WO2015025568A1 - Float glass production device and float glass production method using same - Google Patents

Float glass production device and float glass production method using same Download PDF

Info

Publication number
WO2015025568A1
WO2015025568A1 PCT/JP2014/063379 JP2014063379W WO2015025568A1 WO 2015025568 A1 WO2015025568 A1 WO 2015025568A1 JP 2014063379 W JP2014063379 W JP 2014063379W WO 2015025568 A1 WO2015025568 A1 WO 2015025568A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
float glass
partition wall
temperature space
space
Prior art date
Application number
PCT/JP2014/063379
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 瀧口
督博 鏡味
和明 隅田
正信 白井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157033388A priority Critical patent/KR102153289B1/en
Priority to CN201480039235.XA priority patent/CN105377777B/en
Publication of WO2015025568A1 publication Critical patent/WO2015025568A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method using the same.
  • the float glass manufacturing method includes a forming step of flowing a glass ribbon on a liquid surface of a molten metal (for example, molten tin) in a bathtub to form a plate (for example, refer to Patent Document 1).
  • a molten metal for example, molten tin
  • the molding space between the bathtub and the ceiling is filled with a reducing gas in order to suppress the oxidation of the molten metal.
  • the forming space contains a small amount of gas evaporated from the molten metal. This gas contains the metal element evaporated from the molten metal in the form of a simple substance or a compound. Examples of the compound include metal oxides and metal sulfides.
  • the gas evaporated from the molten metal is cooled to form foreign matters such as droplets and particles, and the foreign matters fall on the upper surface of the glass ribbon, resulting in many defects.
  • the present invention has been made in view of the above problems, and has as its main object to provide a float glass manufacturing apparatus with a reduced number of defects.
  • a bathtub containing molten metal An entrance wall located above the upstream portion of the bathtub; An outlet wall located above the downstream part of the bathtub; A ceiling disposed above the bathtub and extending from the entrance wall to the exit wall; Provided at intervals along the flow direction of the glass ribbon flowing over the liquid surface of the molten metal, pressing the width direction end of the glass ribbon that has passed between the liquid surface and the inlet wall, And a plurality of top rolls rotating by itself, A partition wall that partitions the molding space surrounded by the ceiling, the bathtub, the entrance wall and the exit wall into a high temperature space on the upstream side and a low temperature space on the downstream side; An exhaust passage for discharging the gas in the high temperature space to the outside of the molding space,
  • the float glass manufacturing apparatus is provided in which the partition wall is disposed on the downstream side of the inlet wall, and is disposed on the upstream side of the most upstream top roll among the plurality of top rolls.
  • a float glass manufacturing method with a reduced number of defects.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
  • the “width direction” means a direction orthogonal to the flow direction of the glass ribbon in the forming step.
  • FIG. 1 is a sectional view showing a forming apparatus of a float glass manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 2, the heater and the upper side wall are not shown in order to make the drawing easy to see.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the float glass manufacturing apparatus has a forming apparatus 10.
  • the forming apparatus 10 causes the glass ribbon 14 to flow on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape.
  • the glass ribbon 14 is pulled up from the molten metal 11 in the downstream area of the bathtub 20, and is sent from the outlet formed between the bathtub 20 and the outlet wall 28 to the slow cooling furnace.
  • a plate-like float glass is obtained by cutting the glass ribbon 14 that has been gradually cooled in the slow cooling furnace.
  • the molding apparatus 10 includes a bathtub 20, a spout trip 22, a twill 23, restrictor tiles 24 and 25, an inlet wall 26, an outlet wall 28, a ceiling 30, upper side walls 32 and 33, An air passage 34, a heater 36, a top roll 40, a partition wall 42, an exhaust passage 44, and the like are included.
  • the bathtub 20 accommodates the molten metal 11 as shown in FIGS.
  • the molten metal 11 for example, molten tin or a molten tin alloy can be used as long as it can float the glass ribbon 14.
  • the spout trip 22 continuously supplies the molten glass 12 on the liquid surface of the molten metal 11.
  • the molten glass 12 passes between the spout trip 22 and the twill 23, is supplied onto the liquid surface of the molten metal 11, and becomes a glass ribbon 14.
  • the twill 23 is movable up and down with respect to the spout trip 22 in order to make the flow rate of the molten glass 12 variable.
  • the restrictor tiles 24 and 25 are in contact with the glass ribbon 14 as shown in FIG. 2 and regulate the width of the glass ribbon 14.
  • the restrictor tiles 24 and 25 expand toward the downstream side. Therefore, between the restrictor tiles 24 and 25, the glass ribbon 14 is widened while flowing toward the downstream.
  • the glass ribbon 14 flows at a distance from the side wall of the bathtub 20, and the width can be freely changed between the side walls of the bathtub 20.
  • the entrance wall 26 is located above the upstream part of the bathtub 20 as shown in FIG.
  • the inlet wall 26 is disposed on the downstream side of the spout trip 22 and is disposed above the restrictor tiles 24 and 25.
  • the entire liquid surface of the molten metal 11 is covered with the glass ribbon 14 on the upstream side of the inlet wall 26.
  • most of the liquid level of the molten metal 11 is covered with the glass ribbon 14 on the downstream side of the inlet wall 26, but a part of the liquid level of the molten metal 11 is not covered with the glass ribbon 14.
  • the exit wall 28 is located above the downstream part of the bathtub 20 as shown in FIG.
  • the ceiling 30 is provided above the bathtub 20 as shown in FIG. 1 and extends from the entrance wall 26 to the exit wall 28.
  • the forming space 50 surrounded by the bathtub 20, the ceiling 30, the inlet wall 26 and the outlet wall 28 is filled with a reducing gas in order to suppress oxidation of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14. May be.
  • the pressure in the molding space 50 may be higher than the atmospheric pressure.
  • the upper side walls 32 and 33 block the gap between the side wall of the bathtub 20 and the ceiling 30 as shown in FIG.
  • the upper side walls 32, 33 extend from the inlet wall 26 to the outlet wall 28.
  • a through hole through which the rotation shaft of the top roll 40 is inserted, an end portion of the exhaust passage 44, and the like are formed.
  • the heater 36 is inserted into the air supply path 34 of the ceiling 30, and the heat generating portion of the heater 36 is disposed in the molding space 50.
  • the heater 36 heats the molten metal 11 and the glass ribbon 14 from above.
  • a plurality of heaters 36 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon 14. The output of the heater 36 is controlled so that the temperature of the glass ribbon 14 becomes lower toward the downstream side.
  • the top rolls 40 are used in pairs, pressing the end of the glass ribbon 14 in the width direction, and applying tension to the glass ribbon 14 in the width direction.
  • a plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the glass ribbon 14.
  • the top roll 40 has a rotating member in contact with the glass ribbon 14 at the tip. While the rotating member rotates and the plurality of pairs of top rolls 40 apply tension to the glass ribbon 14, the glass ribbon 14 gradually cools and becomes hard while flowing in the downstream direction.
  • the top roll 40 may have a refrigerant flow path inside to suppress deterioration due to heat.
  • a coolant such as water flowing through the coolant channel absorbs the heat of the top roll 40 and transports it to the outside, thereby cooling the top roll 40.
  • the partition wall 42 partitions the molding space 50 into an upstream high temperature space 51 and a downstream low temperature space 52, and restricts the outflow of gas from the high temperature space 51 to the low temperature space 52.
  • the partition wall 42 may extend from one upper side wall 32 to the other upper side wall 33, and may cross the molding space 50.
  • the high temperature space 51 Since the high temperature space 51 is hotter than the low temperature space 52, it contains a large amount of gas evaporated from the molten metal 11 in the bathtub 20.
  • This gas contains the metal element evaporated from the molten metal 11 in the form of at least one of a simple substance and a compound. Examples of the compound include metal oxides and metal sulfides. Hereinafter, this gas is referred to as a metal-containing gas.
  • the partition wall 42 restricts the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52.
  • the number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas in the low temperature space 52 can be reduced. As a result, it is possible to reduce the number of defects caused by the foreign matter falling on the surface of the glass ribbon 14.
  • Gas is supplied to the high temperature space 51 and the low temperature space 52 from the outside of the molding apparatus 10 via the air supply passages 34 formed on the respective ceilings.
  • This gas may be a reducing gas in order to limit oxidation of the exposed portion of the liquid surface of the molten metal 11.
  • the reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas.
  • the reducing gas may be supplied to the high temperature space 51 and the low temperature space 52 through the air supply path 34 after being preheated in the preheating space 53 surrounded by the roof casing 31 and the ceiling 30.
  • the gas in the preheating space 53 flows into the molding space 50 not only through the air supply passage 34 but also through brick joints that form the ceiling 30.
  • Gas is supplied to the high temperature space 51 from the outside of the molding apparatus 10 through a spout space 27 formed between the twill 23 and the inlet wall 26 in addition to the air supply path 34 formed on the ceiling. .
  • the gas may be supplied to the spout space 27 from at least one of the upper side and the side.
  • This gas may be either an inert gas or a reducing gas.
  • An exhaust path is not connected to the spout space 27, and most of the gas supplied to the spout space 27 passes below the inlet wall 26 and is supplied to the high temperature space 51.
  • An exhaust path 44 is formed on the side wall of the high temperature space 51 (that is, the upper side walls 32 and 33).
  • the exhaust path 44 exhausts the gas in the high temperature space 51 to the outside of the molding apparatus 10.
  • the outside of the molding apparatus 10 may be read as the outside of the molding space 50.
  • the exhaust path 44 may discharge gas using a pressure difference between the high temperature space 51 and the outside of the molding apparatus 10, or may discharge gas using a suction force of a pump or the like.
  • the exhaust path 44 may be formed not only on the side wall of the high temperature space 51 but also on the side wall of the low temperature space 52.
  • the float glass manufacturing method has a forming step in which the glass ribbon 14 is flowed on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape.
  • the forming step the width direction end of the glass ribbon 14 that has passed between the liquid surface of the molten metal 11 and the inlet wall 26 is pressed by the top roll 40, the top roll 40 rotates, and the glass ribbon 14 moves downstream. Fluidized.
  • the partition wall 42 is disposed on the downstream side of the inlet wall 26.
  • the high temperature space 51 on the upstream side of the partition wall 42 can capture a large amount of the metal-containing gas.
  • the airflow tends to become unstable near the top roll 40.
  • the causes of the unstable airflow include, for example, cold ambient air from the through hole through which the rotation shaft of the top roll 40 is inserted in the upper side wall 32, and the temperature difference between the top roll 40 cooled by the refrigerant and its surroundings. Etc. Therefore, the partition wall 42 is disposed on the most upstream side among the plurality of top rolls 40 arranged at intervals in the flow direction of the glass ribbon 14 (hereinafter referred to as “the most upstream top roll 40”). It arrange
  • the partition wall 42 is disposed on the downstream side of the inlet wall 26, and is disposed on the upstream side of the most upstream top roll 40.
  • the high temperature space 51 upstream from the partition wall 42 can capture a large amount of the metal-containing gas, and the outflow of the metal-containing gas captured in the high temperature space 51 to the low temperature space 52 can be suppressed.
  • the partition wall 42 may be disposed in a range Z in which the viscosity of the glass ribbon 14 is 10 4.9 to 10 5.6 dPa ⁇ s in the flow direction of the glass ribbon 14. If the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently away from the uppermost upstream roll 40 on the upstream side, so that the airflow in the vicinity of the partition wall 42 is easily stabilized. This is particularly effective in that the airflow can be stabilized when the thickness of the float glass is 2 mm or less, preferably 1 mm or less, and more preferably 0.7 mm or less. The thinner the float glass, the greater the number of top rolls 40 used to draw the glass ribbon 14 thinner.
  • the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently upstream from the uppermost top roll 40, so that the airflow in the vicinity of the partition wall 42 Is easy to stabilize. Further, if the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently separated from the inlet wall 26 on the downstream side, so that the upstream high-temperature space 51 contains a large amount of metal-containing gas. Can capture.
  • the partition wall 42 is preferably disposed in the flow direction of the glass ribbon 14 so that the viscosity of the glass ribbon 14 is in the range of 10 4.9 to 10 5.5 dPa ⁇ s, and the viscosity of the glass ribbon 14 is 10 5. More preferably, it is disposed in the range of 0.0 to 10 5.4 dPa ⁇ s.
  • the ratio of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14 may be 10 to 40%. If the ratio of the exposed portion is 10% or more, the high temperature space 51 formed between the partition wall 42 and the inlet wall 26 can sufficiently capture the metal-containing gas. Moreover, if the ratio of an exposed part is 40% or less, deterioration of the heater 36 by metal containing gas can be suppressed.
  • the ratio of the exposed portion in the liquid surface of the molten metal 11 between the partition wall 42 and the inlet wall 26 is preferably 10 to 35%, more preferably 10 to 20%.
  • the partition wall 42 has a horizontal distance (X-direction distance) L1 between the upstream end of the inlet wall 26 and the upstream end of the partition wall 42 such that the upstream end of the inlet wall 26 and the outlet wall 28. May be disposed at a position that is 5 to 20% of the distance L2 in the X direction between the upstream end and the upstream end. If the distance L1 is 5% or more of the distance L2, the high temperature space 51 formed between the partition wall 42 and the inlet wall 26 can sufficiently capture the metal-containing gas. In addition, if the distance L1 is 20% or less of the distance L2, the partition wall 42 can be disposed at a position sufficiently away from the most upstream top roll 40 on the upstream side.
  • the distance L1 is preferably 5 to 15% of the distance L2, and more preferably 5 to 10% of the distance L2.
  • the partition wall 42 protrudes downward from the ceiling 30.
  • the height H1 (see FIG. 3) of the lower end of the partition wall 42 is, for example, 10 to 40% of the height H2 (see FIG. 1) of the lower surface of the ceiling 30. . If the height H1 of the lower end of the partition wall 42 is 10% or more of the height H2 of the lower surface of the ceiling 30, it is possible to monitor the glass ribbon downstream from the partition wall 42 from the uppermost stream of the molding space 50. is there.
  • the metal-containing gas can be retained in the high temperature space 51, and the high temperature space 51 is moved to the low temperature space 52.
  • the outflow of the metal-containing gas can be reduced.
  • the height H1 of the lower end of the partition wall 42 is preferably 10 to 35% of the height H2 of the lower surface of the ceiling 30, and more preferably 10 to 20% of the height H2 of the lower surface of the ceiling 30.
  • the partition wall 42 may be movable in the vertical direction with respect to the ceiling 30 in order to make the height H1 variable.
  • a connecting rod 46 is connected to the partition wall 42, and a nut 47 is rotatably held on the roof casing 31.
  • the connecting rod 46 screwed with the nut 47 moves in the vertical direction, and as a result, the partition wall 42 moves in the vertical direction.
  • the gas discharge amount Qout to the outside of the molding apparatus 10 is preferably 100% or more of the gas supply amount Qin from the outside of the molding apparatus 10, and more preferably 170% or more of the supply amount Qin. More preferably, it is 230% or more of the supply amount.
  • Qin means the normal flow rate (Nm 3 / hr) of the gas supplied to the high temperature space 51 from at least one of the upper side, the side, and the upstream (from the upper side and the upstream side in this embodiment).
  • the amount of gas supplied from the downstream is not included in Qin.
  • the reason why the amount of gas supplied from the upstream (that is, the spout space 27) is included in Qin is that most of the gas supplied to the spout space 27 from the outside of the molding apparatus 10 is supplied to the high temperature space 51 as it is. .
  • an air supply path may be provided in the upper side walls 32 and 33.
  • Qout means the normal flow rate (Nm 3 / hr) of the gas discharged from the high temperature space 51 to at least one of the upper side and the side (side in this embodiment).
  • the amount of gas discharged downstream and upstream is not included in Qout. Note that the amount of gas discharged to the upstream (that is, the spout space 27) is very small. This is because the exhaust path is not connected to the spout space 27. Note that when the gas is discharged upward from the high temperature space 51, an exhaust path may be provided in the ceiling 30.
  • discharge amount is equal to the supply amount, there is almost no gas inflow and outflow between the high temperature space 51 and the low temperature space 52, and there is almost no outflow of metal-containing gas from the high temperature space 51 to the low temperature space 52.
  • the discharge amount is larger than the supply amount, the gas is supplied from the low temperature space 52 to the high temperature space 51. Therefore, an air flow from the low temperature space 52 toward the high temperature space 51 is formed, and this air flow can suppress the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52.
  • the manufactured float glass may be, for example, an alkali-free glass.
  • the alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O, etc.).
  • the alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
  • the alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 8 to 29.5%.
  • the alkali-free glass has both a high strain point and high solubility, it is preferably expressed in terms of mass% on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
  • the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26%.
  • the molding temperature of these alkali-free glasses is 100 ° C. or more higher than the molding temperature of general soda lime glass. Therefore, the amount of the metal-containing gas that evaporates from the molten metal 11 is large, and it is significant that the partition wall 42 suppresses the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52.

Abstract

A float glass production device provided with: a bath containing a molten metal; a ceiling situated above the bath and extending from an entrance wall to an exit wall; a plurality of top rolls provided so as to be spaced along the flow direction of a glass ribbon flowing above the liquid level of the molten metal, rotating by themselves and pressing the widthwise extremities of the glass ribbon having traversed the space between the liquid level and the entrance wall; a dividing wall whereby a forming space enclosed by the ceiling, the bath, the entrance wall, and the exit wall is divided into a high-temperature space on the upstream side and a low-temperature space on the downstream side; and an exhaust path wherefrom a gas in the high-temperature space is exhausted to the exterior of the forming space. The dividing wall is arranged more to the downstream side than the entrance wall and upstream from the top roll on the most upstream-side among the plurality of top rolls.

Description

フロートガラス製造装置およびそれを用いたフロートガラス製造方法Float glass manufacturing apparatus and float glass manufacturing method using the same
 本発明は、フロートガラス製造装置およびそれを用いたフロートガラス製造方法に関する。 The present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method using the same.
 フロートガラス製造方法は、浴槽内の溶融金属(例えば溶融スズ)の液面の上においてガラスリボンを流動させて板状に成形する成形工程を有する(例えば、特許文献1参照)。浴槽と天井との間の成形空間は、溶融金属の酸化を抑制するため、還元性ガスで満たされる。成形空間は、溶融金属から蒸発したガスを僅かに含む。このガスは、溶融金属から蒸発した金属元素を、単体および化合物の少なくともいずれかの形態で含有する。化合物としては、金属酸化物、金属硫化物などが挙げられる。 The float glass manufacturing method includes a forming step of flowing a glass ribbon on a liquid surface of a molten metal (for example, molten tin) in a bathtub to form a plate (for example, refer to Patent Document 1). The molding space between the bathtub and the ceiling is filled with a reducing gas in order to suppress the oxidation of the molten metal. The forming space contains a small amount of gas evaporated from the molten metal. This gas contains the metal element evaporated from the molten metal in the form of a simple substance or a compound. Examples of the compound include metal oxides and metal sulfides.
日本国特開昭50-3414号公報Japanese Unexamined Patent Publication No. 50-3414
 従来、溶融金属から蒸発したガスが冷えて液滴や粒子などの異物を形成し、その異物がガラスリボンの上面に落下し、多くの欠点が生じるという問題があった。 Conventionally, the gas evaporated from the molten metal is cooled to form foreign matters such as droplets and particles, and the foreign matters fall on the upper surface of the glass ribbon, resulting in many defects.
 本発明は、上記課題に鑑みてなされたものであって、欠点の数を低減したフロートガラス製造装置の提供を主な目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide a float glass manufacturing apparatus with a reduced number of defects.
 上記課題を解決するため、本発明の一態様によれば、
 溶融金属を収容する浴槽と、
 前記浴槽の上流部の上方に位置する入口壁と、
 前記浴槽の下流部の上方に位置する出口壁と、
 前記浴槽の上方に配設され前記入口壁から前記出口壁まで延びる天井と、
 前記溶融金属の液面の上を流動するガラスリボンの流動方向に沿って間隔を置いて設けられ、前記液面と前記入口壁との間を通過した前記ガラスリボンの幅方向端部を押さえ、かつ自身が回転する複数のトップロールと、
 前記天井、前記浴槽、前記入口壁及び前記出口壁で囲まれた成形空間を上流側の高温空間と下流側の低温空間とに仕切る仕切壁と、
 前記高温空間内のガスを前記成形空間の外部に排出する排気路とを備え、
 前記仕切壁は、前記入口壁よりも下流側に配設され、且つ、前記複数のトップロールのうち最も上流側のトップロールよりも上流に配設されたフロートガラス製造装置が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A bathtub containing molten metal;
An entrance wall located above the upstream portion of the bathtub;
An outlet wall located above the downstream part of the bathtub;
A ceiling disposed above the bathtub and extending from the entrance wall to the exit wall;
Provided at intervals along the flow direction of the glass ribbon flowing over the liquid surface of the molten metal, pressing the width direction end of the glass ribbon that has passed between the liquid surface and the inlet wall, And a plurality of top rolls rotating by itself,
A partition wall that partitions the molding space surrounded by the ceiling, the bathtub, the entrance wall and the exit wall into a high temperature space on the upstream side and a low temperature space on the downstream side;
An exhaust passage for discharging the gas in the high temperature space to the outside of the molding space,
The float glass manufacturing apparatus is provided in which the partition wall is disposed on the downstream side of the inlet wall, and is disposed on the upstream side of the most upstream top roll among the plurality of top rolls.
 本発明の一態様によれば、欠点の数を低減したフロートガラス製造方法が提供される。 According to one aspect of the present invention, there is provided a float glass manufacturing method with a reduced number of defects.
本発明の一実施形態によるフロートガラス製造装置の成形装置を示す断面図である。It is sectional drawing which shows the shaping | molding apparatus of the float glass manufacturing apparatus by one Embodiment of this invention. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図1のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.
 以下、本発明を実施するための形態について図面を参照して説明する。尚、各図面において、同一のまたは対応する構成要素には同一の又は対応する符号を付して説明を省略する。本明細書において、「幅方向」とは、成形工程におけるガラスリボンの流動方向と直交する方向を意味する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In this specification, the “width direction” means a direction orthogonal to the flow direction of the glass ribbon in the forming step.
 図1は、本発明の一実施形態によるフロートガラス製造装置の成形装置を示す断面図である。図2は、図1のII-II線に沿った断面図である。図2において、図面を見やすくするため、ヒータおよび上部側壁の図示を省略する。図3は、図1のIII-III線に沿った断面図である。 FIG. 1 is a sectional view showing a forming apparatus of a float glass manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 2, the heater and the upper side wall are not shown in order to make the drawing easy to see. FIG. 3 is a sectional view taken along line III-III in FIG.
 フロートガラス製造装置は、成形装置10を有する。成形装置10は、浴槽20内の溶融金属11の液面の上においてガラスリボン14を流動させて板状に成形する。ガラスリボン14は、浴槽20の下流域において溶融金属11から引き上げられ、浴槽20と出口壁28との間に形成される出口から徐冷炉に送られる。徐冷炉内において徐冷されたガラスリボン14を切断することにより板状のフロートガラスが得られる。 The float glass manufacturing apparatus has a forming apparatus 10. The forming apparatus 10 causes the glass ribbon 14 to flow on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape. The glass ribbon 14 is pulled up from the molten metal 11 in the downstream area of the bathtub 20, and is sent from the outlet formed between the bathtub 20 and the outlet wall 28 to the slow cooling furnace. A plate-like float glass is obtained by cutting the glass ribbon 14 that has been gradually cooled in the slow cooling furnace.
 成形装置10は、例えば図1~3に示すように、浴槽20、スパウトリップ22、ツイール23、リストリクタータイル24、25、入口壁26、出口壁28、天井30、上部側壁32、33、給気路34、ヒータ36、トップロール40、仕切壁42、および排気路44などを有する。 As shown in FIGS. 1 to 3, for example, the molding apparatus 10 includes a bathtub 20, a spout trip 22, a twill 23, restrictor tiles 24 and 25, an inlet wall 26, an outlet wall 28, a ceiling 30, upper side walls 32 and 33, An air passage 34, a heater 36, a top roll 40, a partition wall 42, an exhaust passage 44, and the like are included.
 浴槽20は、図1~3に示すように、溶融金属11を収容する。溶融金属11としては、例えば溶融スズまたは溶融スズ合金が使用可能であり、ガラスリボン14を浮かばせることができるものであればよい。 The bathtub 20 accommodates the molten metal 11 as shown in FIGS. As the molten metal 11, for example, molten tin or a molten tin alloy can be used as long as it can float the glass ribbon 14.
 スパウトリップ22は、図1に示すように、溶融金属11の液面の上に溶融ガラス12を連続的に供給する。溶融ガラス12は、スパウトリップ22とツイール23との間を通り、溶融金属11の液面の上に供給され、ガラスリボン14となる。 As shown in FIG. 1, the spout trip 22 continuously supplies the molten glass 12 on the liquid surface of the molten metal 11. The molten glass 12 passes between the spout trip 22 and the twill 23, is supplied onto the liquid surface of the molten metal 11, and becomes a glass ribbon 14.
 ツイール23は、溶融ガラス12の流量を可変とするため、スパウトリップ22に対して上下方向に移動自在とされる。スパウトリップ22とツイール23との間隔が大きいほど、溶融ガラス12の流量が多い。 The twill 23 is movable up and down with respect to the spout trip 22 in order to make the flow rate of the molten glass 12 variable. The larger the distance between the spout trip 22 and the twill 23, the greater the flow rate of the molten glass 12.
 リストリクタータイル24、25は、図2に示すようにガラスリボン14と接触し、ガラスリボン14の幅を規制する。リストリクタータイル24、25は、下流に向けて拡開する。そのため、リストリクタータイル24、25の間において、ガラスリボン14は下流に向けて流動しながら幅を広げる。リストリクタータイル24、25よりも下流側において、ガラスリボン14は、浴槽20の側壁と間隔をおいて流動し、浴槽20の側壁同士の間において自由に幅を変えることができる。 The restrictor tiles 24 and 25 are in contact with the glass ribbon 14 as shown in FIG. 2 and regulate the width of the glass ribbon 14. The restrictor tiles 24 and 25 expand toward the downstream side. Therefore, between the restrictor tiles 24 and 25, the glass ribbon 14 is widened while flowing toward the downstream. On the downstream side of the restrictor tiles 24 and 25, the glass ribbon 14 flows at a distance from the side wall of the bathtub 20, and the width can be freely changed between the side walls of the bathtub 20.
 入口壁26は、図1に示すように浴槽20の上流部の上方に位置する。例えば、入口壁26は、スパウトリップ22よりも下流側に配設され、リストリクタータイル24、25の上方に配設される。図2に示すように入口壁26よりも上流側において、溶融金属11の液面の全部がガラスリボン14によって覆われる。一方、入口壁26よりも下流側において、溶融金属11の液面の大部分はガラスリボン14によって覆われるが、溶融金属11の液面の一部はガラスリボン14によって覆われない。 The entrance wall 26 is located above the upstream part of the bathtub 20 as shown in FIG. For example, the inlet wall 26 is disposed on the downstream side of the spout trip 22 and is disposed above the restrictor tiles 24 and 25. As shown in FIG. 2, the entire liquid surface of the molten metal 11 is covered with the glass ribbon 14 on the upstream side of the inlet wall 26. On the other hand, most of the liquid level of the molten metal 11 is covered with the glass ribbon 14 on the downstream side of the inlet wall 26, but a part of the liquid level of the molten metal 11 is not covered with the glass ribbon 14.
 出口壁28は、図1に示すように浴槽20の下流部の上方に位置する。 The exit wall 28 is located above the downstream part of the bathtub 20 as shown in FIG.
 天井30は、図1に示すように浴槽20の上方に設けられ、入口壁26から出口壁28まで延びる。浴槽20、天井30、入口壁26および出口壁28で囲まれる成形空間50は、溶融金属11の液面のうちガラスリボン14によって覆われない露出部分の酸化を抑制するため、還元性ガスで満たされてよい。外気の混入を低減するため、成形空間50の気圧は大気圧よりも高くてよい。 The ceiling 30 is provided above the bathtub 20 as shown in FIG. 1 and extends from the entrance wall 26 to the exit wall 28. The forming space 50 surrounded by the bathtub 20, the ceiling 30, the inlet wall 26 and the outlet wall 28 is filled with a reducing gas in order to suppress oxidation of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14. May be. In order to reduce the mixing of outside air, the pressure in the molding space 50 may be higher than the atmospheric pressure.
 上部側壁32、33は、図3に示すように浴槽20の側壁と天井30との間の隙間を塞ぎ、外気の混入を抑制する。上部側壁32、33は、入口壁26から出口壁28まで延びる。上部側壁32、33には、トップロール40の回転軸を挿通させる貫通孔、および排気路44の端部などが形成される。 The upper side walls 32 and 33 block the gap between the side wall of the bathtub 20 and the ceiling 30 as shown in FIG. The upper side walls 32, 33 extend from the inlet wall 26 to the outlet wall 28. In the upper side walls 32 and 33, a through hole through which the rotation shaft of the top roll 40 is inserted, an end portion of the exhaust passage 44, and the like are formed.
 ヒータ36は図1に示すように天井30の給気路34に挿通され、ヒータ36の発熱部は成形空間50に配設される。ヒータ36は、溶融金属11およびガラスリボン14を上方から加熱する。ヒータ36は、ガラスリボン14の流動方向(X方向)および幅方向(Y方向)に間隔をおいて複数設けられる。下流側ほどガラスリボン14の温度が低くなるように、ヒータ36の出力が制御される。 As shown in FIG. 1, the heater 36 is inserted into the air supply path 34 of the ceiling 30, and the heat generating portion of the heater 36 is disposed in the molding space 50. The heater 36 heats the molten metal 11 and the glass ribbon 14 from above. A plurality of heaters 36 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon 14. The output of the heater 36 is controlled so that the temperature of the glass ribbon 14 becomes lower toward the downstream side.
 トップロール40は、図2に示すように、対で用いられ、ガラスリボン14の幅方向端部を押さえ、ガラスリボン14に対して幅方向に張力を加える。複数対のトップロール40が、ガラスリボン14の流動方向に沿って間隔をおいて配設される。 As shown in FIG. 2, the top rolls 40 are used in pairs, pressing the end of the glass ribbon 14 in the width direction, and applying tension to the glass ribbon 14 in the width direction. A plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the glass ribbon 14.
 トップロール40は、ガラスリボン14と接触する回転部材を先端部に有する。回転部材が回転し、複数対のトップロール40がガラスリボン14に対して張力を加える間に、ガラスリボン14は下流方向に流動しながら、徐々に冷却され固くなる。 The top roll 40 has a rotating member in contact with the glass ribbon 14 at the tip. While the rotating member rotates and the plurality of pairs of top rolls 40 apply tension to the glass ribbon 14, the glass ribbon 14 gradually cools and becomes hard while flowing in the downstream direction.
 トップロール40は、熱による劣化を抑制するため、内部に冷媒流路を有してよい。冷媒流路を流れる水などの冷媒は、トップロール40の熱を吸収し、外部に運ぶことにより、トップロール40を冷却する。 The top roll 40 may have a refrigerant flow path inside to suppress deterioration due to heat. A coolant such as water flowing through the coolant channel absorbs the heat of the top roll 40 and transports it to the outside, thereby cooling the top roll 40.
 仕切壁42は、図1に示すように、成形空間50を上流側の高温空間51と下流側の低温空間52とに仕切り、高温空間51から低温空間52へのガスの流出を制限する。仕切壁42は、図3に示すように一方の上部側壁32から他方の上部側壁33まで延びてよく、成形空間50を横切ってよい。 As shown in FIG. 1, the partition wall 42 partitions the molding space 50 into an upstream high temperature space 51 and a downstream low temperature space 52, and restricts the outflow of gas from the high temperature space 51 to the low temperature space 52. As shown in FIG. 3, the partition wall 42 may extend from one upper side wall 32 to the other upper side wall 33, and may cross the molding space 50.
 高温空間51は、低温空間52よりも高温になるため、浴槽20内の溶融金属11から蒸発したガスを大量に含む。このガスは、溶融金属11から蒸発した金属元素を、単体および化合物の少なくともいずれかの形態で含有する。化合物としては、金属酸化物、金属硫化物などが挙げられる。以下、このガスを金属含有ガスと呼ぶ。 Since the high temperature space 51 is hotter than the low temperature space 52, it contains a large amount of gas evaporated from the molten metal 11 in the bathtub 20. This gas contains the metal element evaporated from the molten metal 11 in the form of at least one of a simple substance and a compound. Examples of the compound include metal oxides and metal sulfides. Hereinafter, this gas is referred to as a metal-containing gas.
 仕切壁42は、高温空間51から低温空間52への金属含有ガスの流出を制限する。低温空間52において金属含有ガスの冷却によって形成されうる液滴や粒子などの異物の数が低減できる。その結果、異物がガラスリボン14の表面に落下することによって発生する欠点の数が低減できる。 The partition wall 42 restricts the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52. The number of foreign matters such as droplets and particles that can be formed by cooling the metal-containing gas in the low temperature space 52 can be reduced. As a result, it is possible to reduce the number of defects caused by the foreign matter falling on the surface of the glass ribbon 14.
 高温空間51および低温空間52には、それぞれの天井に形成される給気路34を介して、成形装置10の外部からガスが供給される。このガスは、溶融金属11の液面の露出部分の酸化を制限するため、還元性ガスであってよい。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含む。還元性ガスは、ルーフケーシング31および天井30によって囲まれた予熱空間53において予熱された後、給気路34を介して高温空間51および低温空間52に供給されてよい。なお、予熱空間53内のガスは、給気路34を介してだけでなく、天井30を形成するレンガの目地等を介しても成形空間50内に流入する。 Gas is supplied to the high temperature space 51 and the low temperature space 52 from the outside of the molding apparatus 10 via the air supply passages 34 formed on the respective ceilings. This gas may be a reducing gas in order to limit oxidation of the exposed portion of the liquid surface of the molten metal 11. The reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas. The reducing gas may be supplied to the high temperature space 51 and the low temperature space 52 through the air supply path 34 after being preheated in the preheating space 53 surrounded by the roof casing 31 and the ceiling 30. The gas in the preheating space 53 flows into the molding space 50 not only through the air supply passage 34 but also through brick joints that form the ceiling 30.
 尚、本実施形態の高温空間51および低温空間52には、それぞれの天井に形成される給気路34を介して同じ種類のガスが供給されるが、異なる種類のガスが供給されてもよい。 In addition, although the same kind of gas is supplied to the high temperature space 51 and the low temperature space 52 of this embodiment via the air supply path 34 formed in each ceiling, a different kind of gas may be supplied. .
 高温空間51には、その天井に形成される給気路34の他、ツイール23と入口壁26との間に形成されるスパウト空間27を介して、成形装置10の外部からガスが供給される。 Gas is supplied to the high temperature space 51 from the outside of the molding apparatus 10 through a spout space 27 formed between the twill 23 and the inlet wall 26 in addition to the air supply path 34 formed on the ceiling. .
 スパウト空間27には、上方および側方の少なくとも一方からガスが供給されてよい。このガスは、不活性ガス、還元性ガスのいずれでもよい。スパウト空間27には排気路が接続されておらず、スパウト空間27に供給されたガスの大部分は入口壁26の下を通り、高温空間51に供給される。 The gas may be supplied to the spout space 27 from at least one of the upper side and the side. This gas may be either an inert gas or a reducing gas. An exhaust path is not connected to the spout space 27, and most of the gas supplied to the spout space 27 passes below the inlet wall 26 and is supplied to the high temperature space 51.
 高温空間51の側壁(つまり、上部側壁32、33)には、排気路44が形成される。排気路44は、高温空間51のガスを成形装置10の外部に排出する。成形装置10の外部とは、以下、成形空間50の外部と読み替えてもよい。排気路44は、高温空間51と成形装置10の外部との気圧差を利用してガスを排出してもよいし、ポンプなどの吸引力を利用してガスを排出してもよい。尚、排気路44は、高温空間51の側壁だけでなく低温空間52の側壁にも形成されてよい。 An exhaust path 44 is formed on the side wall of the high temperature space 51 (that is, the upper side walls 32 and 33). The exhaust path 44 exhausts the gas in the high temperature space 51 to the outside of the molding apparatus 10. Hereinafter, the outside of the molding apparatus 10 may be read as the outside of the molding space 50. The exhaust path 44 may discharge gas using a pressure difference between the high temperature space 51 and the outside of the molding apparatus 10, or may discharge gas using a suction force of a pump or the like. The exhaust path 44 may be formed not only on the side wall of the high temperature space 51 but also on the side wall of the low temperature space 52.
 次に、図1~3を再度参照して、上記構成のフロートガラス装置を用いたフロートガラス製造方法について説明する。 Next, with reference to FIGS. 1 to 3 again, a method for manufacturing a float glass using the float glass apparatus having the above configuration will be described.
 フロートガラス製造方法は、浴槽20内の溶融金属11の液面の上においてガラスリボン14を流動させて板状に成形する成形工程を有する。成形工程では、溶融金属11の液面と入口壁26との間を通過したガラスリボン14の幅方向端部をトップロール40によって押さえ、該トップロール40が回転し、下流方向にガラスリボン14が流動される。 The float glass manufacturing method has a forming step in which the glass ribbon 14 is flowed on the liquid surface of the molten metal 11 in the bathtub 20 to form a plate shape. In the forming step, the width direction end of the glass ribbon 14 that has passed between the liquid surface of the molten metal 11 and the inlet wall 26 is pressed by the top roll 40, the top roll 40 rotates, and the glass ribbon 14 moves downstream. Fluidized.
 ところで、図2に示すように、入口壁26よりも上流側においては、溶融金属11の液面の全部がガラスリボン14で覆われるため、金属含有ガスの量が少ない。一方、入口壁26よりも下流側においては、溶融金属11の液面の一部がガラスリボン14で覆われないため、金属含有ガスの量が多い。そこで、仕切壁42は、入口壁26よりも下流側に配設される。仕切壁42よりも上流側の高温空間51が、金属含有ガスを大量に捕獲できる。 Incidentally, as shown in FIG. 2, since the entire liquid surface of the molten metal 11 is covered with the glass ribbon 14 on the upstream side of the inlet wall 26, the amount of the metal-containing gas is small. On the other hand, on the downstream side of the inlet wall 26, a part of the liquid surface of the molten metal 11 is not covered with the glass ribbon 14, so that the amount of the metal-containing gas is large. Therefore, the partition wall 42 is disposed on the downstream side of the inlet wall 26. The high temperature space 51 on the upstream side of the partition wall 42 can capture a large amount of the metal-containing gas.
 また、トップロール40付近においては、気流が不安定になりやすい。気流が不安定になる原因としては、例えば上部側壁32におけるトップロール40の回転軸が挿通される貫通孔からの冷たい外気の混入、および冷媒によって冷却されるトップロール40とその周辺との温度差などが挙げられる。そこで、仕切壁42は、ガラスリボン14の流動方向に間隔をおいて並ぶ複数のトップロール40のうち最も上流側に配設されるトップロール40(以下、「最上流のトップロール40」という)よりも上流側に配設される。仕切壁42付近における気流が安定化し、高温空間51に捕獲した金属含有ガスの低温空間52への流出が抑制できる。 Also, the airflow tends to become unstable near the top roll 40. The causes of the unstable airflow include, for example, cold ambient air from the through hole through which the rotation shaft of the top roll 40 is inserted in the upper side wall 32, and the temperature difference between the top roll 40 cooled by the refrigerant and its surroundings. Etc. Therefore, the partition wall 42 is disposed on the most upstream side among the plurality of top rolls 40 arranged at intervals in the flow direction of the glass ribbon 14 (hereinafter referred to as “the most upstream top roll 40”). It arrange | positions rather than the upstream. The airflow in the vicinity of the partition wall 42 is stabilized, and the outflow of the metal-containing gas captured in the high temperature space 51 to the low temperature space 52 can be suppressed.
 このように、仕切壁42は、入口壁26よりも下流側に配設され、且つ、最上流のトップロール40よりも上流側に配設される。これにより、仕切壁42よりも上流側の高温空間51が金属含有ガスを大量に捕獲でき、且つ、高温空間51に捕獲した金属含有ガスの低温空間52への流出が抑制できる。 Thus, the partition wall 42 is disposed on the downstream side of the inlet wall 26, and is disposed on the upstream side of the most upstream top roll 40. Thereby, the high temperature space 51 upstream from the partition wall 42 can capture a large amount of the metal-containing gas, and the outflow of the metal-containing gas captured in the high temperature space 51 to the low temperature space 52 can be suppressed.
 また、仕切壁42は、図2に示すように、ガラスリボン14の流動方向において、ガラスリボン14の粘度が104.9~105.6dPa・sの範囲Zに配設されてよい。上記範囲Zに仕切壁42が配設されれば、最上流のトップロール40から上流側に十分離れた位置に仕切壁42が配設されるため、仕切壁42付近における気流が安定化しやすい。特にフロートガラスの板厚が2mm以下、好ましくは1mm以下、さらに好ましくは0.7mm以下の場合に気流が安定化できる点で有効である。フロートガラスの板厚が薄くなればなるほど、ガラスリボン14を薄く引き延すべく、使用されるトップロール40の数が多くなる。このような場合において上記範囲Zに仕切壁42が配設されれば、最上流のトップロール40から上流側に十分離れた位置に仕切壁42が配設されるため、仕切壁42付近における気流が安定化しやすい。また、上記範囲Zに仕切壁42が配設されれば、仕切壁42が入口壁26から下流側に十分離れた位置に配設されるため、上流側の高温空間51が金属含有ガスを大量に捕獲できる。仕切壁42は、ガラスリボン14の流動方向において、ガラスリボン14の粘度が104.9~105.5dPa・sの範囲に配設されることが好ましく、ガラスリボン14の粘度が105.0~105.4dPa・sの範囲に配設されることがより好ましい。 Further, as shown in FIG. 2, the partition wall 42 may be disposed in a range Z in which the viscosity of the glass ribbon 14 is 10 4.9 to 10 5.6 dPa · s in the flow direction of the glass ribbon 14. If the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently away from the uppermost upstream roll 40 on the upstream side, so that the airflow in the vicinity of the partition wall 42 is easily stabilized. This is particularly effective in that the airflow can be stabilized when the thickness of the float glass is 2 mm or less, preferably 1 mm or less, and more preferably 0.7 mm or less. The thinner the float glass, the greater the number of top rolls 40 used to draw the glass ribbon 14 thinner. In such a case, if the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently upstream from the uppermost top roll 40, so that the airflow in the vicinity of the partition wall 42 Is easy to stabilize. Further, if the partition wall 42 is disposed in the range Z, the partition wall 42 is disposed at a position sufficiently separated from the inlet wall 26 on the downstream side, so that the upstream high-temperature space 51 contains a large amount of metal-containing gas. Can capture. The partition wall 42 is preferably disposed in the flow direction of the glass ribbon 14 so that the viscosity of the glass ribbon 14 is in the range of 10 4.9 to 10 5.5 dPa · s, and the viscosity of the glass ribbon 14 is 10 5. More preferably, it is disposed in the range of 0.0 to 10 5.4 dPa · s.
 仕切壁42と入口壁26との間において、溶融金属11の液面のうちガラスリボン14によって覆われない露出部分の割合が10~40%であってよい。露出部分の割合が10%以上であれば、仕切壁42と入口壁26との間に形成される高温空間51が金属含有ガスを十分に捕獲できる。また、露出部分の割合が40%以下であれば、金属含有ガスによるヒータ36の劣化が抑制できる。仕切壁42と入口壁26との間において、溶融金属11の液面に占める露出部分の割合は、好ましくは10~35%であり、より好ましくは10~20%である。 Between the partition wall 42 and the inlet wall 26, the ratio of the exposed portion of the liquid surface of the molten metal 11 that is not covered by the glass ribbon 14 may be 10 to 40%. If the ratio of the exposed portion is 10% or more, the high temperature space 51 formed between the partition wall 42 and the inlet wall 26 can sufficiently capture the metal-containing gas. Moreover, if the ratio of an exposed part is 40% or less, deterioration of the heater 36 by metal containing gas can be suppressed. The ratio of the exposed portion in the liquid surface of the molten metal 11 between the partition wall 42 and the inlet wall 26 is preferably 10 to 35%, more preferably 10 to 20%.
 また、仕切壁42は、図1に示すように入口壁26の上流端と仕切壁42の上流端との間の水平方向距離(X方向距離)L1が入口壁26の上流端と出口壁28の上流端との間のX方向距離L2の5~20%となる位置に配設されてよい。距離L1が距離L2の5%以上であれば、仕切壁42と入口壁26との間に形成される高温空間51が金属含有ガスを十分に捕獲できる。また、距離L1が距離L2の20%以下であれば、最上流のトップロール40から上流側に十分離れた位置に仕切壁42が配設できる。距離L1は、好ましくは距離L2の5~15%であり、より好ましくは距離L2の5~10%である。 Further, as shown in FIG. 1, the partition wall 42 has a horizontal distance (X-direction distance) L1 between the upstream end of the inlet wall 26 and the upstream end of the partition wall 42 such that the upstream end of the inlet wall 26 and the outlet wall 28. May be disposed at a position that is 5 to 20% of the distance L2 in the X direction between the upstream end and the upstream end. If the distance L1 is 5% or more of the distance L2, the high temperature space 51 formed between the partition wall 42 and the inlet wall 26 can sufficiently capture the metal-containing gas. In addition, if the distance L1 is 20% or less of the distance L2, the partition wall 42 can be disposed at a position sufficiently away from the most upstream top roll 40 on the upstream side. The distance L1 is preferably 5 to 15% of the distance L2, and more preferably 5 to 10% of the distance L2.
 仕切壁42は、天井30から下方に突出する。溶融金属11の液面の露出部分を基準として、仕切壁42の下端の高さH1(図3参照)は、例えば天井30の下面の高さH2(図1参照)の10~40%である。仕切壁42の下端の高さH1が天井30の下面の高さH2の10%以上であれば、成形空間50の最上流から、仕切壁42よりも下流のガラスリボンを監視することが可能である。また、仕切壁42の下端の高さH1が天井30の下面の高さH2の40%以下であれば、高温空間51内に金属含有ガスを留めることができ、高温空間51から低温空間52への金属含有ガスの流出が低減できる。仕切壁42の下端の高さH1は、好ましくは天井30の下面の高さH2の10~35%であり、より好ましくは天井30の下面の高さH2の10~20%である。 The partition wall 42 protrudes downward from the ceiling 30. With reference to the exposed portion of the liquid surface of the molten metal 11, the height H1 (see FIG. 3) of the lower end of the partition wall 42 is, for example, 10 to 40% of the height H2 (see FIG. 1) of the lower surface of the ceiling 30. . If the height H1 of the lower end of the partition wall 42 is 10% or more of the height H2 of the lower surface of the ceiling 30, it is possible to monitor the glass ribbon downstream from the partition wall 42 from the uppermost stream of the molding space 50. is there. Further, if the height H1 of the lower end of the partition wall 42 is 40% or less of the height H2 of the lower surface of the ceiling 30, the metal-containing gas can be retained in the high temperature space 51, and the high temperature space 51 is moved to the low temperature space 52. The outflow of the metal-containing gas can be reduced. The height H1 of the lower end of the partition wall 42 is preferably 10 to 35% of the height H2 of the lower surface of the ceiling 30, and more preferably 10 to 20% of the height H2 of the lower surface of the ceiling 30.
 仕切壁42は、高さH1を可変とするため、天井30に対して上下方向に移動可能であってよい。例えば、図1および図3に示すように、仕切壁42には連結ロッド46が連結され、ルーフケーシング31にはナット47が回転自在に保持される。ナット47を回転させると、ナット47と螺合する連結ロッド46が上下方向に移動し、その結果、仕切壁42が上下方向に移動する。 The partition wall 42 may be movable in the vertical direction with respect to the ceiling 30 in order to make the height H1 variable. For example, as shown in FIGS. 1 and 3, a connecting rod 46 is connected to the partition wall 42, and a nut 47 is rotatably held on the roof casing 31. When the nut 47 is rotated, the connecting rod 46 screwed with the nut 47 moves in the vertical direction, and as a result, the partition wall 42 moves in the vertical direction.
 高温空間51において、成形装置10の外部へのガスの排出量Qoutは、好ましくは成形装置10の外部からのガスの供給量Qinの100%以上であり、より好ましくは供給量Qinの170%以上、さらに好ましくは供給量の230%以上である。 In the high temperature space 51, the gas discharge amount Qout to the outside of the molding apparatus 10 is preferably 100% or more of the gas supply amount Qin from the outside of the molding apparatus 10, and more preferably 170% or more of the supply amount Qin. More preferably, it is 230% or more of the supply amount.
 ここで、Qinは、高温空間51に上方、側方、および上流の少なくともいずれかから(本実施形態では上方および上流から)供給されるガスのノルマル流量(Nm/hr)を意味する。下流からのガスの供給量はQinに含めない。上流(つまり、スパウト空間27)からのガスの供給量をQinに含めるのは、成形装置10の外部からスパウト空間27に供給されたガスの大部分はそのまま高温空間51に供給されるためである。尚、高温空間51に側方からガスが供給される場合、上部側壁32、33に給気路が設けられてよい。 Here, Qin means the normal flow rate (Nm 3 / hr) of the gas supplied to the high temperature space 51 from at least one of the upper side, the side, and the upstream (from the upper side and the upstream side in this embodiment). The amount of gas supplied from the downstream is not included in Qin. The reason why the amount of gas supplied from the upstream (that is, the spout space 27) is included in Qin is that most of the gas supplied to the spout space 27 from the outside of the molding apparatus 10 is supplied to the high temperature space 51 as it is. . In addition, when gas is supplied to the high temperature space 51 from the side, an air supply path may be provided in the upper side walls 32 and 33.
 一方、Qoutは、高温空間51から上方および側方の少なくともいずれかに(本実施形態では側方に)排出されるガスのノルマル流量(Nm/hr)を意味する。下流および上流へのガスの排出量はQoutに含めない。尚、上流(つまり、スパウト空間27)へのガスの排出量は微量である。スパウト空間27には排気路が接続されないためである。尚、高温空間51から上方にガスが排出される場合、天井30に排気路が設けられてよい。 On the other hand, Qout means the normal flow rate (Nm 3 / hr) of the gas discharged from the high temperature space 51 to at least one of the upper side and the side (side in this embodiment). The amount of gas discharged downstream and upstream is not included in Qout. Note that the amount of gas discharged to the upstream (that is, the spout space 27) is very small. This is because the exhaust path is not connected to the spout space 27. Note that when the gas is discharged upward from the high temperature space 51, an exhaust path may be provided in the ceiling 30.
 排出量が供給量と同等であれば、高温空間51と低温空間52との間のガスの出入りがほとんどなく、高温空間51から低温空間52への金属含有ガスの流出がほとんどない。 If the discharge amount is equal to the supply amount, there is almost no gas inflow and outflow between the high temperature space 51 and the low temperature space 52, and there is almost no outflow of metal-containing gas from the high temperature space 51 to the low temperature space 52.
 また、排出量が供給量よりも多ければ、低温空間52から高温空間51にガスが供給される。よって、低温空間52から高温空間51に向かう気流が形成され、この気流が高温空間51から低温空間52への金属含有ガスの流出を抑制できる。 Further, if the discharge amount is larger than the supply amount, the gas is supplied from the low temperature space 52 to the high temperature space 51. Therefore, an air flow from the low temperature space 52 toward the high temperature space 51 is formed, and this air flow can suppress the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52.
 製造されるフロートガラスは、例えば無アルカリガラスであってよい。無アルカリガラスは、アルカリ金属酸化物(NaO、KO、LiO等)を実質的に含有しないガラスである。無アルカリガラスは、アルカリ金属酸化物の含有量の合量が0.1質量%以下でよい。 The manufactured float glass may be, for example, an alkali-free glass. The alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O, etc.). The alkali-free glass may have a total content of alkali metal oxides of 0.1% by mass or less.
 無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50~73%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、MgO+CaO+SrO+BaO:8~29.5%を含有する。 The alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 8 to 29.5%.
 無アルカリガラスは、高い歪点と高い溶解性とを両立する場合、好ましくは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%を含有する。 When the alkali-free glass has both a high strain point and high solubility, it is preferably expressed in terms of mass% on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
 無アルカリガラスは、特に高い歪点を得たい場合、好ましくは、酸化物基準の質量%表示で、SiO:54~73%、Al:10.5~22.5%、B:0~5.5%、MgO:0~8%、CaO:0~9%、SrO:0~16%、BaO:0~2.5%、MgO+CaO+SrO+BaO:8~26%を含有する。 When it is desired to obtain a particularly high strain point, the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26%.
 これらの無アルカリガラスの成形温度は、一般的なソーダライムガラスの成形温度よりも100℃以上高い。そのため、溶融金属11から蒸発する金属含有ガスの量が多く、仕切壁42が高温空間51から低温空間52への金属含有ガスの流出を抑制する意義が大きい。 The molding temperature of these alkali-free glasses is 100 ° C. or more higher than the molding temperature of general soda lime glass. Therefore, the amount of the metal-containing gas that evaporates from the molten metal 11 is large, and it is significant that the partition wall 42 suppresses the outflow of the metal-containing gas from the high temperature space 51 to the low temperature space 52.
 以上、フロートガラス製造方法およびフロートガラス製造装置の実施形態を説明したが、本発明は上記実施形態等に限定されることはなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 As mentioned above, although embodiment of the float glass manufacturing method and the float glass manufacturing apparatus was described, this invention is not limited to the said embodiment etc., In the range of the summary of this invention described in the claim Various modifications and improvements are possible.
 本出願は、2013年8月22日に日本国特許庁に出願された特願2013-171982号に基づく優先権を主張するものであり、特願2013-171982号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-171982 filed with the Japan Patent Office on August 22, 2013. The entire contents of Japanese Patent Application No. 2013-171982 are incorporated herein by reference. To do.
10 成形装置
11 溶融金属
12 溶融ガラス
14 ガラスリボン
20 浴槽
22 スパウトリップ
26 入口壁
30 天井
40 トップロール
42 仕切壁
50 成形空間
51 高温空間
52 低温空間
DESCRIPTION OF SYMBOLS 10 Molding apparatus 11 Molten metal 12 Molten glass 14 Glass ribbon 20 Bathtub 22 Spaw trip 26 Entrance wall 30 Ceiling 40 Top roll 42 Partition wall 50 Molding space 51 High temperature space 52 Low temperature space

Claims (9)

  1.  溶融金属を収容する浴槽と、
     前記浴槽の上流部の上方に位置する入口壁と、
     前記浴槽の下流部の上方に位置する出口壁と、
     前記浴槽の上方に配設され前記入口壁から前記出口壁まで延びる天井と、
     前記溶融金属の液面の上を流動するガラスリボンの流動方向に沿って間隔を置いて設けられ、前記液面と前記入口壁との間を通過した前記ガラスリボンの幅方向端部を押さえ、かつ自身が回転する複数のトップロールと、
     前記天井、前記浴槽、前記入口壁及び前記出口壁で囲まれた成形空間を上流側の高温空間と下流側の低温空間とに仕切る仕切壁と、
     前記高温空間内のガスを前記成形空間の外部に排出する排気路とを備え、
     前記仕切壁は、前記入口壁よりも下流側に配設され、且つ、前記複数のトップロールのうち最も上流側のトップロールよりも上流に配設されたフロートガラス製造装置。
    A bathtub containing molten metal;
    An entrance wall located above the upstream portion of the bathtub;
    An outlet wall located above the downstream part of the bathtub;
    A ceiling disposed above the bathtub and extending from the entrance wall to the exit wall;
    Provided at intervals along the flow direction of the glass ribbon flowing over the liquid surface of the molten metal, pressing the width direction end of the glass ribbon that has passed between the liquid surface and the inlet wall, And a plurality of top rolls rotating by itself,
    A partition wall that partitions the molding space surrounded by the ceiling, the bathtub, the entrance wall and the exit wall into a high temperature space on the upstream side and a low temperature space on the downstream side;
    An exhaust passage for discharging the gas in the high temperature space to the outside of the molding space,
    The said partition wall is a float glass manufacturing apparatus arrange | positioned in the downstream rather than the said entrance wall, and was arrange | positioned upstream from the most upstream top roll among these top rolls.
  2.  前記仕切壁は、前記ガラスリボンの流動方向において、前記ガラスリボンの粘度が104.9~105.6dPa・sの範囲に配設される、請求項1に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to claim 1, wherein the partition wall is disposed in a range of a viscosity of 10 4.9 to 10 5.6 dPa · s in the flow direction of the glass ribbon.
  3.  前記仕切壁と前記入口壁との間において、前記溶融金属の液面のうち前記ガラスリボンによって覆われない露出部分の割合が10~40%である、請求項1または2に記載のフロートガラス製造装置。 The float glass production according to claim 1 or 2, wherein a ratio of an exposed portion which is not covered by the glass ribbon in the liquid surface of the molten metal is 10 to 40% between the partition wall and the inlet wall. apparatus.
  4.  前記仕切壁は、前記天井から下方に突出し、
     前記溶融金属の液面の露出部分を基準として、前記仕切壁の下端の高さが前記天井の下面の高さの10~40%である、請求項1~3のいずれか一項に記載のフロートガラス製造装置。
    The partition wall protrudes downward from the ceiling,
    The height of the lower end of the partition wall is 10 to 40% of the height of the lower surface of the ceiling with reference to the exposed portion of the liquid level of the molten metal. Float glass manufacturing equipment.
  5.  製造されるフロートガラスは無アルカリガラスである、請求項1~4のいずれか一項に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to any one of claims 1 to 4, wherein the float glass to be manufactured is alkali-free glass.
  6.  請求項1~5のいずれか一項に記載のフロートガラス製造装置を用い、
     前記高温空間内のガスを、前記排気路を介して前記成形空間の外部に排出することを特徴とするフロートガラス製造方法。
    Using the float glass manufacturing apparatus according to any one of claims 1 to 5,
    A method for producing float glass, characterized in that the gas in the high temperature space is discharged to the outside of the forming space through the exhaust passage.
  7.  請求項1に記載のフロートガラス製造装置を用い、
     前記ガラスリボンの流動方向において、前記ガラスリボンの粘度が104.9~105.6dPa・sの範囲に、前記仕切壁を配設する、フロートガラス製造方法。
    Using the float glass manufacturing apparatus according to claim 1,
    A method for producing float glass, wherein the partition wall is disposed in a range of viscosity of 10 4.9 to 10 5.6 dPa · s in the flow direction of the glass ribbon.
  8.  請求項1に記載のフロートガラス製造装置を用い、
     前記溶融金属の液面のうち前記ガラスリボンによって覆われない露出部分の割合は、前記仕切壁と前記入口壁との間において、10~40%である、フロートガラス製造方法。
    Using the float glass manufacturing apparatus according to claim 1,
    The method for producing float glass, wherein a ratio of an exposed portion of the molten metal liquid surface not covered by the glass ribbon is 10 to 40% between the partition wall and the inlet wall.
  9.  請求項1に記載のフロートガラス製造装置を用い、
     製造されるフロートガラスが無アルカリガラスである、フロートガラス製造方法。
    Using the float glass manufacturing apparatus according to claim 1,
    The float glass manufacturing method whose float glass manufactured is an alkali free glass.
PCT/JP2014/063379 2013-08-22 2014-05-20 Float glass production device and float glass production method using same WO2015025568A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157033388A KR102153289B1 (en) 2013-08-22 2014-05-20 Float glass production device and float glass production method using same
CN201480039235.XA CN105377777B (en) 2013-08-22 2014-05-20 Float glass manufacturing device and the float glass making process using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013171982A JP2016183054A (en) 2013-08-22 2013-08-22 Float glass manufacturing apparatus and float glass manufacturing method using the same
JP2013-171982 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025568A1 true WO2015025568A1 (en) 2015-02-26

Family

ID=52483353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063379 WO2015025568A1 (en) 2013-08-22 2014-05-20 Float glass production device and float glass production method using same

Country Status (5)

Country Link
JP (1) JP2016183054A (en)
KR (1) KR102153289B1 (en)
CN (1) CN105377777B (en)
TW (1) TW201507982A (en)
WO (1) WO2015025568A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017124625A1 (en) 2016-12-22 2018-06-28 Schott Ag Thin glass substrate, method and apparatus for its manufacture
KR20190092028A (en) * 2018-01-30 2019-08-07 주식회사 엘지화학 Float glass making device
WO2023211746A1 (en) * 2022-04-29 2023-11-02 Corning Incorporated Glass forming apparatus and method for forming a glass ribbon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JP2011219348A (en) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd Glass plate production apparatus and method for producing glass plate
JP2012001398A (en) * 2010-06-17 2012-01-05 Asahi Glass Co Ltd Apparatus and method for manufacturing glass plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503414A (en) 1973-05-16 1975-01-14
CN200940114Y (en) * 2006-08-03 2007-08-29 秦皇岛玻璃工业研究设计院 Gas discharging device for float glass process tin cell
CN202107623U (en) * 2011-06-27 2012-01-11 台玻成都玻璃有限公司 Exhauster

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128222A (en) * 1983-01-12 1984-07-24 Nippon Sheet Glass Co Ltd Float type plate glass manufacturing apparatus
JP2011219348A (en) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd Glass plate production apparatus and method for producing glass plate
JP2012001398A (en) * 2010-06-17 2012-01-05 Asahi Glass Co Ltd Apparatus and method for manufacturing glass plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLASS KOGAKU HANDBOOK, 5 July 1999 (1999-07-05), pages 361 - 362 *

Also Published As

Publication number Publication date
CN105377777B (en) 2017-09-22
KR20160045040A (en) 2016-04-26
TW201507982A (en) 2015-03-01
CN105377777A (en) 2016-03-02
JP2016183054A (en) 2016-10-20
KR102153289B1 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
KR101347775B1 (en) Float bath system for manufacturing glass
JP7154717B2 (en) Thermal control method and apparatus for glass ribbon
JP7438285B2 (en) How to reduce the lifetime of air bubbles on the surface of glass melt
US8689585B2 (en) Method and apparatus for removing volatilized materials from an enclosed space in a glass making process
WO2015025568A1 (en) Float glass production device and float glass production method using same
JP6308215B2 (en) Float glass manufacturing method and float glass manufacturing apparatus
KR102377995B1 (en) Glass inlet tube environmental control
JP2020502033A (en) Method and apparatus for managing cooling of glass ribbon
JP2015134690A (en) Float glass manufacturing method and float glass manufacturing apparatus
JP2015105216A (en) Float glass manufacturing apparatus and float glass manufacturing method
WO2015025569A1 (en) Float glass production device and float glass production method using the same
US9580347B2 (en) System and method for forming a glass sheet
WO2014091814A1 (en) Plate glass production method and plate glass production device
CN104743776A (en) Method for producing float plate glass
JP5294495B2 (en) Float glass production equipment
JP2022539209A (en) Method and apparatus for producing glass ribbon
JP2018104244A (en) Glass plate manufacturing method and cooling device
KR20160055120A (en) Float glass production apparatus and float glass production method using same
KR20230059821A (en) Apparatus and method for improving properties of drawn glass
JP2015134691A (en) Float glass manufacturing method and float glass manufacturing apparatus
JP2015124111A (en) Manufacturing method for glass substrate, and glass substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14837737

Country of ref document: EP

Kind code of ref document: A1