WO2013105667A1 - Manufacturing device and molding device for glass substrate - Google Patents

Manufacturing device and molding device for glass substrate Download PDF

Info

Publication number
WO2013105667A1
WO2013105667A1 PCT/JP2013/050489 JP2013050489W WO2013105667A1 WO 2013105667 A1 WO2013105667 A1 WO 2013105667A1 JP 2013050489 W JP2013050489 W JP 2013050489W WO 2013105667 A1 WO2013105667 A1 WO 2013105667A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet glass
glass
heat
distribution
glass substrate
Prior art date
Application number
PCT/JP2013/050489
Other languages
French (fr)
Japanese (ja)
Inventor
伸広 前田
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201380004438.0A priority Critical patent/CN104024169B/en
Priority to JP2013512920A priority patent/JP5752787B2/en
Publication of WO2013105667A1 publication Critical patent/WO2013105667A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/10Annealing glass products in a continuous way with vertical displacement of the glass products
    • C03B25/12Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets

Definitions

  • the present invention relates to a glass substrate manufacturing method and a molding apparatus for manufacturing a glass substrate.
  • a thin glass plate having a thickness of, for example, 0.5 to 0.7 mm is used for a glass substrate used in a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display.
  • FPD flat panel display
  • the FPD glass substrate has a size of 300 ⁇ 400 mm in the first generation, but has a size of 2850 ⁇ 3050 mm in the tenth generation.
  • the overflow down draw method is often used to manufacture such a large size glass substrate for FPD.
  • the overflow down-draw method includes forming a sheet glass (plate glass) below the molded body by causing the molten glass to overflow from the upper part of the molded body in a molding furnace, and a cooling process of gradually cooling the sheet glass in a slow cooling furnace. including.
  • the slow cooling furnace draws the sheet glass between the pair of rollers and stretches it to a desired thickness, and then slowly cools the sheet glass. Thereafter, the sheet glass is cut into a predetermined size to form a glass plate, which is laminated and stored on another glass plate. Or a glass plate is conveyed by the following process.
  • Patent Document 1 a method capable of suppressing the occurrence of distortion in the width direction of the glass substrate is known (Patent Document 1).
  • This production method is a method for producing a glass substrate by forming molten glass into a sheet shape by a downdraw method, and gradually cooling the obtained sheet glass, in the width direction of the sheet glass.
  • the distortion reduction process for reducing the distortion of the sheet glass generated due to the temperature difference between the (peripheral part) and the central part (surface part) is performed using a plurality of heaters during slow cooling.
  • the temperature of the sheet glass is controlled so that the temperature of the sheet glass is equalized in the width direction in the vicinity of the strain point of the glass.
  • Patent Document 1 a glass having a warp amount and a strain amount that satisfies the requirements of customers such as a film forming company that forms a thin film on the glass substrate using the glass substrate.
  • the substrate could not be produced.
  • the present invention controls the temperature distribution in the width direction of the sheet glass during the cooling process in order to reduce warpage and distortion in the glass substrate, and the glass substrate has a warpage amount and a strain amount that satisfy customer requirements. It aims at providing the manufacturing method and shaping
  • a glass substrate having a small thickness deviation and high flatness is desired. That is, it is preferable to cool the sheet glass that is the base of the glass substrate so that the thickness deviation, warpage, and distortion of the glass substrate are reduced.
  • the molten glass that has flowed down both side walls of the cell is formed into a sheet glass leaving the lower end of the cell.
  • the sheet glass immediately after molding tries to reduce its surface area by its own surface tension, but by increasing the glass viscosity at both ends of the sheet glass as quickly as possible, its action is hindered and the width can be kept wide. it can.
  • the center part of the width direction of sheet glass can produce a glass substrate with few thickness deviations by making temperature distribution uniform.
  • the cooling for reducing the thickness deviation is preferably performed when the central portion in the width direction of the sheet glass is a viscous flow region (in this specification, approximately equal to or higher than the softening point). 2.
  • the sheet glass is strained from between the plastic deformation region (approximately between the softening point and the annealing point in this specification). In order to prevent warping and distortion during the period up to the point). In order to cool the sheet glass so as not to warp, it is cooled so that a tensile stress always acts on the central part in the width direction of the flat sheet glass cooled to reduce the thickness deviation, and the flatness is maintained. It is preferable to do. In order to cool so as not to cause distortion, it is preferable to cool so that the temperature is uniform in the vicinity of the strain point as described above.
  • a temperature distribution in a mountain shape is imparted to the sheet glass so that the temperature of the sheet glass decreases from the center in the width direction of the sheet glass toward both ends in the width direction.
  • This temperature distribution is preferably given immediately after being cooled to a temperature range (for example, a temperature range lower than the softening point) that does not affect the thickness deviation of the sheet glass. Then, as the temperature is cooled, the gradient of the temperature distribution is reduced, and the sheet glass is cooled so that the temperature distribution in a mountain shape is substantially flat near the strain point, that is, the temperature is uniform.
  • the present inventor has studied the reason why a glass substrate having a warpage amount and a strain amount that satisfies customer requirements cannot be produced in the manufacture of a known glass substrate. It was discovered that the temperature distribution in the width direction of the sheet glass is formed stepwise, or that the temperature distribution in the width direction of the sheet glass falls locally and does not become a smooth distribution. . Further, in the cooling of the sheet glass in the plastic deformation region, the smooth mountain shape gradually decreases while the temperature distribution of the sheet glass maintains a smooth mountain shape, and the mountain shape becomes flat near the strain point. Thus, it has been found that it is desirable to adjust the temperature of the sheet glass, and the inventors have come up with the invention of the following aspect.
  • One embodiment of the present invention is a method for manufacturing a glass substrate.
  • the manufacturing method is Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
  • the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass.
  • a cooling step including a slow cooling process in which the temperature distribution is given along the width direction of the cooling.
  • the slow cooling treatment is performed between a slow cooling point position in the flow direction of the sheet glass corresponding to a slow cooling point of the sheet glass and a strain point position in the flow direction of the sheet glass corresponding to a strain point of the sheet glass. In the region of the sheet glass in the flow direction.
  • the heat distribution of the heat source is relaxed by using one soaking plate provided between the sheet glass and the heat source, and the soaking plate relaxes the heat distribution of the heat source. It is preferable to supply heat to the sheet glass.
  • the soaking plate is preferably a stainless metal plate having an oxide film formed on the surface by oxidation treatment.
  • the cooling step is performed using at least a pair of temperature adjusting devices provided on both sides of the sheet glass, and each of the at least one pair of temperature adjusting devices uses the heat source and the heat equalizing plate. It is preferable to supply heat to the sheet glass.
  • the heat distribution is a distribution of a heat generation amount (heating amount) of the heat source.
  • the temperature distribution is preferably a mountain-shaped distribution that is maximum at the center in the width direction or a uniform distribution.
  • the heat distribution is preferably a mountain-shaped distribution that is maximum at the center in the width direction or a uniform distribution.
  • the heat source includes a plurality of heat source elements provided in the width direction, It is preferable that the heat distribution of the heat source includes a distribution in which heat supplied at positions corresponding to the ends in the width direction of the heat source elements decreases.
  • the other aspect of this invention is also a manufacturing method of a glass substrate, A molding step of overflowing the molten glass from the molded body and molding the sheet glass; A pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass. Including a cooling step. In the slow cooling treatment, the sheet glass is gradually cooled between a pair of plate members disposed between the pair of heat sources and the sheet glass.
  • the plate material is a soaking plate that relaxes heat distribution supplied by a heat source provided along the width direction of the sheet glass, and the cooling furnace corresponds to the annealing point of the sheet glass.
  • the cooling furnace corresponds to the annealing point of the sheet glass.
  • a soaking plate In the region in the flow direction of the sheet glass, between the annealing point position in the flow direction of the sheet glass and the strain point position in the flow direction of the sheet glass corresponding to the strain point of the sheet glass, It is preferable to use a soaking plate.
  • the heat source is a heater that radiates heat toward both sides of the sheet glass, and the plate material is disposed so as to block the entire surface of the heater facing the sheet glass. preferable.
  • the molding device is Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
  • a pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass.
  • a cooling furnace for performing In the slow cooling treatment, the sheet glass is gradually cooled between a pair of plate members disposed between the pair of heat sources and the sheet glass.
  • the cooling furnace reduces the heat distribution supplied by the heat source provided along the width direction of the sheet glass in order to reduce warpage and distortion of the glass substrate, Use to cool the sheet glass by giving a temperature distribution along the width direction of the sheet glass,
  • the cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. It is performed in a region in the flow direction of the sheet glass between the point positions.
  • the heat source is a heater that radiates heat toward both surfaces of the sheet glass
  • the plate material is preferably arranged so as to block the entire surface of the heater facing the sheet glass.
  • One embodiment of the present invention is a glass substrate forming apparatus.
  • the molding device is Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
  • the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass.
  • a cooling furnace that performs a slow cooling process in which a temperature distribution is given along the width direction of the cooling.
  • the cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. It is performed in a region in the flow direction of the sheet glass between the point positions.
  • the temperature distribution in the width direction applied to the sheet glass during the cooling process can be smoothed, for example, a smooth distribution with a single mountain shape or a uniform distribution without steps. And warpage and distortion in the glass substrate can be reduced. As a result, it is possible to produce a glass substrate having a warpage amount and a strain amount that satisfies customer requirements.
  • the sheet glass is gradually cooled between the pair of plate materials arranged between the pair of heat sources and the sheet glass, so that scattered matter from the heat source is applied to the sheet glass during the slow cooling process. It can prevent adhesion. Furthermore, even if the sheet glass is broken and glass fragments are scattered on the heat source, the heat source can be protected by the plate material.
  • FIG. 3 is a schematic side view of the molding apparatus shown in FIG. 2.
  • FIG. 3 is a schematic front view of a part of the molding apparatus shown in FIG. 2.
  • FIG. 1 is a diagram illustrating a flow of a glass substrate manufacturing method according to the present embodiment.
  • the glass plate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), a cooling step (ST6), Cutting step (ST7).
  • the manufacturing method of a glass plate has other processes, such as a grinding process, a grinding
  • the plurality of glass plates stacked in the packing process are transported to a supplier (customer) as a delivery destination.
  • FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7).
  • the apparatus mainly includes a melting apparatus 100, a forming apparatus 200, and a cutting apparatus 300.
  • the melting apparatus 100 includes a melting tank 101, a clarification tank 102, a stirring tank 103, a first pipe 104, a second pipe 105, and a third pipe 106.
  • the molding apparatus 200 will be described later.
  • molten glass MG is obtained by melting the glass raw material supplied into the melting tank 101 by heating with a flame and an electric heater (not shown).
  • the clarification step (ST2) is performed in the clarification tank 102, and oxygen contained in the molten glass MG is heated by heating the molten glass MG in the clarification tank 102 supplied from the melting tank 101 through the first pipe 104.
  • SO 2 bubbles grow by the oxidation-reduction reaction of the clarifying agent and float on the liquid surface and are released, or gas components in the bubbles are absorbed into the molten glass MG, and the bubbles disappear.
  • the glass component is homogenized by stirring the molten glass MG in the stirring tank 103 supplied from the clarification tank 102 through the second pipe 105 using the stirrer 103a.
  • the molten glass MG is supplied from the stirring vessel 103 to the molding apparatus 200 through the third pipe 106.
  • a molding process (ST5) and a cooling process (ST6) are performed.
  • the molten glass MG is formed into a sheet glass SG (see FIG. 3) to make a flow of the sheet glass SG.
  • an overflow down draw method using a molded body 210 described later is used.
  • the flow direction (Z direction in the figure) of the sheet glass SG is vertically downward.
  • the cooling step (ST6) the sheet glass SG that is formed and flows has a desired thickness, and is cooled so that warpage and distortion due to cooling do not occur.
  • the sheet glass SG supplied from the forming apparatus 200 is cut into a predetermined length in the cutting apparatus 300, whereby a plate-like glass substrate G is obtained. Then, after grinding and polishing of the end face of the glass substrate G, the glass substrate G is cleaned, and further, the presence or absence of abnormal defects such as bubbles and striae is inspected, and then the glass that has passed the inspection.
  • the substrate G is packed as a final product.
  • the glass substrate G manufactured in the present embodiment is suitably used for, for example, a glass substrate for liquid crystal display, a glass substrate for organic EL display, and a cover glass.
  • the glass substrate can also be used as a display for a portable terminal device, a cover glass for a housing, a touch panel plate, a glass substrate for a solar cell, or a cover glass.
  • it is suitable for a glass substrate for a liquid crystal display using a polysilicon TFT.
  • the thickness of the glass substrate G is, for example, 0.1 mm to 1.5 mm.
  • the thickness is preferably 0.1 to 1.2 mm, more preferably 0.3 to 1.0 mm, even more preferably 0.3 to 0.8 mm, and particularly preferably 0.3 to 0.5 mm.
  • the length in the width direction of the glass substrate G is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • the length of the glass substrate G in the vertical direction is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • composition of glass substrate for example, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, alkali aluminogermanate glass, or the like can be used.
  • the glass applicable to the present invention is not limited to the above.
  • the glass composition of the glass substrate G can mention the following, for example.
  • the content rate display of the composition shown below is mass%. SiO 2 : 50 to 70%, B 2 O 3 : 5 to 18%, Al 2 O 3 : 0 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5 to 20% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass plate contains), It is preferable that it is an alkali free glass containing.
  • the glass of the glass substrate G can have the following glass composition: SiO 2 : 50 to 70%, B 2 O 3 : 1-10%, Al 2 O 3 : 0 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5-30% (where R is the total amount of Mg, Ca, Sr and Ba), Similarly, it is also preferable that the glass be an alkali-free glass.
  • the glass substrate G may be alkali-containing glass containing a trace amount of alkali metal.
  • the total of R ′ 2 O exceeds 0.20% and 0.5% or less (provided that R ′ is at least one selected from Li, Na and K, and the glass substrate G contains It is preferable to include.
  • the content of iron oxide in the glass is more preferably 0.01 to 0.2% from the viewpoint of reducing the specific resistance.
  • the content of tin oxide added as a fining agent is more preferably 0.01 to 0.5%.
  • FIG. 3 and 4 are diagrams mainly showing the configuration of the molding apparatus 200 for the glass substrate G
  • FIG. 3 is a schematic side view of the molding apparatus 200
  • FIG. 4 is a partially schematic front view of the molding apparatus 200.
  • the molding apparatus 200 includes a molding furnace 201 that performs a molding process (ST5) and a slow cooling furnace 202 that performs a cooling process (ST6).
  • the slow cooling furnace 202 is a furnace extending from below the atmosphere partition member 220 described later to the cutting device 300.
  • the width direction of the sheet glass SG formed in the forming step (ST5) (horizontal in the forming apparatus 200 shown in FIG. 2).
  • the sheet glass SG is subjected to a slow cooling process for cooling while giving a temperature distribution along the width direction of the sheet glass SG.
  • This slow cooling treatment in the cooling step (ST6) is performed in the flow direction of the sheet glass SG corresponding to the slow cooling point position in the flow direction of the sheet glass SG corresponding to the slow cooling point of the sheet glass SG and the strain point of the sheet glass SG. This is performed in a region in the flow direction of the sheet glass SG between the strain point position.
  • the annealing point position means a position where the maximum temperature of the temperature distribution becomes the annealing point, and similarly, the strain point position indicates that the maximum temperature of the temperature distribution becomes the distortion point.
  • the annealing point is a temperature corresponding to the viscosity of 10 13 poise of the sheet glass SG
  • the strain point is a temperature corresponding to the viscosity of 10 14.5 poise of the sheet glass SG.
  • the forming furnace 201 and the slow cooling furnace 202 are configured to be surrounded by a furnace wall made of a refractory material such as a refractory brick, a refractory heat insulating brick, or a fiber-based heat insulating material.
  • the forming furnace 201 is provided vertically above the slow cooling furnace 202.
  • a plurality of transports including a molded body 210, an atmosphere partition member 220, a cooling roller 230, a cooling unit 240, and transport rollers 250a to 250c.
  • a roller and a plurality of temperature adjusting devices are provided.
  • the formed body 210 forms molten glass MG flowing from the melting apparatus 100 through the third pipe 106 into a sheet glass SG. Thereby, the flow of the sheet glass SG in the vertically lower direction is created in the forming apparatus 200.
  • the molded body 210 is a long and narrow structure made of firebrick or the like, and has a wedge-shaped cross section as shown in FIG.
  • a groove 212 serving as a flow path for guiding the molten glass MG is provided in the upper part of the molded body 210.
  • the groove 212 is connected to the third pipe 106 at a supply port 211 (shown in FIG. 4) provided in the molded body 210, and the molten glass MG flowing through the third pipe 106 flows along the groove 212.
  • the depth of the groove 212 is shallower toward the downstream side of the flow of the molten glass MG, so that the molten glass MG overflows vertically downward from the groove 212.
  • the molten glass MG overflowing from the groove 212 flows down along the side walls on both sides of the molded body 210.
  • the molten glass MG that has flowed through the side walls merges at the lower end 213 (shown in FIG. 3) of the molded body 210 to form one sheet glass SG.
  • the sheet glass SG flows in the Z direction, which is the flow direction of the sheet glass SG shown in FIG.
  • the temperature of the sheet glass SG immediately below the lower end portion 213 of the molded body 210 is a temperature corresponding to a viscosity of 10 5.7 to 10 7.5 poise (for example, 1000 to 1130 ° C.).
  • an atmosphere partition member 220 is provided in the vicinity of the lower end 213 of the molded body 210.
  • the atmosphere partition member 220 is a pair of plate-like heat insulating members, and is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction (X direction in the drawing). Yes.
  • a gap is provided between the sheet glass SG and the atmosphere partition member 220 to such an extent that the atmosphere partition member 220 does not contact the sheet glass SG.
  • the atmosphere partition member 220 partitions the internal space of the molding furnace 201, thereby blocking heat transfer between the furnace internal space above the atmosphere partition member 220 and the furnace internal space below.
  • An air-cooled cooling roller 230 is provided below the atmosphere partition member 220. As shown in FIG. 3, the cooling roller 230 is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction. Further, as shown in FIG. 4, the cooling roller 230 contacts the surface of the sheet glass SG at both ends in the width direction (Y direction in the drawing) of the sheet glass SG to cool the sheet glass SG. The cooling roller 230, until the decrease in temperature (for example 900 ° C. or less) the temperature of the widthwise end portions of the sheet glass SG is equivalent to about 10 9.0 poise or more viscosity, it is preferable to cool. Further, a pair of end cooling units 244 (see FIG.
  • the edge part cooling unit 244 is comprised from the water cooling plate which is not shown in figure, and has opposed the both ends of the sheet glass SG. Thereby, both ends of the sheet glass SG are efficiently cooled.
  • a cooling unit 240 is provided below the atmosphere partition member 220.
  • the cooling unit 240 includes a central cooling unit 242 and the end cooling unit 244 described above.
  • the entire casing is cooled by cooling air sent from a cooling pipe provided in the casing (not shown).
  • the outer surface of this housing is opposed to the central portion in the width direction of the sheet glass SG.
  • the central cooling unit 242 is provided in at least three stages downward from the same position in the Z direction (flowing direction of the sheet glass SG) as the cooling roller 230. Thereby, the center part of the sheet glass SG is cooled efficiently. As shown in FIG.
  • the central cooling unit 242 is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction above the top plate 202 a of the slow cooling furnace 202. Yes.
  • the uppermost center cooling unit 242 cools the sheet glass SG until the maximum temperature (temperature at the center) of the sheet glass SG decreases to a temperature near the softening point.
  • the cooling action of the central cooling unit 242 is adjusted and cooled so that the temperature distribution in the central portion in the width direction of the sheet glass SG becomes a substantially uniform temperature distribution.
  • the softening point refers to the glass temperature corresponding to a viscosity of about 10 7.6 poise.
  • the center cooling unit 242 and the end cooling unit 244 in the second and subsequent stages change the sheet from a uniform temperature distribution in the center in the width direction to a temperature distribution in a mountain shape having a smooth temperature gradient.
  • the glass SG is cooled.
  • the central cooling unit 242 and the end cooling unit 244 in the third and subsequent stages are gradually cooled while the maximum temperature of the sheet glass SG (the temperature of the central part) is maintained while maintaining a temperature distribution with a smooth temperature gradient.
  • the sheet glass SG is cooled until it falls to a temperature near the point.
  • both ends in the width direction of the sheet glass SG are cooled by the cooling roller 230, the end cooling unit 244, and the multi-stage central cooling unit 242. .
  • a temperature adjusting device is provided in a region sandwiched between the top plate 202a and the top plate 202b below the top plate 202a.
  • conveyance rollers 250a are provided on both sides in the thickness direction of the sheet glass SG.
  • a soaking plate 260 and a heater unit 270 as a heat source are provided as temperature adjusting devices on both sides in the thickness direction of the sheet glass SG.
  • the heat equalizing plate 260 is a single stainless steel plate that is provided in parallel to both sides of the sheet glass SG and extends in the width direction so as to correspond to the width in the width direction of the sheet glass SG.
  • the heater unit 270 includes a plurality of heaters provided along the width direction of the sheet glass so that a mountain-shaped temperature distribution is formed in the sheet glass SG along the width direction of the sheet glass SG. Each heater can adjust the amount of heat generated.
  • the soaking plate 260 is a single plate-like member provided between the sheet glass SG and the heater unit 270 that is a heat source.
  • the soaking plate 260 has a function of soaking heat distribution of the heat generated by the heater unit 270 that is a heat source and supplying heat to the sheet glass SG (soaking effect). Specifically, the soaking plate 260 diffuses the heat received from the heater unit 270 with a different calorific value to form a smooth temperature distribution, and supplies heat to the sheet glass SG according to the smooth temperature distribution. Thereby, the temperature distribution along the width direction of the sheet glass SG becomes a smooth mountain shape.
  • the soaking plate 260 and the heater unit 270 will be described later.
  • a temperature adjusting device using another heat equalizing plate 260 and a heater unit 270 is further provided.
  • the value when dividing by the time to pass between the top plates to be performed is smaller than the cooling rate (° C./second) of the sheet glass SG between the atmosphere partition member 220 and the top plate 202a. Therefore, the cooling of the sheet glass SG between the atmosphere partition member 220 and the top plate 202a is the first cooling, and the cooling of the sheet glass SG between the adjacent top plates below the top plate 202a in the Z direction is the second cooling. At this time, the cooling rate of the sheet glass SG in the second cooling is smaller than the cooling rate of the sheet glass SG in the first cooling. Therefore, the second cooling is also called slow cooling.
  • soaking is performed so that the sheet glass SG has a temperature distribution corresponding to a predetermined temperature distribution in the slow cooling process performed on the downstream side in the flow direction of the sheet glass SG from the top plate 202a.
  • the sheet glass SG is gradually cooled by a temperature adjusting device using the plate 260 and the heater unit 270. This cooling is performed through temperature control of a control device (not shown).
  • FIG. 5 is a view for explaining the soaking plate 260 and the heater unit 270.
  • the heater unit 270 is divided into five heaters 270a to 270e along the width direction of the sheet glass SG, and each of the heaters 270a to 270e generates heat.
  • the heaters 270a to 270e shown in FIG. 5 are arranged adjacent to each other without a gap in the width direction of the sheet glass SG, they may be arranged with a certain gap in the width direction of the sheet glass SG. Good.
  • the heaters 270a to 270e include a heat source such as a chromium-based heating wire, for example.
  • the respective calorific values of the five heaters 270a to 270e can be individually adjusted.
  • the heaters 270a to 270e are adjacent to each other between the annealing point and the strain point, as will be described later, in order to give the sheet glass SG a temperature distribution having a mountain shape. Control is made so that the amount of heat generated differs between the heaters. That is, the heater unit 270 supplies heat toward the sheet glass SG with a heat distribution along the Y direction.
  • the heat distribution of the heat generated by the heater unit 270 is the distribution of the amount of heat generated by the heaters 270a to 270e.
  • This heat distribution is, for example, a distribution that becomes maximum at the center position in the width direction of the sheet glass SG.
  • the soaking plate 260 is a single plate member provided corresponding to the entire width of the heater unit 270 including the heaters 270a to 270e. Each of the heaters 270a to 270e supplies heat toward the soaking plate 260, and the soaking plate 260 is heated by the supplied heat, and the temperature is increased in the Y direction (width direction of the sheet glass SG) shown in FIG. Form a distribution.
  • a temperature distribution having a step corresponding to the amount of heat generated by the heaters 270a to 270e is formed by the heat from the heaters 270a to 270e.
  • Each temperature is diffused and transmitted in the Y direction by heat conduction of the soaking plate 260 and further in the thickness direction of the soaking plate 260 by heat conduction. Therefore, the temperature distribution with a step is relaxed and becomes gradually smoother.
  • the plate thickness of the soaking plate 260 is sufficiently smaller than the width of the soaking plate 260 in the Y direction, the temperature distribution on the surface of the soaking plate 260 on the side facing the sheet glass SG is not uniform and smooth.
  • the soaking plate 260 radiates heat with a temperature distribution in which the stepped temperature distribution is relaxed and becomes a smooth mountain shape with respect to the sheet glass SG.
  • the sheet glass SG can have a temperature distribution having a smooth mountain shape.
  • the heat flux in the heat conduction in the plane direction of the soaking plate 260 is excessively large in the soaking plate 260, the temperature difference of the temperature distribution of the sheet glass SG to be realized by the heater divided in the width direction (Y direction) is increased. The harmful effect of being reduced occurs.
  • the heat flux is too small, the soaking effect expected is not fully exhibited, and the stepwise heat radiation distribution (calorific value distribution) emitted from the heater can be converted into a gentle temperature gradient on the glass surface. Can not. For this reason, it is necessary to select a material having an appropriate thermal conductivity and to select a thickness (plate thickness) according to the selected material.
  • a stainless metal plate is preferably used for the soaking plate 260.
  • the thermal conductivity of the soaking plate 260 is preferably 10 W / (m ⁇ K) or more from the viewpoint of thermally radiating the sheet glass SG with a temperature distribution having a smooth mountain shape.
  • the thermal conductivity of the soaking plate 260 is more preferably 15 W / (m ⁇ K) or more.
  • the thermal conductivity of the soaking plate 260 is preferably 90 W / (m ⁇ K) or less, and more preferably 80 W / (m ⁇ K) or less.
  • the thermal conductivity of the soaking plate 260 is less than 10 W / (m ⁇ K)
  • the plate thickness of the soaking plate 260 becomes excessively large in order to obtain the above-described appropriate heat flux, and the heater as a heat source
  • the heat exchange rate between 270a to 270e and the sheet glass SG is deteriorated and the thermal conductivity of the soaking plate 260 exceeds 90 W / (m ⁇ K)
  • the above-mentioned appropriate heat flux is obtained.
  • the plate thickness of the soaking plate 260 becomes excessively small, and the strength of the soaking plate 260 decreases.
  • the plate thickness of the soaking plate 260 should be about 1.5 to 8 mm when using stainless steel with a thermal conductivity of around 16 W / (m ⁇ K). It is preferable from the viewpoint of thermally radiating the sheet glass SG with the temperature distribution obtained, and more preferably 1.5 to 3 mm.
  • the soaking plate 260 is coated with a ceramic paint to improve the emissivity and increase the heat exchange efficiency between the heaters 270a to 270e and the sheet glass SG and to improve the emissivity of the surface.
  • an oxide film obtained by subjecting the surface to oxidation treatment for example, a passive film (super black treatment film) may be formed.
  • a passive film (super black treatment film) having a film thickness of about 1 ⁇ m is formed in terms of preventing unnecessary particles, dust, and the like from adhering to the surface of the sheet glass SG.
  • a passive film super black treatment film
  • the soaking plate 260 is also a plate material for preventing scattered matter from the heater heating element from adhering to the sheet glass SG.
  • the soaking plate 260 is also a plate material that protects the heating element of the heater from glass fragments even if the sheet glass SG is broken. For example, when the heat source is a chromium-based heating wire, chromium and the like are gradually peeled off from the surface due to oxidation and become scattered matter, but the soaking plate 260 prevents the scattered matter from adhering to the sheet glass SG. be able to.
  • plate material is heat-resistant.
  • the material is not limited to a material having a high thermal conductivity such as a stainless metal plate such as the soaking plate 260. That is, when the plate material is the soaking plate 260, the above-described soaking effect can be obtained.
  • the heater unit 270 is a heater that radiates heat toward both sides of the sheet glass SG, and the soaking plate 260 is disposed so as to block the entire surface of the heaters 270a to 270e facing the sheet glass SG. It is preferable.
  • a pair of soaking plates 260 disposed between the pair of heater units 270 and the sheet glass SG are used as a pair of plates, and the sheet glass SG is gradually passed between the pair of plates. Cool down.
  • the surface of the soaking plate 260 is preferably a diffuse reflection surface, particularly when the emissivity is low (that is, the reflectivity is high), from the viewpoint that the temperature distribution of the sheet glass SG can be controlled effectively.
  • the surface of the soaking plate 260 is a specular reflection surface
  • the heat rays (heat radiation) radiated from the sheet glass SG are specularly reflected by the surface of the soaking plate 260 and recurs to the sheet glass SG.
  • the risk of deteriorating the temperature distribution of the sheet glass SG by the reflection state according to the surface shape of 260 increases.
  • the diffuse reflection surface refers to a light reflection surface having a rough or uneven surface, and refers to a surface on which incident light does not reflect only in one specific direction but reflects at various angles.
  • the heaters 270a to 270e are provided as the heat source elements along the width direction of the sheet glass SG.
  • the heaters 270a to 270e do not emit heat at the ends in the width direction, or the generated heat is low.
  • the heat distribution of the heat provided by the heater unit 260 may have a distribution in which the heat decreases at positions corresponding to the widthwise ends of the heaters 270a to 270e. Even in such a case, it is possible to provide the sheet glass SG with a smooth mountain-shaped temperature distribution relaxed by using the heat equalizing plate 260 or a constant temperature distribution.
  • FIG. 6 is a diagram for explaining a plurality of temperature distributions used as a reference used for temperature adjustment of the sheet glass SG.
  • Such temperature distribution is memorize
  • the first temperature distribution P1, the second temperature distribution P2, the third temperature distribution P3, and the fourth temperature distribution P4 are set along the flow direction of the sheet glass SG.
  • These temperature distributions are targets of the furnace atmosphere temperature distribution measured by a plurality of temperature sensors provided in each of the regions (a plurality of regions sandwiched between the top plates) for adjusting the temperature distribution of the sheet glass SG. Temperature distribution.
  • the actual temperature of the sheet glass SG is considered to be several tens of degrees lower than this temperature distribution.
  • the second temperature distribution P2 is set on the downstream side in the flow direction of the sheet glass SG with respect to the first temperature distribution P1, and the third temperature distribution P3 is in the flow direction of the sheet glass SG with respect to the second temperature distribution P2.
  • the 4th temperature distribution P4 is each set in the flow direction downstream of the sheet glass SG rather than the 3rd temperature distribution P3.
  • the first distribution P1a shown in FIG. 6 corresponds to the temperature distribution at the center in the width direction of the sheet glass SG, and the second distribution P1b is at both ends in the width direction of the sheet glass SG.
  • the first temperature distribution P1 has a uniform temperature in the center of the Y direction (the width direction of the sheet glass SG) at the same position in the flow direction of the sheet glass SG, and the temperature at both ends in the Y direction is the center in the Y direction. It is set to be lower than the temperature of the part.
  • the thickness deviation of the glass substrate G can be reduced by setting the temperature of the central portion in the Y direction of the sheet glass SG to be uniform.
  • the difference between the temperature at the center in the Y direction (average temperature) and the temperatures at both ends in the Y direction is set to the first temperature difference T1.
  • the cooling roller 230 and the uppermost central cooling unit 242 cool the sheet glass SG based on the set first temperature distribution P1. More specifically, the cooling roller 230 is based on the second distribution P1b of the first temperature distribution P1 until the temperature at both ends in the Y-direction decreases to a temperature corresponding to a viscosity of about 10 9.0 poise or more. , Quench both ends in the Y direction. The rapid cooling of both ends in the Y direction prevents the surface area of the sheet glass SG immediately below the formed body 210 from being reduced by the surface tension of the sheet glass SG by rapidly increasing the viscosity at both ends in the Y direction, and thus the sheet. This is to keep the width of the glass SG constant.
  • the uppermost center cooling unit 242 has a temperature in the Y direction center that is higher than the temperatures in both ends in the Y direction based on the first distribution P1a of the first temperature distribution P1, and the center in the Y direction.
  • the amount of cooling is adjusted in accordance with the ambient temperature measured by a temperature sensor (not shown) so that the temperature of the sheet glass SG becomes substantially uniform in the Y direction, and the Y direction center portion of the sheet glass SG is cooled. Thereby, the temperature distribution corresponding to 1st temperature distribution P1 is provided to the sheet glass SG.
  • the second temperature distribution P2 is set so that the temperature of the sheet glass SG is lower at any position than the first distribution P1.
  • the second temperature distribution P2 has a first distribution P2a and a second distribution P2b, and has a mountain shape.
  • the first distribution P2a corresponds to the temperature distribution at the center in the Y direction
  • the second distribution P2b corresponds to the temperature distribution at both ends in the Y direction.
  • the second temperature distribution P2 is such that, at the same position in the flow direction of the sheet glass SG, the temperature in the center in the Y direction decreases from the center in the Y direction toward both ends in the width direction, and at both ends in the Y direction.
  • the temperature is set to be lower than the temperature at the center in the Y direction.
  • the difference between the temperature at the center in the width direction of the sheet glass SG and the temperature at both ends in the width direction of the sheet glass SG is set to be the second temperature difference T2.
  • the cooling units 240 the second-stage central cooling unit 242 and the pair of end cooling units 244 have a mountain-shaped second temperature distribution according to the furnace atmosphere temperature measured by a temperature sensor (not shown).
  • the sheet glass SG is cooled by controlling the cooling amount based on P2. Thereby, the temperature distribution corresponding to 2nd temperature distribution P2 is provided to the sheet glass SG.
  • the third and subsequent central cooling units 242 and the pair of end cooling units 244 in the cooling unit 240 are formed in a predetermined mountain shape according to the furnace atmosphere temperature measured by a temperature sensor (not shown).
  • the sheet glass SG is cooled by controlling the cooling amount based on the temperature distribution.
  • the temperature distribution set in this case becomes lower as it goes downstream in the flow direction of the sheet glass SG, the mountain shape of the temperature distribution becomes gentler, and the temperature gradient in the width direction becomes smaller.
  • the third temperature distribution P3 is set so that the temperature of the sheet glass SG is lower at any position than the second distribution P2.
  • the third temperature distribution P3 is such that, at the same position in the flow direction of the sheet glass SG, the temperature in the center in the Y direction decreases smoothly from the center in the Y direction toward both ends in the Y direction, and both ends in the Y direction.
  • the temperature of the part is set to be lower than the temperature of the central part in the Y direction.
  • the difference between the temperature at the center in the Y direction and the temperature at both ends in the Y direction is set to be the third temperature difference T3.
  • the third temperature difference T3 is smaller than the second temperature difference T2.
  • the heater unit 270 and the soaking plate 260 cool the sheet glass SG while controlling the amount of heat generated by the heater unit 270 based on the third temperature distribution P3 according to the ambient temperature measured by a temperature sensor (not shown). .
  • This cooling is performed using a heater unit 270 and a soaking plate 260 provided between the top plate 202a and the top plate 202b.
  • the smooth temperature distribution of the mountain shape corresponding to 3rd temperature distribution P3 is provided to the sheet glass SG.
  • cooling is performed so that the maximum temperature of the sheet glass SG passes through the annealing point, which is the glass temperature corresponding to a viscosity of about 10 13 poise. It has been broken.
  • the fourth temperature distribution P4 is substantially uniform along the width direction of the sheet glass SG.
  • the reason for making the temperature distribution uniform in this way is to make the residual strain in the glass substrate as the final product as small as possible.
  • the temperature distribution in the width direction of the sheet glass SG is not uniform in the vicinity of the strain point, which is the glass temperature corresponding to the viscosity of about 10 14.5 poise, the residual strain in the glass substrate that is the final product is As a result, the temperature distribution in the width direction of the sheet glass SG is made uniform in the vicinity of the strain point. For this reason, the 4th temperature distribution P4 is used in the area used as the strain point of the sheet glass SG.
  • the control based on the temperature distribution is performed using a heater unit 270 and a soaking plate 260 provided below the top plate 202b. Therefore, in the cooling (second cooling) of the sheet glass SG performed on the downstream side of the flow of the sheet glass SG from the top plate 202a, not only the temperature of the sheet glass SG, that is, the temperature of the center portion, The sheet glass SG is cooled so as to simultaneously pass through the vicinity of the strain point of the glass SG. Thereby, a certain temperature distribution without a step corresponding to the fourth temperature distribution P4 is given to the sheet glass SG.
  • the maximum temperature of the sheet glass SG (the temperature at the center) is the annealing point and the strain point.
  • the sheet glass SG is cooled so as to pass through.
  • at least one temperature distribution may be set between the third temperature distribution P3 and the fourth temperature distribution, and the sheet glass SG may be cooled based on the temperature distribution.
  • the cooling of the sheet glass SG using this temperature distribution is performed by using the heater unit 270 and the soaking plate 260 for cooling the sheet glass SG based on the third temperature distribution, and the sheet based on the fourth temperature distribution.
  • the heating is performed using the heater unit 270 and the soaking plate 260 provided in the area between the heater unit 270 and the soaking plate 260 for cooling the glass SG.
  • the temperature distribution set in this case is, of course, a distribution in which the mountain shape is gentler than the third temperature distribution P3.
  • the region downstream of the top plate 202a in the flow direction of the sheet glass SG is a temperature region in which the sheet glass SG passes through the annealing point to the strain point. That is, since this temperature region is a temperature region in which the sheet glass SG is plastically deformed, this embodiment gives a smooth temperature distribution to the sheet glass SG so as to reduce the amount of warpage of the sheet glass SG in the temperature region. Cool down. In the present embodiment, the sheet glass SG is cooled so that the cooling amount (volume shrinkage amount) at the center of the sheet glass SG is larger than the cooling amount (volume shrinkage amount) at both ends in the above temperature region.
  • this embodiment can reduce the curvature amount of the glass substrate G.
  • FIG. when the temperature distribution of the sheet glass SG is not uniform at the strain point of the sheet glass SG, residual strain occurs in the glass substrate G.
  • the temperature distribution of the sheet glass SG is at the strain point of the sheet glass SG. Since it becomes substantially uniform, residual strain in the glass substrate G can also be reduced.
  • the temperature distribution of the sheet glass SG is controlled based on the first temperature distribution P1, the thickness deviation in the glass substrate can also be reduced.
  • the heater unit 270 provided along the width direction is used as a heat source for cooling while controlling the temperature distribution.
  • the heat distribution of the heater unit 270 which is a heat source, is relaxed by using the heat equalizing plate 260, so that a smooth temperature distribution without a step, for example, a smooth mountain-shaped temperature distribution or a smooth uniform temperature distribution can be obtained.
  • the glass substrate G which has the curvature amount and distortion amount which satisfy a customer's request
  • the heat distribution of the heater unit 270 that is a heat source is reduced because the single heat equalizing plate 260 provided between the sheet glass SG and the heater unit 270 reduces the heat distribution of the heater unit 270. Even if there is a step in the heat distribution generated by the above, it is possible to provide a relaxed and smooth temperature distribution (a temperature distribution in a mountain shape or a uniform temperature distribution) over the entire width of the sheet glass SG. For this reason, the curvature amount and distortion amount in the glass substrate G can be further reduced.
  • the soaking plate 260 of the present embodiment is a stainless metal plate having an oxide film formed on the surface by oxidation treatment, the emissivity of heat radiated from the soaking plate 260 to the sheet glass SG is increased. Therefore, the heat distribution generated by the heater unit 270 can be effectively relaxed by the soaking plate 260.
  • At least a pair of temperature adjusting devices are provided on both sides of the sheet glass SG, and each of the pair of temperature adjusting devices uses the heater unit 270 and the soaking plate 260 to heat the sheet glass SG. Therefore, the temperature distribution of the sheet glass SG can be controlled from both sides of the sheet glass SG. For this reason, the curvature amount and distortion amount in the glass substrate G can be reduced.
  • the heater unit 270 supplies heat to the heat equalizing plate 260 according to the distribution of the amount of heat generated by the heater unit 270, so the temperature of the sheet glass SG is easily controlled by the amount of heat generated by the heaters 270a to 270e. be able to.
  • the distribution of the calorific value is a single mountain-shaped distribution that is maximized at the center in the width direction of the sheet glass SG, and therefore, a single temperature that is a preferable temperature distribution that can reduce the amount of warpage in the glass substrate G.
  • the temperature distribution of the shape can be efficiently given to the sheet glass SG.
  • the distribution of the calorific value is a uniform distribution, it is possible to efficiently give the sheet glass SG a uniform temperature distribution without a step, which is a preferable temperature distribution capable of reducing the amount of distortion in the glass substrate G. it can.
  • a distribution in which the heat distribution of the heat supplied by the heater unit 270 toward the sheet glass SG includes a distribution that decreases at positions corresponding to the widthwise ends of the sheet glass SG of the respective heaters 270a to 270e, and as a result includes a step. Even so, the soaking plate 260 can provide the sheet glass SG with a smooth, uniform temperature distribution or a uniform temperature distribution by relaxing the heat distribution of the heat generated by the heater unit 270.
  • FIG. 7 is a schematic diagram comparing the temperature distribution A of the sheet glass SG when there is no soaking plate 260 and the temperature distribution B of the sheet glass SG formed corresponding to the above-described third temperature distribution P3. is there.
  • the temperature distribution A of the sheet glass SG has a level difference depending on the amount of heat generated by the heaters 270a to 270e.
  • a smooth mountain shape like the temperature distribution B is obtained. For this reason, it can suppress that the sheet glass SG and by extension the glass substrate G originate in the level
  • the heaters 270a to 270e are arranged in the width direction with a gap therebetween, so that the temperature distribution of the sheet glass SG is locally corresponding to the gap. Even in the case of a distribution that falls, by providing the soaking plate 260 between the sheet glass SG and the heaters 270a to 270e, a smooth mountain shape like the temperature distribution B is obtained. For this reason, it can suppress that the sheet glass SG and by extension the glass substrate G originate in the level
  • FIG. 8 is an actual measurement diagram showing how the measured temperature of the surface of the sheet glass SG changes depending on the presence or absence of the soaking plate 260.
  • the measured temperature is measured using an infrared radiation thermometer directly under the soaking plate.
  • the heater unit 270 is provided with seven heaters in the width direction, the central heater 1 is the longest in the width direction, and is changed according to the total width of the sheet glass SG, and six heaters ( In FIG. 8, only heaters 2 to 4 are shown. Of the heaters 2 to 4, the heaters 3 and 4 have a constant length regardless of the total width of the sheet glass SG, and the heater 2 adjacent to the central heater is approximately 1.5 times longer than the heaters 3 and 4.
  • FIG. 8 shows the temperature distribution on one side from the center of the sheet glass SG. Since there is no soaking plate 260, the heat of the heater is directly transferred, so the temperature of the sheet glass SG is higher than when there is a soaking plate, but the temperature drops locally in the region X and decreases. ing. This decrease in temperature is about 1.5 degrees.
  • Such a region X in which the temperature decreases corresponds to a gap between the heater 1 and the heater 2, between the heater 2 and the heater 3, and between the heater 3 and the heater 4.
  • the temperature distribution of the sheet glass SG is a one-sided temperature distribution.
  • the glass temperature is lowered from several degrees C. to several tens of degrees C. compared to the case where the soaking plate 260 is not present.
  • the degree of reduction depends on the emissivity of the soaking plate 260, and the degree of reduction becomes smaller as the emissivity approaches 1.0. Therefore, keeping the emissivity of the soaking plate 260 high is important for improving the heat exchange efficiency between the heaters 1 to 4 and the sheet glass SG.
  • the glass substrate was manufactured using the manufacturing method of a glass substrate.
  • the glass raw material was prepared so that it might become the following compositions. SiO 2 61%, Al 2 O 3 17%, B 2 O 3 11%, CaO 6%, SrO 3%, BaO 1%
  • the flatness of the glass substrate produced by the glass substrate molding apparatus having the soaking plate 260 of the present embodiment is equal to the glass substrate produced by the conventional glass substrate molding apparatus not having the soaking plate 260.
  • the flatness was reduced by 5%.
  • the amount of strain of the glass substrate manufactured by the glass substrate molding apparatus having the soaking plate 260 of the present embodiment was reduced by 5% from the amount of strain of the glass substrate manufactured by the conventional glass substrate molding apparatus.
  • about flatness it measured using the laser displacement meter.
  • the birefringence amount is measured at a plurality of predetermined measurement positions using a birefringence measuring instrument ABR-10A manufactured by UNIOPT, and the maximum value of the measured birefringence amounts is used as the distortion amount. Adopted. From this, the effect of the manufacturing method of the glass substrate of this embodiment is clear.
  • At least a pair of temperature adjusting devices including the heater unit 270 and the heat equalizing plate 260 are provided on both sides of the sheet glass SG to perform cooling, but the temperature adjusting device is the sheet glass SG. You may cool by the structure provided only in the surface of one side. However, in order to further reduce warpage and distortion in the glass substrate, it is preferable that the temperature adjusting device is provided on both surfaces of the sheet glass SG.
  • a heater unit including a plurality of heaters is used as a heat source.
  • the heat source is not limited to a heater that is a heat source that radiates heat, and a high-temperature air blowing device that provides hot air toward the sheet glass SG is used as a sheet.
  • a plurality of glass SGs may be provided in the width direction.

Abstract

In the manufacture of a glass substrate, continuous sheet glass is molded by causing molten glass to overflow from a molding body to thereby create the flow of the sheet glass. When the sheet glass is cooled, annealing in which while the distribution of heat supplied by a heat source provided along the width direction of the sheet glass is eased, the sheet glass is cooled by giving a temperature distribution thereto along the width direction of the sheet glass by means of the heat source in order to reduce the warpage and strain of the glass substrate is performed. This annealing is performed in a region in the flow direction of the sheet glass between an annealing point position in the flow direction of the sheet glass corresponding to the annealing point of the sheet glass and a strain point position in the flow direction of the sheet glass corresponding to the strain point of the sheet glass.

Description

ガラス基板の製造方法及び成形装置Glass substrate manufacturing method and molding apparatus
 本発明は、ガラス基板を製造するガラス基板の製造方法及び成形装置に関する。 The present invention relates to a glass substrate manufacturing method and a molding apparatus for manufacturing a glass substrate.
 液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下、「FPD」という。)に用いるガラス基板には、厚さが例えば0.5~0.7mmと薄いガラス板が用いられている。このFPD用ガラス基板は、例えば第1世代では300×400mmのサイズであるが、第10世代では2850×3050mmのサイズになっている。 A thin glass plate having a thickness of, for example, 0.5 to 0.7 mm is used for a glass substrate used in a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display. For example, the FPD glass substrate has a size of 300 × 400 mm in the first generation, but has a size of 2850 × 3050 mm in the tenth generation.
 このような大きなサイズのFPD用ガラス基板を製造するには、オーバーフローダウンドロー法がよく使用される。オーバーフローダウンドロー法は、成形炉において熔融ガラスを成形体の上部から溢れさせることにより成形体の下方においてシートガラス(板状ガラス)を成形する工程と、シートガラスを徐冷炉において徐冷する冷却工程とを含む。徐冷炉は、対になったローラ間にシートガラスを引き込むことにより所望の厚さに引き伸ばした後、シートガラスを徐冷する。この後、シートガラスは、所定の寸法に切断されてガラス板とされて他のガラス板上に積層されて保管される。あるいはガラス板は次工程に搬送される。 The overflow down draw method is often used to manufacture such a large size glass substrate for FPD. The overflow down-draw method includes forming a sheet glass (plate glass) below the molded body by causing the molten glass to overflow from the upper part of the molded body in a molding furnace, and a cooling process of gradually cooling the sheet glass in a slow cooling furnace. including. The slow cooling furnace draws the sheet glass between the pair of rollers and stretches it to a desired thickness, and then slowly cools the sheet glass. Thereafter, the sheet glass is cut into a predetermined size to form a glass plate, which is laminated and stored on another glass plate. Or a glass plate is conveyed by the following process.
 このようなオーバーフローダウンドロー法を用いるガラス基板の製造方法として、ガラス基板の幅方向の歪みが発生するのを抑制することができるものが知られている(特許文献1)。
 この製造方法は、ダウンドロー法によって、熔解ガラスをシート状に成形し、得られたシートガラスを徐冷することによりガラス基板を製造する方法であって、前記シートガラスの幅方向における、端部(周辺部)と中央部(表面部)の温度差によって発生するシートガラスの歪を低減する歪低減処理を、徐冷の際に複数のヒータを用いて行っている。歪低減処理では、ガラスの歪点近傍において、シートガラスの温度が幅方向に均等化されるようにシートガラスの温度が制御されている。
As a method for manufacturing a glass substrate using such an overflow downdraw method, a method capable of suppressing the occurrence of distortion in the width direction of the glass substrate is known (Patent Document 1).
This production method is a method for producing a glass substrate by forming molten glass into a sheet shape by a downdraw method, and gradually cooling the obtained sheet glass, in the width direction of the sheet glass. The distortion reduction process for reducing the distortion of the sheet glass generated due to the temperature difference between the (peripheral part) and the central part (surface part) is performed using a plurality of heaters during slow cooling. In the strain reduction process, the temperature of the sheet glass is controlled so that the temperature of the sheet glass is equalized in the width direction in the vicinity of the strain point of the glass.
特許第3586142号公報Japanese Patent No. 3586142
 しかし、上述した公知のガラス基板の製造方法(特許文献1)では、ガラス基板を用いてこのガラス基板に薄膜を形成する成膜業者等の顧客の要求を満足する反り量および歪量を有するガラス基板を作製できなかった。 However, in the above-described known glass substrate manufacturing method (Patent Document 1), a glass having a warp amount and a strain amount that satisfies the requirements of customers such as a film forming company that forms a thin film on the glass substrate using the glass substrate. The substrate could not be produced.
 そこで、本発明は、ガラス基板における反り、歪を低減するために、冷却工程中のシートガラスの幅方向の温度分布を制御して、顧客の要求を満足する反り量および歪量を有するガラス基板を作製することができるガラス板の製造方法および成形装置を提供することを目的とする。 Accordingly, the present invention controls the temperature distribution in the width direction of the sheet glass during the cooling process in order to reduce warpage and distortion in the glass substrate, and the glass substrate has a warpage amount and a strain amount that satisfy customer requirements. It aims at providing the manufacturing method and shaping | molding apparatus of a glass plate which can produce this.
 一般に、ガラス基板、例えばFPD用ガラス基板では、肉厚偏差が小さく、高い平坦性を有するガラス基板が望まれている。つまり、ガラス基板の肉厚偏差、反りおよび歪が小さくなるようにガラス基板の元となるシートガラスを冷却することが好ましい。
 成形体(セル)を用いて熔融ガラスからシートガラスを成形する周知のオーバーフローダウンドロー法において、ガラス基板の肉厚偏差、反り及び歪を低減するためには、以下のように冷却することが好ましい。
1.肉厚偏差を低減するための冷却
 先ず、成形体(以降、セルともいう)からオーバーフローされて成形された直後のシートガラスのガラス両端部を急冷することが好ましい。セルの側壁両面を流下してきた熔融ガラスはセル下端部を離れてシートガラスに成形される。この成形直後のシートガラスは、自らの表面張力によってその表面積を縮小しようとするが、シートガラスの両端部のガラス粘度をできるだけ速やかに上昇させることにより、その作用が妨げられ幅を広く保つことができる。また、シートガラスの幅方向中央部は、温度分布を均一にすることにより、肉厚偏差が少ないガラス基板を作製することができる。この肉厚偏差を低減するための冷却は、シートガラスの幅方向中央部が粘性流動領域(本明細書では略軟化点以上とする)であるときに行われることが好ましい。
2.反りおよび歪を低減するための冷却
 上記粘性流動領域で肉厚偏差を低減するために冷却した後、シートガラスは、塑性変形領域(本明細書では略軟化点と徐冷点との間から歪点までの間とする)において、反りおよび歪が生じないように冷却される。反りを生じないようにシートガラスを冷却するためには、肉厚偏差を低減するために冷却した平坦なシートガラスの幅方向中央部に常に引っ張り応力が働くように冷却し、その平坦度を維持することが好ましい。歪を生じないように冷却するためには、上述したように、歪点近傍で温度が均一になるように冷却することが好ましい。したがって、先ず、シートガラスの温度がシートガラスの幅方向中心部から幅方向両端部に向かって低下するような一山形状の温度分布をシートガラスに付与する。この温度分布は、シートガラスの肉厚偏差に影響を及ぼさない温度領域(例えば、軟化点より低い温度領域)まで冷却された後速やかに付与されることが好ましい。そして、冷却するに従ってこの温度分布の勾配を小さくしていき、歪点近傍で一山形状の温度分布が略平らになる、すなわち温度が均一になるように、シートガラスを冷却する。つまり、シートガラスの幅方向中心部の冷却量(体積収縮量)が最も大きく、両端部にいくに従って小さくなるように冷却されるので、常にシートガラスの幅方向中央部に引っ張り応力が働くことになる。また、歪点近傍でシートガラスの温度が不均一な温度分布の場合、常温になった際に残留応力が生じるので、歪点近傍で温度が均一になるように、シートガラスを冷却することにより、歪を低減することができる。
In general, in a glass substrate, for example, a glass substrate for FPD, a glass substrate having a small thickness deviation and high flatness is desired. That is, it is preferable to cool the sheet glass that is the base of the glass substrate so that the thickness deviation, warpage, and distortion of the glass substrate are reduced.
In the known overflow downdraw method of forming a sheet glass from molten glass using a molded body (cell), in order to reduce the thickness deviation, warpage and distortion of the glass substrate, it is preferable to cool as follows. .
1. Cooling to reduce thickness deviation First, it is preferable to quench the glass both ends of the sheet glass immediately after being overflowed and formed from the formed body (hereinafter also referred to as a cell). The molten glass that has flowed down both side walls of the cell is formed into a sheet glass leaving the lower end of the cell. The sheet glass immediately after molding tries to reduce its surface area by its own surface tension, but by increasing the glass viscosity at both ends of the sheet glass as quickly as possible, its action is hindered and the width can be kept wide. it can. Moreover, the center part of the width direction of sheet glass can produce a glass substrate with few thickness deviations by making temperature distribution uniform. The cooling for reducing the thickness deviation is preferably performed when the central portion in the width direction of the sheet glass is a viscous flow region (in this specification, approximately equal to or higher than the softening point).
2. Cooling to reduce warpage and strain After cooling to reduce the wall thickness deviation in the viscous flow region, the sheet glass is strained from between the plastic deformation region (approximately between the softening point and the annealing point in this specification). In order to prevent warping and distortion during the period up to the point). In order to cool the sheet glass so as not to warp, it is cooled so that a tensile stress always acts on the central part in the width direction of the flat sheet glass cooled to reduce the thickness deviation, and the flatness is maintained. It is preferable to do. In order to cool so as not to cause distortion, it is preferable to cool so that the temperature is uniform in the vicinity of the strain point as described above. Therefore, first, a temperature distribution in a mountain shape is imparted to the sheet glass so that the temperature of the sheet glass decreases from the center in the width direction of the sheet glass toward both ends in the width direction. This temperature distribution is preferably given immediately after being cooled to a temperature range (for example, a temperature range lower than the softening point) that does not affect the thickness deviation of the sheet glass. Then, as the temperature is cooled, the gradient of the temperature distribution is reduced, and the sheet glass is cooled so that the temperature distribution in a mountain shape is substantially flat near the strain point, that is, the temperature is uniform. In other words, since the cooling amount (volume shrinkage) at the center in the width direction of the sheet glass is the largest and is cooled so as to decrease toward both ends, a tensile stress always acts on the center in the width direction of the sheet glass. Become. Also, in the case of a temperature distribution in which the temperature of the sheet glass is not uniform near the strain point, residual stress occurs when the temperature reaches room temperature, so by cooling the sheet glass so that the temperature is uniform near the strain point , Distortion can be reduced.
 上記内容を考慮して、本発明者は、公知のガラス基板の製造において、顧客の要求を満足する反り量および歪量を有するガラス基板を作製できない理由を検討した結果、複数のヒータにより形成されるシートガラスの幅方向の温度分布が段階的に形成されていること、あるいは、シートガラスの幅方向の温度分布が局部的に落ち込み、滑らかな分布にならないことが原因であるということを知見した。さらに、塑性変形領域のシートガラスにおける冷却では、シートガラスの温度分布が滑らかな一山形状を維持しながらその滑らかな一山形状が徐々に小さくなり、歪点近傍において一山形状が平坦になるようにシートガラスの温度を調整することが望ましいことを知見し、以下の態様の発明を想到するに至った。 In consideration of the above contents, the present inventor has studied the reason why a glass substrate having a warpage amount and a strain amount that satisfies customer requirements cannot be produced in the manufacture of a known glass substrate. It was discovered that the temperature distribution in the width direction of the sheet glass is formed stepwise, or that the temperature distribution in the width direction of the sheet glass falls locally and does not become a smooth distribution. . Further, in the cooling of the sheet glass in the plastic deformation region, the smooth mountain shape gradually decreases while the temperature distribution of the sheet glass maintains a smooth mountain shape, and the mountain shape becomes flat near the strain point. Thus, it has been found that it is desirable to adjust the temperature of the sheet glass, and the inventors have come up with the invention of the following aspect.
 本発明の一態様は、ガラス基板の製造方法である。当該製造方法は、
 熔融ガラスを成形体からオーバーフローさせて連続したシートガラスを成形し、前記シートガラスの流れをつくる成形工程と、
 前記ガラス基板の反りおよび歪を低減するために、前記シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させながら、前記熱源を用いて、前記シートガラスに、前記シートガラスの幅方向に沿って温度分布を与えて冷却する徐冷処理を含む冷却工程と、を含む。
 前記徐冷処理は、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で行われる。
One embodiment of the present invention is a method for manufacturing a glass substrate. The manufacturing method is
Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
In order to reduce the warp and distortion of the glass substrate, the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass. And a cooling step including a slow cooling process in which the temperature distribution is given along the width direction of the cooling.
The slow cooling treatment is performed between a slow cooling point position in the flow direction of the sheet glass corresponding to a slow cooling point of the sheet glass and a strain point position in the flow direction of the sheet glass corresponding to a strain point of the sheet glass. In the region of the sheet glass in the flow direction.
 その際、前記熱源の熱分布の緩和は、前記シートガラスと前記熱源との間に設けられた1つの均熱板を用いて行われ、前記均熱板は、前記熱源の熱分布を緩和させて、前記シートガラスに熱を供給する、ことが好ましい。 At that time, the heat distribution of the heat source is relaxed by using one soaking plate provided between the sheet glass and the heat source, and the soaking plate relaxes the heat distribution of the heat source. It is preferable to supply heat to the sheet glass.
 前記均熱板は、酸化処理により表面に酸化被膜が形成されたステンレス金属板である、ことが好ましい。 The soaking plate is preferably a stainless metal plate having an oxide film formed on the surface by oxidation treatment.
 また、前記冷却工程は、前記シートガラスの両側の面に設けられた少なくとも一対の温度調整装置を用いて行われ、少なくとも一対の前記温度調整装置のそれぞれが、前記熱源及び前記均熱板を用いて前記シートガラスに熱を供給する、ことが好ましい。 Further, the cooling step is performed using at least a pair of temperature adjusting devices provided on both sides of the sheet glass, and each of the at least one pair of temperature adjusting devices uses the heat source and the heat equalizing plate. It is preferable to supply heat to the sheet glass.
 前記熱分布は、前記熱源の発熱量(加熱量)の分布である、ことが好ましい。 It is preferable that the heat distribution is a distribution of a heat generation amount (heating amount) of the heat source.
 前記温度分布は、前記幅方向の中心で最大となる一山形状の分布、あるいは、均一な分布である、ことが好ましい。 The temperature distribution is preferably a mountain-shaped distribution that is maximum at the center in the width direction or a uniform distribution.
 前記熱分布は、前記幅方向の中心で最大となる一山形状の分布、あるいは、均一な分布である、ことが好ましい。 The heat distribution is preferably a mountain-shaped distribution that is maximum at the center in the width direction or a uniform distribution.
 前記熱源は、前記幅方向に設けられた複数の熱源要素を含み、
 前記熱源の前記熱分布は、前記熱源要素それぞれの前記幅方向の端に対応した位置において供給する熱が低下する分布を含む、ことが好ましい。
The heat source includes a plurality of heat source elements provided in the width direction,
It is preferable that the heat distribution of the heat source includes a distribution in which heat supplied at positions corresponding to the ends in the width direction of the heat source elements decreases.
 また、本発明の他の態様も、ガラス基板の製造方法であり、
 熔融ガラスを成形体からオーバーフローさせてシートガラスを成形する成形工程と、
 前記シートガラスの幅方向に沿って設けられた一対の熱源が、前記シートガラスの両面に、前記シートガラスの幅方向に沿って温度分布を与えることにより、前記シートガラスを冷却する徐冷処理を含む冷却工程と、を含む。
 前記徐冷処理では、前記一対の熱源と前記シートガラスとの間に配置された一対の板材の間に前記シートガラスを通して徐冷する。
Moreover, the other aspect of this invention is also a manufacturing method of a glass substrate,
A molding step of overflowing the molten glass from the molded body and molding the sheet glass;
A pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass. Including a cooling step.
In the slow cooling treatment, the sheet glass is gradually cooled between a pair of plate members disposed between the pair of heat sources and the sheet glass.
 前記板材は、シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させる均熱板であり、前記冷却炉は、前記徐冷処理を、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で、前記均熱板を用いて行うことが好ましい。 The plate material is a soaking plate that relaxes heat distribution supplied by a heat source provided along the width direction of the sheet glass, and the cooling furnace corresponds to the annealing point of the sheet glass. In the region in the flow direction of the sheet glass, between the annealing point position in the flow direction of the sheet glass and the strain point position in the flow direction of the sheet glass corresponding to the strain point of the sheet glass, It is preferable to use a soaking plate.
 このとき、前記熱源は、前記シートガラスの両面に向けて熱を放射する加熱ヒータであり、前記板材は、前記加熱ヒータの前記シートガラスに対向する全面を遮るように配置されている、ことが好ましい。 At this time, the heat source is a heater that radiates heat toward both sides of the sheet glass, and the plate material is disposed so as to block the entire surface of the heater facing the sheet glass. preferable.
 本発明の他の一態様は、ガラス基板の成形装置である。当該成形装置は、
 熔融ガラスを成形体からオーバーフローさせて連続したシートガラスを成形し、前記シートガラスの流れをつくる成形炉と、
 前記シートガラスの幅方向に沿って設けられた一対の熱源が、前記シートガラスの両面に、前記シートガラスの幅方向に沿って温度分布を与えることにより、前記シートガラスを冷却する徐冷処理を行う冷却炉と、を有する。
 前記徐冷処理では、前記一対の熱源と前記シートガラスとの間に配置された一対の板材の間に前記シートガラスを通して徐冷する。
Another embodiment of the present invention is a glass substrate forming apparatus. The molding device is
Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
A pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass. And a cooling furnace for performing.
In the slow cooling treatment, the sheet glass is gradually cooled between a pair of plate members disposed between the pair of heat sources and the sheet glass.
 前記冷却炉は、前記徐冷処理として、前記ガラス基板の反りおよび歪を低減するために、前記シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させながら、前記熱源を用いて、前記シートガラスに、前記シートガラスの幅方向に沿って温度分布を与えて冷却し、
 前記冷却炉は、前記徐冷処理を、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で行う。
The cooling furnace, as the slow cooling process, reduces the heat distribution supplied by the heat source provided along the width direction of the sheet glass in order to reduce warpage and distortion of the glass substrate, Use to cool the sheet glass by giving a temperature distribution along the width direction of the sheet glass,
The cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. It is performed in a region in the flow direction of the sheet glass between the point positions.
 また、前記熱源は、前記シートガラスの両面に向けて熱を放射する加熱ヒータであり、
 前記板材は、前記加熱ヒータの前記シートガラスに対向する全面を遮るように配置されている、ことが好ましい。
The heat source is a heater that radiates heat toward both surfaces of the sheet glass,
The plate material is preferably arranged so as to block the entire surface of the heater facing the sheet glass.
 本発明の一態様は、ガラス基板の成形装置である。当該成形装置は、
 熔融ガラスを成形体からオーバーフローさせて連続したシートガラスを成形し、前記シートガラスの流れをつくる成形炉と、
 前記ガラス基板の反りおよび歪を低減するために、前記シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させながら、前記熱源を用いて、前記シートガラスに、前記シートガラスの幅方向に沿って温度分布を与えて冷却する徐冷処理を行う冷却炉と、を有する。
 前記冷却炉は、前記徐冷処理を、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で行う。
One embodiment of the present invention is a glass substrate forming apparatus. The molding device is
Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
In order to reduce the warp and distortion of the glass substrate, the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass. And a cooling furnace that performs a slow cooling process in which a temperature distribution is given along the width direction of the cooling.
The cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. It is performed in a region in the flow direction of the sheet glass between the point positions.
 上記態様のガラス基板の製造方法及び成形装置では、冷却工程中のシートガラスに与える幅方向の温度分布を滑らかにすることができ、例えば、滑らかな一山形状の分布あるいは段差のない均一な分布にすることができ、ガラス基板における反り、歪を低減することができる。この結果、顧客の要求を満足する反り量および歪量を有するガラス基板を作製することができる。さらに、徐冷処理では、前記一対の熱源と前記シートガラスとの間に配置された一対の板材の間にシートガラスを通して徐冷するので、徐冷処理中、熱源からの飛散物がシートガラスに付着することを防止できる。さらに、万が一、シートガラスが割れてガラス破片が熱源に飛び散っても、板材により熱源を保護することができる。 In the method and apparatus for producing a glass substrate of the above aspect, the temperature distribution in the width direction applied to the sheet glass during the cooling process can be smoothed, for example, a smooth distribution with a single mountain shape or a uniform distribution without steps. And warpage and distortion in the glass substrate can be reduced. As a result, it is possible to produce a glass substrate having a warpage amount and a strain amount that satisfies customer requirements. Further, in the slow cooling process, the sheet glass is gradually cooled between the pair of plate materials arranged between the pair of heat sources and the sheet glass, so that scattered matter from the heat source is applied to the sheet glass during the slow cooling process. It can prevent adhesion. Furthermore, even if the sheet glass is broken and glass fragments are scattered on the heat source, the heat source can be protected by the plate material.
本実施形態であるガラス基板の製造方法のフローの一例を示す図である。It is a figure which shows an example of the flow of the manufacturing method of the glass substrate which is this embodiment. 本実施形態の熔解工程~切断工程を行う装置の一例を模式的に示す図である。It is a figure which shows typically an example of the apparatus which performs the melting process-cutting process of this embodiment. 図2に示す成形装置の概略の側面図である。FIG. 3 is a schematic side view of the molding apparatus shown in FIG. 2. 図2に示す成形装置の一部の概略の正面図である。FIG. 3 is a schematic front view of a part of the molding apparatus shown in FIG. 2. 本実施形態に用いる均熱板とヒータユニットを説明する図である。It is a figure explaining the soaking plate and heater unit used for this embodiment. 本実施形態の複数の温度分布を説明する図である。It is a figure explaining the several temperature distribution of this embodiment. 本実施形態のシートガラスの温度分布と従来のシートガラスの温度分布の例を説明する図である。It is a figure explaining the example of the temperature distribution of the sheet glass of this embodiment, and the temperature distribution of the conventional sheet glass. 均熱板の有無によるシートガラスの温度分布の例を示す図である。It is a figure which shows the example of the temperature distribution of the sheet glass by the presence or absence of a soaking plate.
 以下、本実施形態のガラス基板の製造方法及び成形装置について説明する。 Hereinafter, a method for manufacturing a glass substrate and a forming apparatus of the present embodiment will be described.
(ガラス基板の製造方法の全体概要)
 図1は、本実施形態であるガラス基板の製造方法のフローを示す図である。
 ガラス板の製造方法は、熔解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、冷却工程(ST6)と、切断工程(ST7)と、を主に有する。また、ガラス板の製造方法は、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等の他の工程を有する。梱包工程で積層された複数のガラス板は、納入先の業者(顧客)に搬送される。
(Overall overview of glass substrate manufacturing method)
FIG. 1 is a diagram illustrating a flow of a glass substrate manufacturing method according to the present embodiment.
The glass plate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), a cooling step (ST6), Cutting step (ST7). Moreover, the manufacturing method of a glass plate has other processes, such as a grinding process, a grinding | polishing process, a washing | cleaning process, an inspection process, and a packing process. The plurality of glass plates stacked in the packing process are transported to a supplier (customer) as a delivery destination.
 図2は、熔解工程(ST1)~切断工程(ST7)を行う装置を模式的に示す図である。当該装置は、図2に示すように、熔解装置100と、成形装置200と、切断装置300とを主に有する。熔解装置100は、熔解槽101と、清澄槽102と、攪拌槽103と、第1配管104と、第2配管105と、第3配管106とを有する。成形装置200については後述する。 FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7). As shown in FIG. 2, the apparatus mainly includes a melting apparatus 100, a forming apparatus 200, and a cutting apparatus 300. The melting apparatus 100 includes a melting tank 101, a clarification tank 102, a stirring tank 103, a first pipe 104, a second pipe 105, and a third pipe 106. The molding apparatus 200 will be described later.
 熔解工程(ST1)では、熔解槽101内に供給されたガラス原料を、図示されない火焔及び電気ヒータで加熱して熔解することで熔融ガラスMGを得る。
 清澄工程(ST2)は、清澄槽102において行われ、熔解槽101から第1配管104を通って供給された清澄槽102内の熔融ガラスMGを加熱することにより、熔融ガラスMG中に含まれる酸素やSOの気泡が、清澄剤の酸化還元反応により成長し液面に浮上して放出される、あるいは、気泡中のガス成分が熔融ガラスMG中に吸収されて、気泡が消滅する。
 均質化工程(ST3)では、清澄槽102から第2配管105を通って供給された攪拌槽103内の熔融ガラスMGを、スターラ103aを用いて攪拌することにより、ガラス成分の均質化を行う。
 供給工程(ST4)では、熔融ガラスMGが、攪拌槽103から第3配管106を通って成形装置200に供給される。
In the melting step (ST1), molten glass MG is obtained by melting the glass raw material supplied into the melting tank 101 by heating with a flame and an electric heater (not shown).
The clarification step (ST2) is performed in the clarification tank 102, and oxygen contained in the molten glass MG is heated by heating the molten glass MG in the clarification tank 102 supplied from the melting tank 101 through the first pipe 104. Or SO 2 bubbles grow by the oxidation-reduction reaction of the clarifying agent and float on the liquid surface and are released, or gas components in the bubbles are absorbed into the molten glass MG, and the bubbles disappear.
In the homogenization step (ST3), the glass component is homogenized by stirring the molten glass MG in the stirring tank 103 supplied from the clarification tank 102 through the second pipe 105 using the stirrer 103a.
In the supply step (ST4), the molten glass MG is supplied from the stirring vessel 103 to the molding apparatus 200 through the third pipe 106.
 成形装置200では、成形工程(ST5)及び冷却工程(ST6)が行われる。
 成形工程(ST5)では、熔融ガラスMGをシートガラスSG(図3参照)に成形し、シートガラスSGの流れを作る。本実施形態では、後述する成形体210を用いたオーバーフローダウンドロー法を用いている。この場合、シートガラスSGの流れ方向(図中Z方向)は、鉛直下方となる。冷却工程(ST6)では、成形されて流れるシートガラスSGが所望の厚さになり、冷却に起因する反り及び歪が生じないように冷却される。
 切断工程(ST7)では、切断装置300において、成形装置200から供給されたシートガラスSGが所定の長さに切断されることで、板状のガラス基板Gを得る。
 この後、ガラス基板Gの端面の研削・研磨が行われた後、ガラス基板Gの洗浄が行われ、さらに、気泡や脈理等の異常欠陥の有無が検査された後、検査合格品のガラス基板Gが最終製品として梱包される。
In the molding apparatus 200, a molding process (ST5) and a cooling process (ST6) are performed.
In the forming step (ST5), the molten glass MG is formed into a sheet glass SG (see FIG. 3) to make a flow of the sheet glass SG. In the present embodiment, an overflow down draw method using a molded body 210 described later is used. In this case, the flow direction (Z direction in the figure) of the sheet glass SG is vertically downward. In the cooling step (ST6), the sheet glass SG that is formed and flows has a desired thickness, and is cooled so that warpage and distortion due to cooling do not occur.
In the cutting step (ST7), the sheet glass SG supplied from the forming apparatus 200 is cut into a predetermined length in the cutting apparatus 300, whereby a plate-like glass substrate G is obtained.
Then, after grinding and polishing of the end face of the glass substrate G, the glass substrate G is cleaned, and further, the presence or absence of abnormal defects such as bubbles and striae is inspected, and then the glass that has passed the inspection. The substrate G is packed as a final product.
 本実施形態において製造されるガラス基板Gは、例えば、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板、カバーガラスに好適に用いられる。また、このガラス基板は、その他、携帯端末機器などのディスプレイや筐体用のカバーガラス、タッチパネル板、太陽電池のガラス基板やカバーガラスとしても用いることができる。特に、ポリシリコンTFTを用いた液晶ディスプレイ用ガラス基板に好適である。
 また、ガラス基板Gの厚さは、例えば0.1mm~1.5mmである。好ましくは0.1~1.2mm、より好ましくは0.3~1.0mm、さらにより好ましくは0.3~0.8mm、特に好ましくは0.3~0.5mmである。
 さらに、ガラス基板Gの幅方向の長さは、例えば500mm~3500mmであり、1000mm~3500mmであることが好ましく、2000mm~3500mmであることがより好ましい。一方、ガラス基板Gの縦方向の長さも、例えば500mm~3500mmであり、1000mm~3500mmであることが好ましく、2000mm~3500mmであることがより好ましい。
The glass substrate G manufactured in the present embodiment is suitably used for, for example, a glass substrate for liquid crystal display, a glass substrate for organic EL display, and a cover glass. In addition, the glass substrate can also be used as a display for a portable terminal device, a cover glass for a housing, a touch panel plate, a glass substrate for a solar cell, or a cover glass. Particularly, it is suitable for a glass substrate for a liquid crystal display using a polysilicon TFT.
The thickness of the glass substrate G is, for example, 0.1 mm to 1.5 mm. The thickness is preferably 0.1 to 1.2 mm, more preferably 0.3 to 1.0 mm, even more preferably 0.3 to 0.8 mm, and particularly preferably 0.3 to 0.5 mm.
Furthermore, the length in the width direction of the glass substrate G is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm. On the other hand, the length of the glass substrate G in the vertical direction is, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
(ガラス基板の組成)
 ガラス基板Gに用いるガラスは、例えば、ボロシリケートガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、ソーダライムガラス、アルカリシリケートガラス、アルカリアルミノシリケートガラス、アルカリアルミノゲルマネイトガラスなどを適用することができる。なお、本発明に適用できるガラスは上記に限定されるものではない。
(Composition of glass substrate)
As the glass used for the glass substrate G, for example, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, alkali aluminogermanate glass, or the like can be used. The glass applicable to the present invention is not limited to the above.
 ガラス基板Gのガラス組成は例えば以下のものを挙げることができる。
以下示す組成の含有率表示は、質量%である。
SiO:50~70%、
:5~18%、
Al:0~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~20%(ただし、RはMg、Ca、Sr及びBaから選ばれる少なくとも1種であり、ガラス板が含有するものである)、
を含有する無アルカリガラスであることが好ましい。
The glass composition of the glass substrate G can mention the following, for example.
The content rate display of the composition shown below is mass%.
SiO 2 : 50 to 70%,
B 2 O 3 : 5 to 18%,
Al 2 O 3 : 0 to 25%,
MgO: 0 to 10%,
CaO: 0-20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5 to 20% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass plate contains),
It is preferable that it is an alkali free glass containing.
 また、ガラス基板Gのガラスは、以下のガラス組成を挙げることができる
SiO:50~70%、
:1~10%、
Al:0~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、Sr及びBaの合量)、
を含有する無アルカリガラスであることも、同様に好ましい。
The glass of the glass substrate G can have the following glass composition: SiO 2 : 50 to 70%,
B 2 O 3 : 1-10%,
Al 2 O 3 : 0 to 25%,
MgO: 0 to 10%,
CaO: 0-20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5-30% (where R is the total amount of Mg, Ca, Sr and Ba),
Similarly, it is also preferable that the glass be an alkali-free glass.
 なお、本実施形態では無アルカリガラスとしたが、ガラス基板Gはアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.20%を超え0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板Gが含有するものである)含むことが好ましい。また、ガラスの熔解を容易にするために、比抵抗を低下させるという観点から、ガラス中の酸化鉄の含有量が0.01~0.2%であることがさらに好ましい。また、清澄剤として添加される酸化錫の含有量が0.01~0.5%であることがさらに好ましい。 In the present embodiment, alkali-free glass is used, but the glass substrate G may be alkali-containing glass containing a trace amount of alkali metal. When the alkali metal is contained, the total of R ′ 2 O exceeds 0.20% and 0.5% or less (provided that R ′ is at least one selected from Li, Na and K, and the glass substrate G contains It is preferable to include. In order to facilitate melting of the glass, the content of iron oxide in the glass is more preferably 0.01 to 0.2% from the viewpoint of reducing the specific resistance. Further, the content of tin oxide added as a fining agent is more preferably 0.01 to 0.5%.
(成形装置の説明)
 図3及び図4は、ガラス基板Gの成形装置200の構成を主に示す図であり、図3は成形装置200の概略の側面図を示し、図4は成形装置200の一部概略の正面図を示す。成形装置200は、成形工程(ST5)を行う成形炉201と、冷却工程(ST6)とを行う徐冷炉202とを含む。徐冷炉202は、後述する雰囲気仕切り部材220の下方から切断装置300まで延びる炉をいう。
(Description of molding equipment)
3 and 4 are diagrams mainly showing the configuration of the molding apparatus 200 for the glass substrate G, FIG. 3 is a schematic side view of the molding apparatus 200, and FIG. 4 is a partially schematic front view of the molding apparatus 200. The figure is shown. The molding apparatus 200 includes a molding furnace 201 that performs a molding process (ST5) and a slow cooling furnace 202 that performs a cooling process (ST6). The slow cooling furnace 202 is a furnace extending from below the atmosphere partition member 220 described later to the cutting device 300.
 本実施形態で行う冷却工程(ST6)では、ガラス基板Gの反りおよび歪を低減するために、成形工程(ST5)で成形されたシートガラスSGの幅方向(図2に示す成形装置200における水平方向)に沿って設けられたヒータユニットを用いて、シートガラスSGに、シートガラスSGの幅方向に沿って温度分布を与えながら冷却する徐冷処理を行う。冷却工程(ST6)のこの徐冷処理は、シートガラスSGの徐冷点に対応するシートガラスSGの流れ方向の徐冷点位置とシートガラスSGの歪点に対応するシートガラスSGの流れ方向の歪点位置との間にある、シートガラスSGの流れ方向の領域内で行われる。シートガラスSGに温度分布がある場合は、徐冷点位置は、温度分布の最高温度が徐冷点になる位置をいい、同様に、歪点位置は、温度分布の最高温度が歪点になる位置をいう。ここで、徐冷点は、シートガラスSGの1013poiseの粘度に相当する温度であり、歪点は、シートガラスSGの1014.5poiseの粘度に相当する温度である。
 この徐冷処理では、ヒータユニットの発する熱の熱分布を緩和させることによりシートガラスSGに温度分布が与えられる。この熱分布の緩和は、本実施形態では、後述する均熱板260を用いて行われる。以下、より詳細に説明する。
In the cooling step (ST6) performed in this embodiment, in order to reduce warpage and distortion of the glass substrate G, the width direction of the sheet glass SG formed in the forming step (ST5) (horizontal in the forming apparatus 200 shown in FIG. 2). Using the heater unit provided along the direction), the sheet glass SG is subjected to a slow cooling process for cooling while giving a temperature distribution along the width direction of the sheet glass SG. This slow cooling treatment in the cooling step (ST6) is performed in the flow direction of the sheet glass SG corresponding to the slow cooling point position in the flow direction of the sheet glass SG corresponding to the slow cooling point of the sheet glass SG and the strain point of the sheet glass SG. This is performed in a region in the flow direction of the sheet glass SG between the strain point position. When the sheet glass SG has a temperature distribution, the annealing point position means a position where the maximum temperature of the temperature distribution becomes the annealing point, and similarly, the strain point position indicates that the maximum temperature of the temperature distribution becomes the distortion point. Says the position. Here, the annealing point is a temperature corresponding to the viscosity of 10 13 poise of the sheet glass SG, and the strain point is a temperature corresponding to the viscosity of 10 14.5 poise of the sheet glass SG.
In this slow cooling process, the temperature distribution is given to the sheet glass SG by relaxing the heat distribution of the heat generated by the heater unit. In this embodiment, the heat distribution is relaxed by using a soaking plate 260 described later. This will be described in more detail below.
 成形炉201及び徐冷炉202は、耐火レンガ、耐火断熱レンガ、あるいはファイバー系断熱材等の耐火物で構成された炉壁に囲まれて構成されている。成形炉201は、徐冷炉202に対して鉛直上方に設けられている。成形炉201及び徐冷炉202の炉壁で囲まれた炉内部空間には、成形体210と、雰囲気仕切り部材220と、冷却ローラ230と、冷却ユニット240と、搬送ローラ250a~250cを含む複数の搬送ローラと、と、複数の温度調整装置、が設けられている。 The forming furnace 201 and the slow cooling furnace 202 are configured to be surrounded by a furnace wall made of a refractory material such as a refractory brick, a refractory heat insulating brick, or a fiber-based heat insulating material. The forming furnace 201 is provided vertically above the slow cooling furnace 202. In the furnace internal space surrounded by the furnace walls of the forming furnace 201 and the slow cooling furnace 202, a plurality of transports including a molded body 210, an atmosphere partition member 220, a cooling roller 230, a cooling unit 240, and transport rollers 250a to 250c. A roller and a plurality of temperature adjusting devices are provided.
 成形体210は、図2に示すように、第3配管106を通して熔解装置100から流れてくる熔融ガラスMGを、シートガラスSGに成形する。これにより、成形装置200内で、鉛直下方のシートガラスSGの流れが作られる。成形体210は、耐火レンガ等によって構成された細長い構造体であり、図3に示すように断面が楔形状を成している。成形体210の上部には、熔融ガラスMGを導く流路となる溝212が設けられている。溝212は、成形体210に設けられた供給口211(図4に示す)において第3配管106と接続され、第3配管106を通して流れてくる熔融ガラスMGは、溝212を伝って流れる。溝212の深さは、熔融ガラスMGの流れの下流ほど浅くなっており、溝212から熔融ガラスMGが鉛直下方に向かって溢れ出るようになっている。
 溝212から溢れ出た熔融ガラスMGは、成形体210の両側の側壁を伝わって流下する。側壁を流れた熔融ガラスMGは、成形体210の下方端部213(図3に示す)で合流し、1つのシートガラスSGが成形される。シートガラスSGは、図3に示すシートガラスSGの流下方向であるZ方向に流れる。なお、成形体210の下方端部213の直下におけるシートガラスSGの温度は、105.7~107.5poiseの粘度に相当する温度(例えば1000~1130℃)である。
As shown in FIG. 2, the formed body 210 forms molten glass MG flowing from the melting apparatus 100 through the third pipe 106 into a sheet glass SG. Thereby, the flow of the sheet glass SG in the vertically lower direction is created in the forming apparatus 200. The molded body 210 is a long and narrow structure made of firebrick or the like, and has a wedge-shaped cross section as shown in FIG. A groove 212 serving as a flow path for guiding the molten glass MG is provided in the upper part of the molded body 210. The groove 212 is connected to the third pipe 106 at a supply port 211 (shown in FIG. 4) provided in the molded body 210, and the molten glass MG flowing through the third pipe 106 flows along the groove 212. The depth of the groove 212 is shallower toward the downstream side of the flow of the molten glass MG, so that the molten glass MG overflows vertically downward from the groove 212.
The molten glass MG overflowing from the groove 212 flows down along the side walls on both sides of the molded body 210. The molten glass MG that has flowed through the side walls merges at the lower end 213 (shown in FIG. 3) of the molded body 210 to form one sheet glass SG. The sheet glass SG flows in the Z direction, which is the flow direction of the sheet glass SG shown in FIG. The temperature of the sheet glass SG immediately below the lower end portion 213 of the molded body 210 is a temperature corresponding to a viscosity of 10 5.7 to 10 7.5 poise (for example, 1000 to 1130 ° C.).
 成形体210の下方端部213の下方近傍には、雰囲気仕切り部材220が設けられている。雰囲気仕切り部材220は、一対の板状の断熱部材であって、シートガラスSGを厚さ方向(図中X方向)の両側から挟むように、シートガラスSGの厚さ方向の両側に設けられている。シートガラスSGと雰囲気仕切り部材220との間には、雰囲気仕切り部材220がシートガラスSGに接触しない程度に隙間が設けられている。雰囲気仕切り部材220は、成形炉201の内部空間を仕切ることにより、雰囲気仕切り部材220の上方の炉内部空間と下方の炉内部空間との間の熱の移動を遮断する。 In the vicinity of the lower end 213 of the molded body 210, an atmosphere partition member 220 is provided. The atmosphere partition member 220 is a pair of plate-like heat insulating members, and is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction (X direction in the drawing). Yes. A gap is provided between the sheet glass SG and the atmosphere partition member 220 to such an extent that the atmosphere partition member 220 does not contact the sheet glass SG. The atmosphere partition member 220 partitions the internal space of the molding furnace 201, thereby blocking heat transfer between the furnace internal space above the atmosphere partition member 220 and the furnace internal space below.
 雰囲気仕切り部材220の下方には空冷式の冷却ローラ230が設けられている。冷却ローラ230は、図3に示すように、シートガラスSGを厚さ方向の両側から挟むように、シートガラスSGの厚さ方向の両側に設けられている。また、冷却ローラ230は、図4に示すように、シートガラスSGの幅方向(図中Y方向)両端部においてシートガラスSG表面に接触して、シートガラスSGを冷却する。なお、冷却ローラ230は、シートガラスSGの幅方向両端部の温度が約109.0poise以上の粘度に相当する温度(例えば900℃以下)に低下するまで、冷却することが好ましい。さらに、冷却ローラ230の下方には、シートガラスSGを挟んだ両側のそれぞれにおいて、一対の端部冷却ユニット244(図4参照)が後述する冷却ユニット240の1つとして設けられている。端部冷却ユニット244は、図示されない水冷板から構成され、シートガラスSGの両端部と対向している。これにより、シートガラスSGの両端部は効率よく冷却される。 An air-cooled cooling roller 230 is provided below the atmosphere partition member 220. As shown in FIG. 3, the cooling roller 230 is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction. Further, as shown in FIG. 4, the cooling roller 230 contacts the surface of the sheet glass SG at both ends in the width direction (Y direction in the drawing) of the sheet glass SG to cool the sheet glass SG. The cooling roller 230, until the decrease in temperature (for example 900 ° C. or less) the temperature of the widthwise end portions of the sheet glass SG is equivalent to about 10 9.0 poise or more viscosity, it is preferable to cool. Further, a pair of end cooling units 244 (see FIG. 4) is provided as one of the cooling units 240 described later below the cooling roller 230 on each side of the sheet glass SG. The edge part cooling unit 244 is comprised from the water cooling plate which is not shown in figure, and has opposed the both ends of the sheet glass SG. Thereby, both ends of the sheet glass SG are efficiently cooled.
 雰囲気仕切り部材220の下方に冷却ユニット240が設けられている。冷却ユニット240は、中央部冷却ユニット242と、上述した端部冷却ユニット244とを含む。中央部冷却ユニット242は、図示されない筐体内に設けられた冷却パイプから送られる冷却エアーにより、筐体全体が冷却されている。この筐体の外側表面がシートガラスSGの幅方向の中央部と対向している。中央部冷却ユニット242は、冷却ローラ230とZ方向(シートガラスSGの流下方向)の同じ位置から下方向に少なくとも3段設けられている。これにより、シートガラスSGの中央部は効率よく冷却される。中央部冷却ユニット242は、図3に示すように、徐冷炉202の天板202aの上方においてシートガラスSGを厚さ方向の両側から挟むように、シートガラスSGの厚さ方向の両側に設けられている。最上段の中央部冷却ユニット242は、シートガラスSGの最高温度(中央部の温度)が軟化点近傍の温度に低下するまでシートガラスSGを冷却する。このとき、シートガラスSGの幅方向の中央部の温度分布が略均一な温度分布になるように中央部冷却ユニット242の冷却作用が調整されて冷却される。ここで、軟化点とは、約107.6poiseの粘度に相当するガラスの温度をいう。
 さらに、2段目以降の中央部冷却ユニット242及び端部冷却ユニット244は、幅方向の中央部が均一な温度分布から、滑らかな温度勾配を有する一山形状の温度分布に変化させつつ、シートガラスSGを冷却する。3段目以降の中央部冷却ユニット242及び端部冷却ユニット244は、滑らかな温度勾配を有する一山形状の温度分布を維持しつつ、シートガラスSGの最高温度(中央部の温度)が徐冷点近傍の温度に低下するまでシートガラスSGを冷却する。
 このように、雰囲気仕切り部材220と天板202aとの間では、シートガラスSGの幅方向の両端部が冷却ローラ230、端部冷却ユニット244、複数段の中央部冷却ユニット242により、冷却される。
A cooling unit 240 is provided below the atmosphere partition member 220. The cooling unit 240 includes a central cooling unit 242 and the end cooling unit 244 described above. In the central cooling unit 242, the entire casing is cooled by cooling air sent from a cooling pipe provided in the casing (not shown). The outer surface of this housing is opposed to the central portion in the width direction of the sheet glass SG. The central cooling unit 242 is provided in at least three stages downward from the same position in the Z direction (flowing direction of the sheet glass SG) as the cooling roller 230. Thereby, the center part of the sheet glass SG is cooled efficiently. As shown in FIG. 3, the central cooling unit 242 is provided on both sides in the thickness direction of the sheet glass SG so as to sandwich the sheet glass SG from both sides in the thickness direction above the top plate 202 a of the slow cooling furnace 202. Yes. The uppermost center cooling unit 242 cools the sheet glass SG until the maximum temperature (temperature at the center) of the sheet glass SG decreases to a temperature near the softening point. At this time, the cooling action of the central cooling unit 242 is adjusted and cooled so that the temperature distribution in the central portion in the width direction of the sheet glass SG becomes a substantially uniform temperature distribution. Here, the softening point refers to the glass temperature corresponding to a viscosity of about 10 7.6 poise.
Further, the center cooling unit 242 and the end cooling unit 244 in the second and subsequent stages change the sheet from a uniform temperature distribution in the center in the width direction to a temperature distribution in a mountain shape having a smooth temperature gradient. The glass SG is cooled. The central cooling unit 242 and the end cooling unit 244 in the third and subsequent stages are gradually cooled while the maximum temperature of the sheet glass SG (the temperature of the central part) is maintained while maintaining a temperature distribution with a smooth temperature gradient. The sheet glass SG is cooled until it falls to a temperature near the point.
Thus, between the atmosphere partition member 220 and the top plate 202a, both ends in the width direction of the sheet glass SG are cooled by the cooling roller 230, the end cooling unit 244, and the multi-stage central cooling unit 242. .
 天板202aの下方の天板202aと天板202bに挟まれた領域には、温度調整装置が設けられている。この領域には搬送ローラ250aがシートガラスSGの厚さ方向の両側のそれぞれに設けられている。さらに、この領域には、均熱板260と、熱源であるヒータユニット270が、温度調整装置としてシートガラスSGの厚さ方向の両側のそれぞれに設けられている。均熱板260は、シートガラスSGの両側の面に平行に設けられ、シートガラスSGの幅方向の幅に対応するように、幅方向に延びている1つのステンレス金属板である。ヒータユニット270は、シートガラスSGの幅方向に沿って一山形状の温度分布がシートガラスSGに形成されるように、シートガラスの幅方向に沿って複数設けられたヒータを有する。ヒータはそれぞれ、発熱量が調整可能である。均熱板260は、シートガラスSGと熱源であるヒータユニット270との間に設けられた1つの板状部材である。この均熱板260は、熱源であるヒータユニット270の発する熱の熱分布を緩和させて、シートガラスSGに熱を供給する機能(均熱効果)を有する。具体的には、均熱板260は、ヒータユニット270から異なる発熱量で受けた熱を拡散して滑らかな温度分布を形成し、この滑らかな温度分布に従ってシートガラスSGに熱を供給する。これにより、シートガラスSGの幅方向に沿った温度分布は滑らかな一山形状になる。均熱板260及びヒータユニット270については、後述する。 A temperature adjusting device is provided in a region sandwiched between the top plate 202a and the top plate 202b below the top plate 202a. In this region, conveyance rollers 250a are provided on both sides in the thickness direction of the sheet glass SG. Further, in this region, a soaking plate 260 and a heater unit 270 as a heat source are provided as temperature adjusting devices on both sides in the thickness direction of the sheet glass SG. The heat equalizing plate 260 is a single stainless steel plate that is provided in parallel to both sides of the sheet glass SG and extends in the width direction so as to correspond to the width in the width direction of the sheet glass SG. The heater unit 270 includes a plurality of heaters provided along the width direction of the sheet glass so that a mountain-shaped temperature distribution is formed in the sheet glass SG along the width direction of the sheet glass SG. Each heater can adjust the amount of heat generated. The soaking plate 260 is a single plate-like member provided between the sheet glass SG and the heater unit 270 that is a heat source. The soaking plate 260 has a function of soaking heat distribution of the heat generated by the heater unit 270 that is a heat source and supplying heat to the sheet glass SG (soaking effect). Specifically, the soaking plate 260 diffuses the heat received from the heater unit 270 with a different calorific value to form a smooth temperature distribution, and supplies heat to the sheet glass SG according to the smooth temperature distribution. Thereby, the temperature distribution along the width direction of the sheet glass SG becomes a smooth mountain shape. The soaking plate 260 and the heater unit 270 will be described later.
 天板202bの下方に隣接する天板(図示されず)と天板202bに挟まれた領域には、さらに、別の均熱板260とヒータユニット270を用いた温度調整装置が設けられている。
 なお、天板202a及び天板202b及び、それよりシートガラスSGの流下方向の下流側(Z方向の側)の隣接する天板の間におけるシートガラスSGの冷却速度(℃/秒)、すなわち、隣接する天板のうち、上方に位置する天板をシートガラスSGが通過したときのシートガラスSGの温度から下方に位置する天板をシートガラスSGが通過したときのシートガラスSGの温度を、この隣接する天板間を通過する時間で除算したときの値は、雰囲気仕切り部材220と天板202aとの間におけるシートガラスSGの冷却速度(℃/秒)に比べて小さい。したがって、雰囲気仕切り部材220と天板202aとの間におけるシートガラスSGの冷却を第1冷却とし、天板202aよりZ方向下側の隣接する天板の間におけるシートガラスSGの冷却を第2冷却としたとき、第2冷却におけるシートガラスSGの冷却速度は、第1冷却におけるシートガラスSGの冷却速度に比べて小さくなっている。したがって、第2冷却は徐冷ともいう。すなわち、本実施形態では、天板202aよりシートガラスSGの流下方向の下流側で行う徐冷処理において、シートガラスSGが、予め定められた温度分布に対応した温度分布を持つように、均熱板260とヒータユニット270を用いた温度調整装置によりシートガラスSGは徐々に冷却される。この冷却は、図示されない制御装置の温度制御を通して行われる。
In a region sandwiched between a top plate (not shown) adjacent to the bottom of the top plate 202b and the top plate 202b, a temperature adjusting device using another heat equalizing plate 260 and a heater unit 270 is further provided. .
The cooling rate (° C./second) of the sheet glass SG between the top plates 202a and 202b and the adjacent top plate on the downstream side (Z direction side) of the sheet glass SG, that is, adjacent to the top plate 202a and the top plate 202b. Among the top plates, the temperature of the sheet glass SG when the sheet glass SG passes through the top plate located below from the temperature of the sheet glass SG when the sheet glass SG passes through the top plate located at the upper side. The value when dividing by the time to pass between the top plates to be performed is smaller than the cooling rate (° C./second) of the sheet glass SG between the atmosphere partition member 220 and the top plate 202a. Therefore, the cooling of the sheet glass SG between the atmosphere partition member 220 and the top plate 202a is the first cooling, and the cooling of the sheet glass SG between the adjacent top plates below the top plate 202a in the Z direction is the second cooling. At this time, the cooling rate of the sheet glass SG in the second cooling is smaller than the cooling rate of the sheet glass SG in the first cooling. Therefore, the second cooling is also called slow cooling. That is, in the present embodiment, soaking is performed so that the sheet glass SG has a temperature distribution corresponding to a predetermined temperature distribution in the slow cooling process performed on the downstream side in the flow direction of the sheet glass SG from the top plate 202a. The sheet glass SG is gradually cooled by a temperature adjusting device using the plate 260 and the heater unit 270. This cooling is performed through temperature control of a control device (not shown).
 図5は、均熱板260とヒータユニット270を説明する図である。図5では、搬送ローラ250aの図示は省略されている。
 ヒータユニット270は、シートガラスSGの幅方向に沿って5つのヒータ270a~270eに分かれており、それぞれのヒータ270a~270eがそれぞれ熱を発する。図5に示すヒータ270a~270eは、シートガラスSGの幅方向に隙間無く互いに隣接して並んだ構成であるが、シートガラスSGの幅方向に一定の隙間をあけて並んだ構成であってもよい。ヒータ270a~270eは、例えば、クロム系発熱線等の熱源を備える。5つのヒータ270a~270eのそれぞれの発熱量は個別に調整可能に構成されている。ヒータ270a~270eは、シートガラスSGに温度分布を作るために、徐冷点と歪点との間では、一山形状の温度分布をシートガラスSGに与えるために、後述するように、隣接するヒータ間で発熱量が異なるように制御されている。すなわち、ヒータユニット270は、Y方向に沿って熱分布を持って熱をシートガラスSGに向かって供給する。
 ここでヒータユニット270が発する熱の熱分布は、ヒータ270a~270eの発する発熱量の分布である。この熱分布は、例えば、シートガラスSGの幅方向の中心の位置で最大となる分布である。
 均熱板260は、ヒータ270a~270eからなるヒータユニット270の全幅に対応して設けられた1つの板部材である。
 ヒータ270a~270eそれぞれは、均熱板260に向けて熱を供給し、均熱板260はこの供給された熱によって加熱されて、図5に示すY方向(シートガラスSGの幅方向)に温度分布を形成する。均熱板260のヒータ270a~270eに対向した面には、ヒータ270a~270eからの熱によって、ヒータ270a~270eの発熱量に応じた段差のある温度分布が形成されるが、この温度分布の各温度は、均熱板260の熱伝導によってY方向に、さらに、均熱板260の厚さ方向に熱伝導によって拡散して伝わる。したがって、段差のある温度分布は緩和されて次第に滑らかになる。しかし、均熱板260の板厚は均熱板260のY方向の幅に比べて十分薄い場合、シートガラスSGに対向する側の均熱板260の面では温度分布は均一にならず、滑らかな一山形状をした温度分布になる。したがって、均熱板260は、シートガラスSGに対して、段差のある温度分布が緩和され、滑らかな一山形状となった温度分布で熱放射をする。これにより、シートガラスSGは、滑らかな一山形状をした温度分布を持つことができる。
FIG. 5 is a view for explaining the soaking plate 260 and the heater unit 270. In FIG. 5, the conveyance roller 250a is not shown.
The heater unit 270 is divided into five heaters 270a to 270e along the width direction of the sheet glass SG, and each of the heaters 270a to 270e generates heat. Although the heaters 270a to 270e shown in FIG. 5 are arranged adjacent to each other without a gap in the width direction of the sheet glass SG, they may be arranged with a certain gap in the width direction of the sheet glass SG. Good. The heaters 270a to 270e include a heat source such as a chromium-based heating wire, for example. The respective calorific values of the five heaters 270a to 270e can be individually adjusted. In order to create a temperature distribution in the sheet glass SG, the heaters 270a to 270e are adjacent to each other between the annealing point and the strain point, as will be described later, in order to give the sheet glass SG a temperature distribution having a mountain shape. Control is made so that the amount of heat generated differs between the heaters. That is, the heater unit 270 supplies heat toward the sheet glass SG with a heat distribution along the Y direction.
Here, the heat distribution of the heat generated by the heater unit 270 is the distribution of the amount of heat generated by the heaters 270a to 270e. This heat distribution is, for example, a distribution that becomes maximum at the center position in the width direction of the sheet glass SG.
The soaking plate 260 is a single plate member provided corresponding to the entire width of the heater unit 270 including the heaters 270a to 270e.
Each of the heaters 270a to 270e supplies heat toward the soaking plate 260, and the soaking plate 260 is heated by the supplied heat, and the temperature is increased in the Y direction (width direction of the sheet glass SG) shown in FIG. Form a distribution. On the surface of the heat equalizing plate 260 facing the heaters 270a to 270e, a temperature distribution having a step corresponding to the amount of heat generated by the heaters 270a to 270e is formed by the heat from the heaters 270a to 270e. Each temperature is diffused and transmitted in the Y direction by heat conduction of the soaking plate 260 and further in the thickness direction of the soaking plate 260 by heat conduction. Therefore, the temperature distribution with a step is relaxed and becomes gradually smoother. However, when the plate thickness of the soaking plate 260 is sufficiently smaller than the width of the soaking plate 260 in the Y direction, the temperature distribution on the surface of the soaking plate 260 on the side facing the sheet glass SG is not uniform and smooth. It becomes a temperature distribution with a single mountain shape. Therefore, the soaking plate 260 radiates heat with a temperature distribution in which the stepped temperature distribution is relaxed and becomes a smooth mountain shape with respect to the sheet glass SG. Thereby, the sheet glass SG can have a temperature distribution having a smooth mountain shape.
 均熱板260において均熱板260の平面方向の熱伝導における熱流束が過剰に大きいと、幅方向(Y方向)で分割されたヒータにより実現しようとするシートガラスSGの温度分布の温度差が縮小されてしまうという弊害が生じる。逆に熱流束が小さ過ぎると期待する均熱効果が十分発揮されず、ヒーターから放射される階段状の熱輻射分布(発熱量の分布)をガラス面でのなだらかな温度勾配に変換することができない。このため適切な熱伝導率を持つ材料の選定と、選定した材料に応じた肉厚(板厚)の選択が必要になる。
 このような均熱板260には、例えば、ステンレス金属板が好適に用いられる。均熱板260の熱伝導率は、10W/(m・K)以上であることが、滑らかな一山形状をした温度分布でシートガラスSGに熱放射をする点で好ましい。均熱板260の熱伝導率は、15W/(m・K)以上であることがより好ましい。また、均熱板260の熱伝導率は、90W/(m・K)以下であることが好ましく、80W/(m・K)以下であることがより好ましい。均熱板260の熱伝導率が、10W/(m・K)未満であると、上述した適切な熱流束を得るために、均熱板260の板厚が過剰に大きくなり、熱源であるヒータ270a~270eとシートガラスSGとの間の熱交換率が悪くなる、また、均熱板260の熱伝導率が、90W/(m・K)を超えると、上述した適切な熱流束を得るために、均熱板260の板厚が過剰に小さくなり、均熱板260の強度が低下する。
 具体的には、均熱板260の板厚は、熱伝導率が16W/(m・K)前後のステンレス鋼を用いる場合は、1.5~8mm程度であることが、滑らかな一山形状をした温度分布でシートガラスSGに熱放射をする点で好ましく、1.5~3mmであることがより好ましい。また、均熱板260は、放射率を向上させヒータ270a~270eとシートガラスSGとの熱交換効率を高めるために、また表面の放射率を向上させるために、セラミック塗料を塗布してセラミック層を形成してもよいし、表面に酸化処理を施して得られた酸化被膜、例えば不動態被膜(スーパーブラック処理膜)が形成されていてもよい。特に、膜厚1μm程度の不動態被膜(スーパーブラック処理膜)が形成されることが、シートガラスSGの面に不要な粒子や塵等を付着させない点で好ましい。上記セラミック塗料を用いた場合、このセラミック塗料が部分的に剥離することで生じる粒子や塵がシートガラスに付着するリスクが高まる。
If the heat flux in the heat conduction in the plane direction of the soaking plate 260 is excessively large in the soaking plate 260, the temperature difference of the temperature distribution of the sheet glass SG to be realized by the heater divided in the width direction (Y direction) is increased. The harmful effect of being reduced occurs. On the other hand, if the heat flux is too small, the soaking effect expected is not fully exhibited, and the stepwise heat radiation distribution (calorific value distribution) emitted from the heater can be converted into a gentle temperature gradient on the glass surface. Can not. For this reason, it is necessary to select a material having an appropriate thermal conductivity and to select a thickness (plate thickness) according to the selected material.
For the soaking plate 260, for example, a stainless metal plate is preferably used. The thermal conductivity of the soaking plate 260 is preferably 10 W / (m · K) or more from the viewpoint of thermally radiating the sheet glass SG with a temperature distribution having a smooth mountain shape. The thermal conductivity of the soaking plate 260 is more preferably 15 W / (m · K) or more. The thermal conductivity of the soaking plate 260 is preferably 90 W / (m · K) or less, and more preferably 80 W / (m · K) or less. If the thermal conductivity of the soaking plate 260 is less than 10 W / (m · K), the plate thickness of the soaking plate 260 becomes excessively large in order to obtain the above-described appropriate heat flux, and the heater as a heat source When the heat exchange rate between 270a to 270e and the sheet glass SG is deteriorated and the thermal conductivity of the soaking plate 260 exceeds 90 W / (m · K), the above-mentioned appropriate heat flux is obtained. Further, the plate thickness of the soaking plate 260 becomes excessively small, and the strength of the soaking plate 260 decreases.
Specifically, the plate thickness of the soaking plate 260 should be about 1.5 to 8 mm when using stainless steel with a thermal conductivity of around 16 W / (m · K). It is preferable from the viewpoint of thermally radiating the sheet glass SG with the temperature distribution obtained, and more preferably 1.5 to 3 mm. Further, the soaking plate 260 is coated with a ceramic paint to improve the emissivity and increase the heat exchange efficiency between the heaters 270a to 270e and the sheet glass SG and to improve the emissivity of the surface. Alternatively, an oxide film obtained by subjecting the surface to oxidation treatment, for example, a passive film (super black treatment film) may be formed. In particular, it is preferable that a passive film (super black treatment film) having a film thickness of about 1 μm is formed in terms of preventing unnecessary particles, dust, and the like from adhering to the surface of the sheet glass SG. When the ceramic paint is used, there is an increased risk that particles and dust generated by partial peeling of the ceramic paint adhere to the sheet glass.
 また、均熱板260は、ヒータの発熱体からの飛散物がシートガラスSGに付着することを防止する板材でもある。また、均熱板260は、シートガラスSGが割れても、ガラス破片からヒータの発熱体を保護する板材でもある。例えば、熱源がクロム系発熱線の場合、クロムなどが酸化により表面から徐々に剥離しはがれ、飛散物となるが、均熱板260により、この飛散物がシートガラスSGに付着することを防止することができる。
 なお、ヒータの発熱体からの飛散物がシートガラスSGに付着することを防止するため、または、ガラス破片からヒータの発熱体を保護するために、板材を使用する場合、上記板材は、耐熱性を有する材料であればよく、均熱板260のようにステンレス金属板等の熱伝導率の高いものに制限されない。すなわち、板材が均熱板260である場合は、さらに、上述した均熱効果が得られる。
 また、ヒータユニット270は、シートガラスSGの両面のそれぞれに向けて熱を放射する加熱ヒータであり、均熱板260は、ヒータ270a~270eのシートガラスSGに対向する全面を遮るように配置されていることが好ましい。
 このように、本実施形態では、一対のヒータユニット270とシートガラスSGとの間に配置された一対の均熱板260を一対の板材として用い、この一対の板材の間にシートガラスSGを通して徐冷する。
The soaking plate 260 is also a plate material for preventing scattered matter from the heater heating element from adhering to the sheet glass SG. The soaking plate 260 is also a plate material that protects the heating element of the heater from glass fragments even if the sheet glass SG is broken. For example, when the heat source is a chromium-based heating wire, chromium and the like are gradually peeled off from the surface due to oxidation and become scattered matter, but the soaking plate 260 prevents the scattered matter from adhering to the sheet glass SG. be able to.
In addition, when using a board | plate material in order to prevent the scattered material from the heating element of a heater adhering to the sheet glass SG, or in order to protect the heating element of a heater from glass fragments, the said board | plate material is heat-resistant. However, the material is not limited to a material having a high thermal conductivity such as a stainless metal plate such as the soaking plate 260. That is, when the plate material is the soaking plate 260, the above-described soaking effect can be obtained.
The heater unit 270 is a heater that radiates heat toward both sides of the sheet glass SG, and the soaking plate 260 is disposed so as to block the entire surface of the heaters 270a to 270e facing the sheet glass SG. It is preferable.
Thus, in this embodiment, a pair of soaking plates 260 disposed between the pair of heater units 270 and the sheet glass SG are used as a pair of plates, and the sheet glass SG is gradually passed between the pair of plates. Cool down.
 また、均熱板260の表面は、特に放射率が低い(すなわち、反射率が高い)場合、拡散反射面であることが、シートガラスSGの温度分布の制御が効果的に行える点で好ましい。均熱板260の表面が鏡面反射面である場合、シートガラスSGから放射された熱線(熱輻射)が均熱板260の表面で鏡面反射して、シートガラスSGに再帰するので、均熱板260の表面形状に従った反射状況によってシートガラスSGの温度分布を悪化させるリスクが高まる。なお、拡散反射面とは、平坦でないかざらざらした表面を有する光の反射面のことで、入射光が特定の1方向にだけ反射せず、種々の角度に反射する面をいう。 Also, the surface of the soaking plate 260 is preferably a diffuse reflection surface, particularly when the emissivity is low (that is, the reflectivity is high), from the viewpoint that the temperature distribution of the sheet glass SG can be controlled effectively. When the surface of the soaking plate 260 is a specular reflection surface, the heat rays (heat radiation) radiated from the sheet glass SG are specularly reflected by the surface of the soaking plate 260 and recurs to the sheet glass SG. The risk of deteriorating the temperature distribution of the sheet glass SG by the reflection state according to the surface shape of 260 increases. The diffuse reflection surface refers to a light reflection surface having a rough or uneven surface, and refers to a surface on which incident light does not reflect only in one specific direction but reflects at various angles.
 本実施形態では、ヒータ270a~270eが熱源要素としてシートガラスSGの幅方向に沿って設けられるが、ヒータ270a~270eそれぞれの幅方向の端では、熱を発しない、あるいは、発する熱が低いため、ヒータユニット270全体を熱源としたとき、ヒータユニット260が提供する熱の熱分布は、ヒータ270a~270eそれぞれの幅方向の端に対応した位置で熱が低下する分布を有する場合がある。このような場合でも、均熱板260を用いて緩和された滑らかな一山形状の温度分布、あるいは、一定の温度分布をシートガラスSGに提供することができる。 In this embodiment, the heaters 270a to 270e are provided as the heat source elements along the width direction of the sheet glass SG. However, the heaters 270a to 270e do not emit heat at the ends in the width direction, or the generated heat is low. When the entire heater unit 270 is used as a heat source, the heat distribution of the heat provided by the heater unit 260 may have a distribution in which the heat decreases at positions corresponding to the widthwise ends of the heaters 270a to 270e. Even in such a case, it is possible to provide the sheet glass SG with a smooth mountain-shaped temperature distribution relaxed by using the heat equalizing plate 260 or a constant temperature distribution.
 図6は、シートガラスSGの温度調整に用いる基準とする複数の温度分布を説明する図である。このような温度分布は、図示されない制御装置に記憶され、目標とする温度分布としてシートガラスSGの温度分布の制御に用いられる。本実施形態の例では、第1の温度分布P1と、第2の温度分布P2と、第3の温度分布P3と、第4の温度分布P4とが、シートガラスSGの流れ方向に沿って設定されている。これらの温度分布は、シートガラスSGの温度分布を調整する領域(天板で挟まれた複数の領域)のそれぞれに設けられた複数の温度センサによって計測される炉内雰囲気温度分布の目標とする温度分布である。この温度分布に対して、実際のシートガラスSGの温度は、数十度低いと考えられる。
 第2の温度分布P2は、第1の温度分布P1よりもシートガラスSGの流れ方向下流側において設定され、第3の温度分布P3は、第2の温度分布P2よりもシートガラスSGの流れ方向下流側において設定される。同様に、第4の温度分布P4は、第3の温度分布P3よりもシートガラスSGの流れ方向下流側において、それぞれ設定される。
FIG. 6 is a diagram for explaining a plurality of temperature distributions used as a reference used for temperature adjustment of the sheet glass SG. Such temperature distribution is memorize | stored in the control apparatus which is not shown in figure, and is used for control of temperature distribution of the sheet glass SG as target temperature distribution. In the example of the present embodiment, the first temperature distribution P1, the second temperature distribution P2, the third temperature distribution P3, and the fourth temperature distribution P4 are set along the flow direction of the sheet glass SG. Has been. These temperature distributions are targets of the furnace atmosphere temperature distribution measured by a plurality of temperature sensors provided in each of the regions (a plurality of regions sandwiched between the top plates) for adjusting the temperature distribution of the sheet glass SG. Temperature distribution. The actual temperature of the sheet glass SG is considered to be several tens of degrees lower than this temperature distribution.
The second temperature distribution P2 is set on the downstream side in the flow direction of the sheet glass SG with respect to the first temperature distribution P1, and the third temperature distribution P3 is in the flow direction of the sheet glass SG with respect to the second temperature distribution P2. Set on the downstream side. Similarly, the 4th temperature distribution P4 is each set in the flow direction downstream of the sheet glass SG rather than the 3rd temperature distribution P3.
 第1の温度分布P1のうち、図6に示される第1分布P1aは、シートガラスSGの幅方向中央部の温度分布に対応し、第2分布P1bは、シートガラスSGの幅方向両端部の温度分布に対応する。第1の温度分布P1は、シートガラスSGの流れ方向の同位置において、Y方向(シートガラスSGの幅方向)中央部の温度が均一であり、且つ、Y方向両端部の温度がY方向中央部の温度よりも低くなるように設定されている。前述したように、シートガラスSGのY方向中央部の温度が均一に設定されることにより、ガラス基板Gの肉厚偏差を低減することができる。なお、第1の温度分布P1では、Y方向中央部の温度(平均温度)と、Y方向両端部の温度との差が、第1の温度差T1になるように設定されている。 Of the first temperature distribution P1, the first distribution P1a shown in FIG. 6 corresponds to the temperature distribution at the center in the width direction of the sheet glass SG, and the second distribution P1b is at both ends in the width direction of the sheet glass SG. Corresponds to the temperature distribution. The first temperature distribution P1 has a uniform temperature in the center of the Y direction (the width direction of the sheet glass SG) at the same position in the flow direction of the sheet glass SG, and the temperature at both ends in the Y direction is the center in the Y direction. It is set to be lower than the temperature of the part. As described above, the thickness deviation of the glass substrate G can be reduced by setting the temperature of the central portion in the Y direction of the sheet glass SG to be uniform. In the first temperature distribution P1, the difference between the temperature at the center in the Y direction (average temperature) and the temperatures at both ends in the Y direction is set to the first temperature difference T1.
 冷却ローラ230及び最上段の中央部冷却ユニット242は、設定されている第1の温度分布P1に基づいて、シートガラスSGを冷却する。具体的に説明すると、冷却ローラ230は、第1の温度分布P1の第2分布P1bに基づいて、Y方向両端部の温度が約109.0poise以上の粘度に相当する温度に低下するまで、Y方向両端部を急冷する。Y方向両端部を急冷するのは、Y方向両端部の粘度を速やかに上昇させることにより、成形体210直下のシートガラスSGの表面積がシートガラスSGの表面張力によって縮小するのを防ぎ、ひいてはシートガラスSGの幅を一定に維持するためである。
 また、最上段の中央部冷却ユニット242は、第1の温度分布P1の第1分布P1aに基づいて、Y方向中央部の温度がY方向両端部の温度よりも高く、且つ、Y方向中央部の温度がY方向に略均一になるように、図示されない温度センサにより計測される雰囲気温度に応じて冷却量を調整して、シートガラスSGのY方向中央部を冷却する。
 これにより、シートガラスSGには、第1の温度分布P1に対応した温度分布が付与される。
The cooling roller 230 and the uppermost central cooling unit 242 cool the sheet glass SG based on the set first temperature distribution P1. More specifically, the cooling roller 230 is based on the second distribution P1b of the first temperature distribution P1 until the temperature at both ends in the Y-direction decreases to a temperature corresponding to a viscosity of about 10 9.0 poise or more. , Quench both ends in the Y direction. The rapid cooling of both ends in the Y direction prevents the surface area of the sheet glass SG immediately below the formed body 210 from being reduced by the surface tension of the sheet glass SG by rapidly increasing the viscosity at both ends in the Y direction, and thus the sheet. This is to keep the width of the glass SG constant.
Further, the uppermost center cooling unit 242 has a temperature in the Y direction center that is higher than the temperatures in both ends in the Y direction based on the first distribution P1a of the first temperature distribution P1, and the center in the Y direction. The amount of cooling is adjusted in accordance with the ambient temperature measured by a temperature sensor (not shown) so that the temperature of the sheet glass SG becomes substantially uniform in the Y direction, and the Y direction center portion of the sheet glass SG is cooled.
Thereby, the temperature distribution corresponding to 1st temperature distribution P1 is provided to the sheet glass SG.
 第2の温度分布P2は、第1の分布P1よりもシートガラスSGの温度がいずれの位置においても低くなるように設定されている。第2の温度分布P2は、第1分布P2aと、第2分布P2bとを有し一山形状を成している。第1分布P2aは、Y方向中央部の温度分布に対応し、第2分布P2bは、Y方向両端部の温度分布に対応する。第2の温度分布P2は、シートガラスSGの流れ方向の同位置において、Y方向中央部の温度が、Y方向中心から幅方向両端部に向かって低下するように、且つ、Y方向両端部の温度がY方向中央部の温度よりも低くなるように設定されている。なお、第2の温度分布P2では、シートガラスSGの幅方向中心の温度と、シートガラスSGの幅方向両端部の温度との差が、第2の温度差T2になるように設定されている。
 冷却ユニット240のうち2段目の中央部冷却ユニット242と、一対の端部冷却ユニット244は、図示されない温度センサにより計測される炉内雰囲気温度に応じて、一山形状の第2の温度分布P2に基づいて冷却量を制御して、シートガラスSGを冷却する。これにより、シートガラスSGには、第2の温度分布P2に対応する温度分布が付与される。
 同様に、冷却ユニット240のうち3段目以降の中央部冷却ユニット242と、一対の端部冷却ユニット244は、図示されない温度センサにより計測される炉内雰囲気温度に応じて、所定の一山形状の温度分布に基づいて冷却量を制御して、シートガラスSGを冷却する。この場合の設定される温度分布は、シートガラスSGの流下方向の下流に行くほど、温度は低くなるとともに、温度分布の一山形状は穏やかになり、幅方向の温度勾配は小さくなる。
The second temperature distribution P2 is set so that the temperature of the sheet glass SG is lower at any position than the first distribution P1. The second temperature distribution P2 has a first distribution P2a and a second distribution P2b, and has a mountain shape. The first distribution P2a corresponds to the temperature distribution at the center in the Y direction, and the second distribution P2b corresponds to the temperature distribution at both ends in the Y direction. The second temperature distribution P2 is such that, at the same position in the flow direction of the sheet glass SG, the temperature in the center in the Y direction decreases from the center in the Y direction toward both ends in the width direction, and at both ends in the Y direction. The temperature is set to be lower than the temperature at the center in the Y direction. In the second temperature distribution P2, the difference between the temperature at the center in the width direction of the sheet glass SG and the temperature at both ends in the width direction of the sheet glass SG is set to be the second temperature difference T2. .
Among the cooling units 240, the second-stage central cooling unit 242 and the pair of end cooling units 244 have a mountain-shaped second temperature distribution according to the furnace atmosphere temperature measured by a temperature sensor (not shown). The sheet glass SG is cooled by controlling the cooling amount based on P2. Thereby, the temperature distribution corresponding to 2nd temperature distribution P2 is provided to the sheet glass SG.
Similarly, the third and subsequent central cooling units 242 and the pair of end cooling units 244 in the cooling unit 240 are formed in a predetermined mountain shape according to the furnace atmosphere temperature measured by a temperature sensor (not shown). The sheet glass SG is cooled by controlling the cooling amount based on the temperature distribution. The temperature distribution set in this case becomes lower as it goes downstream in the flow direction of the sheet glass SG, the mountain shape of the temperature distribution becomes gentler, and the temperature gradient in the width direction becomes smaller.
 第3の温度分布P3は、第2の分布P2よりもシートガラスSGの温度がいずれの位置においても低くなるように設定されている。第3の温度分布P3は、シートガラスSGの流れ方向の同位置において、Y方向中央部の温度が、Y方向中心からY方向両端部に向かって滑らかに低下するように、且つ、Y方向両端部の温度がY方向中央部の温度よりも低くなるように設定されている。なお、第3の温度分布P3では、Y方向中心の温度と、Y方向両端部の温度との差が、第3の温度差T3になるように設定されている。ここで、第3の温度差T3は、第2の温度差T2より小さい。
 ヒータユニット270と均熱板260は、図示されない温度センサにより計測される雰囲気温度に応じて、第3の温度分布P3に基づいて、ヒータユニット270の発熱量を制御しながらシートガラスSGを冷却する。この冷却は、天板202aと天板202bとの間に設けられるヒータユニット270と均熱板260を用いて行われる。これにより、シートガラスSGには、第3の温度分布P3に対応する一山形状の滑らかな温度分布が付与される。なお、天板202aと天板202bとで囲まれた領域において、シートガラスSGの最高温度が、約1013poiseの粘度に相当するガラスの温度である徐冷点を通過するように冷却が行われている。
The third temperature distribution P3 is set so that the temperature of the sheet glass SG is lower at any position than the second distribution P2. The third temperature distribution P3 is such that, at the same position in the flow direction of the sheet glass SG, the temperature in the center in the Y direction decreases smoothly from the center in the Y direction toward both ends in the Y direction, and both ends in the Y direction. The temperature of the part is set to be lower than the temperature of the central part in the Y direction. In the third temperature distribution P3, the difference between the temperature at the center in the Y direction and the temperature at both ends in the Y direction is set to be the third temperature difference T3. Here, the third temperature difference T3 is smaller than the second temperature difference T2.
The heater unit 270 and the soaking plate 260 cool the sheet glass SG while controlling the amount of heat generated by the heater unit 270 based on the third temperature distribution P3 according to the ambient temperature measured by a temperature sensor (not shown). . This cooling is performed using a heater unit 270 and a soaking plate 260 provided between the top plate 202a and the top plate 202b. Thereby, the smooth temperature distribution of the mountain shape corresponding to 3rd temperature distribution P3 is provided to the sheet glass SG. In the region surrounded by the top plate 202a and the top plate 202b, cooling is performed so that the maximum temperature of the sheet glass SG passes through the annealing point, which is the glass temperature corresponding to a viscosity of about 10 13 poise. It has been broken.
 第4の温度分布P4は、シートガラスSGの幅方向に沿って略均一となっている。このように温度分布を均一にするのは、最終製品であるガラス基板における残留歪を可能な限り小さくするためである。シートガラスSGの温度が約1014.5poiseの粘度に相当するガラスの温度である歪点近傍においてシートガラスSGの幅方向の温度分布が均一でない場合、最終製品であるガラス基板における残留歪が生じることから、歪点近傍においてシートガラスSGの幅方向の温度分布を均一にする。このため、第4の温度分布P4は、シートガラスSGの歪点になる区域で用いられる。この温度分布による制御は、天板202bより下方に設けられるヒータユニット270と均熱板260を用いて行われる。したがって、天板202aよりシートガラスSGの流れの下流側で行われるシートガラスSGの冷却(第2冷却)において、シートガラスSGの温度、すなわち中央部の温度のみならず両端部の温度が、シートガラスSGの歪点近傍を同時に通過するようにシートガラスSGは冷却されている。これにより、シートガラスSGには、第4の温度分布P4に対応する段差のない一定の温度分布が付与される。
 このように、本実施形態では、均熱板260及びヒータユニット270を用いてシートガラスSGの温度分布を制御しながら、シートガラスSGの最高温度(中央部の温度)が徐冷点及び歪点を通過するようにシートガラスSGは冷却される。
 なお、第3の温度分布P3と第4の温度分布との間には、少なくとも1つ以上の温度分布が設定され、この温度分布に基づいて、シートガラスSGの冷却が行われてもよい。この場合、この温度分布を用いたシートガラスSGの冷却は、第3の温度分布に基づいてシートガラスSGの冷却を行うヒータユニット270と均熱板260と、第4の温度分布に基づいてシートガラスSGの冷却を行うヒータユニット270と均熱板260との間の区域に設けられたヒータユニット270と均熱板260とを用いて行われる。この場合の設定される温度分布は、勿論、第3の温度分布P3より一山形状が穏やかになった分布である。
The fourth temperature distribution P4 is substantially uniform along the width direction of the sheet glass SG. The reason for making the temperature distribution uniform in this way is to make the residual strain in the glass substrate as the final product as small as possible. When the temperature distribution in the width direction of the sheet glass SG is not uniform in the vicinity of the strain point, which is the glass temperature corresponding to the viscosity of about 10 14.5 poise, the residual strain in the glass substrate that is the final product is As a result, the temperature distribution in the width direction of the sheet glass SG is made uniform in the vicinity of the strain point. For this reason, the 4th temperature distribution P4 is used in the area used as the strain point of the sheet glass SG. The control based on the temperature distribution is performed using a heater unit 270 and a soaking plate 260 provided below the top plate 202b. Therefore, in the cooling (second cooling) of the sheet glass SG performed on the downstream side of the flow of the sheet glass SG from the top plate 202a, not only the temperature of the sheet glass SG, that is, the temperature of the center portion, The sheet glass SG is cooled so as to simultaneously pass through the vicinity of the strain point of the glass SG. Thereby, a certain temperature distribution without a step corresponding to the fourth temperature distribution P4 is given to the sheet glass SG.
Thus, in this embodiment, while controlling the temperature distribution of the sheet glass SG using the soaking plate 260 and the heater unit 270, the maximum temperature of the sheet glass SG (the temperature at the center) is the annealing point and the strain point. The sheet glass SG is cooled so as to pass through.
Note that at least one temperature distribution may be set between the third temperature distribution P3 and the fourth temperature distribution, and the sheet glass SG may be cooled based on the temperature distribution. In this case, the cooling of the sheet glass SG using this temperature distribution is performed by using the heater unit 270 and the soaking plate 260 for cooling the sheet glass SG based on the third temperature distribution, and the sheet based on the fourth temperature distribution. The heating is performed using the heater unit 270 and the soaking plate 260 provided in the area between the heater unit 270 and the soaking plate 260 for cooling the glass SG. The temperature distribution set in this case is, of course, a distribution in which the mountain shape is gentler than the third temperature distribution P3.
 本実施形態では、天板202aよりシートガラスSGの流れ方向の下流側の領域が、シートガラスSGが徐冷点~歪点を通過する温度領域である。つまり、この温度領域がシートガラスSGが塑性変形する温度領域であるので、本実施形態は、上記温度領域でシートガラスSGの反り量を低減するように、シートガラスSGに滑らかな温度分布を与えて冷却する。本実施形態では、上記温度領域で、シートガラスSGの中央部の冷却量(体積収縮量)が両端部の冷却量(体積収縮量)に比べて大きくなるように冷却するので、平坦なシートガラスSGのY方向中央部において、シートガラスSGの流下方向及び幅方向へ常に引っ張り応力を生じさせ、ガラス基板の反りを防止する。したがって、本実施形態は、ガラス基板Gの反り量を低減することができる。
 また、シートガラスSGの歪点においてシートガラスSGの温度分布が均一でない場合、ガラス基板Gにおいて残留歪が発生するが、本実施形態では、シートガラスSGの歪点においてシートガラスSGの温度分布が略均一になるので、ガラス基板Gにおける残留歪も低減することができる。さらに、第1の温度分布P1に基いてシートガラスSGの温度分布は制御されているので、ガラス基板における肉厚偏差も低減できる。
In the present embodiment, the region downstream of the top plate 202a in the flow direction of the sheet glass SG is a temperature region in which the sheet glass SG passes through the annealing point to the strain point. That is, since this temperature region is a temperature region in which the sheet glass SG is plastically deformed, this embodiment gives a smooth temperature distribution to the sheet glass SG so as to reduce the amount of warpage of the sheet glass SG in the temperature region. Cool down. In the present embodiment, the sheet glass SG is cooled so that the cooling amount (volume shrinkage amount) at the center of the sheet glass SG is larger than the cooling amount (volume shrinkage amount) at both ends in the above temperature region. A tensile stress is always generated in the flow direction and the width direction of the sheet glass SG at the center portion in the Y direction of the SG to prevent the glass substrate from warping. Therefore, this embodiment can reduce the curvature amount of the glass substrate G. FIG.
In addition, when the temperature distribution of the sheet glass SG is not uniform at the strain point of the sheet glass SG, residual strain occurs in the glass substrate G. In this embodiment, the temperature distribution of the sheet glass SG is at the strain point of the sheet glass SG. Since it becomes substantially uniform, residual strain in the glass substrate G can also be reduced. Furthermore, since the temperature distribution of the sheet glass SG is controlled based on the first temperature distribution P1, the thickness deviation in the glass substrate can also be reduced.
 すなわち、本実施形態では、シートガラスの徐冷点位置と歪点位置との間の領域で行う第2冷却(徐冷)において、ガラス基板の反りおよび歪を低減するために、シートガラスSGの幅方向に沿って設けられたヒータユニット270を熱源として用いて、温度分布を制御しながら冷却する。このとき、熱源であるヒータユニット270の熱分布を均熱板260を用いて緩和させることにより段差のない滑らかな温度分布、例えば滑らかな一山形状の温度分布あるいは滑らかな均一な温度分布をシートガラスSGに与える。これにより、顧客の要求を満足するような反り量及び歪量を有するガラス基板Gを作製することができる。 That is, in the present embodiment, in the second cooling (slow cooling) performed in the region between the annealing point position and the strain point position of the sheet glass, in order to reduce the warp and distortion of the glass substrate, The heater unit 270 provided along the width direction is used as a heat source for cooling while controlling the temperature distribution. At this time, the heat distribution of the heater unit 270, which is a heat source, is relaxed by using the heat equalizing plate 260, so that a smooth temperature distribution without a step, for example, a smooth mountain-shaped temperature distribution or a smooth uniform temperature distribution can be obtained. Give to glass SG. Thereby, the glass substrate G which has the curvature amount and distortion amount which satisfy a customer's request | requirement is producible.
 また、熱源であるヒータユニット270の熱分布の緩和は、シートガラスSGとヒータユニット270との間に設けられた1つの均熱板260がヒータユニット270の熱分布を緩和させるので、ヒータユニット270の発する熱分布に段差があっても、シートガラスSGの幅全体に亘って、緩和した滑らかな温度分布(一山形状の温度分布、あるいは均一な温度分布)を与えることができる。このため、より一層、ガラス基板Gにおける反り量及び歪量を低減することができる。 Further, the heat distribution of the heater unit 270 that is a heat source is reduced because the single heat equalizing plate 260 provided between the sheet glass SG and the heater unit 270 reduces the heat distribution of the heater unit 270. Even if there is a step in the heat distribution generated by the above, it is possible to provide a relaxed and smooth temperature distribution (a temperature distribution in a mountain shape or a uniform temperature distribution) over the entire width of the sheet glass SG. For this reason, the curvature amount and distortion amount in the glass substrate G can be further reduced.
 本実施形態の均熱板260は、酸化処理により表面に酸化被膜が形成されたステンレス金属板であるので、均熱板260からシートガラスSGに放射する熱の放射率が高くなる。したがって、この均熱板260により、ヒータユニット270の発する熱分布を効果的に緩和させることができる。 Since the soaking plate 260 of the present embodiment is a stainless metal plate having an oxide film formed on the surface by oxidation treatment, the emissivity of heat radiated from the soaking plate 260 to the sheet glass SG is increased. Therefore, the heat distribution generated by the heater unit 270 can be effectively relaxed by the soaking plate 260.
 また、本実施形態では、シートガラスSGの両側の面に少なくとも一対の温度調整装置を設け、一対の前記温度調整装置のそれぞれが、ヒータユニット270及び均熱板260を用いてシートガラスSGに熱を供給するので、シートガラスSGの温度分布をシートガラスSGの両側の面から制御できる。このため、ガラス基板Gにおける反り量及び歪量を低減することができる。 In the present embodiment, at least a pair of temperature adjusting devices are provided on both sides of the sheet glass SG, and each of the pair of temperature adjusting devices uses the heater unit 270 and the soaking plate 260 to heat the sheet glass SG. Therefore, the temperature distribution of the sheet glass SG can be controlled from both sides of the sheet glass SG. For this reason, the curvature amount and distortion amount in the glass substrate G can be reduced.
 さらに、本実施形態では、ヒータユニット270は、ヒータユニット270の発熱量の分布によって熱を均熱板260に供給するので、シートガラスSGの温度をヒータ270a~270eの発熱量によって容易に制御することができる。このとき、発熱量の分布は、シートガラスSGの幅方向の中心で最大となる一山形状の分布とされるので、ガラス基板Gにおける反り量を低減することができる好ましい温度分布である一山形状の温度分布をシートガラスSGに効率よく与えることができる。また、発熱量の分布は、均一な分布とされるので、ガラス基板Gにおける歪量を低減することができる好ましい温度分布である段差のない均一な温度分布をシートガラスSGに効率よく与えることができる。 Furthermore, in the present embodiment, the heater unit 270 supplies heat to the heat equalizing plate 260 according to the distribution of the amount of heat generated by the heater unit 270, so the temperature of the sheet glass SG is easily controlled by the amount of heat generated by the heaters 270a to 270e. be able to. At this time, the distribution of the calorific value is a single mountain-shaped distribution that is maximized at the center in the width direction of the sheet glass SG, and therefore, a single temperature that is a preferable temperature distribution that can reduce the amount of warpage in the glass substrate G. The temperature distribution of the shape can be efficiently given to the sheet glass SG. Further, since the distribution of the calorific value is a uniform distribution, it is possible to efficiently give the sheet glass SG a uniform temperature distribution without a step, which is a preferable temperature distribution capable of reducing the amount of distortion in the glass substrate G. it can.
 ヒータユニット270がシートガラスSGに向けて供給する熱の熱分布が、ヒータ270a~270eそれぞれのシートガラスSGの幅方向の端に対応した位置において、低下する分布を含み、その結果段差を含む分布であっても、均熱板260は、ヒータユニット270の発する熱の熱分布を緩和することによって滑らかな一山形状の温度分布あるいは均一な温度分布をシートガラスSGに与えることができる。 A distribution in which the heat distribution of the heat supplied by the heater unit 270 toward the sheet glass SG includes a distribution that decreases at positions corresponding to the widthwise ends of the sheet glass SG of the respective heaters 270a to 270e, and as a result includes a step. Even so, the soaking plate 260 can provide the sheet glass SG with a smooth, uniform temperature distribution or a uniform temperature distribution by relaxing the heat distribution of the heat generated by the heater unit 270.
 図7は、均熱板260がない場合のシートガラスSGの温度分布Aと、上述した第3の温度分布P3に対応して形成されるシートガラスSGの温度分布Bとを比較する模式図である。図7に示すように、均熱板260がない場合、シートガラスSGの温度分布Aは、ヒータ270a~270eの発熱量によって段差が生じる。しかし、均熱板260をシートガラスSGとヒータ270a~270eとの間に設けることにより、温度分布Bのように滑らかな一山形状になる。このため、シートガラスSGの温度分布の段差に起因してシートガラスSG、ひいてはガラス基板Gが反ることを抑制することができる。また、図示されないが、均熱板260がない場合、ヒータ270a~270eが隙間をあけて幅方向に配列されていることにより、シートガラスSGの温度分布が、上記隙間に対応して局部的に落ち込むような分布を持つ場合においても、均熱板260をシートガラスSGとヒータ270a~270eとの間に設けることにより、温度分布Bのように滑らかな一山形状になる。このため、シートガラスSGの温度分布の段差に起因してシートガラスSG、ひいてはガラス基板Gが反ることを抑制することができる。 FIG. 7 is a schematic diagram comparing the temperature distribution A of the sheet glass SG when there is no soaking plate 260 and the temperature distribution B of the sheet glass SG formed corresponding to the above-described third temperature distribution P3. is there. As shown in FIG. 7, when there is no soaking plate 260, the temperature distribution A of the sheet glass SG has a level difference depending on the amount of heat generated by the heaters 270a to 270e. However, by providing the soaking plate 260 between the sheet glass SG and the heaters 270a to 270e, a smooth mountain shape like the temperature distribution B is obtained. For this reason, it can suppress that the sheet glass SG and by extension the glass substrate G originate in the level | step difference of the temperature distribution of the sheet glass SG. Although not shown, when there is no soaking plate 260, the heaters 270a to 270e are arranged in the width direction with a gap therebetween, so that the temperature distribution of the sheet glass SG is locally corresponding to the gap. Even in the case of a distribution that falls, by providing the soaking plate 260 between the sheet glass SG and the heaters 270a to 270e, a smooth mountain shape like the temperature distribution B is obtained. For this reason, it can suppress that the sheet glass SG and by extension the glass substrate G originate in the level | step difference of the temperature distribution of the sheet glass SG.
 図8は、均熱板260の有無により、シートガラスSGの表面の計測温度がどのように変化するかを示した実測図である。計測温度は、均熱板の直下において赤外線放射温度計を用いて計測したものである。ヒータユニット270は、幅方向に7個ヒータを設け、中央部のヒータ1は幅方向に最も長く、かつ、シートガラスSGの総幅に応じて変更し、その両側に位置する6個のヒータ(図8では、ヒータ2~4のみを記す)を設けた。ヒータ2~4のうちヒータ3,4は、シートガラスSGの総幅に関わらず一定の長さに、中央部ヒーターに隣接するヒーター2はヒータ3、4より1.5倍程度長い寸法とすることで、シートガラスSGの中央付近では非常になだらかな、端部近傍では端部に向かうにつれ徐々に温度勾配が大きくなるようなプロファイルを実現している。
 図8では、シートガラスSGの中心から一方の側の温度分布を示している。均熱板260がないことにより、ヒータの熱が直接伝達されるために、シートガラスSGの温度は均熱板がある場合に比べて高いが、領域Xで局所的に温度が落ち込んで低下している。この温度の低下は、約1.5度である。このような温度が低下する領域Xは、ヒータ1とヒータ2との間、ヒータ2とヒータ3との間、及びヒータ3とヒータ4との間の隙間に該当し、この領域に十分な熱が付与されなかったことによるものと考えられる。これに対して、均熱板260がある場合、領域Xのような局所的な温度の低下が見られず、シートガラスSGの温度分布は、一山形状の温度分布となっていることわかる。図8では、均熱板260が存在する場合、存在しない場合に比べガラス温度が数℃から十数℃低下している。なお、低下の程度は均熱板260の放射率に依存し、放射率が1.0に近づくほど低下の程度は小さくなる。したがって、均熱板260の放射率を高く保つことはヒータ1~4とシートガラスSGとの間の熱交換効率を高める上で重要である。
FIG. 8 is an actual measurement diagram showing how the measured temperature of the surface of the sheet glass SG changes depending on the presence or absence of the soaking plate 260. The measured temperature is measured using an infrared radiation thermometer directly under the soaking plate. The heater unit 270 is provided with seven heaters in the width direction, the central heater 1 is the longest in the width direction, and is changed according to the total width of the sheet glass SG, and six heaters ( In FIG. 8, only heaters 2 to 4 are shown. Of the heaters 2 to 4, the heaters 3 and 4 have a constant length regardless of the total width of the sheet glass SG, and the heater 2 adjacent to the central heater is approximately 1.5 times longer than the heaters 3 and 4. Thus, a profile is realized in which the temperature gradient is very gentle near the center of the sheet glass SG and gradually increases toward the end near the end.
FIG. 8 shows the temperature distribution on one side from the center of the sheet glass SG. Since there is no soaking plate 260, the heat of the heater is directly transferred, so the temperature of the sheet glass SG is higher than when there is a soaking plate, but the temperature drops locally in the region X and decreases. ing. This decrease in temperature is about 1.5 degrees. Such a region X in which the temperature decreases corresponds to a gap between the heater 1 and the heater 2, between the heater 2 and the heater 3, and between the heater 3 and the heater 4. It is thought that this is because the On the other hand, when there is the soaking plate 260, a local temperature decrease as in the region X is not observed, and it can be seen that the temperature distribution of the sheet glass SG is a one-sided temperature distribution. In FIG. 8, when the soaking plate 260 is present, the glass temperature is lowered from several degrees C. to several tens of degrees C. compared to the case where the soaking plate 260 is not present. The degree of reduction depends on the emissivity of the soaking plate 260, and the degree of reduction becomes smaller as the emissivity approaches 1.0. Therefore, keeping the emissivity of the soaking plate 260 high is important for improving the heat exchange efficiency between the heaters 1 to 4 and the sheet glass SG.
 [実施例]
 本実施形態の効果を調べるために、ガラス基板の製造方法を用いて、ガラス基板を製造した。なお、ガラス原料は、以下の組成となるように調合した。
SiO2 61%,
Al23 17%,
23 11%,
CaO 6%,
SrO 3%,
BaO 1%
[Example]
In order to investigate the effect of this embodiment, the glass substrate was manufactured using the manufacturing method of a glass substrate. In addition, the glass raw material was prepared so that it might become the following compositions.
SiO 2 61%,
Al 2 O 3 17%,
B 2 O 3 11%,
CaO 6%,
SrO 3%,
BaO 1%
 作製したガラス基板のそれぞれについて、各1週間に渡って3時間毎に1枚(8枚/日)ずつサンプリングし、各56枚のサンプルにつき平面度と歪みを測定し、それぞれの平均値を算出した。
 その結果、本実施形態の均熱板260を有するガラス基板の成形装置によりつくられたガラス基板の平面度は、均熱板260を有さない従来のガラス基板の成形装置によりつくられたガラス基板の平面度より5%低減した。本実施形態の均熱板260を有するガラス基板の成形装置により製造されたガラス基板の歪量は、従来のガラス基板の成形装置により製造されたガラス基板の歪量より5%低減した。
 なお、平面度については、レーザ変位計を用いて測定した。また、歪は、ユニオプト製の複屈折率測定器ABR-10Aを使用して、予め定められた複数の測定位置について複屈折量を測定し、測定した複屈折量のうち最大値を歪量として採用した。
 これより、本実施形態のガラス基板の製造方法の効果は明確である。
For each of the produced glass substrates, one piece (8 pieces / day) was sampled every 3 hours over one week, and the flatness and strain were measured for each 56 pieces of samples, and the average value of each was calculated. did.
As a result, the flatness of the glass substrate produced by the glass substrate molding apparatus having the soaking plate 260 of the present embodiment is equal to the glass substrate produced by the conventional glass substrate molding apparatus not having the soaking plate 260. The flatness was reduced by 5%. The amount of strain of the glass substrate manufactured by the glass substrate molding apparatus having the soaking plate 260 of the present embodiment was reduced by 5% from the amount of strain of the glass substrate manufactured by the conventional glass substrate molding apparatus.
In addition, about flatness, it measured using the laser displacement meter. In addition, the birefringence amount is measured at a plurality of predetermined measurement positions using a birefringence measuring instrument ABR-10A manufactured by UNIOPT, and the maximum value of the measured birefringence amounts is used as the distortion amount. Adopted.
From this, the effect of the manufacturing method of the glass substrate of this embodiment is clear.
 本実施形態の冷却工程では、ヒータユニット270及び均熱板260を備える少なくとも一対の温度調整装置がシートガラスSGの両側の面に設けられて冷却が行われるが、温度調整装置が、シートガラスSGの片側の面のみに設けられた構成で冷却を行ってもよい。しかし、ガラス基板における反り及び歪みをより低減するためには、シートガラスSGの両側の面に上記温度調整装置が設けられることが好ましい。
 本実施形態では、熱源としてヒータを複数備えるヒータユニットを用いたが、熱源は、熱を放射する発熱源であるヒータに限られず、熱風をシートガラスSGに向けて提供する高温エアー吹き付け装置をシートガラスSGの幅方向に複数設けたものであってもよい。
In the cooling process of the present embodiment, at least a pair of temperature adjusting devices including the heater unit 270 and the heat equalizing plate 260 are provided on both sides of the sheet glass SG to perform cooling, but the temperature adjusting device is the sheet glass SG. You may cool by the structure provided only in the surface of one side. However, in order to further reduce warpage and distortion in the glass substrate, it is preferable that the temperature adjusting device is provided on both surfaces of the sheet glass SG.
In the present embodiment, a heater unit including a plurality of heaters is used as a heat source. However, the heat source is not limited to a heater that is a heat source that radiates heat, and a high-temperature air blowing device that provides hot air toward the sheet glass SG is used as a sheet. A plurality of glass SGs may be provided in the width direction.
 以上、本発明のガラス基板の製造方法及び成形装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method and shaping | molding apparatus of the glass substrate of this invention were demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.
100 熔解装置
101 熔解槽
102 清澄槽
103 攪拌槽
104 第1配管
105 第2配管
106 第3配管
200 成形装置
201 成形炉
202 徐冷炉
202a,202b 天板
210 成形体
212 溝
213 下方端部
220 雰囲気仕切り部材
230 冷却ローラ
240 冷却ユニット
242 中央部冷却ユニット
242 冷却量調整ユニット
244 端部冷却ユニット
250a~250c 搬送ローラ
260 均熱板
270 ヒータユニット
270a~270e ヒータ
300 切断装置
DESCRIPTION OF SYMBOLS 100 Melting apparatus 101 Melting tank 102 Clarification tank 103 Stirring tank 104 1st piping 105 2nd piping 106 3rd piping 200 Molding apparatus 201 Molding furnace 202 Slow cooling furnace 202a, 202b Top plate 210 Molded body 212 Groove 213 Lower end 220 Atmosphere partition member 230 Cooling roller 240 Cooling unit 242 Central cooling unit 242 Cooling amount adjustment unit 244 End cooling unit 250a to 250c Conveying roller 260 Heat equalizing plate 270 Heater unit 270a to 270e Heater 300 Cutting device

Claims (14)

  1.  ガラス基板の製造方法であって、
     熔融ガラスを成形体からオーバーフローさせて連続したシートガラスを成形し、前記シートガラスの流れをつくる成形工程と、
     前記ガラス基板の反りおよび歪を低減するために、前記シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させながら、前記熱源を用いて、前記シートガラスに、前記シートガラスの幅方向に沿って温度分布を与えて冷却する徐冷処理を含む冷却工程と、を含み、
     前記徐冷処理は、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で行われる、ことを特徴とするガラス基板の製造方法。
    A method of manufacturing a glass substrate,
    Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
    In order to reduce the warp and distortion of the glass substrate, the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass. And a cooling step including a slow cooling process for cooling by giving a temperature distribution along the width direction of
    The slow cooling treatment is performed between a slow cooling point position in the flow direction of the sheet glass corresponding to a slow cooling point of the sheet glass and a strain point position in the flow direction of the sheet glass corresponding to a strain point of the sheet glass. It is performed in the area | region of the flow direction of the said sheet glass, The manufacturing method of the glass substrate characterized by the above-mentioned.
  2.  前記熱源の熱分布の緩和は、前記シートガラスと前記熱源との間に設けられた1つの均熱板を用いて行われ、前記均熱板は、前記熱源の熱分布を緩和させて、前記シートガラスに熱を供給する、請求項1に記載のガラス基板の製造方法。 The heat distribution of the heat source is relaxed by using one soaking plate provided between the sheet glass and the heat source, the soaking plate relaxes the heat distribution of the heat source, and The manufacturing method of the glass substrate of Claim 1 which supplies heat to sheet glass.
  3.  前記均熱板は、酸化処理により表面に酸化被膜が形成されたステンレス金属板である、請求項2に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 2, wherein the soaking plate is a stainless metal plate having an oxide film formed on the surface by oxidation treatment.
  4.  前記冷却工程は、前記シートガラスの両側の面に設けられた少なくとも一対の温度調整装置を用いて行われ、少なくとも一対の前記温度調整装置のそれぞれが、前記熱源及び前記均熱板を用いて前記シートガラスに熱を供給する、請求項1~3のいずれか1項に記載のガラス基板の製造方法。 The cooling step is performed using at least a pair of temperature adjusting devices provided on both sides of the sheet glass, and each of the at least one pair of temperature adjusting devices uses the heat source and the heat equalizing plate. The method for producing a glass substrate according to any one of claims 1 to 3, wherein heat is supplied to the sheet glass.
  5.  前記熱分布は、前記熱源の発熱量の分布である、請求項1~4のいずれか1項に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to any one of claims 1 to 4, wherein the heat distribution is a distribution of a calorific value of the heat source.
  6.  前記温度分布は、前記幅方向の中心で最大となる一山形状の分布、あるいは、均一な分布である、請求項1~5のいずれか1項に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to any one of claims 1 to 5, wherein the temperature distribution is a single-peak distribution that is maximum at the center in the width direction or a uniform distribution.
  7.  前記熱源は、前記幅方向に設けられた複数の熱源要素を含み、
     前記熱源の前記熱分布は、前記熱源要素それぞれの前記幅方向の端に対応した位置において供給する熱が低下する分布を含む、請求項1~6のいずれか1項に記載のガラス基板の製造方法。
    The heat source includes a plurality of heat source elements provided in the width direction,
    The production of a glass substrate according to any one of claims 1 to 6, wherein the heat distribution of the heat source includes a distribution in which heat supplied at a position corresponding to the end in the width direction of each of the heat source elements decreases. Method.
  8.  ガラス基板の製造方法であって、
     熔融ガラスを成形体からオーバーフローさせてシートガラスを成形する成形工程と、
     前記シートガラスの幅方向に沿って設けられた一対の熱源が、前記シートガラスの両面に、前記シートガラスの幅方向に沿って温度分布を与えることにより、前記シートガラスを冷却する徐冷処理を含む冷却工程と、を含み、
     前記徐冷処理では、前記一対の熱源と前記シートガラスとの間に配置された一対の板材の間に前記シートガラスを通して徐冷する、ことを特徴とするガラス基板の製造方法。
    A method of manufacturing a glass substrate,
    A molding step of overflowing the molten glass from the molded body and molding the sheet glass;
    A pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass. Including a cooling step,
    In the slow cooling treatment, the glass substrate is slowly cooled through the sheet glass between a pair of plate members arranged between the pair of heat sources and the sheet glass.
  9.  前記板材は、シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させる均熱板であり、
     前記徐冷処理は、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で、前記均熱板を用いて行われる、ことを特徴とする請求項8に記載のガラス基板の製造方法。
    The plate material is a soaking plate that relaxes the heat distribution supplied by the heat source provided along the width direction of the sheet glass,
    The slow cooling treatment is performed between a slow cooling point position in the flow direction of the sheet glass corresponding to a slow cooling point of the sheet glass and a strain point position in the flow direction of the sheet glass corresponding to a strain point of the sheet glass. The method for producing a glass substrate according to claim 8, wherein the heat soaking plate is used in a region in the flow direction of the sheet glass.
  10.  前記均熱板の熱伝導率が10W/(m・K)以上である、請求項9に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 9, wherein the heat soaking plate has a thermal conductivity of 10 W / (m · K) or more.
  11.  ガラス基板の成形装置であって、
     熔融ガラスを成形体からオーバーフローさせてシートガラスを成形する成形炉と、
     前記シートガラスの幅方向に沿って設けられた一対の熱源が、前記シートガラスの両面に、前記シートガラスの幅方向に沿って温度分布を与えることにより、前記シートガラスを冷却する徐冷処理を行う冷却炉と、を有し、
     前記徐冷処理では、前記一対の熱源と前記シートガラスとの間に配置された一対の板材の間に前記シートガラスを通して徐冷する、ことを特徴とするガラス基板の成形装置。
    A glass substrate molding apparatus,
    A molding furnace for overflowing the molten glass from the molded body and molding the sheet glass;
    A pair of heat sources provided along the width direction of the sheet glass gives a slow cooling process for cooling the sheet glass by providing a temperature distribution along the width direction of the sheet glass on both surfaces of the sheet glass. A cooling furnace to perform,
    In the slow cooling process, the glass substrate forming apparatus is characterized in that the sheet glass is gradually cooled between a pair of plate members disposed between the pair of heat sources and the sheet glass.
  12.  前記板材は、シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させる均熱板であり、
     前記冷却炉は、前記徐冷処理を、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で、前記均熱板を用いて行う、請求項11に記載のガラス基板の成形装置。
    The plate material is a soaking plate that relaxes the heat distribution supplied by the heat source provided along the width direction of the sheet glass,
    The cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. The apparatus for forming a glass substrate according to claim 11, which is performed using the heat-uniforming plate in a region in the flow direction of the sheet glass between the point positions.
  13.  前記熱源は、前記シートガラスの両面に向けて熱を放射する加熱ヒータであり、
     前記板材は、前記加熱ヒータの前記シートガラスに対向する全面を遮るように配置されている、請求項11または12に記載のガラス基板の成形装置。
    The heat source is a heater that radiates heat toward both surfaces of the sheet glass,
    The said board | plate material is a glass substrate shaping | molding apparatus of Claim 11 or 12 arrange | positioned so that the whole surface facing the said sheet glass of the said heater may be interrupted | blocked.
  14.  ガラス基板の成形装置であって、
     熔融ガラスを成形体からオーバーフローさせて連続したシートガラスを成形し、前記シートガラスの流れをつくる成形炉と、
     前記ガラス基板の反りおよび歪を低減するために、前記シートガラスの幅方向に沿って設けられた熱源の供給する熱分布を緩和させながら、前記熱源を用いて、前記シートガラスに、前記シートガラスの幅方向に沿って温度分布を与えて冷却する徐冷処理を行う冷却炉と、を有し、
     前記冷却炉は、前記徐冷処理を、前記シートガラスの徐冷点に対応する前記シートガラスの流れ方向の徐冷点位置と前記シートガラスの歪点に対応する前記シートガラスの流れ方向の歪点位置との間にある、前記シートガラスの流れ方向の領域内で行う、ことを特徴とするガラス基板の成形装置。
     
    A glass substrate molding apparatus,
    Forming a continuous sheet glass by overflowing the molten glass from the molded body, and forming a flow of the sheet glass;
    In order to reduce the warp and distortion of the glass substrate, the sheet glass is used for the sheet glass by using the heat source while relaxing the heat distribution supplied by the heat source provided along the width direction of the sheet glass. And a cooling furnace that performs a slow cooling process that cools by giving a temperature distribution along the width direction of
    The cooling furnace is configured to perform the slow cooling treatment in the flow direction of the sheet glass corresponding to the slow cooling point position in the flow direction of the sheet glass corresponding to the slow cooling point of the sheet glass and the strain point of the sheet glass. An apparatus for forming a glass substrate, which is performed in a region in the flow direction of the sheet glass between the point positions.
PCT/JP2013/050489 2012-01-13 2013-01-11 Manufacturing device and molding device for glass substrate WO2013105667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380004438.0A CN104024169B (en) 2012-01-13 2013-01-11 The manufacture method of glass substrate and shaped device
JP2013512920A JP5752787B2 (en) 2012-01-13 2013-01-11 Glass substrate manufacturing method and molding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005642 2012-01-13
JP2012-005642 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105667A1 true WO2013105667A1 (en) 2013-07-18

Family

ID=48781607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050489 WO2013105667A1 (en) 2012-01-13 2013-01-11 Manufacturing device and molding device for glass substrate

Country Status (3)

Country Link
JP (1) JP5752787B2 (en)
CN (1) CN104024169B (en)
WO (1) WO2013105667A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098209A1 (en) * 2012-12-20 2014-06-26 日本電気硝子株式会社 Plate glass manufacturing device and plate glass manufacturing method
CN104944748A (en) * 2014-03-31 2015-09-30 安瀚视特控股株式会社 Method for manufacturing glass substrate, and device for manufacturing glass substrate
JP2015199644A (en) * 2014-03-31 2015-11-12 AvanStrate株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
WO2016104805A1 (en) * 2014-12-27 2016-06-30 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing apparatus for glass plate
WO2020085297A1 (en) * 2018-10-26 2020-04-30 日本電気硝子株式会社 Glass article manufacturing method
CN113321407A (en) * 2021-05-31 2021-08-31 彩虹(合肥)液晶玻璃有限公司 Device and method for controlling shape of glass substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136255B2 (en) 2015-06-16 2021-10-05 Corning Incorporated Systems and methods for thermally controlling warp
CN105217935A (en) * 2015-08-17 2016-01-06 彩虹(合肥)液晶玻璃有限公司 A kind of device and method preventing sheet glass warpage
JP7011062B2 (en) * 2017-10-27 2022-01-26 ショット アクチエンゲゼルシャフト Equipment and methods for manufacturing flat glass
CN112087920A (en) * 2020-08-12 2020-12-15 东莞领杰金属精密制造科技有限公司 Stainless steel soaking plate and manufacturing method thereof
CN114988675B (en) * 2022-05-27 2023-11-07 中国洛阳浮法玻璃集团有限责任公司 Control device and control method for plate glass warping defect

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225326A (en) * 1988-11-30 1990-09-07 Hoya Corp Apparatus for producing glass plate
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2007112665A (en) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd Heating apparatus for liquid crystal sheet glass, furnace for liquid crystal sheet glass, and method of manufacturing liquid crystal sheet glass
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455875B1 (en) * 2006-09-20 2014-11-03 코닝 인코포레이티드 Temperature compensation for shape-induced inplane stresses in glass substrates
CN201837906U (en) * 2010-09-29 2011-05-18 陕西彩虹电子玻璃有限公司 Shaping temperature control device for TFT (Thin Film Transistor) glass substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225326A (en) * 1988-11-30 1990-09-07 Hoya Corp Apparatus for producing glass plate
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JP2001031435A (en) * 1999-07-22 2001-02-06 Nh Techno Glass Kk Production of glass plate, apparatus for producing glass plate, and liquid crystal device
JP2007112665A (en) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd Heating apparatus for liquid crystal sheet glass, furnace for liquid crystal sheet glass, and method of manufacturing liquid crystal sheet glass
JP2009173525A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Process and apparatus for producing glass plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098209A1 (en) * 2012-12-20 2014-06-26 日本電気硝子株式会社 Plate glass manufacturing device and plate glass manufacturing method
CN104944748A (en) * 2014-03-31 2015-09-30 安瀚视特控股株式会社 Method for manufacturing glass substrate, and device for manufacturing glass substrate
JP2015199644A (en) * 2014-03-31 2015-11-12 AvanStrate株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
WO2016104805A1 (en) * 2014-12-27 2016-06-30 AvanStrate株式会社 Manufacturing method for glass plate and manufacturing apparatus for glass plate
KR20170100525A (en) * 2014-12-27 2017-09-04 아반스트레이트 가부시키가이샤 Manufacturing method for glass plate and manufacturing apparatus for glass plate
JPWO2016104805A1 (en) * 2014-12-27 2017-10-19 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
KR102459796B1 (en) * 2014-12-27 2022-10-26 아반스트레이트 가부시키가이샤 Manufacturing method for glass plate and manufacturing apparatus for glass plate
WO2020085297A1 (en) * 2018-10-26 2020-04-30 日本電気硝子株式会社 Glass article manufacturing method
JPWO2020085297A1 (en) * 2018-10-26 2021-09-24 日本電気硝子株式会社 Manufacturing method of glass articles
JP7415252B2 (en) 2018-10-26 2024-01-17 日本電気硝子株式会社 Method for manufacturing glass articles
CN113321407A (en) * 2021-05-31 2021-08-31 彩虹(合肥)液晶玻璃有限公司 Device and method for controlling shape of glass substrate
CN113321407B (en) * 2021-05-31 2022-08-30 彩虹(合肥)液晶玻璃有限公司 Device and method for controlling shape of glass substrate

Also Published As

Publication number Publication date
CN104024169A (en) 2014-09-03
CN104024169B (en) 2016-12-21
JP5752787B2 (en) 2015-07-22
JPWO2013105667A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5752787B2 (en) Glass substrate manufacturing method and molding apparatus
JP5574454B2 (en) Manufacturing method of glass substrate
US20190002329A1 (en) Strengthened glass and related systems and methods
US11891324B2 (en) Thermally strengthened consumer electronic glass and related systems and methods
CN103221352B (en) The manufacturing installation of sheet glass and the manufacture method of sheet glass
JP5456789B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
US20100269542A1 (en) Process and apparatus for producing glass sheet
JP2009173524A (en) Process and apparatus for producing glass plate
KR101798292B1 (en) Method for making glass substrate for display
TW201700416A (en) Glass-substrate manufacturing method
TW201619074A (en) Manufacturing method of glass substrate, and manufacturing device of glass substrate
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP2015105215A (en) Glass substrate manufacturing device and manufacturing method for glass substrate
JP5768082B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2013139342A (en) Method for manufacturing glass sheet
JP5508466B2 (en) Manufacturing method of glass substrate
JP2018526314A (en) Tempered glass and related systems and methods
TW201702193A (en) Method for manufacturing glass substrate which is capable of reducing the variations in the thickness of the glass substrate
TW201311596A (en) Method for manufacturing layered-film-bearing glass substrate
TW201307234A (en) Method for manufacturing layered-film-bearing glass substrate
JP6749997B2 (en) Thermally tempered consumer electronics glass and related systems and methods
JP6577215B2 (en) Manufacturing method of glass substrate
TW201309611A (en) Method for manufacturing layered-film-bearing glass substrate
JP6082434B2 (en) Glass substrate manufacturing method and glass substrate
JP2014214062A (en) Method and apparatus for manufacturing glass plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13736125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE