WO2023149311A1 - Glass manufacturing apparatus, and glass manufacturing method - Google Patents

Glass manufacturing apparatus, and glass manufacturing method Download PDF

Info

Publication number
WO2023149311A1
WO2023149311A1 PCT/JP2023/002291 JP2023002291W WO2023149311A1 WO 2023149311 A1 WO2023149311 A1 WO 2023149311A1 JP 2023002291 W JP2023002291 W JP 2023002291W WO 2023149311 A1 WO2023149311 A1 WO 2023149311A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
heat insulating
insulating material
mass
glass ribbon
Prior art date
Application number
PCT/JP2023/002291
Other languages
French (fr)
Japanese (ja)
Inventor
義豊 大村
美穂 八木澤
史朗 谷井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202380018696.8A priority Critical patent/CN118574792A/en
Priority to JP2023578505A priority patent/JPWO2023149311A1/ja
Publication of WO2023149311A1 publication Critical patent/WO2023149311A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets

Definitions

  • the present disclosure relates to a glass manufacturing apparatus and a glass manufacturing method.
  • the float glass manufacturing apparatus described in Patent Document 1 includes a melting device that melts frit to form molten glass, a molding device that forms the molten glass supplied from the melting device into a strip shape to form a glass ribbon, and a molding device that forms a glass ribbon. a slow cooling device for slowly cooling the glass ribbon formed by the device.
  • the melting device, molding device, and slow cooling device include heat insulating materials.
  • the heat insulating material contains inorganic fibers, dust generation from the heat insulating material sometimes deteriorates the quality of the glass.
  • One aspect of the present disclosure provides a technique for suppressing dust generation from heat insulating materials containing inorganic fibers.
  • a glass manufacturing apparatus includes a melting apparatus that obtains molten glass by melting frit, a forming apparatus that forms the molten glass into a glass article, and a slow cooling apparatus that slowly cools the glass article. And prepare. At least one of the melting device, the molding device, and the slow cooling device includes a heat insulating material containing inorganic fibers.
  • the inorganic fibers contain Al 2 O 3 and SiO 2 , the Al 2 O 3 content of the inorganic fibers is 60% by mass or more, and the SiO 2 content of the inorganic fibers is 40% by mass or less.
  • the Al 2 O 3 content of the inorganic fibers is 60% by mass or more, so that changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation from the inorganic fibers can be suppressed. can be suppressed.
  • FIG. 1 is a cross-sectional view showing a glass manufacturing apparatus according to one embodiment.
  • FIG. 2 is a cross-sectional view showing a specific example of the glass manufacturing apparatus of FIG. 3 is a cross-sectional view showing an example of the upstream end of the molding apparatus of FIG. 2;
  • FIG. 4 is a cross-sectional view showing an example of one end in the width direction of the molding apparatus of FIG. 2.
  • FIG. 5 is a cross-sectional view showing an example of one end in the width direction of the slow cooling device of FIG. 2.
  • FIG. 6 is a cross-sectional view showing an example of the upper structure of the molding apparatus of FIG. 2.
  • FIG. 7 is a cross-sectional view showing an example of a buffer film forming portion of the slow cooling apparatus of FIG. 2.
  • FIG. 8 is a diagram showing an X-ray diffraction spectrum of the heat insulating material of Example 1.
  • FIG. 9 is a diagram showing an X-ray diffraction spectrum of the heat insulating material of Example 2.
  • FIG. 10 is a diagram showing the dust scattering rates of the heat insulating materials of Examples 1 and 2.
  • the same reference numerals are given to the same or corresponding configurations, and explanations thereof may be omitted.
  • the X-axis direction, Y-axis direction and Z-axis direction are perpendicular to each other, the X-axis direction and Y-axis direction are horizontal directions, and the Z-axis direction is vertical direction.
  • the X-axis direction is the glass ribbon conveying direction, and the Y-axis direction is the width direction of the glass ribbon.
  • "-" indicating a numerical range means that the numerical values described before and after it are included as lower and upper limits.
  • a glass manufacturing apparatus 1 includes a melting device 2 , a forming device 3 , a slow cooling device 4 and a processing device 5 .
  • the glass manufacturing apparatus 1 may be provided with the melting device 2, the molding device 3, and the slow cooling device 4, and may not be provided with the processing device 5.
  • the melting device 2 melts frit to produce molten glass.
  • Glass raw materials are prepared by mixing multiple types of materials.
  • the frit may include glass cullet to recycle the glass.
  • the glass raw material may be a powder raw material, or may be a granulated raw material obtained by granulating the powder raw material.
  • the molding device 3 molds the molten glass obtained in the melting device 2 into glass articles of desired shape.
  • a float method, a fusion method, a roll-out method, or the like is used as a molding method for obtaining a plate-shaped glass article.
  • a plate-shaped glass article is generally called a glass ribbon.
  • a bellows method, a Danner method, or the like is used as a molding method for obtaining a tubular glass article.
  • the slow cooling device 4 slowly cools the glass article molded by the molding device 3.
  • the slow cooling device 4 has, for example, a heat treatment furnace and transport rollers for transporting the glass article in a desired direction inside the heat treatment furnace.
  • a plurality of conveying rollers are arranged, for example, at intervals in the horizontal direction.
  • the glass article is slowly cooled while being conveyed from the inlet of the heat treatment furnace to the outlet of the heat treatment furnace. If the glass article is slowly cooled, a glass article with less residual strain can be obtained.
  • the processing device 5 processes the glass article slowly cooled by the slow cooling device 4 into a desired shape.
  • the processing device 5 includes one or more selected from, for example, a cutting device, a grinding device, a polishing device, and a coating device.
  • the cutting device cuts the glass annealed by the annealer 4 .
  • the cutting device forms scribe lines in the glass slowly cooled by the slow cooling device 4 and cuts the glass along the scribe lines. Scribe lines are formed using a cutter or laser beam.
  • the grinding device grinds the glass that has been annealed by the annealer 4 .
  • the polishing device polishes the glass slowly cooled by the slow cooling device 4 .
  • the coating device forms a desired film on the glass annealed by the annealer 4 .
  • the glass manufacturing apparatus 1 may further have a clarifier.
  • the clarifier removes air bubbles contained in the molten glass before forming the molten glass obtained by the melting device 2 by the forming device 3 .
  • a method for removing air bubbles for example, one or more selected from a method of reducing the pressure of the surrounding atmosphere of the molten glass and a method of heating the molten glass to a high temperature is used.
  • the clarification device may be part of the dissolution device 2 .
  • the glass manufacturing apparatus 1 of FIG. 2 manufactures plate glass by the float method.
  • Plate glass is, for example, non-alkali glass, aluminosilicate glass, borosilicate glass, soda lime glass, or the like.
  • Alkali-free glass means glass that does not substantially contain alkali metal oxides such as Na 2 O and K 2 O.
  • substantially free of alkali metal oxides means that the total content of alkali metal oxides is 0.1% by mass or less.
  • the plate glass is not particularly limited, but for example, it is cover glass for displays (eg, liquid crystal displays, organic EL displays, etc.). If the application of sheet glass is cover glass, the sheet glass is glass for chemical strengthening. Unlike non-alkali glass, glass for chemical strengthening contains alkali metal oxides.
  • the thickness of the plate glass is selected according to the application of the plate glass.
  • the thickness of the glass sheet is, for example, 0.1 mm to 5.0 mm.
  • the thickness of the glass plate is, for example, 0.1 mm to 0.7 mm.
  • the thickness of sheet glass for laminated glass is, for example, 0.5 mm to 6.0 mm
  • the thickness of sheet glass for tempered glass is, for example, 2.3 mm to 6.0 mm.
  • the thickness of the plate glass for double glazing is, for example, 3 mm to 12 mm
  • the thickness of the plate glass for heat reflecting glass or heat absorbing glass is, for example, 5 mm to 12 mm
  • the thickness of the plate glass for tempered glass is 5 mm to 12 mm.
  • the thickness is, for example, 4 mm to 19 mm.
  • the thickness of plate glass for disaster prevention and crime prevention glass is, for example, 3 mm to 5 mm.
  • the thickness of plate glass for fireproof and fireproof glass is, for example, 5 mm to 12 mm.
  • the thickness of plate glass for soundproof glass is, for example, 3 mm to 8 mm.
  • the thickness of plate glass for glass is, for example, 3 mm to 10 mm
  • the thickness of plate glass for design glass is, for example, 2 mm to 6 mm
  • the thickness of plate glass for figured glass is, for example, 4 mm to 6 mm
  • the thickness of plate glass for ground glass is, for example, 2 mm to 5 mm.
  • Double glazing includes those with Low-E films.
  • Disaster prevention and crime prevention glass is laminated glass in which an interlayer is sandwiched between two sheets of glass and press-bonded.
  • Figured glass is glass with a pattern on one side of the glass by the roll-out manufacturing method.
  • the melting apparatus 2 includes a melting tank 21 containing molten glass G and a burner 22 forming a flame above the molten glass G contained in the melting tank 21 .
  • the glass raw material charged into the melting tank 21 is gradually melted into the molten glass G by radiant heat from the flame formed by the burner 22 .
  • Molten glass G is continuously conveyed from the melting device 2 to the forming device 3 .
  • the heating source is not limited to the burner 22, and may be an electric heater, an electrode, or the like. The electrodes cause the molten glass G to generate heat by applying an electric current to the molten glass G.
  • the molding device 3 includes a molding furnace 31 that is a heat treatment furnace.
  • the molding furnace 31 has a bath 311 .
  • the bath 311 contains the molten metal M.
  • the molten metal M for example, molten tin is used.
  • molten tin alloys and the like can also be used, and the molten metal M should have a higher density than the molten glass G.
  • the molten glass G is continuously supplied onto the molten metal M, and is formed into a strip-shaped glass ribbon GR using the smooth liquid surface of the molten metal M.
  • the molding furnace 31 has a ceiling 312 above the bathtub 311 .
  • the interior of the molding furnace 31 is filled with a reducing gas to prevent the molten metal M from being oxidized, and is maintained at a pressure higher than the atmospheric pressure.
  • the reducing gas is, for example, a mixed gas of nitrogen gas and hydrogen gas, containing 85% to 98.5% by volume of nitrogen gas and 1.5% to 15% by volume of hydrogen gas.
  • the reducing gas is supplied from the joints between the bricks of the ceiling 312 and the holes in the ceiling 312 .
  • the molding device 3 includes a heater 32 that heats the glass ribbon GR.
  • the heater 32 is suspended, for example, from the ceiling 312 of the molding furnace 31 and heats the glass ribbon GR passing below.
  • the heater 32 is, for example, an electric heater, and is electrically heated.
  • a plurality of heaters 32 are arranged in a matrix in the conveying direction and the width direction of the glass ribbon GR. By controlling the outputs of the plurality of heaters 32, the temperature distribution of the glass ribbon GR can be controlled, and the plate thickness distribution of the glass ribbon GR can be controlled.
  • the slow cooling device 4 includes a dross box 41 that is a heat treatment furnace and lift out rolls 42 .
  • the lift out roll 42 is arranged inside the dross box 41 and pulls up the glass ribbon GR from the molten metal M.
  • a plurality of lift out rolls 42 are arranged at intervals in the conveying direction (X-axis direction) of the glass ribbon GR.
  • the number of lift out rolls 42 is not particularly limited.
  • the lift out roll 42 is rotationally driven by a driving device such as a motor (not shown), and conveys the glass ribbon GR obliquely upward by its driving force.
  • the axial direction of the lift out roll 42 is the same direction as the width direction (Y-axis direction) of the glass ribbon GR.
  • the slow cooling device 4 may include a heater (not shown) on the ceiling of the dross box 41 to adjust the temperature of the glass ribbon GR.
  • the heater may be provided not only above the glass ribbon GR but also below it.
  • the temperature of the glass ribbon GR is preferably (Tg ⁇ 50)° C. to (Tg+30)° C. with reference to the glass transition point Tg of the glass ribbon GR.
  • the slow cooling device 4 includes a slow cooling furnace 45 that is a heat treatment furnace and layer rolls 46 .
  • the slow cooling furnace 45 is arranged downstream of the dross box 41 .
  • the layer roll 46 is arranged inside the annealing furnace 45 and conveys the glass ribbon GR in the longitudinal direction (X-axis direction) of the glass ribbon GR.
  • a plurality of layer rolls 46 are provided at intervals in the conveying direction of the glass ribbon GR.
  • the number of layer rolls 46 is not particularly limited.
  • the layer roll 46 is rotationally driven by a driving device such as a motor (not shown), and the driving force conveys the glass ribbon GR in the horizontal direction (X-axis direction).
  • the axial direction of the layer roll 46 is the same as the width direction (Y-axis direction) of the glass ribbon GR.
  • the slow cooling device 4 slowly cools the glass ribbon GR to a temperature below the strain point of the glass while conveying the glass ribbon GR with the layer rolls 46 .
  • the slow cooling device 4 may include a heater (not shown) inside the slow cooling furnace 45 to adjust the temperature of the glass ribbon GR.
  • the molding device 3 comprises a spout lip 33 and a twill 34 .
  • Spout lip 33 continuously feeds molten glass G onto molten metal M in bath 311 .
  • the tweel 34 is vertically movable with respect to the spout lip 33 and adjusts the flow rate of the molten glass G flowing over the spout lip 33 . As the distance between the tweel 34 and the spout lip 33 becomes narrower, the flow rate of the molten glass G flowing over the spout lip 33 decreases.
  • the twill 34 is constructed of refractory material.
  • a protective film may be formed on the tweel 34 to prevent contact between the tweel 34 and the molten glass G.
  • the protective film is made of platinum or a platinum alloy, for example.
  • the molding furnace 31 has a ceiling 312 above the spout lip 33.
  • the ceiling 312 includes a plurality of horizontally arranged bricks 313 and a heat insulating material 314 placed on the plurality of bricks 313 .
  • a gap is formed between the brick 313 and the twill 34, and a gap is also formed between adjacent bricks 313. ⁇ Through these gaps, the heat insulator 314 is exposed to the atmosphere to which the molten glass G is exposed.
  • the heat insulating material 314 is arranged above the molten glass G. As shown in FIG.
  • the heat insulating material 314 suppresses heat transfer from the inside of the molding furnace 31 to the outside, and keeps the inside of the molding furnace 31 at a high temperature.
  • the thermal conductivity of the heat insulating material 314 is, for example, 1 W/m ⁇ K or less, preferably 0.5 W/m ⁇ K or less, more preferably 0.3 W/m ⁇ K or less, and still more preferably 0. .1 W/m ⁇ K or less, and particularly preferably 0.05 W/m ⁇ K or less.
  • the thermal conductivity of the heat insulating material 314 is 0 W/m ⁇ K or higher.
  • the heat insulating material 314 contains inorganic fibers.
  • the heat insulating material 314 may be a plate-like board in which a plurality of inorganic fibers are bound together with a binder, or may be a blanket in which a plurality of inorganic fibers are entwined and cotton-like wool is formed into layers. It should be noted that the heat insulating material 314 may be left in a cotton-like state, or may be processed into a cord-like shape.
  • the bubble content of the heat insulating material 314 is, for example, 20% to 95% by volume, preferably 35% to 95% by volume, more preferably 40% to 95% by volume. The upper limit of the numerical range of the bubble content may be 90% by volume.
  • the inorganic fibers contained in the heat insulating material 314 may be either artificial fibers or natural fibers, and may be crystalline or amorphous.
  • Inorganic fibers include Al 2 O 3 and SiO 2 .
  • Inorganic fibers include, for example, Al 2 O 3 and SiO 2 as a solid solution.
  • the inorganic fibers may contain components other than Al2O3 and SiO2 .
  • Components other than Al 2 O 3 and SiO 2 are, for example, one or more selected from TiO 2 and Fe 2 O 3 .
  • the total content of components other than Al 2 O 3 and SiO 2 is, for example, 3% by mass or less.
  • the chemical composition of inorganic fibers is measured, for example, by X-ray fluorescence spectroscopy (XRF).
  • the inorganic fibers contained in the heat insulating material 314 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
  • the inorganic fibers contained in the heat insulating material 314 preferably have an Al 2 O 3 content of 90% by mass or less and an SiO 2 content of 10% by mass or more.
  • the heat insulating material 314 may be exposed to the atmosphere to which the molten glass G is exposed, as described above. That is, the heat insulating material 314 may be exposed to the molten glass G, and a path from the heat insulating material 314 to the molten glass G (a space continuously connecting from the heat insulating material 314 to the molten glass G) may exist. . According to the present embodiment, generation of dust can be suppressed, so even if there is a path from the heat insulating material 314 to the molten glass G, the amount of dust passing through that path is small and the amount of dust adhering is small.
  • the molten glass G may have an upward (including obliquely upward) surface, and the heat insulating material 314 may be arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of molten glass G tends to catch dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 314 is remarkably obtained.
  • the heat insulating material 314 is preferably arranged directly above the molten glass G, but may be arranged diagonally above.
  • any heat insulating material may be used as long as it is used in at least one of the melting device 2 , the molding device 3 and the slow cooling device 4 .
  • the heat insulator may be exposed to the atmosphere to which the glass ribbon GR is exposed.
  • the glass ribbon GR may have an upward surface, and the heat insulating material may be arranged above the surface.
  • the heat insulating material is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
  • Forming furnace 31 has a side wall 315 between bath 311 and ceiling 312 .
  • the side wall 315 includes a plurality of vertically aligned bricks 316 and a sealing member 317 that seals the gap between the bottom brick 316 and the bathtub 311 .
  • the sealing member 317 has, for example, a metal box 318 and a heat insulating material 319 filled inside the box 318 .
  • the box 318 is composed of a plurality of metal plates (not shown). A gap may exist between the plurality of metal plates, and the heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gap.
  • Heat insulating material 319 includes inorganic fibers, similar to heat insulating material 314 (see FIG. 3).
  • the inorganic fibers contained in the heat insulating material 319 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. If the Al 2 O 3 content is 60% by mass or more, it is possible to suppress changes in the crystal structure of the inorganic fibers due to temperature changes, and to suppress generation of dust.
  • the heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed. That is, the heat insulating material 319 may be exposed to the glass ribbon GR, and there may be a path from the heat insulating material 319 to the glass ribbon GR (a space continuously connecting from the heat insulating material 319 to the molten glass G). . According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material 319 to the glass ribbon GR, the amount of dust passing through that path is small and the amount of dust adhering is small.
  • the glass ribbon GR may have an upward (including diagonally upward) surface, and the heat insulating material 319 may be arranged above the surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 319 can be obtained remarkably.
  • the heat insulating material 319 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
  • the annealing furnace 45 has a ceiling 451 , a lower wall 452 and side walls 453 . At least one of the ceiling 451 , the lower wall 452 and the side walls 453 may include, for example, a metal box 454 and a heat insulating material 455 filled inside the box 454 .
  • the box 454 is composed of a plurality of metal plates (not shown). A gap may exist between the plurality of metal plates, and the heat insulating material 455 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gap.
  • the side wall 453 has an opening 456 through which the rotating shaft 47 of the layer roll 46 is inserted, and the opening 456 may have a heat insulating material 457 that suppresses the outflow of heat.
  • a driving device for rotating the rotating shaft 47 is arranged outside the slow cooling furnace 45 . By arranging the driving device outside the slow cooling furnace 45, thermal deterioration of the driving device can be suppressed.
  • the heat insulator 457 may be exposed to the atmosphere to which the glass ribbon GR is exposed at the opening 456 .
  • Heat insulating materials 455 and 457 include inorganic fibers, similar to heat insulating material 314 (see FIG. 3).
  • the inorganic fibers contained in the heat insulating materials 455 and 457 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
  • the heat insulating materials 455 and 457 may be exposed to the atmosphere to which the glass ribbon GR is exposed. In other words, the heat insulating materials 455 and 457 may be exposed to the glass ribbon GR, and the path from the heat insulating materials 455 and 457 to the glass ribbon GR (the space continuously connecting from the heat insulating materials 455 and 457 to the glass ribbon GR). may exist. According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating materials 455 and 457 to the glass ribbon GR, the amount of dust passing through the path is small and the amount of dust adhering is small.
  • the glass ribbon GR may have an upward (including diagonally upward) surface, and the heat insulating materials 455 and 457 may be arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating materials 455 and 457 is remarkably obtained.
  • the heat insulating materials 455 and 457 are preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
  • the dross box 41 may have the same structure as the slow cooling furnace 45.
  • the dross box 41 has a ceiling, a lower wall and side walls, and at least one of the ceiling, the lower wall and the side walls may include a metal box and a heat insulating material filled inside the box.
  • the side wall of the dross box 41 may have an opening through which the rotating shaft of the lift out roll 42 is inserted, and the opening may have a heat insulating material that suppresses the outflow of heat.
  • the molding device 3 has a ceiling 312 of the molding furnace 31 and a heater 32 suspended from the ceiling 312 .
  • a plurality of heaters 32 are arranged in a matrix in the conveying direction (X-axis direction) and the width direction (Y-axis direction) of the glass ribbon GR.
  • the molding device 3 may have a heat insulating material 35 between adjacent heaters 32 .
  • the heat insulating material 35 may be arranged between the heaters 32 adjacent in the Y-axis direction, or may be arranged between the heaters 32 adjacent in the X-axis direction.
  • the heat insulating material 35 restricts heat transfer between adjacent heaters 32 .
  • the heat insulating material 35 contains inorganic fibers, similar to the heat insulating material 314 (see FIG. 3).
  • the inorganic fibers contained in the heat insulating material 35 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
  • the heat insulating material 35 is exposed to the atmosphere to which the glass ribbon GR is exposed. That is, the heat insulating material 35 is exposed to the glass ribbon GR, and there is a path from the heat insulating material 35 to the glass ribbon GR (a space continuously connecting from the heat insulating material 35 to the glass ribbon GR). According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material 35 to the glass ribbon GR, the amount of dust passing through the path is small and the amount of dust adhering is small.
  • the glass ribbon GR has an upward (including obliquely upward) surface, and the heat insulating material 35 is arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 35 is remarkably obtained.
  • the heat insulating material 35 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
  • the buffer film forming unit 48 has a supply pipe 481 for spraying a buffer onto the lower surface of the glass ribbon GR.
  • the buffer reacts with the lower surface of the glass ribbon GR to form a buffer film on the lower surface of the glass ribbon GR.
  • the buffer film reduces the collision between the glass ribbon GR and the layer roll 46, and suppresses the lower surface of the glass ribbon GR from being damaged.
  • sulfur oxide gas is used as the buffering agent.
  • the sulfur oxide gas may be either SO2 gas or SO3 gas.
  • the sulfur oxide gas reacts with the lower surface of the glass ribbon GR to form a buffer film on the lower surface of the glass ribbon GR.
  • the buffer film contains sulfate crystals and the like.
  • the buffer film forming portion 48 includes a buffer supply chamber 482 in which a supply pipe 481 is arranged, an upstream heat insulating material 483 provided upstream (X-axis negative direction side) of the buffer supply chamber 482, and a buffer supply chamber 483. 482 and a downstream heat insulating material 484 provided on the downstream side (X-axis positive direction side).
  • the upstream heat insulating material 483 and the downstream heat insulating material 484 efficiently and uniformly form a buffer film by filling the buffer supply chamber 482 with the buffer.
  • the upstream heat insulating material 483 and the downstream heat insulating material 484 are not in contact with the lower surface of the glass ribbon GR, but they may be in contact.
  • An upper heat insulator 485 may be arranged directly above the downstream heat insulator 484 .
  • the upper heat insulating material 485 is arranged above the glass ribbon GR.
  • the upper heat insulating material 485 interrupts the gas flow above the glass ribbon GR.
  • the upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 contain inorganic fibers, similar to the heat insulating material 314 (see FIG. 3).
  • the inorganic fibers have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
  • the upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 are exposed to the atmosphere to which the glass ribbon GR is exposed.
  • the upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 are exposed from the glass ribbon GR, and the paths leading from these heat insulating materials to the glass ribbon GR (from these heat insulating materials to the glass ribbon GR There is a space that continuously connects to According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material to the glass ribbon GR, the amount of dust passing through that path is small and the amount of dust adhering is small.
  • the glass ribbon GR has an upward (including obliquely upward) surface, and the upper heat insulating material 485 is arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the upper heat insulating material 485 is remarkably obtained.
  • the upstream heat insulating material 483 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
  • Example 1 is a comparative example, and Example 2 is an example.
  • isowool (registered trademark) 1260 manufactured by Isolite Industry Co., Ltd. was prepared as a heat insulating material.
  • the chemical composition of the heat insulating material of Example 1 is Al2O3 : 43.8 % by mass, SiO2 : 55.3% by mass, Fe2O3 : 0.2 % by mass, Na2O : 0.1% by mass. , TiO 2 : 0.5% by mass, and CaO: 0.1% by mass.
  • MAFTEC registered trademark
  • the chemical composition of the thermal insulation material of Example 2 was Al 2 O 3 : 72.0% by mass and SiO 2 : 28.0% by mass.
  • FIG. 8 shows the X-ray diffraction spectrum of the heat insulating material of Example 1.
  • the X-ray diffraction spectra were obtained by storing at room temperature before heat treatment, heating at 800° C. in air for 24 hours, heating at 1000° C. in air for 24 hours, and heating at 1200° C. in air for 24 hours. Each was measured.
  • the horizontal axis is the diffraction angle (2 ⁇ ), and the vertical axis is the diffracted X-ray intensity.
  • the X-rays were CuK ⁇ rays.
  • the heat insulating material of Example 1 had an Al 2 O 3 content lower than 60% by mass, and as shown in FIG. 8, when the heating temperature reached 1000° C. or higher, the crystal structure changed. The change in crystal structure was significant at 1200°C.
  • FIG. 9 shows the X-ray diffraction spectrum of the heat insulating material of Example 2.
  • the X-ray diffraction spectra were obtained by storing at room temperature before heat treatment, heating at 800° C. in air for 24 hours, heating at 1000° C. in air for 24 hours, and heating at 1200° C. in air for 24 hours. Each was measured.
  • the horizontal axis is the diffraction angle (2 ⁇ ), and the vertical axis is the diffracted X-ray intensity.
  • the X-rays were CuK ⁇ rays.
  • the heat insulating material of Example 2 had an Al 2 O 3 content of 60% by mass or more, and as shown in FIG. 9, the crystal structure hardly changed even when the heating temperature was 1000° C. or more.
  • Fig. 10 shows the dust scattering rate of the thermal insulation materials of Examples 1 and 2.
  • the dust scattering rate was obtained by heat-treating the heat insulating material at 1000° C. in the air, then vibrating it with a vibration generator while it was housed in a case, and measuring the amount of dust falling on the case.
  • the vibration conditions were a frequency of 60 Hz, a current of 2.0 A, and a duration of 30 minutes.
  • isowool (registered trademark) 1260 manufactured by Isolite Industry Co., Ltd. was used as a heat insulating material.
  • MAFTEC registered trademark
  • the heat insulating material of Example 2 has a lower dust scattering rate than the heat insulating material of Example 1. This is probably because, unlike the heat insulating material of Example 1, the heat insulating material of Example 2 hardly changes its crystal structure and does not deteriorate even when heat-treated at 1000° C. or higher, as described above.
  • a glass manufacturing apparatus comprising a melting apparatus for obtaining molten glass by melting frit, a forming apparatus for forming the molten glass into a glass article having a desired shape, and a slow cooling apparatus for slowly cooling the glass article.
  • the melting device, the molding device, and the slow cooling device includes a heat insulating material containing inorganic fibers,
  • the inorganic fiber contains Al2O3 and SiO2 , the Al2O3 content of the inorganic fiber is 60% by mass or more, and the SiO2 content of the inorganic fiber is 40% by mass or less.
  • [Appendix 4] the molten glass or the glass article has an upward facing surface; 4.
  • Appendix 5 A glass manufacturing method, comprising manufacturing the glass article using the glass manufacturing apparatus according to any one of Appendices 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

This glass manufacturing apparatus comprises a melting device for melting a glass raw material to obtain molten glass, a molding device for molding the molten glass into a glass article, and a slow cooling device for slowly cooling the glass article. At least one among the melting device, the molding device, and the slow cooling device includes a heat insulating material containing an inorganic fiber. The inorganic fiber comprises Al2O3 and SiO2, wherein the Al2O3 content in the inorganic fiber is at least 60 mass%, and the SiO2 content in the inorganic fibers is at most 40 mass%.

Description

ガラス製造装置、及びガラス製造方法Glass manufacturing apparatus and glass manufacturing method
 本開示は、ガラス製造装置、及びガラス製造方法に関する。 The present disclosure relates to a glass manufacturing apparatus and a glass manufacturing method.
 特許文献1に記載のフロートガラスの製造装置は、ガラス原料を溶解し溶融ガラスとする溶解装置と、溶解装置から供給される溶融ガラスを帯板状に成形しガラスリボンとする成形装置と、成形装置で成形されたガラスリボンを徐冷する徐冷装置と、を備える。 The float glass manufacturing apparatus described in Patent Document 1 includes a melting device that melts frit to form molten glass, a molding device that forms the molten glass supplied from the melting device into a strip shape to form a glass ribbon, and a molding device that forms a glass ribbon. a slow cooling device for slowly cooling the glass ribbon formed by the device.
日本国特開2016-26978号公報Japanese Patent Application Laid-Open No. 2016-26978
 溶解装置と、成形装置と、徐冷装置とは、保温材を含む。保温材が無機繊維を含む場合、保温材からの発塵によって、ガラスの品質が低下することがあった。 The melting device, molding device, and slow cooling device include heat insulating materials. When the heat insulating material contains inorganic fibers, dust generation from the heat insulating material sometimes deteriorates the quality of the glass.
 本開示の一態様は、無機繊維を含む保温材の発塵を抑制する、技術を提供する。 One aspect of the present disclosure provides a technique for suppressing dust generation from heat insulating materials containing inorganic fibers.
 本開示の一態様に係るガラス製造装置は、ガラス原料を溶解することで溶融ガラスを得る溶解装置と、前記溶融ガラスをガラス物品に成形する成形装置と、前記ガラス物品を徐冷する徐冷装置と、を備える。前記溶解装置と前記成形装置と前記徐冷装置の少なくとも一つは、無機繊維を含む保温材を含む。前記無機繊維はAlとSiOを含み、前記無機繊維のAl含有量が60質量%以上であり、前記無機繊維のSiO含有量が40質量%以下である。 A glass manufacturing apparatus according to an aspect of the present disclosure includes a melting apparatus that obtains molten glass by melting frit, a forming apparatus that forms the molten glass into a glass article, and a slow cooling apparatus that slowly cools the glass article. And prepare. At least one of the melting device, the molding device, and the slow cooling device includes a heat insulating material containing inorganic fibers. The inorganic fibers contain Al 2 O 3 and SiO 2 , the Al 2 O 3 content of the inorganic fibers is 60% by mass or more, and the SiO 2 content of the inorganic fibers is 40% by mass or less.
 本開示の一態様によれば、無機繊維のAl含有量が60質量%以上であることによって、温度変化に起因する無機繊維の結晶構造の変化を抑制でき、無機繊維の発塵を抑制できる。 According to one aspect of the present disclosure, the Al 2 O 3 content of the inorganic fibers is 60% by mass or more, so that changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation from the inorganic fibers can be suppressed. can be suppressed.
図1は、一実施形態に係るガラス製造装置を示す断面図である。FIG. 1 is a cross-sectional view showing a glass manufacturing apparatus according to one embodiment. 図2は、図1のガラス製造装置の具体例を示す断面図である。FIG. 2 is a cross-sectional view showing a specific example of the glass manufacturing apparatus of FIG. 図3は、図2の成形装置の上流端の一例を示す断面図である。3 is a cross-sectional view showing an example of the upstream end of the molding apparatus of FIG. 2; FIG. 図4は、図2の成形装置の幅方向一端の一例を示す断面図である。4 is a cross-sectional view showing an example of one end in the width direction of the molding apparatus of FIG. 2. FIG. 図5は、図2の徐冷装置の幅方向一端の一例を示す断面図である。5 is a cross-sectional view showing an example of one end in the width direction of the slow cooling device of FIG. 2. FIG. 図6は、図2の成形装置の上部構造の一例を示す断面図である。6 is a cross-sectional view showing an example of the upper structure of the molding apparatus of FIG. 2. FIG. 図7は、図2の徐冷装置の緩衝膜形成部の一例を示す断面図である。7 is a cross-sectional view showing an example of a buffer film forming portion of the slow cooling apparatus of FIG. 2. FIG. 図8は、例1の保温材のX線回折スペクトルを示す図である。8 is a diagram showing an X-ray diffraction spectrum of the heat insulating material of Example 1. FIG. 図9は、例2の保温材のX線回折スペクトルを示す図である。9 is a diagram showing an X-ray diffraction spectrum of the heat insulating material of Example 2. FIG. 図10は、例1と例2の保温材の粉塵飛散率を示す図である。FIG. 10 is a diagram showing the dust scattering rates of the heat insulating materials of Examples 1 and 2. FIG.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。各図面において、X軸方向、Y軸方向及びZ軸方向は互いに垂直な方向であって、X軸方向及びY軸方向は水平方向、Z軸方向は鉛直方向である。ガラス製造装置1がフロート法で板ガラスを製造する場合、X軸方向がガラスリボンの搬送方向であり、Y軸方向がガラスリボンの幅方向である。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are given to the same or corresponding configurations, and explanations thereof may be omitted. In each drawing, the X-axis direction, Y-axis direction and Z-axis direction are perpendicular to each other, the X-axis direction and Y-axis direction are horizontal directions, and the Z-axis direction is vertical direction. When the glass manufacturing apparatus 1 manufactures plate glass by the float method, the X-axis direction is the glass ribbon conveying direction, and the Y-axis direction is the width direction of the glass ribbon. In the specification, "-" indicating a numerical range means that the numerical values described before and after it are included as lower and upper limits.
 先ず、図1を参照して、一実施形態に係るガラス製造装置1について説明する。ガラス製造装置1は、溶解装置2と、成形装置3と、徐冷装置4と、加工装置5と、を備える。なお、ガラス製造装置1は、溶解装置2と成形装置3と徐冷装置4を備えればよく、加工装置5を備えなくてもよい。 First, a glass manufacturing apparatus 1 according to one embodiment will be described with reference to FIG. A glass manufacturing apparatus 1 includes a melting device 2 , a forming device 3 , a slow cooling device 4 and a processing device 5 . The glass manufacturing apparatus 1 may be provided with the melting device 2, the molding device 3, and the slow cooling device 4, and may not be provided with the processing device 5.
 溶解装置2は、ガラス原料を溶解し、溶融ガラスを製造する。ガラス原料は、複数種類の材料を混ぜて調製される。ガラス原料は、ガラスをリサイクルすべく、ガラスカレットを含んでもよい。ガラス原料は、粉体原料でもよいし、当該粉体原料を造粒した造粒原料でもよい。 The melting device 2 melts frit to produce molten glass. Glass raw materials are prepared by mixing multiple types of materials. The frit may include glass cullet to recycle the glass. The glass raw material may be a powder raw material, or may be a granulated raw material obtained by granulating the powder raw material.
 成形装置3は、溶解装置2で得られた溶融ガラスを所望の形状のガラス物品に成形する。板状のガラス物品を得る成形方法として、フロート法、フュージョン法、又はロールアウト法等が用いられる。板状のガラス物品は、一般的にガラスリボンと呼ばれる。管状のガラス物品を得る成形方法として、ベロー法、又はダンナー法等が用いられる。 The molding device 3 molds the molten glass obtained in the melting device 2 into glass articles of desired shape. A float method, a fusion method, a roll-out method, or the like is used as a molding method for obtaining a plate-shaped glass article. A plate-shaped glass article is generally called a glass ribbon. A bellows method, a Danner method, or the like is used as a molding method for obtaining a tubular glass article.
 徐冷装置4は、成形装置3で成形したガラス物品を徐冷する。徐冷装置4は、例えば、熱処理炉と、熱処理炉の内部においてガラス物品を所望の方向に搬送する搬送ローラとを有する。搬送ローラは、例えば水平方向に間隔をおいて複数配列される。ガラス物品は、熱処理炉の入口から熱処理炉の出口まで搬送される間に、徐冷される。ガラス物品を徐冷すれば、残留歪みの少ないガラス物品が得られる。 The slow cooling device 4 slowly cools the glass article molded by the molding device 3. The slow cooling device 4 has, for example, a heat treatment furnace and transport rollers for transporting the glass article in a desired direction inside the heat treatment furnace. A plurality of conveying rollers are arranged, for example, at intervals in the horizontal direction. The glass article is slowly cooled while being conveyed from the inlet of the heat treatment furnace to the outlet of the heat treatment furnace. If the glass article is slowly cooled, a glass article with less residual strain can be obtained.
 加工装置5は、徐冷装置4で徐冷したガラス物品を所望の形状に加工する。加工装置5は、例えば切断装置、研削装置、研磨装置、及びコーティング装置から選ばれる1つ以上を含む。切断装置は、徐冷装置4で徐冷したガラスを切断する。切断装置は、例えば、徐冷装置4で徐冷したガラスにスクライブ線を形成し、スクライブ線に沿ってガラスを割断する。スクライブ線は、カッター又はレーザー光線を用いて形成される。研削装置は、徐冷装置4で徐冷したガラスを研削する。研磨装置は、徐冷装置4で徐冷したガラスを研磨する。コーティング装置は、徐冷装置4で徐冷したガラスに所望の膜を形成する。 The processing device 5 processes the glass article slowly cooled by the slow cooling device 4 into a desired shape. The processing device 5 includes one or more selected from, for example, a cutting device, a grinding device, a polishing device, and a coating device. The cutting device cuts the glass annealed by the annealer 4 . For example, the cutting device forms scribe lines in the glass slowly cooled by the slow cooling device 4 and cuts the glass along the scribe lines. Scribe lines are formed using a cutter or laser beam. The grinding device grinds the glass that has been annealed by the annealer 4 . The polishing device polishes the glass slowly cooled by the slow cooling device 4 . The coating device forms a desired film on the glass annealed by the annealer 4 .
 図示しないが、ガラス製造装置1は、清澄装置をさらに有してもよい。清澄装置は、溶解装置2で得られた溶融ガラスを成形装置3で成形する前に、溶融ガラス中に含まれる気泡を除去する。気泡を除去する方法として、例えば、溶融ガラスの周辺雰囲気を減圧する方法、及び溶融ガラスを高温に加熱する方法から選ばれる1つ以上が用いられる。清澄装置は、溶解装置2の一部であってもよい。 Although not shown, the glass manufacturing apparatus 1 may further have a clarifier. The clarifier removes air bubbles contained in the molten glass before forming the molten glass obtained by the melting device 2 by the forming device 3 . As a method for removing air bubbles, for example, one or more selected from a method of reducing the pressure of the surrounding atmosphere of the molten glass and a method of heating the molten glass to a high temperature is used. The clarification device may be part of the dissolution device 2 .
 次に、図2を参照して、ガラス製造装置1の具体例について説明する。図2のガラス製造装置1は、フロート法で板ガラスを製造する。板ガラスは、例えば無アルカリガラス、アルミノシリケートガラス、ホウケイ酸ガラス又はソーダライムガラスなどである。無アルカリガラスとは、NaO、KO等のアルカリ金属酸化物を実質的に含有しないガラスを意味する。ここで、アルカリ金属酸化物を実質的に含有しないとは、アルカリ金属酸化物の含有量の合量が0.1質量%以下を意味する。 Next, a specific example of the glass manufacturing apparatus 1 will be described with reference to FIG. The glass manufacturing apparatus 1 of FIG. 2 manufactures plate glass by the float method. Plate glass is, for example, non-alkali glass, aluminosilicate glass, borosilicate glass, soda lime glass, or the like. Alkali-free glass means glass that does not substantially contain alkali metal oxides such as Na 2 O and K 2 O. Here, "substantially free of alkali metal oxides" means that the total content of alkali metal oxides is 0.1% by mass or less.
 板ガラスの用途は、特に限定されないが、例えばディスプレイ(例えば液晶ディスプレイ又は有機ELディスプレイ等)のカバーガラスである。板ガラスの用途がカバーガラスである場合、板ガラスは化学強化用ガラスである。化学強化用ガラスは、無アルカリガラスとは異なり、アルカリ金属酸化物を含有する。 The use of the plate glass is not particularly limited, but for example, it is cover glass for displays (eg, liquid crystal displays, organic EL displays, etc.). If the application of sheet glass is cover glass, the sheet glass is glass for chemical strengthening. Unlike non-alkali glass, glass for chemical strengthening contains alkali metal oxides.
 板ガラスの厚みは、板ガラスの用途に応じて選択される。板ガラスの用途がディスプレイのカバーガラスである場合、板ガラスの厚みは例えば0.1mm~5.0mmである。板ガラスの用途がディスプレイのガラス基板である場合、板ガラスの厚みは例えば0.1mm~0.7mmである。板ガラスの用途が自動車の場合、合わせガラス用の板ガラスの厚みは例えば0.5mm~6.0mm、強化ガラス用の板ガラスの厚みは例えば2.3mm~6.0mmである。板ガラスの用途が建築用ガラスである場合、複層ガラス用の板ガラスの厚みは例えば3mm~12mm、熱線反射ガラス用又は熱線吸収ガラス用の板ガラスの厚みは例えば5mm~12mm、強化ガラス用の板ガラスの厚みは例えば4mm~19mm、防災防犯ガラス用の板ガラスの厚みは例えば3mm~5mm、防火耐火ガラス用の板ガラスの厚みは例えば5mm~12mm、防音ガラス用の板ガラスの厚みは例えば3mm~8mm、リフォーム向けガラス用の板ガラスの厚みは例えば3mm~10mm、デザインガラス用の板ガラスの厚みは例えば2mm~6mm、型板ガラス用の板ガラスの厚みは例えば4mm~6mm、すり板ガラス用の板ガラスの厚みは例えば2mm~5mmである。複層ガラスは、Low-E膜を有するものを含む。防災防犯ガラスは、2枚の板ガラスの間に中間膜をはさみ圧着した合わせガラスである。型板ガラスは、ロールアウト製法によってガラスの片面に型模様をつけたガラスである。 The thickness of the plate glass is selected according to the application of the plate glass. When the glass sheet is used as a cover glass for displays, the thickness of the glass sheet is, for example, 0.1 mm to 5.0 mm. When the glass plate is used as a glass substrate for displays, the thickness of the glass plate is, for example, 0.1 mm to 0.7 mm. When the sheet glass is used for automobiles, the thickness of sheet glass for laminated glass is, for example, 0.5 mm to 6.0 mm, and the thickness of sheet glass for tempered glass is, for example, 2.3 mm to 6.0 mm. When the application of the plate glass is architectural glass, the thickness of the plate glass for double glazing is, for example, 3 mm to 12 mm, the thickness of the plate glass for heat reflecting glass or heat absorbing glass is, for example, 5 mm to 12 mm, and the thickness of the plate glass for tempered glass is 5 mm to 12 mm. The thickness is, for example, 4 mm to 19 mm. The thickness of plate glass for disaster prevention and crime prevention glass is, for example, 3 mm to 5 mm. The thickness of plate glass for fireproof and fireproof glass is, for example, 5 mm to 12 mm. The thickness of plate glass for soundproof glass is, for example, 3 mm to 8 mm. The thickness of plate glass for glass is, for example, 3 mm to 10 mm, the thickness of plate glass for design glass is, for example, 2 mm to 6 mm, the thickness of plate glass for figured glass is, for example, 4 mm to 6 mm, and the thickness of plate glass for ground glass is, for example, 2 mm to 5 mm. is. Double glazing includes those with Low-E films. Disaster prevention and crime prevention glass is laminated glass in which an interlayer is sandwiched between two sheets of glass and press-bonded. Figured glass is glass with a pattern on one side of the glass by the roll-out manufacturing method.
 溶解装置2は、溶融ガラスGを収容する溶解槽21と、溶解槽21内に収容されている溶融ガラスGの上方に火炎を形成するバーナー22とを備える。溶解槽21内に投入されたガラス原料は、バーナー22が形成する火炎からの輻射熱によって溶融ガラスGに徐々に溶け込む。溶融ガラスGは、溶解装置2から成形装置3に連続的に搬送される。加熱源は、バーナー22には限定されず、電気ヒータまたは電極などであってもよい。電極は、溶融ガラスGに電流を流すことで、溶融ガラスGを発熱させる。 The melting apparatus 2 includes a melting tank 21 containing molten glass G and a burner 22 forming a flame above the molten glass G contained in the melting tank 21 . The glass raw material charged into the melting tank 21 is gradually melted into the molten glass G by radiant heat from the flame formed by the burner 22 . Molten glass G is continuously conveyed from the melting device 2 to the forming device 3 . The heating source is not limited to the burner 22, and may be an electric heater, an electrode, or the like. The electrodes cause the molten glass G to generate heat by applying an electric current to the molten glass G.
 成形装置3は、熱処理炉である成形炉31を備える。成形炉31は、浴槽311を有する。浴槽311は、溶融金属Mを収容する。溶融金属Mとしては、例えば溶融スズが用いられる。溶融スズの他に、溶融スズ合金なども使用可能であり、溶融金属Mは溶融ガラスGよりも高い密度を有するものであればよい。溶融ガラスGは、溶融金属Mの上に連続的に供給され、溶融金属Mの平滑な液面を利用して、帯板状のガラスリボンGRに成形される。 The molding device 3 includes a molding furnace 31 that is a heat treatment furnace. The molding furnace 31 has a bath 311 . The bath 311 contains the molten metal M. As the molten metal M, for example, molten tin is used. In addition to molten tin, molten tin alloys and the like can also be used, and the molten metal M should have a higher density than the molten glass G. The molten glass G is continuously supplied onto the molten metal M, and is formed into a strip-shaped glass ribbon GR using the smooth liquid surface of the molten metal M.
 成形炉31は、浴槽311の上方に天井312を有する。成形炉31の内部は、溶融金属Mの酸化を防止するため、還元性ガスで満たされ、大気圧よりも高い気圧に維持される。還元性ガスは、例えば窒素ガスと水素ガスとの混合ガスであり、窒素ガスを85体積%~98.5体積%、水素ガスを1.5体積%~15体積%含んでいる。還元性ガスは、天井312のレンガ同士の目地及び天井312の孔から供給される。 The molding furnace 31 has a ceiling 312 above the bathtub 311 . The interior of the molding furnace 31 is filled with a reducing gas to prevent the molten metal M from being oxidized, and is maintained at a pressure higher than the atmospheric pressure. The reducing gas is, for example, a mixed gas of nitrogen gas and hydrogen gas, containing 85% to 98.5% by volume of nitrogen gas and 1.5% to 15% by volume of hydrogen gas. The reducing gas is supplied from the joints between the bricks of the ceiling 312 and the holes in the ceiling 312 .
 成形装置3は、ガラスリボンGRを加熱するヒータ32を備える。ヒータ32は、例えば成形炉31の天井312から吊り下げられ、下方を通過するガラスリボンGRを加熱する。ヒータ32は、例えば電気ヒータであって、通電加熱される。ヒータ32は、ガラスリボンGRの搬送方向と幅方向に行列状に複数配列される。複数のヒータ32の出力を制御することにより、ガラスリボンGRの温度分布を制御でき、ガラスリボンGRの板厚分布を制御できる。 The molding device 3 includes a heater 32 that heats the glass ribbon GR. The heater 32 is suspended, for example, from the ceiling 312 of the molding furnace 31 and heats the glass ribbon GR passing below. The heater 32 is, for example, an electric heater, and is electrically heated. A plurality of heaters 32 are arranged in a matrix in the conveying direction and the width direction of the glass ribbon GR. By controlling the outputs of the plurality of heaters 32, the temperature distribution of the glass ribbon GR can be controlled, and the plate thickness distribution of the glass ribbon GR can be controlled.
 徐冷装置4は、熱処理炉であるドロスボックス41と、リフトアウトロール42と、を備える。リフトアウトロール42は、ドロスボックス41の内部に配置され、ガラスリボンGRを溶融金属Mから引き上げる。リフトアウトロール42は、ガラスリボンGRの搬送方向(X軸方向)に間隔をおいて複数配置される。リフトアウトロール42の数は、特に限定されない。リフトアウトロール42は、図示しないモータ等の駆動装置によって回転駆動され、その駆動力によってガラスリボンGRを斜め上方に向けて搬送する。リフトアウトロール42の軸方向は、ガラスリボンGRの幅方向(Y軸方向)と同一方向である。 The slow cooling device 4 includes a dross box 41 that is a heat treatment furnace and lift out rolls 42 . The lift out roll 42 is arranged inside the dross box 41 and pulls up the glass ribbon GR from the molten metal M. A plurality of lift out rolls 42 are arranged at intervals in the conveying direction (X-axis direction) of the glass ribbon GR. The number of lift out rolls 42 is not particularly limited. The lift out roll 42 is rotationally driven by a driving device such as a motor (not shown), and conveys the glass ribbon GR obliquely upward by its driving force. The axial direction of the lift out roll 42 is the same direction as the width direction (Y-axis direction) of the glass ribbon GR.
 徐冷装置4は、ガラスリボンGRの温度を調整すべく、ドロスボックス41の天井に図示しないヒータを備えてもよい。ヒータは、ガラスリボンGRの上方のみならず、下方にも設けられてもよい。ドロスボックス41の内部において、ガラスリボンGRの温度は、ガラスリボンGRのガラス転移点Tgを基準として、(Tg-50)℃~(Tg+30)℃であることが好ましい。 The slow cooling device 4 may include a heater (not shown) on the ceiling of the dross box 41 to adjust the temperature of the glass ribbon GR. The heater may be provided not only above the glass ribbon GR but also below it. Inside the dross box 41, the temperature of the glass ribbon GR is preferably (Tg−50)° C. to (Tg+30)° C. with reference to the glass transition point Tg of the glass ribbon GR.
 徐冷装置4は、熱処理炉である徐冷炉45と、レヤーロール46と、を備える。徐冷炉45は、ドロスボックス41の下流側に配置される。レヤーロール46は、徐冷炉45の内部に配置され、ガラスリボンGRの長手方向(X軸方向)にガラスリボンGRを搬送する。レヤーロール46は、ガラスリボンGRの搬送方向に間隔をおいて複数設けられる。レヤーロール46の数は、特に限定されない。レヤーロール46は、図示しないモータ等の駆動装置によって回転駆動され、その駆動力によってガラスリボンGRを水平方向(X軸方向)に搬送する。レヤーロール46の軸方向は、ガラスリボンGRの幅方向(Y軸方向)と同一方向である。 The slow cooling device 4 includes a slow cooling furnace 45 that is a heat treatment furnace and layer rolls 46 . The slow cooling furnace 45 is arranged downstream of the dross box 41 . The layer roll 46 is arranged inside the annealing furnace 45 and conveys the glass ribbon GR in the longitudinal direction (X-axis direction) of the glass ribbon GR. A plurality of layer rolls 46 are provided at intervals in the conveying direction of the glass ribbon GR. The number of layer rolls 46 is not particularly limited. The layer roll 46 is rotationally driven by a driving device such as a motor (not shown), and the driving force conveys the glass ribbon GR in the horizontal direction (X-axis direction). The axial direction of the layer roll 46 is the same as the width direction (Y-axis direction) of the glass ribbon GR.
 徐冷装置4は、ガラスリボンGRをレヤーロール46によって搬送しながらガラスの歪点以下の温度に徐冷する。徐冷装置4は、ガラスリボンGRの温度を調整すべく、徐冷炉45の内部に図示しないヒータを備えてもよい。 The slow cooling device 4 slowly cools the glass ribbon GR to a temperature below the strain point of the glass while conveying the glass ribbon GR with the layer rolls 46 . The slow cooling device 4 may include a heater (not shown) inside the slow cooling furnace 45 to adjust the temperature of the glass ribbon GR.
 次に、図3を参照して、図2の成形装置3の上流端の一例について説明する。成形装置3は、スパウトリップ33と、ツイール34と、を備える。スパウトリップ33は、浴槽311内の溶融金属Mの上に溶融ガラスGを連続的に供給する。ツイール34は、スパウトリップ33に対して上下に移動自在であり、スパウトリップ33の上を流れる溶融ガラスGの流量を調整する。ツイール34とスパウトリップ33との間隔が狭くなるほど、スパウトリップ33の上を流れる溶融ガラスGの流量が少なくなる。ツイール34は、耐火物で構成される。ツイール34には、ツイール34と溶融ガラスGとの接触を防止する保護膜が形成されてよい。保護膜は、例えば白金又は白金合金で形成される。 Next, an example of the upstream end of the molding device 3 in FIG. 2 will be described with reference to FIG. The molding device 3 comprises a spout lip 33 and a twill 34 . Spout lip 33 continuously feeds molten glass G onto molten metal M in bath 311 . The tweel 34 is vertically movable with respect to the spout lip 33 and adjusts the flow rate of the molten glass G flowing over the spout lip 33 . As the distance between the tweel 34 and the spout lip 33 becomes narrower, the flow rate of the molten glass G flowing over the spout lip 33 decreases. The twill 34 is constructed of refractory material. A protective film may be formed on the tweel 34 to prevent contact between the tweel 34 and the molten glass G. FIG. The protective film is made of platinum or a platinum alloy, for example.
 成形炉31は、スパウトリップ33の上方に、天井312を有する。天井312は、水平に並ぶ複数のレンガ313と、複数のレンガ313の上に載置される保温材314と、を含む。レンガ313とツイール34の間には隙間が形成されており、隣り合うレンガ313同士の間にも隙間が形成されている。これらの隙間を介して、保温材314は、溶融ガラスGが曝される雰囲気に曝されている。保温材314は、溶融ガラスGよりも上方に配置されている。 The molding furnace 31 has a ceiling 312 above the spout lip 33. The ceiling 312 includes a plurality of horizontally arranged bricks 313 and a heat insulating material 314 placed on the plurality of bricks 313 . A gap is formed between the brick 313 and the twill 34, and a gap is also formed between adjacent bricks 313.例文帳に追加Through these gaps, the heat insulator 314 is exposed to the atmosphere to which the molten glass G is exposed. The heat insulating material 314 is arranged above the molten glass G. As shown in FIG.
 保温材314は、成形炉31の内部から外部への熱の伝達を抑制し、成形炉31の内部を高温に保つ。保温材314の熱伝導率は、例えば1W/m・K以下であり、好ましくは0.5W/m・K以下であり、より好ましくは0.3W/m・K以下であり、さらに好ましくは0.1W/m・K以下であり、特に好ましくは0.05W/m・K以下である。保温材314の熱伝導率は、0W/m・K以上である。 The heat insulating material 314 suppresses heat transfer from the inside of the molding furnace 31 to the outside, and keeps the inside of the molding furnace 31 at a high temperature. The thermal conductivity of the heat insulating material 314 is, for example, 1 W/m·K or less, preferably 0.5 W/m·K or less, more preferably 0.3 W/m·K or less, and still more preferably 0. .1 W/m·K or less, and particularly preferably 0.05 W/m·K or less. The thermal conductivity of the heat insulating material 314 is 0 W/m·K or higher.
 保温材314は、無機繊維を含む。保温材314は、複数の無機繊維をバインダーで固めた板状のボードでもよいし、複数の無機繊維の絡み合う綿状のウールを層状に成形したブランケットでもよい。なお、保温材314は、綿状のままでもよいし、紐状に加工されてもよい。保温材314の気泡含有率は、例えば20体積%~95体積%であり、好ましくは35体積%~95体積%、より好ましくは40体積%~95体積%である。前記気泡含有率の数値範囲における上限値は、90体積%であってもよい。 The heat insulating material 314 contains inorganic fibers. The heat insulating material 314 may be a plate-like board in which a plurality of inorganic fibers are bound together with a binder, or may be a blanket in which a plurality of inorganic fibers are entwined and cotton-like wool is formed into layers. It should be noted that the heat insulating material 314 may be left in a cotton-like state, or may be processed into a cord-like shape. The bubble content of the heat insulating material 314 is, for example, 20% to 95% by volume, preferably 35% to 95% by volume, more preferably 40% to 95% by volume. The upper limit of the numerical range of the bubble content may be 90% by volume.
 保温材314に含まれる無機繊維は、人造繊維と天然繊維のいずれでもよく、結晶質でも非結晶質でもよい。無機繊維は、AlとSiOを含む。無機繊維は、例えばAlとSiOを固溶体として含む。無機繊維は、AlとSiO以外の成分を含んでもよい。AlとSiO以外の成分は、例えばTiOとFeから選ばれる1つ以上である。AlとSiO以外の成分の合計含有量は、例えば3質量%以下である。無機繊維の化学組成は、例えば蛍光X線分析(XRF)で測定する。 The inorganic fibers contained in the heat insulating material 314 may be either artificial fibers or natural fibers, and may be crystalline or amorphous. Inorganic fibers include Al 2 O 3 and SiO 2 . Inorganic fibers include, for example, Al 2 O 3 and SiO 2 as a solid solution. The inorganic fibers may contain components other than Al2O3 and SiO2 . Components other than Al 2 O 3 and SiO 2 are, for example, one or more selected from TiO 2 and Fe 2 O 3 . The total content of components other than Al 2 O 3 and SiO 2 is, for example, 3% by mass or less. The chemical composition of inorganic fibers is measured, for example, by X-ray fluorescence spectroscopy (XRF).
 保温材314に含まれる無機繊維は、Al含有量が60質量%以上であり、SiO含有量が40質量%以下である。詳しくは実施例の欄で説明するが、Al含有量が60質量%以上であれば、温度変化による無機繊維の結晶構造の変化を抑制でき、粉塵の発生を抑制できる。保温材314に含まれる無機繊維は、好ましくは、Al含有量が90質量%以下であり、SiO含有量が10質量%以上である。 The inorganic fibers contained in the heat insulating material 314 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed. The inorganic fibers contained in the heat insulating material 314 preferably have an Al 2 O 3 content of 90% by mass or less and an SiO 2 content of 10% by mass or more.
 保温材314は、上記の通り、溶融ガラスGが曝される雰囲気に曝されていてもよい。つまり、溶融ガラスGに対して保温材314が露出していてもよく、保温材314から溶融ガラスGに至る道(保温材314から溶融ガラスGまで連続的につながる空間)が存在してもよい。本実施形態によれば、粉塵の発生を抑制できるので、保温材314から溶融ガラスGに至る道が存在したとしても、その道を通る粉塵が少なく、粉塵の付着量が少ない。 The heat insulating material 314 may be exposed to the atmosphere to which the molten glass G is exposed, as described above. That is, the heat insulating material 314 may be exposed to the molten glass G, and a path from the heat insulating material 314 to the molten glass G (a space continuously connecting from the heat insulating material 314 to the molten glass G) may exist. . According to the present embodiment, generation of dust can be suppressed, so even if there is a path from the heat insulating material 314 to the molten glass G, the amount of dust passing through that path is small and the amount of dust adhering is small.
 溶融ガラスGが上向き(斜め上向きを含む)の面を有しており、その上向きの面よりも上方に保温材314が配置されていてもよい。粉塵は重力によって落下しやすく、溶融ガラスGの上向きの面は粉塵を受け止めやすい。それゆえ、保温材314からの粉塵の発生を抑制する効果が顕著に得られる。保温材314は、好ましくは溶融ガラスGの真上に配置されるが、斜め上に配置されてもよい。 The molten glass G may have an upward (including obliquely upward) surface, and the heat insulating material 314 may be arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of molten glass G tends to catch dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 314 is remarkably obtained. The heat insulating material 314 is preferably arranged directly above the molten glass G, but may be arranged diagonally above.
 なお、本開示の技術は、天井312の保温材314以外にも適用可能である。保温材は、溶解装置2と成形装置3と徐冷装置4の少なくとも一つで用いられるものであればよい。保温材は、ガラスリボンGRが曝される雰囲気に曝されていてもよい。ガラスリボンGRが上向きの面を有しており、その面よりも上方に保温材が配置されていてもよい。保温材は、好ましくはガラスリボンGRの真上に配置されるが、斜め上に配置されてもよい。 Note that the technology of the present disclosure can be applied to other than the heat insulating material 314 of the ceiling 312. Any heat insulating material may be used as long as it is used in at least one of the melting device 2 , the molding device 3 and the slow cooling device 4 . The heat insulator may be exposed to the atmosphere to which the glass ribbon GR is exposed. The glass ribbon GR may have an upward surface, and the heat insulating material may be arranged above the surface. The heat insulating material is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
 次に、図4を参照して、図2の成形装置3の幅方向一端の一例について説明する。成形炉31は、浴槽311と天井312の間に、側壁315を有する。側壁315は、鉛直方向に並ぶ複数のレンガ316と、下端のレンガ316と浴槽311の隙間をシールするシール部材317と、を含む。 Next, an example of one end in the width direction of the molding device 3 in FIG. 2 will be described with reference to FIG. Forming furnace 31 has a side wall 315 between bath 311 and ceiling 312 . The side wall 315 includes a plurality of vertically aligned bricks 316 and a sealing member 317 that seals the gap between the bottom brick 316 and the bathtub 311 .
 シール部材317は、例えば、金属製の箱318と、箱318の内部に充填される保温材319と、を有する。箱318は、図示しない複数の金属板で構成される。複数の金属板の間には隙間があってもよく、その隙間を介して保温材319はガラスリボンGRが曝される雰囲気に曝されていてもよい。 The sealing member 317 has, for example, a metal box 318 and a heat insulating material 319 filled inside the box 318 . The box 318 is composed of a plurality of metal plates (not shown). A gap may exist between the plurality of metal plates, and the heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gap.
 保温材319は、保温材314(図3参照)と同様に、無機繊維を含む。保温材319に含まれる無機繊維は、Al含有量が60質量%以上であり、SiO含有量が40質量%以下である。Al含有量が60質量%以上であれば、温度変化による無機繊維の結晶構造の変化を抑制でき、粉塵の発生を抑制できる。 Heat insulating material 319 includes inorganic fibers, similar to heat insulating material 314 (see FIG. 3). The inorganic fibers contained in the heat insulating material 319 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. If the Al 2 O 3 content is 60% by mass or more, it is possible to suppress changes in the crystal structure of the inorganic fibers due to temperature changes, and to suppress generation of dust.
 保温材319は、ガラスリボンGRが曝される雰囲気に曝されていてもよい。つまり、ガラスリボンGRに対して保温材319が露出していてもよく、保温材319からガラスリボンGRに至る道(保温材319から溶融ガラスGまで連続的につながる空間)が存在してもよい。本実施形態によれば、粉塵の発生を抑制できるので、保温材319からガラスリボンGRに至る道が存在したとしても、その道を通る粉塵が少なく、粉塵の付着量が少ない。 The heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed. That is, the heat insulating material 319 may be exposed to the glass ribbon GR, and there may be a path from the heat insulating material 319 to the glass ribbon GR (a space continuously connecting from the heat insulating material 319 to the molten glass G). . According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material 319 to the glass ribbon GR, the amount of dust passing through that path is small and the amount of dust adhering is small.
 ガラスリボンGRが上向き(斜め上向きを含む)の面を有しており、その面よりも上方に保温材319が配置されていてもよい。粉塵は重力によって落下しやすく、ガラスリボンGRの上向きの面は粉塵を受け止めやすい。それゆえ、保温材319からの粉塵の発生を抑制する効果が顕著に得られる。保温材319は、好ましくはガラスリボンGRの真上に配置されるが、斜め上に配置されてもよい。 The glass ribbon GR may have an upward (including diagonally upward) surface, and the heat insulating material 319 may be arranged above the surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 319 can be obtained remarkably. The heat insulating material 319 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
 なお、図示しないが、側壁315を構成する複数のレンガ316の間に隙間があり、その隙間を介して保温材319はガラスリボンGRが曝される雰囲気に曝されていてもよい。また、天井312を構成する複数のレンガの間に隙間があり、その隙間を介して保温材319はガラスリボンGRが曝される雰囲気に曝されていてもよい。 Although not shown, there may be gaps between the plurality of bricks 316 forming the side wall 315, and the heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gaps. Further, there may be gaps between the plurality of bricks forming the ceiling 312, and the heat insulating material 319 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gaps.
 次に、図5を参照して、図2の徐冷装置4の幅方向一端の一例について説明する。徐冷炉45は、天井451と下壁452と側壁453を有する。天井451と下壁452と側壁453の少なくとも1つは、例えば、金属製の箱454と、箱454の内部に充填される保温材455と、を含んでもよい。箱454は、図示しない複数の金属板で構成される。複数の金属板の間には隙間があってもよく、その隙間を介して保温材455はガラスリボンGRが曝される雰囲気に曝されていてもよい。 Next, an example of one end in the width direction of the slow cooling device 4 in FIG. 2 will be described with reference to FIG. The annealing furnace 45 has a ceiling 451 , a lower wall 452 and side walls 453 . At least one of the ceiling 451 , the lower wall 452 and the side walls 453 may include, for example, a metal box 454 and a heat insulating material 455 filled inside the box 454 . The box 454 is composed of a plurality of metal plates (not shown). A gap may exist between the plurality of metal plates, and the heat insulating material 455 may be exposed to the atmosphere to which the glass ribbon GR is exposed through the gap.
 側壁453は、レヤーロール46の回転軸47を挿通させる開口部456を有し、その開口部456に熱の流出を抑制する保温材457を有してもよい。徐冷炉45の外部には、回転軸47を回転させる駆動装置が配置される。駆動装置が徐冷炉45の外部に配置されることで、駆動装置の熱劣化を抑制できる。保温材457は、開口部456において、ガラスリボンGRが曝される雰囲気に曝されていてもよい。 The side wall 453 has an opening 456 through which the rotating shaft 47 of the layer roll 46 is inserted, and the opening 456 may have a heat insulating material 457 that suppresses the outflow of heat. A driving device for rotating the rotating shaft 47 is arranged outside the slow cooling furnace 45 . By arranging the driving device outside the slow cooling furnace 45, thermal deterioration of the driving device can be suppressed. The heat insulator 457 may be exposed to the atmosphere to which the glass ribbon GR is exposed at the opening 456 .
 保温材455、457は、保温材314(図3参照)と同様に、無機繊維を含む。保温材455、457に含まれる無機繊維は、Al含有量が60質量%以上であり、SiO含有量が40質量%以下である。詳しくは実施例の欄で説明するが、Al含有量が60質量%以上であれば、温度変化による無機繊維の結晶構造の変化を抑制でき、粉塵の発生を抑制できる。 Heat insulating materials 455 and 457 include inorganic fibers, similar to heat insulating material 314 (see FIG. 3). The inorganic fibers contained in the heat insulating materials 455 and 457 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
 保温材455、457は、ガラスリボンGRが曝される雰囲気に曝されていてもよい。つまり、ガラスリボンGRに対して保温材455、457が露出していてもよく、保温材455、457からガラスリボンGRに至る道(保温材455、457からガラスリボンGRまで連続的につながる空間)が存在してもよい。本実施形態によれば、粉塵の発生を抑制できるので、保温材455、457からガラスリボンGRに至る道が存在したとしても、その道を通る粉塵が少なく、粉塵の付着量が少ない。 The heat insulating materials 455 and 457 may be exposed to the atmosphere to which the glass ribbon GR is exposed. In other words, the heat insulating materials 455 and 457 may be exposed to the glass ribbon GR, and the path from the heat insulating materials 455 and 457 to the glass ribbon GR (the space continuously connecting from the heat insulating materials 455 and 457 to the glass ribbon GR). may exist. According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating materials 455 and 457 to the glass ribbon GR, the amount of dust passing through the path is small and the amount of dust adhering is small.
 ガラスリボンGRが上向き(斜め上向きを含む)の面を有しており、その上向きの面よりも上方に保温材455、457が配置されていてもよい。粉塵は重力によって落下しやすく、ガラスリボンGRの上向きの面は粉塵を受け止めやすい。それゆえ、保温材455、457からの粉塵の発生を抑制する効果が顕著に得られる。保温材455、457は、好ましくはガラスリボンGRの真上に配置されるが、斜め上に配置されてもよい。 The glass ribbon GR may have an upward (including diagonally upward) surface, and the heat insulating materials 455 and 457 may be arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating materials 455 and 457 is remarkably obtained. The heat insulating materials 455 and 457 are preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
 なお、図示しないが、ドロスボックス41が、徐冷炉45と同様の構造を有してもよい。例えば、ドロスボックス41は天井と下壁と側壁を有し、天井と下壁と側壁の少なくとも1つが金属製の箱とその箱の内部に充填される保温材とを含んでもよい。また、ドロスボックス41の側壁が、リフトアウトロール42の回転軸を挿通させる開口部を有し、その開口部に熱の流出を抑制する保温材を有してもよい。 Although not shown, the dross box 41 may have the same structure as the slow cooling furnace 45. For example, the dross box 41 has a ceiling, a lower wall and side walls, and at least one of the ceiling, the lower wall and the side walls may include a metal box and a heat insulating material filled inside the box. Moreover, the side wall of the dross box 41 may have an opening through which the rotating shaft of the lift out roll 42 is inserted, and the opening may have a heat insulating material that suppresses the outflow of heat.
 次に、図6を参照して、図2の成形装置3の上部構造の一例について説明する。成形装置3は、成形炉31の天井312と、天井312から吊り下げられるヒータ32と、を有する。ヒータ32は、ガラスリボンGRの搬送方向(X軸方向)と幅方向(Y軸方向)に行列状に複数配列される。成形装置3は、隣り合うヒータ32同士の間に保温材35を有してもよい。保温材35は、Y軸方向に隣り合うヒータ32同士の間に配置されてもよいし、X軸方向に隣り合うヒータ32同士の間に配置されてもよい。保温材35は、隣り合うヒータ32同士の間での熱の移動を制限する。 Next, an example of the upper structure of the molding device 3 of FIG. 2 will be described with reference to FIG. The molding device 3 has a ceiling 312 of the molding furnace 31 and a heater 32 suspended from the ceiling 312 . A plurality of heaters 32 are arranged in a matrix in the conveying direction (X-axis direction) and the width direction (Y-axis direction) of the glass ribbon GR. The molding device 3 may have a heat insulating material 35 between adjacent heaters 32 . The heat insulating material 35 may be arranged between the heaters 32 adjacent in the Y-axis direction, or may be arranged between the heaters 32 adjacent in the X-axis direction. The heat insulating material 35 restricts heat transfer between adjacent heaters 32 .
 保温材35は、保温材314(図3参照)と同様に、無機繊維を含む。保温材35に含まれる無機繊維は、Al含有量が60質量%以上であり、SiO含有量が40質量%以下である。詳しくは実施例の欄で説明するが、Al含有量が60質量%以上であれば、温度変化による無機繊維の結晶構造の変化を抑制でき、粉塵の発生を抑制できる。 The heat insulating material 35 contains inorganic fibers, similar to the heat insulating material 314 (see FIG. 3). The inorganic fibers contained in the heat insulating material 35 have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
 保温材35は、ガラスリボンGRが曝される雰囲気に曝されている。つまり、ガラスリボンGRに対して保温材35が露出しており、保温材35からガラスリボンGRに至る道(保温材35からガラスリボンGRまで連続的につながる空間)が存在する。本実施形態によれば、粉塵の発生を抑制できるので、保温材35からガラスリボンGRに至る道が存在したとしても、その道を通る粉塵が少なく、粉塵の付着量が少ない。 The heat insulating material 35 is exposed to the atmosphere to which the glass ribbon GR is exposed. That is, the heat insulating material 35 is exposed to the glass ribbon GR, and there is a path from the heat insulating material 35 to the glass ribbon GR (a space continuously connecting from the heat insulating material 35 to the glass ribbon GR). According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material 35 to the glass ribbon GR, the amount of dust passing through the path is small and the amount of dust adhering is small.
 ガラスリボンGRが上向き(斜め上向きを含む)の面を有しており、その上向きの面よりも上方に保温材35が配置されている。粉塵は重力によって落下しやすく、ガラスリボンGRの上向きの面は粉塵を受け止めやすい。それゆえ、保温材35からの粉塵の発生を抑制する効果が顕著に得られる。保温材35は、好ましくはガラスリボンGRの真上に配置されるが、斜め上に配置されてもよい。 The glass ribbon GR has an upward (including obliquely upward) surface, and the heat insulating material 35 is arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the heat insulating material 35 is remarkably obtained. The heat insulating material 35 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
 次に、図7を参照して、図2の徐冷装置4の緩衝膜形成部48の一例について説明する。緩衝膜形成部48は、ガラスリボンGRの下面に緩衝剤を吹き付ける供給パイプ481を有する。緩衝剤は、ガラスリボンGRの下面と反応し、ガラスリボンGRの下面に緩衝膜を形成する。緩衝膜は、ガラスリボンGRとレヤーロール46との衝突を緩和し、ガラスリボンGRの下面に傷が発生するのを抑制する。緩衝剤としては、例えば酸化硫黄ガスが用いられる。酸化硫黄ガスは、SOガスとSOガスのいずれでもよい。酸化硫黄ガスは、ガラスリボンGRの下面と反応し、ガラスリボンGRの下面に緩衝膜を形成する。緩衝膜は、硫酸塩の結晶などを含む。 Next, an example of the buffer film forming part 48 of the slow cooling device 4 of FIG. 2 will be described with reference to FIG. The buffer film forming unit 48 has a supply pipe 481 for spraying a buffer onto the lower surface of the glass ribbon GR. The buffer reacts with the lower surface of the glass ribbon GR to form a buffer film on the lower surface of the glass ribbon GR. The buffer film reduces the collision between the glass ribbon GR and the layer roll 46, and suppresses the lower surface of the glass ribbon GR from being damaged. For example, sulfur oxide gas is used as the buffering agent. The sulfur oxide gas may be either SO2 gas or SO3 gas. The sulfur oxide gas reacts with the lower surface of the glass ribbon GR to form a buffer film on the lower surface of the glass ribbon GR. The buffer film contains sulfate crystals and the like.
 緩衝膜形成部48は、供給パイプ481が配置される緩衝剤供給室482と、緩衝剤供給室482の上流側(X軸負方向側)に設けられる上流側保温材483と、緩衝剤供給室482の下流側(X軸正方向側)に設けられる下流側保温材484と、を有する。上流側保温材483と下流側保温材484は、緩衝剤供給室482に緩衝剤を充満させることで、効率的に且つ均一に緩衝膜を形成する。上流側保温材483と下流側保温材484は、ガラスリボンGRの下面に接触していないが、接触していてもよい。 The buffer film forming portion 48 includes a buffer supply chamber 482 in which a supply pipe 481 is arranged, an upstream heat insulating material 483 provided upstream (X-axis negative direction side) of the buffer supply chamber 482, and a buffer supply chamber 483. 482 and a downstream heat insulating material 484 provided on the downstream side (X-axis positive direction side). The upstream heat insulating material 483 and the downstream heat insulating material 484 efficiently and uniformly form a buffer film by filling the buffer supply chamber 482 with the buffer. The upstream heat insulating material 483 and the downstream heat insulating material 484 are not in contact with the lower surface of the glass ribbon GR, but they may be in contact.
 下流側保温材484の真上には、上部保温材485が配置されてもよい。上部保温材485は、ガラスリボンGRよりも上に配置される。上部保温材485は、ガラスリボンGRよりも上方におけるガスの流れを遮る。 An upper heat insulator 485 may be arranged directly above the downstream heat insulator 484 . The upper heat insulating material 485 is arranged above the glass ribbon GR. The upper heat insulating material 485 interrupts the gas flow above the glass ribbon GR.
 上流側保温材483、下流側保温材484、上部保温材485は、保温材314(図3参照)と同様に、無機繊維を含む。無機繊維は、Al含有量が60質量%以上であり、SiO含有量が40質量%以下である。詳しくは実施例の欄で説明するが、Al含有量が60質量%以上であれば、温度変化による無機繊維の結晶構造の変化を抑制でき、粉塵の発生を抑制できる。 The upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 contain inorganic fibers, similar to the heat insulating material 314 (see FIG. 3). The inorganic fibers have an Al 2 O 3 content of 60% by mass or more and an SiO 2 content of 40% by mass or less. Details will be described in the section of Examples, but if the Al 2 O 3 content is 60% by mass or more, changes in the crystal structure of the inorganic fibers due to temperature changes can be suppressed, and dust generation can be suppressed.
 上流側保温材483、下流側保温材484、上部保温材485は、ガラスリボンGRが曝される雰囲気に曝されている。つまり、ガラスリボンGRに対して上流側保温材483、下流側保温材484、上部保温材485が露出しており、これらの保温材からガラスリボンGRに至る道(これらの保温材からガラスリボンGRまで連続的につながる空間)が存在する。本実施形態によれば、粉塵の発生を抑制できるので、保温材からガラスリボンGRに至る道が存在したとしても、その道を通る粉塵が少なく、粉塵の付着量が少ない。 The upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 are exposed to the atmosphere to which the glass ribbon GR is exposed. In other words, the upstream heat insulating material 483, the downstream heat insulating material 484, and the upper heat insulating material 485 are exposed from the glass ribbon GR, and the paths leading from these heat insulating materials to the glass ribbon GR (from these heat insulating materials to the glass ribbon GR There is a space that continuously connects to According to the present embodiment, generation of dust can be suppressed. Therefore, even if there is a path from the heat insulating material to the glass ribbon GR, the amount of dust passing through that path is small and the amount of dust adhering is small.
 ガラスリボンGRが上向き(斜め上向きを含む)の面を有しており、その上向きの面よりも上方に上部保温材485が配置されている。粉塵は重力によって落下しやすく、ガラスリボンGRの上向きの面は粉塵を受け止めやすい。それゆえ、上部保温材485からの粉塵の発生を抑制する効果が顕著に得られる。上流側保温材483は、好ましくはガラスリボンGRの真上に配置されるが、斜め上に配置されてもよい。 The glass ribbon GR has an upward (including obliquely upward) surface, and the upper heat insulating material 485 is arranged above the upward surface. Dust tends to fall due to gravity, and the upward surface of the glass ribbon GR tends to catch the dust. Therefore, the effect of suppressing the generation of dust from the upper heat insulating material 485 is remarkably obtained. The upstream heat insulating material 483 is preferably arranged directly above the glass ribbon GR, but may be arranged diagonally above.
 以下、実験データについて説明する。下記の例1が比較例であり、例2が実施例である。例1では、保温材として、イソライト工業株式会社製のイソウール(登録商標)1260を準備した。例1の保温材の化学組成は、Al:43.8質量%、SiO:55.3質量%、Fe:0.2質量%、NaO:0.1質量%、TiO:0.5質量%、CaO:0.1質量%であった。一方、例2では、保温材として、三菱ケミカル株式会社製のMAFTEC(登録商標)を準備した。例2の保温材の化学組成は、Al:72.0質量%、SiO:28.0質量%であった。 Experimental data will be described below. Example 1 below is a comparative example, and Example 2 is an example. In Example 1, isowool (registered trademark) 1260 manufactured by Isolite Industry Co., Ltd. was prepared as a heat insulating material. The chemical composition of the heat insulating material of Example 1 is Al2O3 : 43.8 % by mass, SiO2 : 55.3% by mass, Fe2O3 : 0.2 % by mass, Na2O : 0.1% by mass. , TiO 2 : 0.5% by mass, and CaO: 0.1% by mass. On the other hand, in Example 2, MAFTEC (registered trademark) manufactured by Mitsubishi Chemical Corporation was prepared as a heat insulating material. The chemical composition of the thermal insulation material of Example 2 was Al 2 O 3 : 72.0% by mass and SiO 2 : 28.0% by mass.
 図8に、例1の保温材のX線回折スペクトルを示す。X線回折スペクトルは、熱処理する前の室温で保管したもの、大気中800℃で24時間加熱したもの、大気中1000℃で24時間加熱したもの、大気中1200℃で24時間加熱したもの、の各々について測定した。図8において、横軸は回折角度(2θ)であり、縦軸は回折X線強度である。X線は、CuKα線であった。例1の保温材は、Al含有量が60質量%よりも低く、図8に示すように加熱温度が1000℃以上になると、結晶構造が変化した。結晶構造の変化は、1200℃で顕著であった。 FIG. 8 shows the X-ray diffraction spectrum of the heat insulating material of Example 1. The X-ray diffraction spectra were obtained by storing at room temperature before heat treatment, heating at 800° C. in air for 24 hours, heating at 1000° C. in air for 24 hours, and heating at 1200° C. in air for 24 hours. Each was measured. In FIG. 8, the horizontal axis is the diffraction angle (2θ), and the vertical axis is the diffracted X-ray intensity. The X-rays were CuKα rays. The heat insulating material of Example 1 had an Al 2 O 3 content lower than 60% by mass, and as shown in FIG. 8, when the heating temperature reached 1000° C. or higher, the crystal structure changed. The change in crystal structure was significant at 1200°C.
 図9に、例2の保温材のX線回折スペクトルを示す。X線回折スペクトルは、熱処理する前の室温で保管したもの、大気中800℃で24時間加熱したもの、大気中1000℃で24時間加熱したもの、大気中1200℃で24時間加熱したもの、の各々について測定した。図9において、横軸は回折角度(2θ)であり、縦軸は回折X線強度である。X線は、CuKα線であった。例2の保温材は、Al含有量が60質量%以上であり、図9に示すように加熱温度が1000℃以上でも、結晶構造がほとんど変化しなかった。 FIG. 9 shows the X-ray diffraction spectrum of the heat insulating material of Example 2. The X-ray diffraction spectra were obtained by storing at room temperature before heat treatment, heating at 800° C. in air for 24 hours, heating at 1000° C. in air for 24 hours, and heating at 1200° C. in air for 24 hours. Each was measured. In FIG. 9, the horizontal axis is the diffraction angle (2θ), and the vertical axis is the diffracted X-ray intensity. The X-rays were CuKα rays. The heat insulating material of Example 2 had an Al 2 O 3 content of 60% by mass or more, and as shown in FIG. 9, the crystal structure hardly changed even when the heating temperature was 1000° C. or more.
 図10に、例1と例2の保温材の粉塵飛散率を示す。粉塵飛散率は、保温材を大気中1000℃で加熱処理し、その後ケースに収容した状態で振動発生器によって振動させ、ケースに落ちた粉塵の量を計測することで求めた。振動条件は、周波数が60Hzであり、電流が2.0Aであり、時間が30分であった。例1-1と例1-2では、いずれも、保温材として、イソライト工業株式会社製のイソウール(登録商標)1260を使用した。例2-1と例2-2では、いずれも、保温材として、三菱ケミカル株式会社製のMAFTEC(登録商標)を使用した。図10から、例2の保温材は、例1の保温材に比べて、粉塵飛散率が低いことが分かる。これは、上記の通り、例2の保温材は、例1の保温材とは異なり、1000℃以上で熱処理しても、結晶構造がほとんど変化せず、劣化しないからであると考えられる。  Fig. 10 shows the dust scattering rate of the thermal insulation materials of Examples 1 and 2. The dust scattering rate was obtained by heat-treating the heat insulating material at 1000° C. in the air, then vibrating it with a vibration generator while it was housed in a case, and measuring the amount of dust falling on the case. The vibration conditions were a frequency of 60 Hz, a current of 2.0 A, and a duration of 30 minutes. In both Examples 1-1 and 1-2, isowool (registered trademark) 1260 manufactured by Isolite Industry Co., Ltd. was used as a heat insulating material. In both Examples 2-1 and 2-2, MAFTEC (registered trademark) manufactured by Mitsubishi Chemical Corporation was used as a heat insulating material. From FIG. 10, it can be seen that the heat insulating material of Example 2 has a lower dust scattering rate than the heat insulating material of Example 1. This is probably because, unlike the heat insulating material of Example 1, the heat insulating material of Example 2 hardly changes its crystal structure and does not deteriorate even when heat-treated at 1000° C. or higher, as described above.
 上記実施形態に関し、下記の付記を開示する。
[付記1]
 ガラス原料を溶解することで溶融ガラスを得る溶解装置と、前記溶融ガラスを所望の形状のガラス物品に成形する成形装置と、前記ガラス物品を徐冷する徐冷装置と、を備えるガラス製造装置であって、
 前記溶解装置と前記成形装置と前記徐冷装置の少なくとも一つは、無機繊維を含む保温材を含み、
 前記無機繊維はAlとSiOを含み、前記無機繊維のAl含有量が60質量%以上であり、前記無機繊維のSiO含有量が40質量%以下である、ガラス製造装置。
[付記2]
 前記無機繊維のAl含有量が90質量%以下であり、前記無機繊維のSiO含有量が10質量%以上である、付記1に記載のガラス製造装置。
[付記3]
 前記保温材は、前記溶融ガラスまたは前記ガラス物品が曝される雰囲気に曝されている、付記1又は2に記載のガラス製造装置。
[付記4]
 前記溶融ガラスまたは前記ガラス物品は、上向きの面を有し、
 前記保温材は、前記溶融ガラスまたは前記ガラス物品よりも上方に配置される、付記1~3のいずれか1つに記載のガラス製造装置。
[付記5]
 付記1~4のいずれか1つに記載のガラス製造装置を用いて、前記ガラス物品を製造することを含む、ガラス製造方法。
The following notes are disclosed with respect to the above embodiments.
[Appendix 1]
A glass manufacturing apparatus comprising a melting apparatus for obtaining molten glass by melting frit, a forming apparatus for forming the molten glass into a glass article having a desired shape, and a slow cooling apparatus for slowly cooling the glass article. There is
At least one of the melting device, the molding device, and the slow cooling device includes a heat insulating material containing inorganic fibers,
The inorganic fiber contains Al2O3 and SiO2 , the Al2O3 content of the inorganic fiber is 60% by mass or more, and the SiO2 content of the inorganic fiber is 40% by mass or less. Device.
[Appendix 2]
The glass manufacturing apparatus according to appendix 1, wherein the inorganic fiber has an Al 2 O 3 content of 90% by mass or less and a SiO 2 content of 10% by mass or more.
[Appendix 3]
3. The glass manufacturing apparatus according to appendix 1 or 2, wherein the heat insulating material is exposed to an atmosphere to which the molten glass or the glass article is exposed.
[Appendix 4]
the molten glass or the glass article has an upward facing surface;
4. The glass manufacturing apparatus according to any one of Appendices 1 to 3, wherein the heat insulating material is arranged above the molten glass or the glass article.
[Appendix 5]
A glass manufacturing method, comprising manufacturing the glass article using the glass manufacturing apparatus according to any one of Appendices 1 to 4.
 以上、本開示に係るガラス製造装置、及びガラス製造方法について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the glass manufacturing apparatus and the glass manufacturing method according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments and the like. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 本出願は、2022年2月1日に日本国特許庁に出願した特願2022-014214号に基づく優先権を主張するものであり、特願2022-014214号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2022-014214 filed with the Japan Patent Office on February 1, 2022, and the entire contents of Japanese Patent Application No. 2022-014214 are incorporated into this application. .
1  ガラス製造装置
2  溶解装置
3  成形装置
4  徐冷装置
1 glass manufacturing device 2 melting device 3 molding device 4 slow cooling device

Claims (5)

  1.  ガラス原料を溶解することで溶融ガラスを得る溶解装置と、前記溶融ガラスを所望の形状のガラス物品に成形する成形装置と、前記ガラス物品を徐冷する徐冷装置と、を備えるガラス製造装置であって、
     前記溶解装置と前記成形装置と前記徐冷装置の少なくとも一つは、無機繊維を含む保温材を含み、
     前記無機繊維はAlとSiOを含み、前記無機繊維のAl含有量が60質量%以上であり、前記無機繊維のSiO含有量が40質量%以下である、ガラス製造装置。
    A glass manufacturing apparatus comprising a melting apparatus for obtaining molten glass by melting frit, a forming apparatus for forming the molten glass into a glass article having a desired shape, and a slow cooling apparatus for slowly cooling the glass article. There is
    At least one of the melting device, the molding device, and the slow cooling device includes a heat insulating material containing inorganic fibers,
    The inorganic fiber contains Al2O3 and SiO2 , the Al2O3 content of the inorganic fiber is 60% by mass or more, and the SiO2 content of the inorganic fiber is 40% by mass or less. Device.
  2.  前記無機繊維のAl含有量が90質量%以下であり、前記無機繊維のSiO含有量が10質量%以上である、請求項1に記載のガラス製造装置。 The glass manufacturing apparatus according to claim 1, wherein the inorganic fibers have an Al2O3 content of 90 mass% or less, and a SiO2 content of the inorganic fibers of 10 mass% or more.
  3.  前記保温材は、前記溶融ガラスまたは前記ガラス物品が曝される雰囲気に曝されている、請求項1又は2に記載のガラス製造装置。 The glass manufacturing apparatus according to claim 1 or 2, wherein the heat insulating material is exposed to an atmosphere to which the molten glass or the glass article is exposed.
  4.  前記溶融ガラスまたは前記ガラス物品は、上向きの面を有し、
     前記保温材は、前記溶融ガラスまたは前記ガラス物品よりも上方に配置される、請求項1又は2に記載のガラス製造装置。
    the molten glass or the glass article has an upward facing surface;
    The glass manufacturing apparatus according to claim 1 or 2, wherein the heat insulating material is arranged above the molten glass or the glass article.
  5.  請求項1又は2に記載のガラス製造装置を用いて、前記ガラス物品を製造することを含む、ガラス製造方法。 A glass manufacturing method, comprising manufacturing the glass article using the glass manufacturing apparatus according to claim 1 or 2.
PCT/JP2023/002291 2022-02-01 2023-01-25 Glass manufacturing apparatus, and glass manufacturing method WO2023149311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380018696.8A CN118574792A (en) 2022-02-01 2023-01-25 Glass manufacturing apparatus and glass manufacturing method
JP2023578505A JPWO2023149311A1 (en) 2022-02-01 2023-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014214 2022-02-01
JP2022-014214 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149311A1 true WO2023149311A1 (en) 2023-08-10

Family

ID=87552146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002291 WO2023149311A1 (en) 2022-02-01 2023-01-25 Glass manufacturing apparatus, and glass manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2023149311A1 (en)
CN (1) CN118574792A (en)
WO (1) WO2023149311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148001U (en) * 2008-11-11 2009-01-29 東京陶芸器材株式会社 Electric furnace
WO2012026136A1 (en) * 2010-08-27 2012-03-01 AvanStrate株式会社 Device for manufacturing glass substrate and method for manufacturing glass substrate
JP2012140311A (en) * 2011-01-05 2012-07-26 Ibiden Co Ltd Method for producing heat-insulating material
JP2017007916A (en) * 2015-06-25 2017-01-12 日本電気硝子株式会社 Glass melting furnace, and heat insulation method of glass melting furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148001U (en) * 2008-11-11 2009-01-29 東京陶芸器材株式会社 Electric furnace
WO2012026136A1 (en) * 2010-08-27 2012-03-01 AvanStrate株式会社 Device for manufacturing glass substrate and method for manufacturing glass substrate
JP2012140311A (en) * 2011-01-05 2012-07-26 Ibiden Co Ltd Method for producing heat-insulating material
JP2017007916A (en) * 2015-06-25 2017-01-12 日本電気硝子株式会社 Glass melting furnace, and heat insulation method of glass melting furnace

Also Published As

Publication number Publication date
CN118574792A (en) 2024-08-30
JPWO2023149311A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
EP1534639B1 (en) Producing glass using outgassed frit
JP5574454B2 (en) Manufacturing method of glass substrate
KR101488076B1 (en) Method and apparatus for making glass sheet
JP5456789B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
US20080187686A1 (en) Method and Device For Fining and Homogenizing Glass and Products Obtained With the Aid of Said Method
JP7171600B2 (en) Method for reducing the lifetime of bubbles on the surface of a glass melt
WO2013105667A1 (en) Manufacturing device and molding device for glass substrate
JP7421161B2 (en) Method for manufacturing alkali-free glass substrate and alkali-free glass substrate
KR102569274B1 (en) Manufacturing method of glass plate
KR20180115749A (en) Alkali-free boroaluminosilicate glass
CN103261106B (en) The manufacture method of glass plate and device for producing glass sheet
JP2018526314A (en) Tempered glass and related systems and methods
WO2015093432A1 (en) Apparatus for manufacturing float glass and method for manufacturing float glass
JP5731437B2 (en) Manufacturing method of glass plate
US20180155236A1 (en) Light-scattering glass articles and methods for the production thereof
WO2023149311A1 (en) Glass manufacturing apparatus, and glass manufacturing method
JP2021024782A (en) Hot-formed, chemically prestressable glass articles with a low proportion of crystals, particularly plate-shaped, chemically prestressable glass articles, and methods and devices for producing the same
CN105461193A (en) Method for making glass substrate for display
WO2021117618A1 (en) Melted glass transport device, glass article manufacturing device, and glass article manufacturing method
JP6498933B2 (en) Manufacturing method and manufacturing apparatus for glass substrate for display
CN103373803A (en) Glass plate manufacturing method
JP7537271B2 (en) Float glass manufacturing apparatus and float glass manufacturing method
KR102673755B1 (en) High strain point and high Young's modulus glass
US20240150221A1 (en) Cover substrates for an electronic device including post-consumer recycled content and methods of manufacturing the same
JP2024067327A (en) Float glass manufacturing device and float glass manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE