a sufficiently cooled iron handle and then rapidly cooling it.
 ガラス板のトップ面の付着物の平均密度(個/m)は、トップ面が1.0m×1.0mのガラス板を目視で40枚観察して測定した。 The average density (pieces / m 2 ) of deposits on the top surface of the glass plate was measured by visually observing 40 glass plates having a top surface of 1.0 m × 1.0 m.
 Au等の合計の含有量、F等の合計の含有量、及び付着物の平均密度の測定結果を表1に示す。 Table 1 shows the measurement results of the total content of Au and the like, the total content of F and the like, and the average density of the deposits.
 [例2~例6]
 例2~例6では、ガラス原料に微量のCuO、AgSを等モル量添加した他は、例1と同様にしてガラス板を製造した。例1~例4が実施例、例5~例6が比較例である。
[Examples 2 to 6]
In Examples 2 to 6, glass plates were produced in the same manner as in Example 1 except that equimolar amounts of trace amounts of CuO and Ag 2 S were added to the glass raw material. Examples 1 to 4 are examples, and examples 5 to 6 are comparative examples.
 Au等の合計の含有量、F等の合計の含有量、及び付着物の平均密度は、例1と同様にして測定した。測定結果を表1に示す。 The total content of Au and the like, the total content of F and the like, and the average density of the deposits were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1から、バス内に供給する直前の溶融ガラスやガラス板において、Au等の合計の含有量が0.5質量ppm以下であれば、付着物の欠点が有意に少ないことがわかる。
Figure JPOXMLDOC01-appb-T000001
From Table 1, it can be seen that in the molten glass or glass plate immediately before being supplied into the bath, if the total content of Au or the like is 0.5 mass ppm or less, the defects of the deposits are significantly reduced.
 [例7]
 例7では、ガラス原料を変えた他は、例1と同様にして無アルカリガラスからなるガラス板を製造した。無アルカリガラスは、酸化物基準の質量%表示で、SiO:59.5%、Al:17%、B:8%、MgO:3.3%、CaO:4%、SrO:7.6%、BaO:0.1%、ZrO:0.1%を含有し、MgO+CaO+SrO+BaO:15%であって、残部が不可避的不純物であり、アルカリ金属酸化物の含有量の合量が0.1%以下であった。
[Example 7]
In Example 7, the glass plate which consists of an alkali free glass was manufactured like Example 1 except having changed the glass raw material. The alkali-free glass is expressed in terms of mass% based on oxide, SiO 2 : 59.5%, Al 2 O 3 : 17%, B 2 O 3 : 8%, MgO: 3.3%, CaO: 4%, SrO: 7.6%, BaO: 0.1%, ZrO 2 : 0.1%, MgO + CaO + SrO + BaO: 15%, the balance being inevitable impurities, the total content of alkali metal oxides The amount was 0.1% or less.
 Au等の合計の含有量、F等の合計の含有量、及び付着物の平均密度は、例1と同様にして測定した。測定結果を表1に示す。 The total content of Au and the like, the total content of F and the like, and the average density of the deposits were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
 [例8~例12]
 例8~例12では、ガラス原料に微量のCaFを添加した他は、例7と同様にしてガラス板を製造した。例7~例10が実施例、例11~例12が比較例である。
[Examples 8 to 12]
In Examples 8 to 12, glass plates were produced in the same manner as in Example 7, except that a trace amount of CaF 2 was added to the glass raw material. Examples 7 to 10 are examples, and examples 11 to 12 are comparative examples.
 Au等の合計の含有量、F等の合計の含有量、及び付着物の平均密度は、例1と同様にして測定した。測定結果を表2に示す。 The total content of Au and the like, the total content of F and the like, and the average density of the deposits were measured in the same manner as in Example 1. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2から、バス内に供給する直前の溶融ガラスやガラス板において、F等の合計の含有量が200質量ppm以下であれば、付着物の欠点が有意に少ないことがわかる。
Figure JPOXMLDOC01-appb-T000002
From Table 2, it can be seen that if the total content of F or the like in the molten glass or glass plate immediately before being supplied into the bath is 200 mass ppm or less, the defects of the deposits are significantly reduced.
 表1及び表2から、バス内に供給する直前の溶融ガラスやガラス板において、Au等の合計の含有量が0.5質量ppm以下であって、且つ、F等の合計の含有量が200質量ppm以下であれば、付着物の欠点が十分に少なくなることがわかる。
From Table 1 and Table 2, in the molten glass or glass plate immediately before being supplied into the bus, the total content of Au and the like is 0.5 mass ppm or less, and the total content of F and the like is 200. It can be seen that if the mass is less than or equal to ppm, the defects of the deposits are sufficiently reduced.
本出願は、2012年7月17日出願の日本特許出願2012-159048に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2012-159048 filed on July 17, 2012, the contents of which are incorporated herein by reference.
10  バス
12  バスの入口
14  バスの出口
20  溶融スズ
30  溶融ガラス
40  還元雰囲気
50  スパウトリップ
60  ヒータ
70  給気路
80  排気路
DESCRIPTION OF SYMBOLS 10 Bus 12 Bus entrance 14 Bus exit 20 Molten tin 30 Molten glass 40 Reducing atmosphere 50 Spaw trip 60 Heater 70 Air supply path 80 Exhaust path

Claims (11)

  1.  フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形する工程を有するガラス板の製造方法において、
     前記フロートバス内に供給される直前の前記溶融ガラスは、不純物であるAu、Cu、及びAgの合計の含有量が0.5質量ppm以下であることを特徴とするガラス板の製造方法。
    In the method for producing a glass plate, including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin,
    The method for producing a glass plate, wherein the molten glass immediately before being supplied into the float bath has a total content of impurities Au, Cu, and Ag of 0.5 mass ppm or less.
  2.  前記フロートバス内に供給される直前の前記溶融ガラスは、不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下である請求項1に記載のガラス板の製造方法。 The method for producing a glass plate according to claim 1, wherein the molten glass immediately before being supplied into the float bath has a total content of impurities F, Cl, Br and I of 200 ppm by mass or less.
  3.  フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形する工程を有するガラス板の製造方法において、
     前記フロートバス内に供給される直前の前記溶融ガラスは、不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下であることを特徴とするガラス板の製造方法。
    In the method for producing a glass plate, including a step of forming molten glass that is continuously supplied onto molten tin in a float bath and flowing on the molten tin,
    The method for producing a glass plate, wherein the molten glass immediately before being supplied into the float bath has a total content of impurities F, Cl, Br and I of 200 ppm by mass or less.
  4.  フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形されるガラス板において、
     不純物であるAu、Cu、及びAg合計の含有量が0.5質量ppm以下であることを特徴とするガラス板。
    In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
    A glass plate, wherein the total content of impurities Au, Cu, and Ag is 0.5 ppm by mass or less.
  5.  不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下である請求項4に記載のガラス板。 The glass plate according to claim 4, wherein the total content of impurities F, Cl, Br and I is 200 ppm by mass or less.
  6.  フロートバス内の溶融スズ上に連続的に供給される溶融ガラスを前記溶融スズ上で流動させて成形されるガラス板において、
     不純物であるF、Cl、Br及びIの合計の含有量が200質量ppm以下であることを特徴とするガラス板。
    In a glass plate formed by flowing molten glass continuously supplied on molten tin in a float bath on the molten tin,
    A glass plate, wherein the total content of impurities F, Cl, Br and I is 200 mass ppm or less.
  7.  前記ガラス板は、酸化物基準の質量%表示で、SiO:65~75%、Al:0~3%、CaO:5~15%、MgO:0~15%、NaO:10~20%、KO:0~3%、LiO:0~5%、Fe:0~3%、TiO:0~5%、CeO:0~3%、BaO:0~5%、SrO:0~5%、B:0~5%、ZnO:0~5%、ZrO:0~5%、SnO:0~3%、SO:0~0.5%を含有するソーダライムガラスである請求項4~6のいずれか1項に記載のガラス板。 The glass plate is expressed in terms of mass% based on oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO : 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : 0 The glass plate according to any one of claims 4 to 6, which is soda-lime glass containing -0.5%.
  8.  前記ガラス板は、ディスプレイ用ガラス基板である請求項4~6のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 4 to 6, wherein the glass plate is a glass substrate for display.
  9.  前記ガラス板の厚さが1mm以下である請求項8に記載のガラス板。 The glass plate according to claim 8, wherein the glass plate has a thickness of 1 mm or less.
  10.  前記ガラス板は、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、SnO:0~3%を含有し、MgO+CaO+SrO+BaO:9~29.5%であって、アルカリ金属酸化物の含有量の合量が0.1%以下の無アルカリガラスである請求項4~6のいずれか1項に記載のガラス板。 The glass plate is expressed by mass% based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8% , CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, SnO: 0 to 3%, MgO + CaO + SrO + BaO: 9 to 29. The glass plate according to any one of claims 4 to 6, which is an alkali-free glass having a content of 5% and an alkali metal oxide content of 0.1% or less.
  11.  前記ガラス板は、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、SnO:0~1%を含有し、MgO+CaO+SrO+BaO:9~18%であって、アルカリ金属酸化物の含有量の合量が0.1%以下である無アルカリガラスである請求項4~6のいずれか1項に記載のガラス板。 The glass plate is expressed in terms of mass% based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO : 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, SnO: 0 to 1%, MgO + CaO + SrO + BaO: 9 to 18%, the content of alkali metal oxide The glass plate according to any one of claims 4 to 6, which is an alkali-free glass having a total amount of 0.1% or less.
PCT/JP2013/068777 2012-07-17 2013-07-09 Method for producing glass plate, and glass plate WO2014013913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380038234.9A CN104487390B (en) 2012-07-17 2013-07-09 The manufacturing method and glass plate of glass plate
KR1020157001174A KR102080003B1 (en) 2012-07-17 2013-07-09 Method for producing glass plate, and glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159048 2012-07-17
JP2012159048A JP2015171957A (en) 2012-07-17 2012-07-17 Production method of glass sheet, and glass sheet

Publications (1)

Publication Number Publication Date
WO2014013913A1 true WO2014013913A1 (en) 2014-01-23

Family

ID=49948743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068777 WO2014013913A1 (en) 2012-07-17 2013-07-09 Method for producing glass plate, and glass plate

Country Status (4)

Country Link
JP (1) JP2015171957A (en)
KR (1) KR102080003B1 (en)
TW (1) TW201410622A (en)
WO (1) WO2014013913A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106195A (en) * 2004-10-01 2006-04-20 Nippon Electric Glass Co Ltd Display substrate
JP2007099576A (en) * 2005-10-06 2007-04-19 Nippon Sheet Glass Co Ltd Method and apparatus for manufacturing float glass
WO2009054411A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Co., Ltd. Sheet glass manufacturing method
JP2011157249A (en) * 2010-02-03 2011-08-18 Asahi Glass Co Ltd Tweel for controlling amount of molten glass and method for feeding molten glass
JP2011201711A (en) * 2010-03-24 2011-10-13 Hoya Corp Display cover glass and display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048054A1 (en) * 2001-11-30 2003-06-12 Corning Incorporated Method and apparatus for homogenizing molten glass by stirring
TWI404691B (en) * 2003-12-26 2013-08-11 Asahi Glass Co Ltd E-glass and liquid crystal display panel
DE102009000348B4 (en) 2008-08-28 2011-09-01 Schott Ag Process for the production of flat glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106195A (en) * 2004-10-01 2006-04-20 Nippon Electric Glass Co Ltd Display substrate
JP2007099576A (en) * 2005-10-06 2007-04-19 Nippon Sheet Glass Co Ltd Method and apparatus for manufacturing float glass
WO2009054411A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Co., Ltd. Sheet glass manufacturing method
JP2011157249A (en) * 2010-02-03 2011-08-18 Asahi Glass Co Ltd Tweel for controlling amount of molten glass and method for feeding molten glass
JP2011201711A (en) * 2010-03-24 2011-10-13 Hoya Corp Display cover glass and display

Also Published As

Publication number Publication date
JP2015171957A (en) 2015-10-01
KR20150036095A (en) 2015-04-07
TW201410622A (en) 2014-03-16
KR102080003B1 (en) 2020-02-24
CN104487390A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI403482B (en) Intermediate thermal expansion coefficient glass
WO2013154035A1 (en) Glass plate
US7294594B2 (en) Glass composition
JP2009518278A (en) Bubble removal method in glass making process
JP5254159B2 (en) Sheet glass manufacturing method
US20160046519A1 (en) Glass plate and process for manufacturing glass plate
TW201305069A (en) Glass plate manufacturing method and glass plate manufacturing device
JP2024038064A (en) Plate glass, manufacturing method of the same, and use of the same
TWI401228B (en) Manufacture of alkali - free glass
KR20110122137A (en) Glass sheet
WO2018123505A1 (en) Alkali-free glass substrate production method
JP2015105216A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP2017030978A (en) Manufacturing apparatus of float glass, and manufacturing method of float glass
WO2013145922A1 (en) Method for producing glass plate
WO2013011980A1 (en) Method for producing float glass
WO2014013913A1 (en) Method for producing glass plate, and glass plate
EP1698596A1 (en) Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
JP2014224011A (en) Glass plate, and manufacturing method of glass plate
TWI704116B (en) Alkali-free floating flat glass and method for manufacturing alkali-free floating flat glass
CN104487390B (en) The manufacturing method and glass plate of glass plate
JP2011157234A (en) Alkali-free glass substrate and manufacturing method therefor and manufacturing apparatus
KR102255639B1 (en) Melting method, and production method for alkali-free glass plate
JP6408378B2 (en) Manufacturing method of glass substrate
TW202229194A (en) Float glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001174

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP