WO2014091814A1 - Plate glass production method and plate glass production device - Google Patents

Plate glass production method and plate glass production device Download PDF

Info

Publication number
WO2014091814A1
WO2014091814A1 PCT/JP2013/077126 JP2013077126W WO2014091814A1 WO 2014091814 A1 WO2014091814 A1 WO 2014091814A1 JP 2013077126 W JP2013077126 W JP 2013077126W WO 2014091814 A1 WO2014091814 A1 WO 2014091814A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
tile
heating element
plate glass
spout
Prior art date
Application number
PCT/JP2013/077126
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 瀧口
高弘 木下
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380060635.4A priority Critical patent/CN104797538B/en
Priority to KR1020157009144A priority patent/KR20150095616A/en
Publication of WO2014091814A1 publication Critical patent/WO2014091814A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • C03B5/265Overflows; Lips; Tweels
    • C03B5/267Overflows; Lips; Tweels specially adapted for supplying the float tank

Definitions

  • the present invention relates to a plate glass manufacturing method and a plate glass manufacturing apparatus.
  • the plate glass manufacturing apparatus continuously supplies molten glass onto molten tin in a float bath, and flows it in the downstream direction to form a strip-shaped glass ribbon.
  • the space in the float bath is divided into a main space on the downstream side and a spout space on the upstream side by a partition wall (front lintel).
  • the main space is much larger than the spout space and is filled with reducing gas to prevent oxidation of molten tin.
  • This plate glass manufacturing apparatus supplies molten glass onto the molten tin in the float bath via a spout trip arranged in the spout space.
  • the molten glass supplied on the molten tin forms a main flow (front flow) that flows in the downstream direction and a tributary flow (back flow) that flows backward toward the tiles that are spaced below the spout trip.
  • the molten glass on the molten tin is heated by a heating element embedded in the tile (see, for example, Patent Document 1).
  • the components of the heating element may elute into the molten glass when the tile is eroded by molten glass or molten tin.
  • the heating element is embedded in the tile, it is difficult to replace only the heating element.
  • the present invention has been made in view of the above-described problem, and is a method for producing a plate glass that can suppress the deposits of the heating element from falling onto the molten glass on the molten tin and can suppress deterioration of the heating element. And it aims at providing the manufacturing apparatus of plate glass.
  • a method for producing a plate glass includes: A molten glass is continuously supplied from a spout trip onto molten tin in a float bath, and the molten glass brought into contact with tiles provided at intervals below the spout trip is caused to flow on the molten tin.
  • a manufacturing method comprising: Heating the tile using a heating element provided between the spout trip and the tile, provided upstream of the contact surface with the molten glass in the tile, In addition, an inert gas is blown into a gap space between the spout trip and the tile.
  • mode of this invention is the following.
  • a spout trip that continuously supplies molten glass onto the molten tin in the float bath; Tiles that are provided below the spout trip and spaced apart, and that contact the molten glass supplied from the spout trip;
  • a heating element provided between the spout trip and the tile, provided upstream of a contact surface with the molten glass in the tile;
  • An inert gas supply unit that blows an inert gas into a gap space between the spout trip and the tile is provided.
  • a plate glass manufacturing method and a plate glass manufacturing apparatus capable of suppressing the fall of the deposits of the heating element to the molten glass on the molten tin and suppressing the deterioration of the heating element. Is done.
  • FIG. 1 is a cross-sectional view showing a main part of a sheet glass manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a plan view schematically showing the flow of molten glass on the molten tin in FIG.
  • the sheet glass manufacturing apparatus continuously supplies a molten glass 30 onto the molten tin 20 in the float bath 10, and causes the supplied molten glass 30 to flow on the molten tin 20 to form a strip plate shape.
  • the glass ribbon 30A is formed.
  • the formed glass ribbon 30 ⁇ / b> A is pulled up from the molten tin 20 in the downstream area of the float bath 10, transported into a slow cooling furnace, slowly cooled, and then cut into a predetermined size to form a plate glass.
  • the space 11 in the float bath 10 is partitioned by a partition wall (front lintel) 17 into a downstream main space 111 and an upstream spout space 112.
  • the main space 111 is sufficiently larger than the spout space 112.
  • the main space 111 is supplied with reducing gas in order to prevent oxidation of the molten tin 20.
  • the reducing gas may be, for example, a mixed gas of nitrogen gas and hydrogen gas, and contains 85% to 98.5% by volume of nitrogen gas and 1.5% to 15% by volume of hydrogen gas.
  • the reducing gas supply unit 60 that supplies the reducing gas to the main space 111 is configured by holes or the like provided in the ceiling 12 that forms the ceiling surface of the main space 111.
  • the plate glass manufacturing apparatus is provided with a spout trip 14 that continuously supplies the molten glass 30 onto the molten tin 20 in the float bath 10, and a space below the spout trip 14, and is supplied from the spout trip 14.
  • the tile 15 which contacts the molten glass 30 is provided.
  • the spout trip 14 and the tile 15 are installed on the front wall 13 of the float bath 10.
  • the spout trip 14 and the tile 15 are made of a refractory material such as alumina or zirconia.
  • the hot-melt refractory is obtained by melting and recrystallizing a refractory raw material at a high temperature.
  • ZrO 2 as a hot-melt refractory mainly exists as badelite crystals.
  • the remainder of the hot-melt refractory is glassy mainly composed of SiO 2 , exists at the grain boundaries of ZrO 2 baderite crystals, and densifies the hot-melt refractory.
  • This glassy material includes Al 2 O 3 in addition to SiO 2.
  • Na 2 O, P 2 O 5 and the like can be contained in a small amount.
  • This hot-melt refractory is excellent in heat resistance, can suppress the generation of bubbles due to reaction with the molten glass 30, and can also suppress fine streaks generated in the flow direction of the glass ribbon 30A. This is effective when the molten glass is alkali-free glass, particularly alkali-free glass containing boric acid.
  • Al 2 O 3 50% to 73%
  • B 2 O 3 0% to 12%
  • MgO 0% to 8%
  • CaO 0% to 14.5%
  • SrO 0% to 24%
  • BaO 0% to 13.5%
  • ZrO 2 0% to 5%
  • SiO 2 58% to 66% Al 2 O 3 : 15% to 22%
  • B 2 O 3 5% to 12%
  • SiO 2 54% to 73% Al 2 O 3 : 10.5% to 22.5%
  • B 2 O 3 0% to 5.5%
  • MgO 0% to 8%
  • CaO 0% to 16%
  • BaO 0% to 2.5%
  • MgO + CaO + SrO + BaO 8% to 26%
  • the spout trip 14, the tile 15, the left side wall 16, and the right side wall 16 are all made of the hot melt refractory, but not all of the hot melt refractory. Also good. If at least one is comprised with the said hot-melt refractory, the said effect can be acquired to some extent or more.
  • a lateral wall for preventing the molten glass 30 from spilling left and right from the spout trip 14 may be disposed on both the left and right sides of the molten glass 30 flowing on the spout trip 14.
  • the spout trip 14 including the lateral wall is referred to.
  • the flow rate of the molten glass 30 supplied from the spout trip 14 onto the molten tin 20 is adjusted by the twill 19. As shown in FIG. 2, the molten glass 30 supplied from the tip 142 of the spout trip 14 onto the molten tin 20 flows backward to the main flow 31 (front flow) flowing in the downstream direction and upstream toward the tile 15. A tributary (back flow) 32 is formed.
  • the tributary 32 Since the tributary 32 includes a portion that has been in contact with the spau trip 14, it includes bubbles generated by the reaction with the spau trip 14.
  • the tributary flow 32 flows backward toward the tile 15, and then flows separately along the tile 15.
  • Each of the tributaries 32 divided into the left and right flows along the side wall 16 extending obliquely from the tile 15, and merges with the end portion in the width direction of the main stream 31. Therefore, bubbles can be collected at the end in the width direction of the glass ribbon 30A, and a product with few defects can be cut out from the center in the width direction of the glass ribbon 30A.
  • Side walls 16 extend obliquely from the tiles 15 so that the tributaries 32 divided on the left and right sides can easily join the ends of the main stream 31 in the width direction.
  • the side wall 16 extends obliquely toward the outer side in the width direction as it goes downstream.
  • the sheet glass manufacturing apparatus includes a heating element 40 that heats the tile 15 in order to improve the fluidity of the tributary 32 that flows backward in the upstream direction and stabilize the flow of the tributary 32.
  • the heating element 40 is provided between the spout trip 14 and the tile 15, and the molten glass 30 on the molten tin 20 is also heated by heating the tile 15.
  • the heating element 40 may heat the molten glass 30 around the tile 15 at a temperature 10 ° C. to 50 ° C. higher than the devitrification temperature of the glass. Glass devitrification around the tile 15 can be prevented.
  • the heating element 40 is provided between the spout trip 14 and the tile 15 and provided outside the tile 15. Therefore, when the tile 15 is eroded by the molten glass 30 or the molten tin 20, the components of the heating element 40 and the deposits of the heating element 40 are not eluted into the molten glass 30 or the molten tin 20. In addition, only the heating element 40 can be replaced.
  • the heating element 40 is provided on the upstream side of the contact surface 152 with the molten glass 30 in the tile 15. That is, the heating element 40 is provided at a position that does not overlap the molten glass 30 on the molten tin 20 in a top view. Therefore, the deposits of the heating element 40 are unlikely to fall on the molten glass 30 on the molten tin 20, and the glass is not easily broken or defective.
  • the heating element 40 may be moved by an appropriate driving device or manually according to the erosion of the tile 15.
  • the heating element 40 is formed of a material having excellent corrosion resistance against reducing gas.
  • the material of the heating element 40 is not particularly limited, and examples thereof include silicon carbide (SiC), a composite material of silicon carbide (SiC) and metal silicon (Si), and silicon nitride (Si 3 N 4 ).
  • the heating element 40 may be coated with a ceramic material such as alumina.
  • the heating element 40 is rod-shaped and may be provided in parallel to the contact surface 152 of the tile 15 with the molten glass 30.
  • the tributary 32 tends to flow from side to side along the tile 15.
  • the heating element 40 may be positioned inside the outer edge 154 (see FIG. 2) of the tile 15 as viewed from above, and may be shorter than the tile 15. The heating efficiency of the tile 15 is good.
  • the heating element 40 has an open porosity (JIS (Japanese Industrial Standard) R 1634) of preferably 15% or less, and more preferably 10% or less. If the open porosity exceeds 15%, the surface area of the heating element 40 exposed to the surrounding atmosphere is too large and the heating element 40 is likely to deteriorate.
  • JIS Japanese Industrial Standard
  • the heating element 40 is preferably cylindrical and has an outer diameter of 20 mm to 40 mm. If it is a rectangular tube shape, local heat generation is likely to occur, and deterioration tends to occur. Moreover, the raw material cost of the heat generating body 40 will increase that it is not hollow but solid. Furthermore, if the outer diameter is larger than 40 mm, a large installation space is required. On the other hand, when the outer diameter is smaller than 20 mm, when the heat generation amount of the heating element 40 is the same, the outer surface temperature of the heating element 40 is too high, and the heating element 40 is likely to deteriorate.
  • the sheet glass manufacturing apparatus further includes a first inert gas supply unit 50 that blows an inert gas into the gap space 113 between the spout trip 14 and the tile 15.
  • Nitrogen gas, argon gas, or the like is used as the inert gas blown into the gap space 113.
  • the atmosphere around the heating element 40 can be inactivated, and deterioration of the heating element 40 can be suppressed.
  • the concentration of hydrogen chloride gas in the atmosphere around the heating element 40 can be reduced, and deterioration of the heating element 40 due to the hydrogen chloride gas can be suppressed.
  • the hydrogen chloride gas is generated by the reaction between the chlorine gas evaporated from the molten glass 30 and the hydrogen gas supplied to the main space 111.
  • the reason why the chlorine gas evaporates from the molten glass 30 is that chloride may be contained in the glass raw material as an inevitable impurity.
  • the concentration of hydrogen chloride gas in the atmosphere at a position 10 mm away from the outer surface of the heating element 40 is preferably 150 ppm or less in volume ratio.
  • concentration of the hydrogen chloride gas exceeds 150 ppm by volume, the heating element 40 tends to deteriorate.
  • the first inert gas supply unit 50 may continuously blow inert gas into the gap space 113.
  • the blowing amount is preferably 2 Nl (normal liters) / min to 15 Nl / min per 1 m of the rod-like heating element 40.
  • the molten glass 30 on the molten tin 20 will be cooled, and the fluidity
  • the amount of inert gas blown is too small, the effect of inactivating the atmosphere around the heating element 40 cannot be obtained sufficiently.
  • the 1st inert gas supply part 50 of this embodiment blows inactive gas continuously in the crevice space 113, it may blow in discontinuously.
  • the first inert gas supply unit 50 may be composed of an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10.
  • the inert gas supply pipe 50 is warmed by the high-temperature gas in the float bath 10, and the inert gas flowing inside the inert gas supply pipe 50 is preheated. Since the preheated inert gas is blown into the gap space 113, the temperature fluctuation of the gap space 113 is small, and the temperature fluctuation of the molten glass 30 is small.
  • an inert gas previously heated to a predetermined temperature may be introduced into the inert gas supply pipe 50.
  • the inert gas supply pipe 50 is made of a material having excellent corrosion resistance against reducing gas, and is made of a ceramic material such as alumina.
  • the inert gas supply pipe 50 is provided at a position below the spout trip 14 and above the tile 15.
  • the inert gas supply pipe 50 may be provided on the upstream side of the contact surface 152 with the molten glass 30 in the tile 15. That is, the inert gas supply pipe 50 may be provided at a position that does not overlap the molten glass 30 on the molten tin 20 in a top view.
  • the inert gas supply pipe 50 may be moved by an appropriate driving device or manually according to the erosion of the tile 15.
  • a plurality (for example, a pair) of inert gas supply pipes 50 may be provided so as to blow inert gas from both sides of the gap space 113, for example.
  • the outlet 54 provided at the tip of the inert gas supply pipe 50 may be provided outside the gap space 113, and the inert gas may be blown into the gap space 113 by wind pressure.
  • blower outlet 54 of this embodiment is provided outside the gap space 113, it may be provided in the gap space 113.
  • the blower outlet 54 of this embodiment is provided in the front-end
  • the air outlet 54 of the inert gas supply pipe 50 may be installed at a position above the heating element 40. This is because the inert gas blown out from the blowout port 54 is colder and heavier than the gas in the gap space 113 and thus forms a flow from the top to the bottom after being blown out from the blowout port 54.
  • the plate glass manufacturing apparatus further includes a second inert gas supply unit 70 that supplies an inert gas to the upper space 114 above the spout trip 14 in the spout space 112.
  • a second inert gas supply unit 70 that supplies an inert gas to the upper space 114 above the spout trip 14 in the spout space 112.
  • nitrogen gas, argon gas, or the like is used as the inert gas supplied to the upper space 114.
  • the hydrogen concentration in the upper space 114 can be reduced, and deterioration of the coating layer due to hydrogen gas can be suppressed when the twill 19 and the spout trip 14 are coated with platinum or a platinum alloy.
  • the second inert gas supply unit 70 may continuously blow the inert gas into the upper space 114 or may blow it discontinuously.
  • the second inert gas supply unit 70 can be configured by an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10. .
  • the inert gas supply pipe is warmed by the high-temperature gas in the float bath 10, and the inert gas flowing through the inert gas supply pipe is preheated. Since the preheated inert gas is blown into the upper space 114, the temperature fluctuation of the upper space 114 is small, and the temperature fluctuation of the molten glass 30 is small.
  • the present embodiment relates to a modification of the first inert gas supply unit that supplies the inert gas to the gap space 113.
  • FIG. 3 is a cross-sectional view showing a main part of a sheet glass manufacturing apparatus according to the second embodiment.
  • the first inert gas supply unit 50 ⁇ / b> A blows an inert gas into the gap space 113, thereby forming an inert gas flow in the vicinity of the heating element 40. Therefore, reducing gas and hydrogen chloride gas are unlikely to approach the heating element 40, and deterioration of the heating element 40 can be suppressed. Moreover, the component evaporated from the molten glass 30 is unlikely to approach the heating element 40, and the generation of deposits on the heating element 40 can be suppressed.
  • the flow of the inert gas formed in the vicinity of the heating element 40 is a downward flow from the heating element 40. This is because when the flow from the heating element 40 toward the molten glass 30 on the molten tin 20 is formed, the inert gas constituting the flow is colder than the surrounding gas, and thus the fluidity of the tributary 32 is impaired. In addition, when a flow from the heating element 40 toward the molten glass 30 on the molten tin 20 is formed, the deposit on the heating element 40 is carried to the molten glass 30 on the molten tin 20.
  • the first inert gas supply unit 50A may be configured by an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10 or the like.
  • the inert gas supply pipe 50 ⁇ / b> A may be moved by an appropriate driving device or manually according to the movement of the heating element 40 accompanying the erosion of the tile 15.
  • the outlet 54A of the inert gas supply pipe 50A is provided in the gap space 113.
  • the air outlet 54 ⁇ / b> A is located obliquely above the heating element 40 and blows out an inert gas toward the upper side of the heating element 40.
  • the inert gas blown out from the blowout port 54A is colder and heavier than the gas in the gap space 113, and thus forms a flow from the top to the bottom after being blown out from the blowout port 54A.
  • an inert gas flow is formed in the vicinity of the heating element 40.
  • the outlet 54A is located obliquely above the heating element 40, but the present invention is not limited to this.
  • the air outlet 54 ⁇ / b> A may be positioned above the heating element 40 and blow out an inert gas toward the heating element 40.
  • the blower outlet 54A may be singular or plural.
  • the plurality of outlets 54A may be arranged at regular intervals along the axial direction of the inert gas supply pipe 50A, or may be arranged at irregular intervals. In short, it is only necessary that the flow of inert gas can be formed in the region around the heating element 40 where the concentration of hydrogen gas or hydrogen chloride gas is high.
  • 50 A of 1st inert gas supply parts in this embodiment can be used instead of the 1st inert gas supply part 50 in 1st Embodiment.
  • Example 1 In Example 1, an alkali-free glass plate was manufactured using the plate glass manufacturing apparatus shown in FIG. Nitrogen gas was used as the inert gas blown into the space between the spout trip and the tile. The amount of nitrogen gas blown was 6 Nl / min per 1 m length of the cylindrical heating element. Silicon carbide was used as the material of the heating element.
  • Example 1 an alkali-free glass plate could be continuously produced without replacing the heating element for 6 weeks.
  • the concentration of hydrogen chloride gas in the atmosphere at a position 10 mm below the outer surface of the center in the longitudinal direction of the heating element was measured with a hydrogen chloride detector tube (manufactured by Komyo Chemical Co., Ltd., Tube No. 173SA (20-1200 ppm)). As a result, the volume ratio was 150 ppm.
  • Comparative Example 1 an alkali-free glass plate was produced in the same manner as in Example 1 except that the inert gas was not blown into the space between the spout trip and the tile.
  • Comparative Example 1 the new heating element abnormally generated heat due to porosity in two weeks, and it was necessary to replace the heating element.
  • the concentration of hydrogen chloride gas in the atmosphere at a position 10 mm below the outer surface at the center in the longitudinal direction of the heating element was 500 ppm by volume.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A plate glass production method that continuously supplies molten glass from a spout lip on to molten tin inside a float bath, and causes the molten glass that has been caused to be in contact with a tile to flow on to the molten tin, said tile provided below the spout lip with a space therebetween. The plate glass production method: heats the tile, using a heat-generating body provided between the spout lip and the tile and provided further on the upstream side than the tile surface in contact with the molten glass; and blows an inert gas into the gap between the spout lip and the tile.

Description

板ガラスの製造方法、および板ガラスの製造装置Sheet glass manufacturing method and sheet glass manufacturing apparatus
 本発明は、板ガラスの製造方法、および板ガラスの製造装置に関する。 The present invention relates to a plate glass manufacturing method and a plate glass manufacturing apparatus.
 板ガラスの製造装置は、フロートバス内の溶融スズ上に溶融ガラスを連続的に供給し、下流方向に流動させて帯板状のガラスリボンに成形する。フロートバス内の空間は、仕切り壁(フロントリンテル)によって、下流側のメイン空間と、上流側のスパウト空間とに仕切られている。メイン空間は、スパウト空間よりも十分に大きく、溶融スズの酸化を防止するため、還元性ガスで満たされている。 The plate glass manufacturing apparatus continuously supplies molten glass onto molten tin in a float bath, and flows it in the downstream direction to form a strip-shaped glass ribbon. The space in the float bath is divided into a main space on the downstream side and a spout space on the upstream side by a partition wall (front lintel). The main space is much larger than the spout space and is filled with reducing gas to prevent oxidation of molten tin.
 この板ガラスの製造装置は、スパウト空間に配置されるスパウトリップを介して、フロートバス内の溶融スズ上に溶融ガラスを供給する。溶融スズ上に供給された溶融ガラスは、下流方向に流れる本流(フロントフロー)と、スパウトリップの下方に間隔を空けて設けられたタイルに向けて逆流する支流(バックフロー)とを形成する。タイルの内部に埋設される発熱体によって、溶融スズ上の溶融ガラスが加熱される(例えば、特許文献1参照)。 This plate glass manufacturing apparatus supplies molten glass onto the molten tin in the float bath via a spout trip arranged in the spout space. The molten glass supplied on the molten tin forms a main flow (front flow) that flows in the downstream direction and a tributary flow (back flow) that flows backward toward the tiles that are spaced below the spout trip. The molten glass on the molten tin is heated by a heating element embedded in the tile (see, for example, Patent Document 1).
日本国特開2007-131525号公報Japanese Unexamined Patent Publication No. 2007-131525
 発熱体がタイルの内部に埋設されていると、タイルが溶融ガラスや溶融スズに浸食されるときに、発熱体の成分が溶融ガラスなどに溶出することがある。また、発熱体がタイルの内部に埋設されていると、発熱体のみの交換が難しい。 If the heating element is embedded in the tile, the components of the heating element may elute into the molten glass when the tile is eroded by molten glass or molten tin. In addition, when the heating element is embedded in the tile, it is difficult to replace only the heating element.
 そこで、タイルの外部に発熱体を設置することが考えられるが、この場合、発熱体の表面に、溶融ガラスから蒸発した成分などが付着する。この付着物が、溶融スズ上の溶融ガラスに落下すると、ガラスの割れや欠陥の原因になる。また、タイルの外部に発熱体を設置する場合、発熱体が周辺雰囲気と反応して徐々に劣化する。 Therefore, it is conceivable to install a heating element outside the tile. In this case, components evaporated from the molten glass adhere to the surface of the heating element. If this deposit falls on the molten glass on the molten tin, it will cause cracks and defects in the glass. In addition, when a heating element is installed outside the tile, the heating element reacts with the surrounding atmosphere and gradually deteriorates.
 本発明は、上記課題に鑑みてなされたものであって、発熱体の付着物の、溶融スズ上の溶融ガラスへの落下を抑制でき、且つ、発熱体の劣化を抑制できる、板ガラスの製造方法および板ガラスの製造装置の提供を目的とする。 The present invention has been made in view of the above-described problem, and is a method for producing a plate glass that can suppress the deposits of the heating element from falling onto the molten glass on the molten tin and can suppress deterioration of the heating element. And it aims at providing the manufacturing apparatus of plate glass.
 上記課題を解決するため、本発明の一態様による板ガラスの製造方法は、
 フロートバス内の溶融スズ上にスパウトリップから溶融ガラスを連続的に供給し、前記スパウトリップの下方に間隔を空けて設けられるタイルに接触させた溶融ガラスを前記溶融スズ上で流動させる、板ガラスの製造方法であって、
 前記スパウトリップと前記タイルとの間に設けられ、前記タイルにおける溶融ガラスとの接触面よりも上流側に設けられる発熱体を用いて前記タイルを加熱し、
 また、前記スパウトリップと前記タイルとの間の隙間空間に、不活性ガスを吹き込む。
In order to solve the above problems, a method for producing a plate glass according to an aspect of the present invention includes:
A molten glass is continuously supplied from a spout trip onto molten tin in a float bath, and the molten glass brought into contact with tiles provided at intervals below the spout trip is caused to flow on the molten tin. A manufacturing method comprising:
Heating the tile using a heating element provided between the spout trip and the tile, provided upstream of the contact surface with the molten glass in the tile,
In addition, an inert gas is blown into a gap space between the spout trip and the tile.
 また、本発明の他の一態様による板ガラスの製造装置は、
 フロートバス内の溶融スズ上に溶融ガラスを連続的に供給するスパウトリップと、
 該スパウトリップの下方に間隔を空けて設けられ、前記スパウトリップから供給された溶融ガラスと接触するタイルと、
 前記スパウトリップと前記タイルとの間に設けられ、前記タイルにおける溶融ガラスとの接触面よりも上流側に設けられる発熱体と、
 前記スパウトリップと前記タイルとの間の隙間空間に、不活性ガスを吹き込む不活性ガス供給部とを有する。
Moreover, the manufacturing apparatus of the plate glass by other one aspect | mode of this invention is the following.
A spout trip that continuously supplies molten glass onto the molten tin in the float bath;
Tiles that are provided below the spout trip and spaced apart, and that contact the molten glass supplied from the spout trip;
A heating element provided between the spout trip and the tile, provided upstream of a contact surface with the molten glass in the tile;
An inert gas supply unit that blows an inert gas into a gap space between the spout trip and the tile is provided.
 本発明の一態様によれば、発熱体の付着物の、溶融スズ上の溶融ガラスへの落下を抑制でき、且つ、発熱体の劣化を抑制できる、板ガラスの製造方法および板ガラスの製造装置が提供される。 According to one aspect of the present invention, there is provided a plate glass manufacturing method and a plate glass manufacturing apparatus capable of suppressing the fall of the deposits of the heating element to the molten glass on the molten tin and suppressing the deterioration of the heating element. Is done.
第1の実施形態における板ガラスの製造装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing apparatus of the plate glass in 1st Embodiment. 図1の溶融スズ上の溶融ガラスの流れを模式的に示す平面図である。It is a top view which shows typically the flow of the molten glass on the molten tin of FIG. 第2の実施形態における板ガラスの製造装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing apparatus of the plate glass in 2nd Embodiment.
 以下、本発明を実施するための形態について図面を参照して説明する。尚、各図面において、同一のまたは対応する構成には同一の又は対応する符号を付して説明を省略する。各図面において、矢印A方向は下流方向、矢印B方向は上流方向を表す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In each drawing, the arrow A direction represents the downstream direction, and the arrow B direction represents the upstream direction.
 (第1の実施形態)
 図1は、第1の実施形態における板ガラスの製造装置の要部を示す断面図である。図2は、図1の溶融スズ上の溶融ガラスの流れを模式的に示す平面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a main part of a sheet glass manufacturing apparatus according to the first embodiment. FIG. 2 is a plan view schematically showing the flow of molten glass on the molten tin in FIG.
 図1に示すように、板ガラスの製造装置は、フロートバス10内の溶融スズ20上に溶融ガラス30を連続的に供給し、供給した溶融ガラス30を溶融スズ20上で流動させて帯板状のガラスリボン30Aに成形する。成形されたガラスリボン30Aは、フロートバス10の下流域において溶融スズ20から引き上げられ、徐冷炉内に搬送され、徐冷された後、所定の寸法に切断され、板ガラスとなる。 As shown in FIG. 1, the sheet glass manufacturing apparatus continuously supplies a molten glass 30 onto the molten tin 20 in the float bath 10, and causes the supplied molten glass 30 to flow on the molten tin 20 to form a strip plate shape. The glass ribbon 30A is formed. The formed glass ribbon 30 </ b> A is pulled up from the molten tin 20 in the downstream area of the float bath 10, transported into a slow cooling furnace, slowly cooled, and then cut into a predetermined size to form a plate glass.
 フロートバス10内の空間11は、仕切り壁(フロントリンテル)17によって、下流側のメイン空間111と、上流側のスパウト空間112とに仕切られている。メイン空間111は、スパウト空間112よりも十分に大きい。 The space 11 in the float bath 10 is partitioned by a partition wall (front lintel) 17 into a downstream main space 111 and an upstream spout space 112. The main space 111 is sufficiently larger than the spout space 112.
 メイン空間111には、溶融スズ20の酸化を防止するため、還元性ガスが供給される。還元性ガスは、例えば窒素ガスと水素ガスとの混合ガスであってよく、窒素ガスを85体積%~98.5体積%、水素ガスを1.5体積%~15体積%含んでいる。 The main space 111 is supplied with reducing gas in order to prevent oxidation of the molten tin 20. The reducing gas may be, for example, a mixed gas of nitrogen gas and hydrogen gas, and contains 85% to 98.5% by volume of nitrogen gas and 1.5% to 15% by volume of hydrogen gas.
 メイン空間111に還元性ガスを供給する還元性ガス供給部60は、メイン空間111の天井面を形成する天井12に設けられる孔などで構成される。 The reducing gas supply unit 60 that supplies the reducing gas to the main space 111 is configured by holes or the like provided in the ceiling 12 that forms the ceiling surface of the main space 111.
 板ガラスの製造装置は、フロートバス10内の溶融スズ20上に溶融ガラス30を連続的に供給するスパウトリップ14と、スパウトリップ14の下方に間隔を空けて設けられ、スパウトリップ14から供給された溶融ガラス30と接触するタイル15とを備える。スパウトリップ14やタイル15は、フロートバス10の前壁13に設置される。スパウトリップ14およびタイル15は、アルミナ質やジルコニア質などの耐火物で構成される。 The plate glass manufacturing apparatus is provided with a spout trip 14 that continuously supplies the molten glass 30 onto the molten tin 20 in the float bath 10, and a space below the spout trip 14, and is supplied from the spout trip 14. The tile 15 which contacts the molten glass 30 is provided. The spout trip 14 and the tile 15 are installed on the front wall 13 of the float bath 10. The spout trip 14 and the tile 15 are made of a refractory material such as alumina or zirconia.
 スパウトリップ14、タイル15、およびタイル15から斜めに延びる側壁16は、重量%でZrOが85%以上97%以下、残部がSiOを主体とするガラス質である熱溶融耐火物で構成されることが好ましい。熱溶融耐火物は、耐火物の原料を高温で溶融して再結晶させたものである。熱溶融耐火物のZrOは、おもにバデライト結晶として存在する。熱溶融耐火物の残部は、SiOを主体とするガラス質であり、ZrOのバデライト結晶の粒界に存在し、熱溶融耐火物を緻密化する。このガラス質には、SiO以外にAl
、NaO、Pなどを微量含有することができる。この熱溶融耐火物は、耐熱性に優れており、溶融ガラス30との反応等による泡の発生を抑制でき、また、ガラスリボン30Aの流れ方向に生ずる微細な筋も抑制できる。溶融ガラスが無アルカリガラス、特にホウ酸を含有する無アルカリガラスの場合に効果的である。
Spout lip 14, the tile 15, and side walls 16 extending from the tile 15 obliquely, ZrO 2 97% 85% or less by weight, the balance consists of hot melt refractory is a glassy mainly containing SiO 2 It is preferable. The hot-melt refractory is obtained by melting and recrystallizing a refractory raw material at a high temperature. ZrO 2 as a hot-melt refractory mainly exists as badelite crystals. The remainder of the hot-melt refractory is glassy mainly composed of SiO 2 , exists at the grain boundaries of ZrO 2 baderite crystals, and densifies the hot-melt refractory. This glassy material includes Al 2 O 3 in addition to SiO 2.
, Na 2 O, P 2 O 5 and the like can be contained in a small amount. This hot-melt refractory is excellent in heat resistance, can suppress the generation of bubbles due to reaction with the molten glass 30, and can also suppress fine streaks generated in the flow direction of the glass ribbon 30A. This is effective when the molten glass is alkali-free glass, particularly alkali-free glass containing boric acid.
 無アルカリガラスの具体例としては、酸化物基準の質量百分率表示で、
SiO2:50%~73%
Al23:10.5%~24%
23:0%~12%
MgO:0%~8%
CaO:0%~14.5%
SrO:0%~24%
BaO:0%~13.5%
MgO+CaO+SrO+BaO:8%~29.5%
ZrO2:0%~5%
を含有する無アルカリガラスが挙げられる。
As a specific example of the alkali-free glass, by mass percentage display based on oxide,
SiO 2 : 50% to 73%
Al 2 O 3 : 10.5% to 24%
B 2 O 3 : 0% to 12%
MgO: 0% to 8%
CaO: 0% to 14.5%
SrO: 0% to 24%
BaO: 0% to 13.5%
MgO + CaO + SrO + BaO: 8% to 29.5%
ZrO 2 : 0% to 5%
An alkali-free glass containing
 歪点が高く溶解性を考慮する場合は、好ましくは、酸化物基準の質量百分率表示で、
SiO2:58%~66%
Al23:15%~22%
23:5%~12%
MgO:0%~8%
CaO:0%~9%
SrO:3%~12.5%
BaO:0%~2%
MgO+CaO+SrO+BaO:9%~18%
を含有する無アルカリガラスが挙げられる。
When considering the solubility with a high strain point, preferably, by mass percentage display on the oxide basis,
SiO 2 : 58% to 66%
Al 2 O 3 : 15% to 22%
B 2 O 3 : 5% to 12%
MgO: 0% to 8%
CaO: 0% to 9%
SrO: 3% to 12.5%
BaO: 0% to 2%
MgO + CaO + SrO + BaO: 9% to 18%
An alkali-free glass containing
 特に高歪点を考慮する場合は、好ましくは、酸化物基準の質量百分率表示で、
SiO2:54%~73%
Al23:10.5%~22.5%
23:0%~5.5%
MgO:0%~8%
CaO:0%~9%
SrO:0%~16%
BaO:0%~2.5%
MgO+CaO+SrO+BaO:8%~26%
を含有する無アルカリガラスが挙げられる。
Especially when considering the high strain point, preferably, by mass percentage display based on oxide,
SiO 2 : 54% to 73%
Al 2 O 3 : 10.5% to 22.5%
B 2 O 3 : 0% to 5.5%
MgO: 0% to 8%
CaO: 0% to 9%
SrO: 0% to 16%
BaO: 0% to 2.5%
MgO + CaO + SrO + BaO: 8% to 26%
An alkali-free glass containing
 尚、本実施形態では、スパウトリップ14、タイル15、左側の側壁16、および右側の側壁16の全てが上記熱溶融耐火物で構成されるが、全てが上記熱溶融耐火物で構成されなくてもよい。少なくとも1つが上記熱溶融耐火物で構成されていれば、上記効果をある程度得ることができる。 In the present embodiment, the spout trip 14, the tile 15, the left side wall 16, and the right side wall 16 are all made of the hot melt refractory, but not all of the hot melt refractory. Also good. If at least one is comprised with the said hot-melt refractory, the said effect can be acquired to some extent or more.
 スパウトリップ14上を流れる溶融ガラス30の左右両側には、溶融ガラス30がスパウトリップ14から左右にこぼれるのを防止するための横壁が配設されてよい。該横壁が設けられる場合、該横壁を含めてスパウトリップ14という。 A lateral wall for preventing the molten glass 30 from spilling left and right from the spout trip 14 may be disposed on both the left and right sides of the molten glass 30 flowing on the spout trip 14. When the lateral wall is provided, the spout trip 14 including the lateral wall is referred to.
 スパウトリップ14から溶融スズ20上に供給される溶融ガラス30は、ツイール19によって流量調節される。スパウトリップ14の先端部142から溶融スズ20上に供給された溶融ガラス30は、図2に示すように、下流方向に流れる本流31(フロントフロー)と、タイル15に向けて上流方向に逆流する支流(バックフロー)32とを形成する。 The flow rate of the molten glass 30 supplied from the spout trip 14 onto the molten tin 20 is adjusted by the twill 19. As shown in FIG. 2, the molten glass 30 supplied from the tip 142 of the spout trip 14 onto the molten tin 20 flows backward to the main flow 31 (front flow) flowing in the downstream direction and upstream toward the tile 15. A tributary (back flow) 32 is formed.
 支流32は、スパウトリップ14に接触していた部分を含んでいるので、スパウトリップ14との反応によって生じた泡を含んでいる。この支流32は、タイル15に向けて逆流した後、タイル15に沿って左右に分かれて流れる。左右に分かれた支流32は、それぞれ、タイル15から斜めに延びる側壁16に沿って流れ、本流31の幅方向端部に合流する。よって、ガラスリボン30Aの幅方向端部に泡を集めることができ、ガラスリボン30Aの幅方向中央部から欠陥の少ない製品を切り出すことができる。 Since the tributary 32 includes a portion that has been in contact with the spau trip 14, it includes bubbles generated by the reaction with the spau trip 14. The tributary flow 32 flows backward toward the tile 15, and then flows separately along the tile 15. Each of the tributaries 32 divided into the left and right flows along the side wall 16 extending obliquely from the tile 15, and merges with the end portion in the width direction of the main stream 31. Therefore, bubbles can be collected at the end in the width direction of the glass ribbon 30A, and a product with few defects can be cut out from the center in the width direction of the glass ribbon 30A.
 左右に分かれた支流32がそれぞれ本流31の幅方向端部に合流しやすいように、タイル15から斜めに側壁16が延びている。側壁16は、下流側に行くほど、幅方向外側に向かうように斜めに延びている。 Side walls 16 extend obliquely from the tiles 15 so that the tributaries 32 divided on the left and right sides can easily join the ends of the main stream 31 in the width direction. The side wall 16 extends obliquely toward the outer side in the width direction as it goes downstream.
 板ガラスの製造装置は、図1に示すように、上流方向に逆流する支流32の流動性を高め、支流32の流れを安定化させるため、タイル15を加熱する発熱体40を有する。発熱体40は、スパウトリップ14とタイル15との間に設けられ、タイル15を加熱することで、溶融スズ20上の溶融ガラス30も加熱している。 As shown in FIG. 1, the sheet glass manufacturing apparatus includes a heating element 40 that heats the tile 15 in order to improve the fluidity of the tributary 32 that flows backward in the upstream direction and stabilize the flow of the tributary 32. The heating element 40 is provided between the spout trip 14 and the tile 15, and the molten glass 30 on the molten tin 20 is also heated by heating the tile 15.
 発熱体40は、タイル15周辺の溶融ガラス30を、ガラスの失透温度よりも10℃~50℃高い温度で加熱してよい。タイル15周辺でのガラスの失透を防止することができる。 The heating element 40 may heat the molten glass 30 around the tile 15 at a temperature 10 ° C. to 50 ° C. higher than the devitrification temperature of the glass. Glass devitrification around the tile 15 can be prevented.
 発熱体40は、スパウトリップ14とタイル15との間に設けられ、タイル15の外部に設けられる。よって、タイル15が溶融ガラス30や溶融スズ20に浸食されるときに、発熱体40や発熱体40の付着物の成分が溶融ガラス30や溶融スズ20に溶出することがない。また、発熱体40のみの交換が可能である。 The heating element 40 is provided between the spout trip 14 and the tile 15 and provided outside the tile 15. Therefore, when the tile 15 is eroded by the molten glass 30 or the molten tin 20, the components of the heating element 40 and the deposits of the heating element 40 are not eluted into the molten glass 30 or the molten tin 20. In addition, only the heating element 40 can be replaced.
 発熱体40は、タイル15における溶融ガラス30との接触面152よりも上流側に設けられている。即ち、発熱体40は、上面視にて溶融スズ20上の溶融ガラス30に重ならない位置に設けられている。よって、発熱体40の付着物が溶融スズ20上の溶融ガラス30に落下しにくく、ガラスの割れや欠陥が発生しにくい。尚、発熱体40は、タイル15の浸食に応じて、適当な駆動装置または手動で移動されてよい。 The heating element 40 is provided on the upstream side of the contact surface 152 with the molten glass 30 in the tile 15. That is, the heating element 40 is provided at a position that does not overlap the molten glass 30 on the molten tin 20 in a top view. Therefore, the deposits of the heating element 40 are unlikely to fall on the molten glass 30 on the molten tin 20, and the glass is not easily broken or defective. The heating element 40 may be moved by an appropriate driving device or manually according to the erosion of the tile 15.
 発熱体40は、還元性ガスに対する耐腐食性に優れた材料で形成される。発熱体40の材料としては、特に限定されないが、例えば炭化ケイ素(SiC)、炭化ケイ素(SiC)と金属ケイ素(Si)との複合材料、窒化ケイ素(Si)などがある。発熱体40は、アルミナなどのセラミックス材料で被覆されたものであってもよい。 The heating element 40 is formed of a material having excellent corrosion resistance against reducing gas. The material of the heating element 40 is not particularly limited, and examples thereof include silicon carbide (SiC), a composite material of silicon carbide (SiC) and metal silicon (Si), and silicon nitride (Si 3 N 4 ). The heating element 40 may be coated with a ceramic material such as alumina.
 発熱体40は、棒状であって、タイル15における溶融ガラス30との接触面152に対して平行に設けられてよい。支流32がタイル15に沿って左右に流れやすい。 The heating element 40 is rod-shaped and may be provided in parallel to the contact surface 152 of the tile 15 with the molten glass 30. The tributary 32 tends to flow from side to side along the tile 15.
 発熱体40は、上面視にて、タイル15の外縁154(図2参照)の内側に位置してよく、タイル15よりも短くてよい。タイル15の加熱効率が良い。 The heating element 40 may be positioned inside the outer edge 154 (see FIG. 2) of the tile 15 as viewed from above, and may be shorter than the tile 15. The heating efficiency of the tile 15 is good.
 発熱体40は、開気孔率(JIS(日本工業規格) R 1634)が15%以下であることが好ましく、10%以下であることがより好ましい。開気孔率が15%を超えると、周辺雰囲気に曝される発熱体40の表面積が大き過ぎ、発熱体40が劣化しやすい。 The heating element 40 has an open porosity (JIS (Japanese Industrial Standard) R 1634) of preferably 15% or less, and more preferably 10% or less. If the open porosity exceeds 15%, the surface area of the heating element 40 exposed to the surrounding atmosphere is too large and the heating element 40 is likely to deteriorate.
 発熱体40は、円筒形状であって、20mm~40mmの外径を有することが好ましい。角筒形状であると、局所発熱しやすく、劣化しやすい。また、中空ではなく、中実であると、発熱体40の原料コストが増大する。さらに、外径が40mmよりも大きいと、大きな設置スペースが必要になる。一方、外径が20mmよりも小さいと、発熱体40の発熱量が同じ場合、発熱体40の外表面温度が高過ぎ、発熱体40が劣化しやすい。 The heating element 40 is preferably cylindrical and has an outer diameter of 20 mm to 40 mm. If it is a rectangular tube shape, local heat generation is likely to occur, and deterioration tends to occur. Moreover, the raw material cost of the heat generating body 40 will increase that it is not hollow but solid. Furthermore, if the outer diameter is larger than 40 mm, a large installation space is required. On the other hand, when the outer diameter is smaller than 20 mm, when the heat generation amount of the heating element 40 is the same, the outer surface temperature of the heating element 40 is too high, and the heating element 40 is likely to deteriorate.
 板ガラスの製造装置は、スパウトリップ14とタイル15との間の隙間空間113に不活性ガスを吹き込む第1の不活性ガス供給部50をさらに有する。隙間空間113に吹き込む不活性ガスとしては、窒素ガス、アルゴンガスなどが用いられる。隙間空間113に不活性ガスを吹き込むことで、発熱体40の周辺雰囲気を不活性化することができ、発熱体40の劣化を抑制することができる。また、隙間空間113に不活性ガスを吹き込むことで、発熱体40の周辺雰囲気中の塩化水素ガスの濃度を低下させることができ、塩化水素ガスによる発熱体40の劣化を抑制することができる。 The sheet glass manufacturing apparatus further includes a first inert gas supply unit 50 that blows an inert gas into the gap space 113 between the spout trip 14 and the tile 15. Nitrogen gas, argon gas, or the like is used as the inert gas blown into the gap space 113. By blowing inert gas into the gap space 113, the atmosphere around the heating element 40 can be inactivated, and deterioration of the heating element 40 can be suppressed. In addition, by blowing inert gas into the gap space 113, the concentration of hydrogen chloride gas in the atmosphere around the heating element 40 can be reduced, and deterioration of the heating element 40 due to the hydrogen chloride gas can be suppressed.
 尚、塩化水素ガスは、溶融ガラス30から蒸発した塩素ガスと、メイン空間111に供給された水素ガスとが反応して生成される。塩素ガスが溶融ガラス30から蒸発するのは、不可避的不純物として、塩化物がガラス原料に含まれることがあるためである。 The hydrogen chloride gas is generated by the reaction between the chlorine gas evaporated from the molten glass 30 and the hydrogen gas supplied to the main space 111. The reason why the chlorine gas evaporates from the molten glass 30 is that chloride may be contained in the glass raw material as an inevitable impurity.
 発熱体40の外表面から10mm離れた位置における雰囲気中の塩化水素ガスの濃度は、体積比で150ppm以下であることが好ましい。塩化水素ガスの濃度が体積比で150ppmを超えると、発熱体40が劣化しやすい。 The concentration of hydrogen chloride gas in the atmosphere at a position 10 mm away from the outer surface of the heating element 40 is preferably 150 ppm or less in volume ratio. When the concentration of the hydrogen chloride gas exceeds 150 ppm by volume, the heating element 40 tends to deteriorate.
 第1の不活性ガス供給部50は、隙間空間113に不活性ガスを連続的に吹き込んでよい。その吹き込み量は、棒状の発熱体40の長さ1m当たり2Nl(ノルマルリットル)/min~15Nl/minであることが好ましい。不活性ガスの吹き込み量が多過ぎると、溶融スズ20上の溶融ガラス30が冷却され、支流32の流動性が損なわれる。一方、不活性ガスの吹き込み量が少な過ぎると、発熱体40の周辺雰囲気を不活性化する効果が十分に得られない。 The first inert gas supply unit 50 may continuously blow inert gas into the gap space 113. The blowing amount is preferably 2 Nl (normal liters) / min to 15 Nl / min per 1 m of the rod-like heating element 40. When there is too much blowing amount of inert gas, the molten glass 30 on the molten tin 20 will be cooled, and the fluidity | liquidity of the tributary 32 will be impaired. On the other hand, if the amount of inert gas blown is too small, the effect of inactivating the atmosphere around the heating element 40 cannot be obtained sufficiently.
 尚、本実施形態の第1の不活性ガス供給部50は、隙間空間113に不活性ガスを連続的に吹き込むが、不連続的に吹き込んでもよい。 In addition, although the 1st inert gas supply part 50 of this embodiment blows inactive gas continuously in the crevice space 113, it may blow in discontinuously.
 第1の不活性ガス供給部50は、少なくとも一部がフロートバス10内のガスに曝される不活性ガス供給管などで構成されてよい。フロートバス10内の高温のガスで、不活性ガス供給管50が温められ、不活性ガス供給管50の内部を流れる不活性ガスが予熱される。予熱された不活性ガスが隙間空間113に吹き込まれるので、隙間空間113の温度変動が小さく、溶融ガラス30の温度変動が小さい。 The first inert gas supply unit 50 may be composed of an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10. The inert gas supply pipe 50 is warmed by the high-temperature gas in the float bath 10, and the inert gas flowing inside the inert gas supply pipe 50 is preheated. Since the preheated inert gas is blown into the gap space 113, the temperature fluctuation of the gap space 113 is small, and the temperature fluctuation of the molten glass 30 is small.
 尚、予め所定の温度に温めた不活性ガスを不活性ガス供給管50に導入してもよい。 It should be noted that an inert gas previously heated to a predetermined temperature may be introduced into the inert gas supply pipe 50.
 不活性ガス供給管50は、還元性ガスに対する耐腐食性に優れた材料で構成され、例えばアルミナなどのセラミックス材料で構成される。 The inert gas supply pipe 50 is made of a material having excellent corrosion resistance against reducing gas, and is made of a ceramic material such as alumina.
 不活性ガス供給管50は、スパウトリップ14よりも下方、且つ、タイル15よりも上方の位置に設けられる。不活性ガス供給管50は、タイル15における溶融ガラス30との接触面152よりも上流側に設けられてよい。つまり、不活性ガス供給管50は、上面視で溶融スズ20上の溶融ガラス30と重ならない位置に設けられてよい。不活性ガス供給管50が破損した場合に、破損物が溶融ガラス30に落下しにくく、ガラスの割れや欠陥が発生しにくい。尚、不活性ガス供給管50は、タイル15の浸食に応じて、適当な駆動装置または手動で移動されてよい。 The inert gas supply pipe 50 is provided at a position below the spout trip 14 and above the tile 15. The inert gas supply pipe 50 may be provided on the upstream side of the contact surface 152 with the molten glass 30 in the tile 15. That is, the inert gas supply pipe 50 may be provided at a position that does not overlap the molten glass 30 on the molten tin 20 in a top view. When the inert gas supply pipe 50 is broken, the broken material is unlikely to fall on the molten glass 30, and the glass is not easily broken or defective. The inert gas supply pipe 50 may be moved by an appropriate driving device or manually according to the erosion of the tile 15.
 不活性ガス供給管50は、例えば、隙間空間113の両サイドから不活性ガスを吹き込むように、複数(例えば1対)設けられてよい。不活性ガス供給管50の先端に設けられる吹出口54は、隙間空間113の外に設けられ、風圧で、隙間空間113に不活性ガスを吹き込んでよい。 A plurality (for example, a pair) of inert gas supply pipes 50 may be provided so as to blow inert gas from both sides of the gap space 113, for example. The outlet 54 provided at the tip of the inert gas supply pipe 50 may be provided outside the gap space 113, and the inert gas may be blown into the gap space 113 by wind pressure.
 尚、本実施形態の吹出口54は、隙間空間113の外に設けられるが、隙間空間113内に設けられてもよい。また、本実施形態の吹出口54は、不活性ガス供給管50の先端に設けられるが、途中に設けられてもよい。 In addition, although the blower outlet 54 of this embodiment is provided outside the gap space 113, it may be provided in the gap space 113. Moreover, although the blower outlet 54 of this embodiment is provided in the front-end | tip of the inert gas supply pipe | tube 50, you may provide in the middle.
 不活性ガス供給管50の吹出口54は、発熱体40よりも上方の位置に設置されてよい。吹出口54から吹き出される不活性ガスは、隙間空間113のガスよりも冷たく重いので、吹出口54から吹き出された後、上から下に向かう流れを形成するからである。 The air outlet 54 of the inert gas supply pipe 50 may be installed at a position above the heating element 40. This is because the inert gas blown out from the blowout port 54 is colder and heavier than the gas in the gap space 113 and thus forms a flow from the top to the bottom after being blown out from the blowout port 54.
 また、板ガラスの製造装置は、スパウト空間112のうち、スパウトリップ14よりも上方の上方空間114に不活性ガスを供給する第2の不活性ガス供給部70をさらに有する。上方空間114に供給する不活性ガスとしては、窒素ガス、アルゴンガスなどが用いられる。上方空間114における水素濃度を低減することができ、ツイール19やスパウトリップ14が白金または白金合金で被覆される場合に、被覆層の水素ガスによる劣化を抑制することができる。 The plate glass manufacturing apparatus further includes a second inert gas supply unit 70 that supplies an inert gas to the upper space 114 above the spout trip 14 in the spout space 112. As the inert gas supplied to the upper space 114, nitrogen gas, argon gas, or the like is used. The hydrogen concentration in the upper space 114 can be reduced, and deterioration of the coating layer due to hydrogen gas can be suppressed when the twill 19 and the spout trip 14 are coated with platinum or a platinum alloy.
 第2の不活性ガス供給部70は、上方空間114に不活性ガスを連続的に吹き込んでもよいし、不連続的に吹き込んでもよい。 The second inert gas supply unit 70 may continuously blow the inert gas into the upper space 114 or may blow it discontinuously.
 第2の不活性ガス供給部70は、第1の不活性ガス供給部50と同様に、少なくとも一部がフロートバス10内のガスに曝される不活性ガス供給管などで構成することができる。フロートバス10内の高温のガスで、不活性ガス供給管が温められ、不活性ガス供給管の内部を流れる不活性ガスが予熱される。予熱された不活性ガスが上方空間114に吹き込まれるので、上方空間114の温度変動が小さく、溶融ガラス30の温度変動が小さい。 Similar to the first inert gas supply unit 50, the second inert gas supply unit 70 can be configured by an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10. . The inert gas supply pipe is warmed by the high-temperature gas in the float bath 10, and the inert gas flowing through the inert gas supply pipe is preheated. Since the preheated inert gas is blown into the upper space 114, the temperature fluctuation of the upper space 114 is small, and the temperature fluctuation of the molten glass 30 is small.
 (第2の実施形態)
 本実施形態は、隙間空間113に不活性ガスを供給する第1の不活性ガス供給部の変形例に関する。
(Second Embodiment)
The present embodiment relates to a modification of the first inert gas supply unit that supplies the inert gas to the gap space 113.
 図3は、第2の実施形態における板ガラスの製造装置の要部を示す断面図である。図3に示すように、第1の不活性ガス供給部50Aは、隙間空間113に不活性ガスを吹き込むことで、発熱体40の近傍に不活性ガスの流れを形成している。よって、還元性ガスや塩化水素ガスが発熱体40に近づきにくく、発熱体40の劣化が抑制できる。また、溶融ガラス30から蒸発した成分が発熱体40に近づきにくく、発熱体40の付着物の生成が抑制できる。 FIG. 3 is a cross-sectional view showing a main part of a sheet glass manufacturing apparatus according to the second embodiment. As shown in FIG. 3, the first inert gas supply unit 50 </ b> A blows an inert gas into the gap space 113, thereby forming an inert gas flow in the vicinity of the heating element 40. Therefore, reducing gas and hydrogen chloride gas are unlikely to approach the heating element 40, and deterioration of the heating element 40 can be suppressed. Moreover, the component evaporated from the molten glass 30 is unlikely to approach the heating element 40, and the generation of deposits on the heating element 40 can be suppressed.
 発熱体40の近傍に形成される不活性ガスの流れは、発熱体40から下方に向かう流れであることが望ましい。発熱体40から溶融スズ20上の溶融ガラス30に向かう流れが形成されると、この流れを構成する不活性ガスは、周辺のガスよりも冷たいため、支流32の流動性を損なうからである。また、発熱体40から溶融スズ20上の溶融ガラス30に向かう流れが形成されると、発熱体40の付着物が溶融スズ20上の溶融ガラス30に運ばれるからである。 It is desirable that the flow of the inert gas formed in the vicinity of the heating element 40 is a downward flow from the heating element 40. This is because when the flow from the heating element 40 toward the molten glass 30 on the molten tin 20 is formed, the inert gas constituting the flow is colder than the surrounding gas, and thus the fluidity of the tributary 32 is impaired. In addition, when a flow from the heating element 40 toward the molten glass 30 on the molten tin 20 is formed, the deposit on the heating element 40 is carried to the molten glass 30 on the molten tin 20.
 第1の不活性ガス供給部50Aは、少なくとも一部がフロートバス10内のガスに曝される不活性ガス供給管などで構成されてよい。不活性ガス供給管50Aは、タイル15の浸食に伴う発熱体40の移動に応じて、適当な駆動装置または手動で移動されてよい。 The first inert gas supply unit 50A may be configured by an inert gas supply pipe that is at least partially exposed to the gas in the float bath 10 or the like. The inert gas supply pipe 50 </ b> A may be moved by an appropriate driving device or manually according to the movement of the heating element 40 accompanying the erosion of the tile 15.
 本実施形態では、上記第1の実施形態と異なり、不活性ガス供給管50Aの吹出口54Aが隙間空間113内に設けられる。例えば、吹出口54Aは、図3に示すように、発熱体40の斜め上方に位置し、発熱体40の上方に向けて不活性ガスを吹き出す。吹出口54Aから吹き出される不活性ガスは、隙間空間113内のガスよりも冷たく重いので、吹出口54Aから吹き出された後、上から下に向かう流れを形成する。そうして、発熱体40の近傍に不活性ガスの流れが形成される。 In the present embodiment, unlike the first embodiment, the outlet 54A of the inert gas supply pipe 50A is provided in the gap space 113. For example, as shown in FIG. 3, the air outlet 54 </ b> A is located obliquely above the heating element 40 and blows out an inert gas toward the upper side of the heating element 40. The inert gas blown out from the blowout port 54A is colder and heavier than the gas in the gap space 113, and thus forms a flow from the top to the bottom after being blown out from the blowout port 54A. Thus, an inert gas flow is formed in the vicinity of the heating element 40.
 尚、本実施形態では、吹出口54Aは、発熱体40の斜め上方に位置するとしたが、本発明はこれに限定されない。例えば、吹出口54Aは、発熱体40の上方に位置し、発熱体40に向けて不活性ガスを吹き出してもよい。 In the present embodiment, the outlet 54A is located obliquely above the heating element 40, but the present invention is not limited to this. For example, the air outlet 54 </ b> A may be positioned above the heating element 40 and blow out an inert gas toward the heating element 40.
 吹出口54Aは、単数であってもよいし、複数であってもよい。複数の吹出口54Aは、不活性ガス供給管50Aの軸方向に沿って等間隔で配列されてもよいし、不等間隔で配列されてもよい。要は、発熱体40周辺の水素ガスまたは塩化水素ガスの濃度が高い領域に、不活性ガスの流れを形成することができればよい。 The blower outlet 54A may be singular or plural. The plurality of outlets 54A may be arranged at regular intervals along the axial direction of the inert gas supply pipe 50A, or may be arranged at irregular intervals. In short, it is only necessary that the flow of inert gas can be formed in the region around the heating element 40 where the concentration of hydrogen gas or hydrogen chloride gas is high.
 尚、本実施形態における第1の不活性ガス供給部50Aは、第1実施形態における第1の不活性ガス供給部50に代えて用いることができる。 In addition, 50 A of 1st inert gas supply parts in this embodiment can be used instead of the 1st inert gas supply part 50 in 1st Embodiment.
 (実施例1)
 実施例1では、図1に示す板ガラスの製造装置を用いて、無アルカリガラス板を製造した。スパウトリップとタイルとの間の隙間空間に吹き込む不活性ガスには、窒素ガスを用いた。この窒素ガスの吹き込み量は、円筒形状の発熱体の長さ1m当たり6Nl/minとした。発熱体の材料には、炭化ケイ素を用いた。
(Example 1)
In Example 1, an alkali-free glass plate was manufactured using the plate glass manufacturing apparatus shown in FIG. Nitrogen gas was used as the inert gas blown into the space between the spout trip and the tile. The amount of nitrogen gas blown was 6 Nl / min per 1 m length of the cylindrical heating element. Silicon carbide was used as the material of the heating element.
 尚、スパウトリップ、タイル、およびタイルから斜めに延びる左右の側壁は、ZrOを94重量%、SiOを4重量%、Alを1重量%、NaOを0.3重量%含有する熱溶融耐火物で構成する。 Incidentally, the spout lip, tiles, and left and right side walls of which extend from the tile obliquely, the ZrO 2 94 wt%, a SiO 2 4% by weight, Al 2 O 3 1 wt%, the Na 2 O 0.3 wt% Consists of hot melt refractories contained.
 その結果、実施例1では、発熱体を6週間交換することなく、無アルカリガラス板を連続的に製造することができた。発熱体の長手方向中央の外表面から下方に10mm離れた位置における雰囲気中の塩化水素ガスの濃度は、塩化水素検知管(光明理化学工業社製、Tube No.173SA(20-1200ppm))により測定したところ、体積比で150ppmであった。 As a result, in Example 1, an alkali-free glass plate could be continuously produced without replacing the heating element for 6 weeks. The concentration of hydrogen chloride gas in the atmosphere at a position 10 mm below the outer surface of the center in the longitudinal direction of the heating element was measured with a hydrogen chloride detector tube (manufactured by Komyo Chemical Co., Ltd., Tube No. 173SA (20-1200 ppm)). As a result, the volume ratio was 150 ppm.
 (比較例1)
 比較例1では、スパウトリップとタイルとの間の隙間空間に不活性ガスを吹き込まなかった以外は、実施例1と同様にして、無アルカリガラス板を製造した。
(Comparative Example 1)
In Comparative Example 1, an alkali-free glass plate was produced in the same manner as in Example 1 except that the inert gas was not blown into the space between the spout trip and the tile.
 その結果、比較例1では、新品の発熱体が2週間で多孔化により異常発熱し、発熱体を交換する必要があった。発熱体の長手方向中央の外表面から下方に10mm離れた位置における雰囲気中の塩化水素ガスの濃度は、体積比で500ppmであった。 As a result, in Comparative Example 1, the new heating element abnormally generated heat due to porosity in two weeks, and it was necessary to replace the heating element. The concentration of hydrogen chloride gas in the atmosphere at a position 10 mm below the outer surface at the center in the longitudinal direction of the heating element was 500 ppm by volume.
 以上、板ガラスの製造装置、および板ガラスの製造方法の実施形態等について説明したが、本発明は上記実施形態等に限定されることはなく、特許請求の範囲に記載された本他本発明の要旨の範囲内で、種々の変形、改良が可能である。 As mentioned above, although the embodiment etc. of the manufacturing apparatus of a plate glass, and the manufacturing method of a sheet glass were demonstrated, this invention is not limited to the said embodiment etc., The summary of this invention described in the claim. Within the range, various modifications and improvements are possible.
 本出願は、2012年12月11日に日本国特許庁に出願された特願2012-270385号に基づく優先権を主張するものであり、特願2012-270385号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2012-270385 filed with the Japan Patent Office on December 11, 2012. The entire contents of Japanese Patent Application No. 2012-270385 are incorporated herein by reference. To do.
10  フロートバス
11  フロートバス内の空間
111 メイン空間
112 スパウト空間
113 隙間空間
114 上方空間
14  スパウトリップ
15  タイル
152 タイルにおける溶融ガラスとの接触面
154 タイルの外縁
16  タイルから斜めに延びる側壁
17  仕切り壁(フロントリンテル)
20  溶融スズ
30  溶融ガラス
30A ガラスリボン
40  発熱体
50  第1の不活性ガス供給部
54  吹出口
60  還元性ガス供給部
70  第2の不活性ガス供給部
DESCRIPTION OF SYMBOLS 10 Float bath 11 Space 111 in float bath Main space 112 Spout space 113 Crevice space 114 Upper space 14 Spout trip 15 Tile 152 Contact surface 154 with molten glass in tile Tile outer edge 16 Side wall 17 diagonally extending from tile (partition wall) Front lintel)
20 Molten Tin 30 Molten Glass 30A Glass Ribbon 40 Heating Element 50 First Inert Gas Supply Portion 54 Outlet 60 Reducing Gas Supply Portion 70 Second Inert Gas Supply Portion

Claims (18)

  1.  フロートバス内の溶融スズ上にスパウトリップから溶融ガラスを連続的に供給し、前記スパウトリップの下方に間隔を空けて設けられるタイルに接触させた溶融ガラスを前記溶融スズ上で流動させる、板ガラスの製造方法であって、
     前記スパウトリップと前記タイルとの間に設けられ、前記タイルにおける溶融ガラスとの接触面よりも上流側に設けられる発熱体を用いて前記タイルを加熱し、
     また、前記スパウトリップと前記タイルとの間の隙間空間に、不活性ガスを吹き込む、板ガラスの製造方法。
    A molten glass is continuously supplied from a spout trip onto molten tin in a float bath, and the molten glass brought into contact with tiles provided at intervals below the spout trip is caused to flow on the molten tin. A manufacturing method comprising:
    Heating the tile using a heating element provided between the spout trip and the tile, provided upstream of the contact surface with the molten glass in the tile,
    Moreover, the manufacturing method of plate glass which blows inactive gas in the clearance gap between the said spout trip and the said tile.
  2.  前記隙間空間に前記不活性ガスを吹き込み、前記発熱体の近傍に前記不活性ガスの流れを形成する、請求項1に記載の板ガラスの製造方法。 The method for producing a plate glass according to claim 1, wherein the inert gas is blown into the gap space to form a flow of the inert gas in the vicinity of the heating element.
  3.  前記隙間空間に前記不活性ガスを吹き込む不活性ガス供給管の少なくとも一部が、前記フロートバス内のガスに曝される、請求項1または2に記載の板ガラスの製造方法。 The method for producing plate glass according to claim 1 or 2, wherein at least a part of an inert gas supply pipe for blowing the inert gas into the gap space is exposed to the gas in the float bath.
  4.  前記隙間空間への前記不活性ガスの吹き込み量は、棒状の前記発熱体の長さ1m当たり2Nl/min~15Nl/minである、請求項1~3のいずれかに記載の板ガラスの製造方法。 The method for producing a plate glass according to any one of claims 1 to 3, wherein an amount of the inert gas blown into the gap space is 2 Nl / min to 15 Nl / min per 1 m of the rod-shaped heating element.
  5.  前記発熱体の開気孔率が15%以下である、請求項1~4のいずれかに記載の板ガラスの製造方法。 The method for producing a plate glass according to any one of claims 1 to 4, wherein the open porosity of the heating element is 15% or less.
  6.  前記発熱体は、棒状であって、前記タイルにおける溶融ガラスとの接触面に対して平行に配設され、上面視にて前記タイルの外縁の内側に位置する、請求項1~5のいずれかに記載の板ガラスの製造方法。 6. The heating element according to claim 1, wherein the heating element has a rod shape, is disposed in parallel to a contact surface with the molten glass in the tile, and is located inside the outer edge of the tile in a top view. The manufacturing method of plate glass as described in any one of Claims 1-3.
  7.  前記発熱体は、円筒形状であって、20mm~40mmの外径を有する、請求項1~6のいずれかに記載の板ガラスの製造方法。 The method for producing a plate glass according to any one of claims 1 to 6, wherein the heating element has a cylindrical shape and an outer diameter of 20 mm to 40 mm.
  8.  前記フロートバス内の空間は、仕切り壁によって、前記スパウトリップが設けられる上流側のスパウト空間と、下流側のメイン空間とに仕切られ、
     前記メイン空間に還元性ガスを供給し、また、前記スパウト空間のうち、前記スパウトリップよりも上方の上方空間に不活性ガスを供給する、請求項1~7のいずれかに記載の板ガラスの製造方法。
    The space in the float bath is partitioned by a partition wall into an upstream spout space where the spout trip is provided, and a downstream main space,
    The plate glass production according to any one of claims 1 to 7, wherein a reducing gas is supplied to the main space, and an inert gas is supplied to an upper space above the spout trip in the spout space. Method.
  9.  前記タイルから斜めに延びる側壁、前記スパウトリップ、および前記タイルのうち少なくとも1つは、重量%でZrOが85%以上97%以下、残部がSiOを主体とするガラス質である熱溶融耐火物で構成される、請求項1~8のいずれかに記載の板ガラスの製造方法。 Side walls extending obliquely from said tile, said spout lip, and at least one of said tiles, ZrO 2 97% 85% or less by weight, the thermal melting refractory remainder being glassy mainly containing SiO 2 The method for producing a plate glass according to any one of claims 1 to 8, wherein the method comprises a product.
  10.  フロートバス内の溶融スズ上に溶融ガラスを連続的に供給するスパウトリップと、
     該スパウトリップの下方に間隔を空けて設けられ、前記スパウトリップから供給された溶融ガラスと接触するタイルと、
     前記スパウトリップと前記タイルとの間に設けられ、前記タイルにおける溶融ガラスとの接触面よりも上流側に設けられる発熱体と、
     前記スパウトリップと前記タイルとの間の隙間空間に、不活性ガスを吹き込む第1の不活性ガス供給部とを有する、板ガラスの製造装置。
    A spout trip that continuously supplies molten glass onto the molten tin in the float bath;
    Tiles that are provided below the spout trip and spaced apart, and that contact the molten glass supplied from the spout trip;
    A heating element provided between the spout trip and the tile, provided upstream of a contact surface with the molten glass in the tile;
    An apparatus for producing plate glass, comprising: a first inert gas supply unit that blows an inert gas into a gap space between the spaw trip and the tile.
  11.  前記第1の不活性ガス供給部は、前記隙間空間に前記不活性ガスを吹き込み、前記発熱体の近傍に前記不活性ガスの流れを形成する、請求項10に記載の板ガラスの製造装置。 The plate glass manufacturing apparatus according to claim 10, wherein the first inert gas supply unit blows the inert gas into the gap space to form a flow of the inert gas in the vicinity of the heating element.
  12.  前記第1の不活性ガス供給部は、少なくとも一部が前記フロートバス内のガスに曝される不活性ガス供給管を含む、請求項10または11に記載の板ガラスの製造装置。 The apparatus for producing plate glass according to claim 10 or 11, wherein the first inert gas supply unit includes an inert gas supply pipe at least partially exposed to the gas in the float bath.
  13.  前記隙間空間への前記不活性ガスの吹き込み量は、棒状の前記発熱体の長さ1m当たり2Nl/min~15Nl/minである、請求項10~12のいずれかに記載の板ガラスの製造装置。 The plate glass manufacturing apparatus according to any one of claims 10 to 12, wherein an amount of the inert gas blown into the gap space is 2 Nl / min to 15 Nl / min per 1 m of the length of the rod-shaped heating element.
  14.  前記発熱体の開気孔率が15%以下である、請求項10~13のいずれかに記載の板ガラスの製造装置。 The plate glass manufacturing apparatus according to any one of claims 10 to 13, wherein the heating element has an open porosity of 15% or less.
  15.  前記発熱体は、棒状であって、前記タイルにおける溶融ガラスとの接触面に対して平行に配設され、上面視にて前記タイルの外縁の内側に位置する、請求項10~14のいずれかに記載の板ガラスの製造装置。 The heating element according to any one of claims 10 to 14, wherein the heating element has a rod shape, is disposed in parallel to a contact surface with the molten glass in the tile, and is located inside the outer edge of the tile in a top view. The manufacturing apparatus of the plate glass as described in any one of.
  16.  前記発熱体は、円筒形状であって、20mm~40mmの外径を有する、請求項10~15のいずれかに記載の板ガラスの製造装置。 The plate glass manufacturing apparatus according to any one of claims 10 to 15, wherein the heating element has a cylindrical shape and an outer diameter of 20 mm to 40 mm.
  17.  前記フロートバス内の空間を、下流側のメイン空間と、上流側のスパウト空間とに仕切る仕切り壁と、
     前記メイン空間に還元性ガスを供給する還元性ガス供給部と、
     前記スパウト空間のうち、前記スパウトリップよりも上方の上方空間に不活性ガスを供給する第2の不活性ガス供給部とを有する、請求項10~16のいずれかに記載の板ガラスの製造装置。
    A partition wall that partitions the space in the float bath into a downstream main space and an upstream spout space;
    A reducing gas supply unit for supplying reducing gas to the main space;
    The plate glass manufacturing apparatus according to any one of claims 10 to 16, further comprising: a second inert gas supply unit configured to supply an inert gas to an upper space above the spout trip in the spout space.
  18.  前記タイルから斜めに延びる側壁、前記スパウトリップ、および前記タイルのうち少なくとも1つは、重量%でZrOが85%以上97%以下、残部がSiOを主体とするガラス質である熱溶融耐火物で構成される、請求項10~17のいずれかに記載の板ガラスの製造装置。 Side walls extending obliquely from said tile, said spout lip, and at least one of said tiles, ZrO 2 97% 85% or less by weight, the thermal melting refractory remainder being glassy mainly containing SiO 2 The plate glass manufacturing apparatus according to any one of claims 10 to 17, which is made of a product.
PCT/JP2013/077126 2012-12-11 2013-10-04 Plate glass production method and plate glass production device WO2014091814A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380060635.4A CN104797538B (en) 2012-12-11 2013-10-04 The manufacture method of plate glass and the manufacture device of plate glass
KR1020157009144A KR20150095616A (en) 2012-12-11 2013-10-04 Plate glass production method and plate glass production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012270385A JP2016028986A (en) 2012-12-11 2012-12-11 Method for producing plate glass, and apparatus for producing plate glass
JP2012-270385 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091814A1 true WO2014091814A1 (en) 2014-06-19

Family

ID=50934113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077126 WO2014091814A1 (en) 2012-12-11 2013-10-04 Plate glass production method and plate glass production device

Country Status (4)

Country Link
JP (1) JP2016028986A (en)
KR (1) KR20150095616A (en)
TW (1) TW201425241A (en)
WO (1) WO2014091814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617158A1 (en) * 2018-08-28 2020-03-04 Linde Aktiengesellschaft Method for manufacturing float glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206179B2 (en) * 2013-12-27 2017-10-04 日本電気硝子株式会社 Molten glass supply apparatus and glass plate manufacturing apparatus
KR102523899B1 (en) * 2018-10-17 2023-04-20 주식회사 엘지화학 Apparatus for manufacturing glass
DE102019121146A1 (en) 2019-08-05 2021-02-11 Schott Ag Heat-formed chemically toughenable glass article with a low crystal content, in particular disk-shaped chemically toughened glass article, as well as method and device for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300739A (en) * 2002-03-06 2003-10-21 Carl Zeiss:Fa Apparatus for supplying molten glass through spout lip in manufacturing float glass
JP2007131525A (en) * 2005-11-10 2007-05-31 Schott Ag Process for producing flat glass, particularly float glass easy to become glass ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300739A (en) * 2002-03-06 2003-10-21 Carl Zeiss:Fa Apparatus for supplying molten glass through spout lip in manufacturing float glass
JP2007131525A (en) * 2005-11-10 2007-05-31 Schott Ag Process for producing flat glass, particularly float glass easy to become glass ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617158A1 (en) * 2018-08-28 2020-03-04 Linde Aktiengesellschaft Method for manufacturing float glass

Also Published As

Publication number Publication date
JP2016028986A (en) 2016-03-03
TW201425241A (en) 2014-07-01
KR20150095616A (en) 2015-08-21
CN104797538A (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5674156B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
WO2014091814A1 (en) Plate glass production method and plate glass production device
US20110016922A1 (en) Vacuum degassing apparatus, apparatus for producing glass products and process for producing glass products
JP6308215B2 (en) Float glass manufacturing method and float glass manufacturing apparatus
CN102112404B (en) Apparatus and process for producing float glass
WO2011010624A1 (en) Glass production apparatus, and glass production method
JP2022160601A (en) Method for shortening life of air bubble on surface of glass melt
JP6951661B2 (en) Manufacturing method and manufacturing equipment for glass articles
CN103889910A (en) Support roll, molding device for plate glass having support roll, and molding method for plate glass using support roll
SE434389B (en) PLANT MANUFACTURING PLANT
JP4509342B2 (en) Manufacturing method and apparatus for long quartz glass
KR101384375B1 (en) Method of manufacturing glass plate
WO2021117618A1 (en) Melted glass transport device, glass article manufacturing device, and glass article manufacturing method
WO2015025568A1 (en) Float glass production device and float glass production method using same
WO2015025569A1 (en) Float glass production device and float glass production method using the same
CN110950522A (en) Glass melting furnace, glass melting method and glass manufacturing method
JP2003300739A (en) Apparatus for supplying molten glass through spout lip in manufacturing float glass
KR20210033421A (en) Float glass manufacturing device and float glass manufacturing method
CN104797538B (en) The manufacture method of plate glass and the manufacture device of plate glass
WO2016170634A1 (en) Method for manufacturing float glass
TWI833713B (en) Glass melting furnace and manufacturing method of glass articles
WO2023149311A1 (en) Glass manufacturing apparatus, and glass manufacturing method
JP2015134691A (en) Float glass manufacturing method and float glass manufacturing apparatus
KR20030074208A (en) Device for supplying glass melt via a spout lip during production of float glass
JP2024067327A (en) Float glass manufacturing apparatus and float glass manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009144

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP