WO2020085297A1 - Glass article manufacturing method - Google Patents

Glass article manufacturing method Download PDF

Info

Publication number
WO2020085297A1
WO2020085297A1 PCT/JP2019/041294 JP2019041294W WO2020085297A1 WO 2020085297 A1 WO2020085297 A1 WO 2020085297A1 JP 2019041294 W JP2019041294 W JP 2019041294W WO 2020085297 A1 WO2020085297 A1 WO 2020085297A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ribbon
glass
joint
refractory brick
refractory bricks
Prior art date
Application number
PCT/JP2019/041294
Other languages
French (fr)
Japanese (ja)
Inventor
周作 玉村
畑野 達也
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980069167.4A priority Critical patent/CN112867697B/en
Priority to KR1020217010436A priority patent/KR20210082443A/en
Priority to JP2020553387A priority patent/JP7415252B2/en
Publication of WO2020085297A1 publication Critical patent/WO2020085297A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Definitions

  • the present invention relates to a method for manufacturing a glass article.
  • downdraw methods such as an overflow downdraw method, a slot downdraw method, and a redraw method.
  • the method of manufacturing a glass article using such a downdraw method includes a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a heat treatment furnace arranged below the forming furnace. Then, a heat treatment step of performing heat treatment (gradual cooling treatment) for reducing the warp or distortion of the glass ribbon while the formed glass ribbon is conveyed downward (see, for example, Patent Document 1). Then, after the heat treatment step, the glass ribbon cooled to around room temperature is cut into a predetermined length to manufacture a glass plate, or wound into a roll shape to manufacture a glass roll.
  • a process of cooling the surface of the glass ribbon flowing down from the molded body may be carried out separately from the heat treatment process.
  • the glass ribbon is cooled by radiating the heat of the glass ribbon to the outside of the furnace by using the lower refractory brick of the forming furnace which faces the surface of the glass ribbon in the thickness direction of the glass ribbon.
  • the lower refractory bricks may be divided into multiple pieces in the width direction of the glass ribbon in consideration of ease of replacement.
  • a streak-like convex defect extending along the transport direction may be formed on the surface of the glass ribbon at a position facing a joint between adjacent lower refractory bricks.
  • the streak-shaped convex defects were caused by the following reasons. That is, the gas easily flows in and out of the forming furnace through the joints of the lower refractory bricks. As a result, the heat dissipation of the glass ribbon increases at the position facing the joint of the lower refractory brick, and only a predetermined portion of the glass ribbon is likely to be locally cooled. Then, when such local cooling occurs, it is considered that the surface of the glass ribbon contracts locally and rises to form streak-shaped convex defects.
  • An object of the present invention is to prevent formation of streak-shaped convex defects on the surface of a glass ribbon and provide a high-quality glass article.
  • the present invention which was devised to solve the above-mentioned problems, has a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a glass ribbon formed in the forming step along a conveying direction.
  • the forming step includes a forming furnace facing a surface of the glass ribbon flowing down from the formed body in a thickness direction of the glass ribbon.
  • the lower refractory brick comprising a step of cooling the glass ribbon
  • the lower refractory brick is divided into a plurality in the width direction of the glass ribbon, when observed from the upstream side of the transport direction, adjacent lower refractory bricks
  • the position of the joint in the width direction changes in the thickness direction of the glass ribbon.
  • the joint between the lower refractory bricks adjacent to each other has a bent portion when observed from the upstream side in the transport direction.
  • the joint portion of the lower refractory brick is bent by the bent portion, and the sealing property thereof is further improved. Therefore, it is possible to more reliably suppress the situation where only the predetermined member of the glass ribbon is locally cooled at the position facing the joint.
  • the position in the width direction of the joint between adjacent lower refractory bricks changes in the transport direction.
  • the joint between adjacent lower refractory bricks extends in a direction inclined with respect to the transport direction.
  • the forming furnace the upper refractory bricks facing the molded body, as the lower refractory bricks closer to the glass ribbon side than the upper refractory bricks, the lower end of the upper refractory bricks and the upper end of the lower refractory bricks And a refractory brick for connection that connects the two.
  • the lower refractory bricks can be brought closer to the glass ribbon and the space between the two can be reduced, so that the glass ribbon flowing down from the molded body can be efficiently cooled using the lower refractory bricks.
  • connection refractory brick is divided into a plurality in the width direction, when viewed from the upstream side in the transport direction, the position in the width direction of the joint between adjacent connection refractory bricks, the glass ribbon It is preferable that the thickness changes in the thickness direction. By doing so, the sealing property of the joint of the refractory brick for connection is improved. Therefore, it becomes difficult for the gas inside and outside the forming furnace to directly flow through the joints of the refractory bricks for connection. Therefore, it is possible to suppress the situation where only a predetermined member of the glass ribbon is locally cooled at a position facing the joint of the refractory brick for connection, and it is possible to prevent the formation of streak-shaped convex defects.
  • the joint between adjacent refractory bricks for connection has a bent portion when observed from the upstream side in the transport direction.
  • the joint of the refractory brick for connection is bent by the bent portion, and the sealing property thereof is further improved. Therefore, it is possible to more reliably suppress the situation where only the predetermined member of the glass ribbon is locally cooled at the position facing the joint.
  • the position in the width direction of the joint between adjacent refractory bricks for connection changes in the transport direction.
  • the joint between adjacent refractory bricks for connection extends in a direction inclined with respect to the transport direction.
  • the present invention which was devised to solve the above-mentioned problems, has a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a glass ribbon formed in the forming step along a conveying direction.
  • the forming step includes a forming furnace facing a surface of the glass ribbon flowing down from the formed body in a thickness direction of the glass ribbon.
  • the lower refractory bricks comprising a step of cooling the glass ribbon
  • the lower refractory brick is divided into a plurality in the width direction of the glass ribbon, when observed from the glass ribbon side, between the adjacent lower refractory bricks.
  • the position of the joint in the width direction changes in the transport direction. By doing so, the position where the glass ribbon and the joint of the lower refractory brick face each other changes, so that it is possible to suppress the situation where only a predetermined portion of the glass ribbon is locally cooled. Therefore, it is possible to prevent the formation of streak-shaped convex defects on the surface of the glass ribbon.
  • the present invention it is possible to prevent the formation of streak-shaped convex defects on the surface of the glass ribbon and provide a high-quality glass article.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a joint state of the lower refractory brick and the connecting refractory brick when observed from the glass ribbon side.
  • FIG. 2 is a sectional view taken along line BB of FIG. 1, showing a joint state of the lower refractory brick when observed from the upstream side in the transport direction.
  • FIG. 2 is a cross-sectional view taken along line CC of FIG. 1, showing a joint joint refractory brick state when observed from the upstream side in the transport direction. It is sectional drawing which shows the modification of the joint of a lower refractory brick when it observes from the upstream of a conveyance direction.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a modified example of joints of the lower refractory brick when observed from the glass ribbon side.
  • XYZ in the figure is an orthogonal coordinate system.
  • the X and Y directions are horizontal, and the Z direction is vertical.
  • the X direction is the thickness direction of the glass ribbon G (hereinafter also simply referred to as “thickness direction”) and the Y direction is the width direction of the glass ribbon G (hereinafter simply referred to as “width”).
  • the “direction”) and the Z direction are the conveyance direction of the glass ribbon G (hereinafter, also simply referred to as “conveyance direction”).
  • a glass article manufacturing apparatus for embodying the glass article manufacturing method according to the present embodiment is an apparatus for continuously forming a glass ribbon G.
  • the glass article manufactured from the glass ribbon G includes a glass plate and a glass roll.
  • the glass article manufacturing apparatus includes a molding furnace 1 for molding a glass ribbon G, a heat treatment furnace 2 for heat-treating the glass ribbon G, a cooling zone 3 for cooling the glass ribbon G to around room temperature, a heat treatment furnace 2 and a cooling zone.
  • Each of the rollers 3 has a pair of rollers 4 provided in a plurality of upper and lower stages.
  • the glass article manufacturing apparatus includes, on the downstream side of the cooling zone 3, a cutting apparatus for cutting the glass ribbon G to obtain a glass plate, an end surface processing apparatus for processing the end surface of the glass plate, and a cleaning apparatus for cleaning the glass plate.
  • An inspection device for inspecting the glass plate may be further provided.
  • the glass article manufacturing apparatus is a cutting apparatus that cuts and removes both ends of the glass ribbon G in the width direction on the downstream side of the cooling zone 3, and winds the glass ribbon G into a roll to obtain a glass roll. It may further be provided with a picking device or the like.
  • a molding 5 for molding the glass ribbon G from the molten glass Gm by the overflow down draw method is arranged in the internal space of the molding furnace 1.
  • the molten glass Gm supplied to the molded body 5 overflows from the groove 5a formed at the top of the molded body 5, and the overflowed molten glass Gm has a wedge-shaped cross section on both sides 5b.
  • the plate-shaped glass ribbon G is continuously formed by flowing along the flow path and joining at the lower end.
  • the formed glass ribbon G has a vertical posture (preferably a vertical posture).
  • the forming furnace 1 includes an upper refractory brick 6, a lower refractory brick 7, and a connecting refractory brick 8 connecting the lower end of the upper refractory brick 6 and the upper end of the lower refractory brick 7.
  • the connection refractory bricks 8 connect the upper refractory bricks 6 and the lower refractory bricks 7 so that the lower refractory bricks 7 are closer to the glass ribbon G side than the upper refractory bricks 6.
  • the connecting refractory brick 8 may be omitted.
  • the temperature of the molten glass Gm flowing down the surface of the molded body 5 is adjusted.
  • the temperature of the molten glass Gm flowing down the surface of the molded body 5 can be adjusted by, for example, a heating device (not shown) such as a heater provided at a position corresponding to the upper refractory brick 6.
  • the heating device can be provided inside the furnace or outside the upper refractory brick 6. Alternatively, the heating device can be embedded inside the upper refractory brick 6.
  • the lower refractory brick 7 is opposed to the surface of the glass ribbon G flowing down from the molded body 5 in the thickness direction, and the lower refractory brick 7 is used to cool the glass ribbon G. This cooling is intended to adjust the uneven thickness of the glass ribbon G, and is performed by radiating the heat of the glass ribbon G to the outside of the furnace via the lower refractory brick 7. That is, the lower refractory brick 7 corresponds to a heat dissipation zone.
  • a heating device such as a heater is not provided at a position corresponding to the lower refractory brick 7.
  • the upper refractory bricks 6 and the lower refractory bricks 7 are made of silicon carbide (SiC) -based bricks or the like, and the connection refractory bricks 8 are made of alumina zircon-based bricks or the like.
  • the internal space of the heat treatment furnace 2 has a predetermined temperature gradient downward.
  • the glass ribbon G in the vertical posture is gradually cooled (annealed) so that the temperature thereof becomes lower as the glass ribbon G moves downward in the internal space of the heat treatment furnace 2. This gradual cooling is for adjusting (reducing) warpage or distortion of the glass ribbon G.
  • the temperature gradient in the internal space of the heat treatment furnace 2 can be adjusted by, for example, a heating device (not shown) such as a heater provided at a position corresponding to the heat treatment furnace 2.
  • the heating device can be provided inside or outside the heat treatment furnace 2. Alternatively, the heating device can be embedded inside the furnace wall of the heat treatment furnace 2.
  • the plurality of roller pairs 4 are designed to sandwich both ends of the glass ribbon G in the vertical position in the width direction from the front and back sides.
  • the roller pair 4 is not provided in the region from the lower end of the molded body 5 to the lower end of the lower refractory brick 7.
  • the uppermost roller pair 4a of the plurality of roller pairs 4 is provided in the vicinity of the upper end of the heat treatment furnace 2 and is composed of a cooling roller (edge roller) that cools both ends of the glass ribbon G in the width direction. There is.
  • This cooling roller is for suppressing the shrinkage of the glass ribbon G in the width direction.
  • the plurality of roller pairs 4 may include one that does not sandwich the widthwise end of the glass ribbon G.
  • the facing distance between the pair of rollers 4 may be made larger than the thickness of the end portion in the width direction of the glass ribbon G so that the glass ribbon G passes between the pair of rollers 4.
  • the lower refractory bricks 7 and the connecting refractory bricks 8 are divided into a plurality in the width direction. Therefore, joints 9 and 10 are formed between the bricks 7 and 8 that are adjacent to each other in the width direction.
  • the connecting refractory brick 8 may have a joint structure that is not divided into a plurality in the width direction and has no joint.
  • the joint 9 of the lower refractory brick 7 is a straight line inclined with respect to the transport direction, and the position in the width direction changes in the transport direction.
  • the joint 10 of the refractory brick 8 for connection is also a straight line inclined with respect to the transport direction, and the position in the width direction changes in the transport direction.
  • the positions in the width direction where the glass ribbon G and the joints 9 and 10 face each other are sequentially changed in the transport direction, so that it is possible to suppress the situation where only a predetermined portion in the width direction of the glass ribbon G is continuously cooled.
  • the joint 9 and the joint 10 are inclined in opposite directions, but may be in the same direction.
  • the joints 9 may include those having different inclination directions. Further, when observed from the glass ribbon G side, if the widthwise positions of the joints 9 and 10 change in the transport direction, the manner of change of the joints 9 and 10 is not limited to a linear shape. However, the straight shape has an advantage that the bricks 7 and 8 can be easily processed.
  • the joint 9 of the lower refractory brick 7 has a bent portion 9a, and the position in the width direction changes in the thickness direction.
  • the joint 10 of the refractory brick 8 for connection when observed from the upstream side in the transport direction, also has a bent portion 10a, and the position in the width direction changes in the thickness direction.
  • the sealability of the joints 9 and 10 is improved, and it becomes difficult for the gas inside and outside the molding furnace 1 to directly flow through the joints 9 and 10. Therefore, at a position where the glass ribbon G and the joints 9 and 10 face each other, it is possible to suppress a situation where a predetermined portion in the width direction of the glass ribbon G is locally cooled.
  • the joint 9 of the lower refractory brick 7 has two bent portions 9a. Due to the bent portions 9a, the joint 9 has two first portions 9b extending in the thickness direction and a second portion 9c extending in the width direction between the first portions 9b, and has a step shape as a whole. (Hook-like).
  • the joint 10 of the connecting refractory brick 8 also has two bent portions 10a. Due to these bent portions 10a, the joint 10 has two first portions 10b extending in the thickness direction and a second portion 10c extending in the width direction between the first portions 10b, and has a step shape as a whole. (Hook-like). That is, the joints 9 and 10 have a relatively simple shape, but the second portions 9c and 10c extending along the width direction have a large resistance to the gas passing through the joints 9 and 10, so that the gas flows. It is a structure that is difficult to do.
  • the position P1 (or the position P2) facing the inside of the joint 9 of the lower refractory brick 7 shown in FIG. 3 and the connection shown in FIG. It differs from the position Q1 (or the position Q2) of the joint 10 of the refractory brick 8 facing the inside of the furnace without overlapping in the width direction. That is, at the position P1 (or position P2) of the joint 9 of the lower refractory brick 7, a portion without the joint 10 of the connecting refractory brick 8 is located, and the position Q1 of the joint 10 of the connecting refractory brick 8 (or At the position Q2), the portion of the lower refractory brick 7 without the joint 9 is located.
  • a position P2 of the joint 9 of the lower refractory brick 7 facing the other surface facing the inside of the furnace differs from the other surface without overlapping in the width direction. That is, the joint 9 of the lower refractory brick 7 on one side faces the inside of the furnace, and the portion of the other lower refractory brick 7 without the joint 9 faces in the thickness direction.
  • the position Q2 facing the inside of the joint 10 of the other connecting refractory brick 8 that faces is different from the position Q2 without overlapping in the width direction. That is, at a position of the joint 10 of the connecting refractory brick 8 facing the inside of the furnace, a portion of the other connecting refractory brick 8 without the joint 10 faces in the thickness direction.
  • the influence of the joints 9 and 10 is dispersed on both surfaces of the glass ribbon G.
  • the bent portion 10a (or the second portion 10c) of the joint 10 in the connecting refractory brick 8 is located outside the upper refractory brick 6, that is, outside the furnace.
  • the portion of the joint 10 facing the inside of the furnace is configured only by the linear first portion 10b along the thickness direction, and the shape of the joint 10 facing the inside of the furnace is simplified.
  • the bent portion 10a (or the second portion 10c) of the joint 10 in the connecting refractory brick 8 may be located below the upper refractory brick 6 or in the furnace inside the upper refractory brick 6. You may have.
  • a glass article manufacturing method includes a forming step of forming a glass ribbon G by flowing molten glass Gm from a formed body 5 in a forming furnace 1, and a glass ribbon formed in a heat treatment furnace 2.
  • a cooling step includes a forming step of forming a glass ribbon G by flowing molten glass Gm from a formed body 5 in a forming furnace 1, and a glass ribbon formed in a heat treatment furnace 2.
  • the forming process includes an adjusting process of adjusting (reducing) the uneven thickness of the glass ribbon G by cooling the glass ribbon G flowing down from the formed body 5 using the lower refractory brick 7 of the forming furnace 1.
  • the glass ribbon G is cooled by radiating the heat of the glass ribbon G to the outside of the furnace through the lower refractory brick 7.
  • the cooling in the adjusting step is intended to adjust the uneven thickness of the glass ribbon G
  • the cooling (gradual cooling) in the heat treatment step is intended to adjust the warpage and distortion of the glass ribbon G.
  • the temperature of the glass ribbon G in the adjusting step is, for example, 1000 to 1300 ° C.
  • the temperature of the glass ribbon G in the heat treating step is, for example, 500 to 1000 ° C.
  • the viscosity of the glass ribbon G in the adjusting step is, for example, 20,000 to 300,000 poise
  • the viscosity of the glass ribbon G in the heat treating step is, for example, 10 5 to 10 16 poise.
  • the joints 9 and 10 of the lower refractory bricks 7 and the connecting refractory bricks 8 have their widthwise positions changed in the carrying direction when observed from the glass ribbon G side, and the carrying direction.
  • the position in the width direction changes in the thickness direction when observed from the upstream side of. Therefore, in the adjustment step, a situation in which only a predetermined portion in the width direction of the glass ribbon G is locally cooled at a position facing the joints 9 and 10 is suppressed, and streaky convex defects are formed on the surface of the glass ribbon G. It can be prevented from being formed. Therefore, a high-quality glass article having excellent surface smoothness can be provided.
  • the joints 9 and 10 of the lower refractory brick 7 and the connecting refractory brick 8 have two bent portions 9a and 10a when viewed from the upstream side in the transport direction, and have a step-like shape as a whole.
  • the number of bent portions 9a and 10a is not particularly limited.
  • the joint 9 of the lower refractory brick 7 may have one bent portion 9a as shown in FIG. 5 or may be one bent portion 9a as shown in FIG. 6 when observed from the upstream side in the transport direction. May be three or four or more bent portions 9a may be provided as shown in FIG.
  • the joint 9 when observed from the upstream side in the transport direction, the joint 9 may have a linear shape inclined with respect to the thickness direction, or may have a shape without a bent portion.
  • the width direction position of the upper end point 9d of the joint 9 is the lower end point of the adjacent joint 9. It may be the same as the position of 9e in the width direction. By doing so, it is possible to more reliably suppress the situation of local cooling.
  • bent portions 9a and 10a are formed by the corners where the two straight lines intersect has been described, but the bent portions 9a and 10a may be formed by the curved portions such as arcs.
  • the joints 9 and 10 of the lower refractory bricks 7 and the connecting refractory bricks 8 have a position in the width direction that changes in the transport direction when (1) the glass ribbon G side is observed, and (2) )
  • the case where the position in the width direction changes in the thickness direction when observed from the upstream side in the transport direction has been described, but at least the position in the width direction of the joint 9 of the lower refractory brick 7 is the same as the above (1) and (2). ) It is sufficient if either one of them is satisfied.
  • the joint is linear along the thickness direction when observed from the upstream side in the transport direction, and when only the above (2) is satisfied, the joint is from the glass ribbon G side. When observed, it becomes a straight line along the transport direction.
  • the glass ribbon G is formed by the overflow downdraw method
  • the glass ribbon G may be formed by another downdraw method such as a slot downdraw method or a redraw method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The present invention addresses the problem of preventing the formation of stripe-shaped protrusion defects on the surface of a glass ribbon so as to provide a high quality glass article. This glass article manufacturing method comprises: a molding step in which a molten glass (Gm) is made to flow down from a molding body (5) within a molding furnace (1) so as to mold a glass ribbon (G); and a heat treatment step in which the glass ribbon (G) which was molded in the molding step is subjected to a heat treatment while being conveyed along a conveyance direction. The molding step includes a step in which the glass ribbon (G) is cooled using a lower refractory brick (7) of the molding furnace (1), the lower refractory brick opposing, in the thickness direction of the glass ribbon (G), the surface of the glass ribbon (G) that has flowed down from the molding body (5). The lower refractory brick (7) is divided into multiple bricks in the width direction of the glass ribbon (G), and when observed from the upstream side in the conveyance direction, the position in the width direction of a joint (9) between adjacent lower refractory bricks (7) changes in the thickness direction.

Description

ガラス物品の製造方法Method for manufacturing glass article
 本発明は、ガラス物品の製造方法に関する。 The present invention relates to a method for manufacturing a glass article.
 ガラス物品の製造方法としては、オーバーフローダウンドロー法、スロットダウンドロー法、リドロー法などのダウンドロー法が挙げられる。 As a method of manufacturing glass articles, there are downdraw methods such as an overflow downdraw method, a slot downdraw method, and a redraw method.
 このようなダウンドロー法を用いたガラス物品の製造方法は、成形炉内で、成形体から溶融ガラスを流下してガラスリボンを成形する成形工程と、成形炉の下方に配置された熱処理炉内で、成形されたガラスリボンを下方に搬送しながら、ガラスリボンに反りや歪を低減するための熱処理(徐冷処理)を施す熱処理工程と、を備えている(例えば特許文献1を参照)。そして、熱処理工程の後、室温付近まで冷却されたガラスリボンを所定長さに切断してガラス板を製造したり、ロール状に巻き取ってガラスロールを製造したりする。 The method of manufacturing a glass article using such a downdraw method includes a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a heat treatment furnace arranged below the forming furnace. Then, a heat treatment step of performing heat treatment (gradual cooling treatment) for reducing the warp or distortion of the glass ribbon while the formed glass ribbon is conveyed downward (see, for example, Patent Document 1). Then, after the heat treatment step, the glass ribbon cooled to around room temperature is cut into a predetermined length to manufacture a glass plate, or wound into a roll shape to manufacture a glass roll.
特開2014-122124号公報JP, 2014-122124, A
 上記の成形工程において、熱処理工程とは別に、成形体から流下したガラスリボンの表面を冷却する工程を実施する場合がある。この冷却工程では、ガラスリボンの表面とガラスリボンの厚み方向で対向する成形炉の下部耐火レンガを用いてガラスリボンの熱を炉外に放熱することで、ガラスリボンを冷却する。 In the above molding process, a process of cooling the surface of the glass ribbon flowing down from the molded body may be carried out separately from the heat treatment process. In this cooling step, the glass ribbon is cooled by radiating the heat of the glass ribbon to the outside of the furnace by using the lower refractory brick of the forming furnace which faces the surface of the glass ribbon in the thickness direction of the glass ribbon.
 ところで、下部耐火レンガは、交換容易性などを考慮し、ガラスリボンの幅方向で複数に分割された構造とされる場合がある。しかしながら、この構造の場合、隣接する下部耐火レンガ間の目地と対向する位置で、ガラスリボンの表面に搬送方向に沿って延びる筋状の凸欠陥が形成されるおそれがある。このような筋状の凸欠陥が形成されると、製造されるガラス物品の表面の平滑性が失われ、高品位のガラス物品を製造できなくなるという問題がある。 By the way, the lower refractory bricks may be divided into multiple pieces in the width direction of the glass ribbon in consideration of ease of replacement. However, in the case of this structure, a streak-like convex defect extending along the transport direction may be formed on the surface of the glass ribbon at a position facing a joint between adjacent lower refractory bricks. When such streak-shaped convex defects are formed, there is a problem in that the smoothness of the surface of the glass article to be manufactured is lost and a high-quality glass article cannot be manufactured.
 ここで、筋状の凸欠陥は、次の理由により生じたものと考えられる。すなわち、下部耐火レンガの目地を通じて成形炉の内外に気体が流通しやすい。その結果、下部耐火レンガの目地と対向する位置でガラスリボンの放熱が大きくなり、ガラスリボンの所定部位だけが局所的に冷却されやすい。そして、このような局所的な冷却が生じると、ガラスリボンの表面が局所的に収縮して盛り上がり、筋状の凸欠陥になると考えられる。 ▽ Here, it is considered that the streak-shaped convex defects were caused by the following reasons. That is, the gas easily flows in and out of the forming furnace through the joints of the lower refractory bricks. As a result, the heat dissipation of the glass ribbon increases at the position facing the joint of the lower refractory brick, and only a predetermined portion of the glass ribbon is likely to be locally cooled. Then, when such local cooling occurs, it is considered that the surface of the glass ribbon contracts locally and rises to form streak-shaped convex defects.
 本発明は、ガラスリボンの表面に筋状の凸欠陥が形成されるのを防止し、高品位なガラス物品を提供することを課題とする。 An object of the present invention is to prevent formation of streak-shaped convex defects on the surface of a glass ribbon and provide a high-quality glass article.
 上記の課題を解決するために創案された本発明は、成形炉内で成形体から溶融ガラスを流下してガラスリボンを成形する成形工程と、成形工程で成形されたガラスリボンを搬送方向に沿って搬送しながら、ガラスリボンに熱処理を施す熱処理工程と、を備えたガラス板の製造方法において、成形工程は、成形体から流下したガラスリボンの表面とガラスリボンの厚み方向で対向する成形炉の下部耐火レンガを用いて、ガラスリボンを冷却する工程を備え、下部耐火レンガは、ガラスリボンの幅方向で複数に分割されており、搬送方向の上流側から観察した場合に、隣接する下部耐火レンガ間の目地の幅方向の位置が、ガラスリボンの厚み方向で変化することを特徴とする。このようにすれば、下部耐火レンガの目地を通じて成形炉の内外の気体が流通することを阻害でき、下部耐火レンガの目地のシール性が向上する。したがって、下部耐火レンガの目地に対向する位置でガラスリボンの所定部位だけが局所的に冷却されるという事態が抑制され、ガラスリボンの表面に筋状の凸欠陥が形成されるのを防止できる。 The present invention, which was devised to solve the above-mentioned problems, has a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a glass ribbon formed in the forming step along a conveying direction. In a method for manufacturing a glass plate, which comprises heat-treating a glass ribbon while conveying the glass ribbon, the forming step includes a forming furnace facing a surface of the glass ribbon flowing down from the formed body in a thickness direction of the glass ribbon. Using the lower refractory brick, comprising a step of cooling the glass ribbon, the lower refractory brick is divided into a plurality in the width direction of the glass ribbon, when observed from the upstream side of the transport direction, adjacent lower refractory bricks The position of the joint in the width direction changes in the thickness direction of the glass ribbon. By doing so, it is possible to prevent the gas inside and outside the forming furnace from flowing through the joint of the lower refractory brick, and the sealing property of the joint of the lower refractory brick is improved. Therefore, it is possible to prevent the situation where only a predetermined portion of the glass ribbon is locally cooled at a position facing the joint of the lower refractory brick, and it is possible to prevent the formation of streak-shaped convex defects on the surface of the glass ribbon.
 上記の構成において、搬送方向の上流側から観察した場合に、隣接する下部耐火レンガ間の目地が、屈曲部を有することが好ましい。このようにすれば、屈曲部によって下部耐火レンガの目地が曲げられ、そのシール性が更に向上する。したがって、目地に対向する位置でガラスリボンの所定部材だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above configuration, it is preferable that the joint between the lower refractory bricks adjacent to each other has a bent portion when observed from the upstream side in the transport direction. By doing so, the joint portion of the lower refractory brick is bent by the bent portion, and the sealing property thereof is further improved. Therefore, it is possible to more reliably suppress the situation where only the predetermined member of the glass ribbon is locally cooled at the position facing the joint.
 上記の構成において、ガラスリボン側から観察した場合に、隣接する下部耐火レンガ間の目地の幅方向の位置が、搬送方向で変化することが好ましい。このようにすれば、ガラスリボンと下部耐火レンガの目地とが対向する位置が変化するため、ガラスリボンの所定部位だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above structure, when observed from the glass ribbon side, it is preferable that the position in the width direction of the joint between adjacent lower refractory bricks changes in the transport direction. With this configuration, since the position where the glass ribbon and the joint of the lower refractory brick face each other changes, it is possible to more reliably suppress the situation where only a predetermined portion of the glass ribbon is locally cooled.
 上記の構成において、ガラスリボン側から観察した場合に、隣接する下部耐火レンガ間の目地は、搬送方向に対して傾斜する方向に延びることが好ましい。このようにすれば、ガラスリボンと下部耐火レンガの目地とが対向する位置が連続的に変化するため、ガラスリボンの所定部位だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above configuration, when observed from the glass ribbon side, it is preferable that the joint between adjacent lower refractory bricks extends in a direction inclined with respect to the transport direction. With this configuration, since the position where the glass ribbon and the joint of the lower refractory brick face each other continuously changes, it is possible to more reliably suppress the situation where only a predetermined portion of the glass ribbon is locally cooled.
 上記の構成において、成形炉は、成形体と対向する上部耐火レンガと、下部耐火レンガが上部耐火レンガよりもガラスリボン側に接近するように、上部耐火レンガの下端部及び下部耐火レンガの上端部を繋ぐ接続用耐火レンガと、を備えていてもよい。このようにすれば、下部耐火レンガをガラスリボンに接近させて、両者の間の空間を小さくできるため、下部耐火レンガを用いて成形体から流下したガラスリボンを効率よく冷却できる。 In the above configuration, the forming furnace, the upper refractory bricks facing the molded body, as the lower refractory bricks closer to the glass ribbon side than the upper refractory bricks, the lower end of the upper refractory bricks and the upper end of the lower refractory bricks And a refractory brick for connection that connects the two. In this way, the lower refractory bricks can be brought closer to the glass ribbon and the space between the two can be reduced, so that the glass ribbon flowing down from the molded body can be efficiently cooled using the lower refractory bricks.
 上記の構成において、接続用耐火レンガが、幅方向で複数に分割されており、搬送方向の上流側から観察した場合に、隣接する接続用耐火レンガ間の目地の幅方向の位置が、ガラスリボンの厚み方向で変化することが好ましい。このようにすれば、接続用耐火レンガの目地のシール性が向上する。そのため、接続用耐火レンガの目地を通じて成形炉の内外の気体が直接流通しにくくなる。したがって、接続用耐火レンガの目地に対向する位置でガラスリボンの所定部材だけが局所的に冷却されるという事態が抑制され、筋状の凸欠陥が形成されるのを防止できる。 In the above configuration, the connection refractory brick is divided into a plurality in the width direction, when viewed from the upstream side in the transport direction, the position in the width direction of the joint between adjacent connection refractory bricks, the glass ribbon It is preferable that the thickness changes in the thickness direction. By doing so, the sealing property of the joint of the refractory brick for connection is improved. Therefore, it becomes difficult for the gas inside and outside the forming furnace to directly flow through the joints of the refractory bricks for connection. Therefore, it is possible to suppress the situation where only a predetermined member of the glass ribbon is locally cooled at a position facing the joint of the refractory brick for connection, and it is possible to prevent the formation of streak-shaped convex defects.
 上記の構成において、搬送方向の上流側から観察した場合に、隣接する接続用耐火レンガ間の目地が、屈曲部を有することが好ましい。このようにすれば、屈曲部によって接続用耐火レンガの目地が曲げられ、そのシール性が更に向上する。したがって、目地に対向する位置でガラスリボンの所定部材だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above configuration, it is preferable that the joint between adjacent refractory bricks for connection has a bent portion when observed from the upstream side in the transport direction. By doing so, the joint of the refractory brick for connection is bent by the bent portion, and the sealing property thereof is further improved. Therefore, it is possible to more reliably suppress the situation where only the predetermined member of the glass ribbon is locally cooled at the position facing the joint.
 上記の構成において、ガラスリボン側から観察した場合に、隣接する接続用耐火レンガ間の目地の幅方向の位置が、搬送方向で変化することが好ましい。このようにすれば、ガラスリボンと接続用耐火レンガの目地とが対向する位置が変化するため、ガラスリボンの所定部位だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above structure, when observed from the glass ribbon side, it is preferable that the position in the width direction of the joint between adjacent refractory bricks for connection changes in the transport direction. With this configuration, since the position where the glass ribbon and the joint of the refractory brick for connection face each other changes, it is possible to more reliably suppress the situation where only a predetermined portion of the glass ribbon is locally cooled.
 上記の構成において、ガラスリボン側から観察した場合に、隣接する接続用耐火レンガ間の目地は、搬送方向に対して傾斜する方向に延びることが好ましい。このようにすれば、ガラスリボンと接続用耐火レンガの目地とが対向する位置が連続的に変化するため、ガラスリボンの所定部位だけが局所的に冷却されるという事態をより確実に抑制できる。 In the above configuration, when observed from the glass ribbon side, it is preferable that the joint between adjacent refractory bricks for connection extends in a direction inclined with respect to the transport direction. With this configuration, since the position where the glass ribbon and the joint of the refractory brick for connection face each other continuously changes, it is possible to more reliably suppress the situation where only a predetermined portion of the glass ribbon is locally cooled.
 上記の課題を解決するために創案された本発明は、成形炉内で成形体から溶融ガラスを流下してガラスリボンを成形する成形工程と、成形工程で成形されたガラスリボンを搬送方向に沿って搬送しながら、ガラスリボンに熱処理を施す熱処理工程と、を備えたガラス物品の製造方法において、成形工程は、成形体から流下したガラスリボンの表面とガラスリボンの厚み方向で対向する成形炉の下部耐火レンガを用いて、ガラスリボンを冷却する工程を備え、下部耐火レンガは、ガラスリボンの幅方向で複数に分割されており、ガラスリボン側から観察した場合に、隣接する下部耐火レンガ間の目地の幅方向の位置が、搬送方向で変化することを特徴とする。このようにすれば、ガラスリボンと下部耐火レンガの目地とが対向する位置が変化するため、ガラスリボンの所定部位だけが局所的に冷却されるという事態を抑制できる。したがって、ガラスリボンの表面に筋状の凸欠陥が形成されるのを防止できる。 The present invention, which was devised to solve the above-mentioned problems, has a forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a glass ribbon formed in the forming step along a conveying direction. In a method for manufacturing a glass article, which comprises heat-treating a glass ribbon while conveying the glass ribbon, the forming step includes a forming furnace facing a surface of the glass ribbon flowing down from the formed body in a thickness direction of the glass ribbon. Using the lower refractory bricks, comprising a step of cooling the glass ribbon, the lower refractory brick is divided into a plurality in the width direction of the glass ribbon, when observed from the glass ribbon side, between the adjacent lower refractory bricks. The position of the joint in the width direction changes in the transport direction. By doing so, the position where the glass ribbon and the joint of the lower refractory brick face each other changes, so that it is possible to suppress the situation where only a predetermined portion of the glass ribbon is locally cooled. Therefore, it is possible to prevent the formation of streak-shaped convex defects on the surface of the glass ribbon.
 本発明によれば、ガラスリボンの表面に筋状の凸欠陥が形成されるのを防止し、高品位なガラス物品を提供することができる。 According to the present invention, it is possible to prevent the formation of streak-shaped convex defects on the surface of the glass ribbon and provide a high-quality glass article.
ガラス物品の製造装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a glass article manufacturing apparatus. 図1のA-A断面図であって、ガラスリボン側から観察した場合の下部耐火レンガ及び接続用耐火レンガの目地の状態を示す。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a joint state of the lower refractory brick and the connecting refractory brick when observed from the glass ribbon side. 図1のB-B断面図であって、搬送方向の上流側から観察した場合の下部耐火レンガの目地の状態を示す。FIG. 2 is a sectional view taken along line BB of FIG. 1, showing a joint state of the lower refractory brick when observed from the upstream side in the transport direction. 図1のC-C断面図であって、搬送方向の上流側から観察した場合の接続用耐火レンガの目地の状態を示す。FIG. 2 is a cross-sectional view taken along line CC of FIG. 1, showing a joint joint refractory brick state when observed from the upstream side in the transport direction. 搬送方向の上流側から観察した場合の下部耐火レンガの目地の変形例を示す断面図である。It is sectional drawing which shows the modification of the joint of a lower refractory brick when it observes from the upstream of a conveyance direction. 搬送方向の上流側から観察した場合の下部耐火レンガの目地の変形例を示す断面図である。It is sectional drawing which shows the modification of the joint of a lower refractory brick when it observes from the upstream of a conveyance direction. 搬送方向の上流側から観察した場合の下部耐火レンガの目地の変形例を示す断面図である。It is sectional drawing which shows the modification of the joint of a lower refractory brick when it observes from the upstream of a conveyance direction. 搬送方向の上流側から観察した場合の下部耐火レンガの目地の変形例を示す断面図である。It is sectional drawing which shows the modification of the joint of a lower refractory brick when it observes from the upstream of a conveyance direction. 図1のA-A断面図であって、ガラスリボン側から観察した場合の下部耐火レンガの目地の変形例を示す。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a modified example of joints of the lower refractory brick when observed from the glass ribbon side.
 以下、本発明に係る一実施形態を添付図面に基づいて説明する。なお、図中のXYZは直交座標系である。X方向及びY方向は水平方向であり、Z方向は鉛直方向である。縦姿勢でガラスリボンGを搬送している間は、X方向がガラスリボンGの厚み方向(以下では単に「厚み方向」ともいう)、Y方向がガラスリボンGの幅方向(以下では単に「幅方向」ともいう)、Z方向がガラスリボンGの搬送方向(以下では単に「搬送方向」ともいう)となる。 An embodiment of the present invention will be described below with reference to the accompanying drawings. XYZ in the figure is an orthogonal coordinate system. The X and Y directions are horizontal, and the Z direction is vertical. While the glass ribbon G is being conveyed in the vertical posture, the X direction is the thickness direction of the glass ribbon G (hereinafter also simply referred to as “thickness direction”) and the Y direction is the width direction of the glass ribbon G (hereinafter simply referred to as “width”). The “direction”) and the Z direction are the conveyance direction of the glass ribbon G (hereinafter, also simply referred to as “conveyance direction”).
 図1に示すように、本実施形態に係るガラス物品の製造方法を体現するためのガラス物品の製造装置は、ガラスリボンGを連続成形する装置である。ガラスリボンGから製造されるガラス物品には、ガラス板やガラスロールが含まれる。 As shown in FIG. 1, a glass article manufacturing apparatus for embodying the glass article manufacturing method according to the present embodiment is an apparatus for continuously forming a glass ribbon G. The glass article manufactured from the glass ribbon G includes a glass plate and a glass roll.
 ガラス物品の製造装置は、ガラスリボンGを成形する成形炉1と、ガラスリボンGに熱処理を施す熱処理炉2と、ガラスリボンGを室温付近まで冷却する冷却ゾーン3と、熱処理炉2及び冷却ゾーン3のそれぞれに上下複数段に設けられたローラ対4と、を備えている。 The glass article manufacturing apparatus includes a molding furnace 1 for molding a glass ribbon G, a heat treatment furnace 2 for heat-treating the glass ribbon G, a cooling zone 3 for cooling the glass ribbon G to around room temperature, a heat treatment furnace 2 and a cooling zone. Each of the rollers 3 has a pair of rollers 4 provided in a plurality of upper and lower stages.
 ここで、ガラス物品の製造装置は、冷却ゾーン3の下流側において、ガラスリボンGを切断してガラス板を得る切断装置、ガラス板の端面を加工する端面加工装置、ガラス板を洗浄する洗浄装置、ガラス板を検査する検査装置などを更に備えていてもよい。あるいは、ガラス物品の製造装置は、冷却ゾーン3の下流側において、ガラスリボンGの幅方向の両端部を切断して除去する切断装置、ガラスリボンGをロール状に巻き取ってガラスロールを得る巻取装置などを更に備えていてもよい。 Here, the glass article manufacturing apparatus includes, on the downstream side of the cooling zone 3, a cutting apparatus for cutting the glass ribbon G to obtain a glass plate, an end surface processing apparatus for processing the end surface of the glass plate, and a cleaning apparatus for cleaning the glass plate. An inspection device for inspecting the glass plate may be further provided. Alternatively, the glass article manufacturing apparatus is a cutting apparatus that cuts and removes both ends of the glass ribbon G in the width direction on the downstream side of the cooling zone 3, and winds the glass ribbon G into a roll to obtain a glass roll. It may further be provided with a picking device or the like.
 成形炉1の内部空間には、オーバーフローダウンドロー法により溶融ガラスGmからガラスリボンGを成形する成形体5が配置されている。成形体5に供給された溶融ガラスGmは成形体5の頂部に形成された溝部5aから溢れ出るようになっており、その溢れ出た溶融ガラスGmが成形体5の断面楔状を呈する両側面5bを伝って下端で合流することで、板状のガラスリボンGが連続成形される。成形されるガラスリボンGは、縦姿勢(好ましくは鉛直姿勢)である。 A molding 5 for molding the glass ribbon G from the molten glass Gm by the overflow down draw method is arranged in the internal space of the molding furnace 1. The molten glass Gm supplied to the molded body 5 overflows from the groove 5a formed at the top of the molded body 5, and the overflowed molten glass Gm has a wedge-shaped cross section on both sides 5b. The plate-shaped glass ribbon G is continuously formed by flowing along the flow path and joining at the lower end. The formed glass ribbon G has a vertical posture (preferably a vertical posture).
 成形炉1は、上部耐火レンガ6と、下部耐火レンガ7と、上部耐火レンガ6の下端部及び下部耐火レンガ7の上端部を繋ぐ接続用耐火レンガ8と、を備えている。接続用耐火レンガ8は、下部耐火レンガ7が上部耐火レンガ6よりもガラスリボンG側に接近するように、上部耐火レンガ6及び下部耐火レンガ7を繋いでいる。なお、接続用耐火レンガ8は省略してもよい。 The forming furnace 1 includes an upper refractory brick 6, a lower refractory brick 7, and a connecting refractory brick 8 connecting the lower end of the upper refractory brick 6 and the upper end of the lower refractory brick 7. The connection refractory bricks 8 connect the upper refractory bricks 6 and the lower refractory bricks 7 so that the lower refractory bricks 7 are closer to the glass ribbon G side than the upper refractory bricks 6. The connecting refractory brick 8 may be omitted.
 上部耐火レンガ6に対応する位置では、成形体5の表面を流下する溶融ガラスGmの温度が調整されるようになっている。成形体5の表面を流下する溶融ガラスGmの温度は、例えば、上部耐火レンガ6に対応する位置に設けたヒーターなどの加熱装置(図示省略)により調整できる。加熱装置は、上部耐火レンガ6の炉内側又は炉外側に設けることができる。あるいは、加熱装置は、上部耐火レンガ6の内部に埋設することができる。 At the position corresponding to the upper refractory brick 6, the temperature of the molten glass Gm flowing down the surface of the molded body 5 is adjusted. The temperature of the molten glass Gm flowing down the surface of the molded body 5 can be adjusted by, for example, a heating device (not shown) such as a heater provided at a position corresponding to the upper refractory brick 6. The heating device can be provided inside the furnace or outside the upper refractory brick 6. Alternatively, the heating device can be embedded inside the upper refractory brick 6.
 下部耐火レンガ7は、成形体5から流下したガラスリボンGの表面と厚み方向で対向しており、下部耐火レンガ7を用いてガラスリボンGが冷却されるようになっている。この冷却は、ガラスリボンGの偏肉を調整することを目的としており、下部耐火レンガ7を介してガラスリボンGの熱を炉外に放熱することで実施される。すなわち、下部耐火レンガ7は放熱ゾーンに相当する。なお、下部耐火レンガ7に対応する位置には、ヒーターなどの加熱装置は設けられていない。 The lower refractory brick 7 is opposed to the surface of the glass ribbon G flowing down from the molded body 5 in the thickness direction, and the lower refractory brick 7 is used to cool the glass ribbon G. This cooling is intended to adjust the uneven thickness of the glass ribbon G, and is performed by radiating the heat of the glass ribbon G to the outside of the furnace via the lower refractory brick 7. That is, the lower refractory brick 7 corresponds to a heat dissipation zone. A heating device such as a heater is not provided at a position corresponding to the lower refractory brick 7.
 ここで、例えば、上部耐火レンガ6及び下部耐火レンガ7は、炭化珪素(SiC)質レンガなどで形成され、接続用耐火レンガ8は、アルミナジルコン質レンガなどで形成される。 Here, for example, the upper refractory bricks 6 and the lower refractory bricks 7 are made of silicon carbide (SiC) -based bricks or the like, and the connection refractory bricks 8 are made of alumina zircon-based bricks or the like.
 熱処理炉2の内部空間は、下方に向かって所定の温度勾配を有している。縦姿勢のガラスリボンGは、熱処理炉2の内部空間を下方に向かって移動するに連れて、温度が低くなるように徐冷(アニール)される。この徐冷は、ガラスリボンGの反りや歪を調整(低減)するためのものである。熱処理炉2の内部空間の温度勾配は、例えば、熱処理炉2に対応する位置に設けたヒーターなどの加熱装置(図示省略)により調整できる。加熱装置は、熱処理炉2の炉内又は炉外に設けることができる。あるいは、加熱装置は、熱処理炉2の炉壁内部に埋設することができる。 The internal space of the heat treatment furnace 2 has a predetermined temperature gradient downward. The glass ribbon G in the vertical posture is gradually cooled (annealed) so that the temperature thereof becomes lower as the glass ribbon G moves downward in the internal space of the heat treatment furnace 2. This gradual cooling is for adjusting (reducing) warpage or distortion of the glass ribbon G. The temperature gradient in the internal space of the heat treatment furnace 2 can be adjusted by, for example, a heating device (not shown) such as a heater provided at a position corresponding to the heat treatment furnace 2. The heating device can be provided inside or outside the heat treatment furnace 2. Alternatively, the heating device can be embedded inside the furnace wall of the heat treatment furnace 2.
 複数のローラ対4は、縦姿勢のガラスリボンGの幅方向両端部のそれぞれを表裏両側から挟持するようになっている。なお、ローラ対4は、成形体5の下端部から下部耐火レンガ7の下端部に至るまでの領域には設けられていない。 The plurality of roller pairs 4 are designed to sandwich both ends of the glass ribbon G in the vertical position in the width direction from the front and back sides. The roller pair 4 is not provided in the region from the lower end of the molded body 5 to the lower end of the lower refractory brick 7.
 複数のローラ対4のうちの最上段のローラ対4aは、熱処理炉2の上端部付近に設けられており、ガラスリボンGの幅方向両端部を冷却する冷却ローラ(エッジローラ)で構成されている。この冷却ローラは、ガラスリボンGの幅方向の収縮を抑制するためのものである。 The uppermost roller pair 4a of the plurality of roller pairs 4 is provided in the vicinity of the upper end of the heat treatment furnace 2 and is composed of a cooling roller (edge roller) that cools both ends of the glass ribbon G in the width direction. There is. This cooling roller is for suppressing the shrinkage of the glass ribbon G in the width direction.
 なお、熱処理炉2の内部空間などでは、複数のローラ対4の中に、ガラスリボンGの幅方向端部を挟持しないものが含まれていてもよい。換言すれば、ローラ対4の対向間隔をガラスリボンGの幅方向端部の厚みよりも大きくし、ローラ対4の間をガラスリボンGが通過するようにしてもよい。 Note that, in the internal space of the heat treatment furnace 2 or the like, the plurality of roller pairs 4 may include one that does not sandwich the widthwise end of the glass ribbon G. In other words, the facing distance between the pair of rollers 4 may be made larger than the thickness of the end portion in the width direction of the glass ribbon G so that the glass ribbon G passes between the pair of rollers 4.
 図2に示すように、下部耐火レンガ7及び接続用耐火レンガ8は、幅方向で複数に分割されている。そのため、幅方向で隣接する各レンガ7,8の間には、目地9,10が形成されている。なお、接続用耐火レンガ8は、幅方向で複数に分割されず目地のない一体構造であってもよい。 As shown in FIG. 2, the lower refractory bricks 7 and the connecting refractory bricks 8 are divided into a plurality in the width direction. Therefore, joints 9 and 10 are formed between the bricks 7 and 8 that are adjacent to each other in the width direction. The connecting refractory brick 8 may have a joint structure that is not divided into a plurality in the width direction and has no joint.
 ガラスリボンG側から観察した場合、下部耐火レンガ7の目地9は、搬送方向に対して傾斜した直線状であり、幅方向の位置が搬送方向で変化している。同様に、ガラスリボンG側から観察した場合、接続用耐火レンガ8の目地10も、搬送方向に対して傾斜した直線状であり、幅方向の位置が搬送方向で変化している。これにより、ガラスリボンGと目地9,10とが対向する幅方向の位置が搬送方向で順次変化するため、ガラスリボンGの幅方向の所定部位だけが局所的に冷却され続けるという事態を抑制できる。なお、図示例では、目地9の傾斜方向と目地10の傾斜方向とが互いに逆向きとなっているが、同じ向きであってもよい。また、目地9(あるいは目地10)の中に傾斜方向が異なる向きとなるものが含まれていてもよい。更に、ガラスリボンG側から観察した場合に、目地9,10の幅方向の位置が搬送方向で変化していれば、目地9,10の変化の態様は直線状に限定されない。ただし、直線状であれば、レンガ7,8を加工しやすいという利点がある。 When observed from the glass ribbon G side, the joint 9 of the lower refractory brick 7 is a straight line inclined with respect to the transport direction, and the position in the width direction changes in the transport direction. Similarly, when observed from the glass ribbon G side, the joint 10 of the refractory brick 8 for connection is also a straight line inclined with respect to the transport direction, and the position in the width direction changes in the transport direction. As a result, the positions in the width direction where the glass ribbon G and the joints 9 and 10 face each other are sequentially changed in the transport direction, so that it is possible to suppress the situation where only a predetermined portion in the width direction of the glass ribbon G is continuously cooled. . In the illustrated example, the joint 9 and the joint 10 are inclined in opposite directions, but may be in the same direction. Further, the joints 9 (or the joints 10) may include those having different inclination directions. Further, when observed from the glass ribbon G side, if the widthwise positions of the joints 9 and 10 change in the transport direction, the manner of change of the joints 9 and 10 is not limited to a linear shape. However, the straight shape has an advantage that the bricks 7 and 8 can be easily processed.
 図3に示すように、搬送方向の上流側から観察した場合、下部耐火レンガ7の目地9は、屈曲部9aを有しており、幅方向の位置が厚み方向で変化している。同様に、図4に示すように、搬送方向の上流側から観察した場合、接続用耐火レンガ8の目地10も、屈曲部10aを有しており、幅方向の位置が厚み方向で変化している。これにより、目地9,10のシール性が向上するため、目地9,10を通じて成形炉1の内外の気体が直接流通しにくくなる。したがって、ガラスリボンGと目地9,10とが対向する位置で、ガラスリボンGの幅方向の所定部位が局所的に冷却されるという事態を抑制できる。 As shown in FIG. 3, when observed from the upstream side in the conveying direction, the joint 9 of the lower refractory brick 7 has a bent portion 9a, and the position in the width direction changes in the thickness direction. Similarly, as shown in FIG. 4, when observed from the upstream side in the transport direction, the joint 10 of the refractory brick 8 for connection also has a bent portion 10a, and the position in the width direction changes in the thickness direction. There is. As a result, the sealability of the joints 9 and 10 is improved, and it becomes difficult for the gas inside and outside the molding furnace 1 to directly flow through the joints 9 and 10. Therefore, at a position where the glass ribbon G and the joints 9 and 10 face each other, it is possible to suppress a situation where a predetermined portion in the width direction of the glass ribbon G is locally cooled.
 本実施形態では、下部耐火レンガ7の目地9は、二つの屈曲部9aを有する。これら屈曲部9aにより、目地9は、厚み方向に沿って延びる二つの第一部分9bと、これら第一部分9bの間で幅方向に沿って延びる第二部分9cと、を有し、全体として階段状(鉤状)を呈している。同様に、接続用耐火レンガ8の目地10も、二つの屈曲部10aを有する。これら屈曲部10aにより、目地10は、厚み方向に沿って延びる二つの第一部分10bと、これら第一部分10bの間で幅方向に沿って延びる第二部分10cと、を有し、全体として階段状(鉤状)を呈している。すなわち、目地9,10は、比較的簡単な形状であるが、幅方向に沿って延びる第二部分9c,10cが目地9,10を通過する気体に対して大きな抵抗となるため、気体が流通しにくい構造となっている。 In this embodiment, the joint 9 of the lower refractory brick 7 has two bent portions 9a. Due to the bent portions 9a, the joint 9 has two first portions 9b extending in the thickness direction and a second portion 9c extending in the width direction between the first portions 9b, and has a step shape as a whole. (Hook-like). Similarly, the joint 10 of the connecting refractory brick 8 also has two bent portions 10a. Due to these bent portions 10a, the joint 10 has two first portions 10b extending in the thickness direction and a second portion 10c extending in the width direction between the first portions 10b, and has a step shape as a whole. (Hook-like). That is, the joints 9 and 10 have a relatively simple shape, but the second portions 9c and 10c extending along the width direction have a large resistance to the gas passing through the joints 9 and 10, so that the gas flows. It is a structure that is difficult to do.
 ここで、本実施形態では、搬送方向の上流側から観察した場合、図3に示す下部耐火レンガ7の目地9の炉内に面する位置P1(又は位置P2)と、図4に示す接続用耐火レンガ8の目地10の炉内に面する位置Q1(又は位置Q2)とは、幅方向で重複することなく、相違する。すなわち、下部耐火レンガ7の目地9の位置P1(又は位置P2)には、接続用耐火レンガ8の目地10のない部分が位置しており、接続用耐火レンガ8の目地10の位置Q1(又は位置Q2)には、下部耐火レンガ7の目地9のない部分が位置している。これにより、目地9,10の影響が、ガラスリボンGの幅方向で分散するようにしている。なお、図2では、ガラスリボンG側から観察した場合に、下部耐火レンガ7の目地9の搬送方向全長に亘る形成領域と、接続用耐火レンガ8の目地10の搬送方向全長に亘る形成領域とが、幅方向で重複していない態様を例示している。 Here, in this embodiment, when observed from the upstream side in the transport direction, the position P1 (or the position P2) facing the inside of the joint 9 of the lower refractory brick 7 shown in FIG. 3 and the connection shown in FIG. It differs from the position Q1 (or the position Q2) of the joint 10 of the refractory brick 8 facing the inside of the furnace without overlapping in the width direction. That is, at the position P1 (or position P2) of the joint 9 of the lower refractory brick 7, a portion without the joint 10 of the connecting refractory brick 8 is located, and the position Q1 of the joint 10 of the connecting refractory brick 8 (or At the position Q2), the portion of the lower refractory brick 7 without the joint 9 is located. As a result, the influence of the joints 9 and 10 is dispersed in the width direction of the glass ribbon G. In addition, in FIG. 2, when observed from the glass ribbon G side, a formation region over the entire length of the joint 9 of the lower refractory brick 7 in the transport direction and a formation region over the entire length of the joint 10 of the joint refractory brick 8 in the transport direction. Exemplifies a mode in which there is no overlap in the width direction.
 また、本実施形態では、搬送方向の上流側から観察した場合、ガラスリボンGの一方の表面と対向する一方の下部耐火レンガ7の目地9の炉内に面する位置P1と、ガラスリボンGの他方の表面と対向する他方の下部耐火レンガ7の目地9の炉内に面する位置P2とは、幅方向で重複することなく、相違する。すなわち、一方の下部耐火レンガ7の目地9の炉内に面する位置には、他方の下部耐火レンガ7の目地9のない部分が厚み方向で対向している。同様に、搬送方向の上流側から観察した場合、ガラスリボンGの一方の表面と対向する一方の接続用耐火レンガ8の目地10の炉内に面する位置Q1と、ガラスリボンGの他方の表面と対向する他方の接続用耐火レンガ8の目地10の炉内に面する位置Q2とは、幅方向で重複することなく、相違する。すなわち、一方の接続用耐火レンガ8の目地10の炉内に面する位置には、他方の接続用耐火レンガ8の目地10のない部分が厚み方向で対向している。これにより、目地9,10の影響が、ガラスリボンGの両表面で分散するようにしている。なお、図3及び図4では、搬送方向の上流側から観察した場合に、対向する両方の下部耐火レンガ7の目地9の厚み方向全長に亘る形成領域が互いに幅方向で重複していない態様と、対向する両方の接続用耐火レンガ8の目地10の厚み方向全長に亘る形成領域が互いに幅方向で重複していない態様と、をそれぞれ例示している。 Further, in the present embodiment, when observed from the upstream side in the transport direction, the position P1 of the joint 9 of the one lower refractory brick 7 facing the one surface of the glass ribbon G facing the inside of the furnace, and the position of the glass ribbon G. A position P2 of the joint 9 of the lower refractory brick 7 facing the other surface facing the inside of the furnace differs from the other surface without overlapping in the width direction. That is, the joint 9 of the lower refractory brick 7 on one side faces the inside of the furnace, and the portion of the other lower refractory brick 7 without the joint 9 faces in the thickness direction. Similarly, when observed from the upstream side in the transport direction, the position Q1 facing the inside of the joint 10 of the connecting refractory brick 8 facing one surface of the glass ribbon G and the other surface of the glass ribbon G. The position Q2 facing the inside of the joint 10 of the other connecting refractory brick 8 that faces is different from the position Q2 without overlapping in the width direction. That is, at a position of the joint 10 of the connecting refractory brick 8 facing the inside of the furnace, a portion of the other connecting refractory brick 8 without the joint 10 faces in the thickness direction. As a result, the influence of the joints 9 and 10 is dispersed on both surfaces of the glass ribbon G. In addition, in FIGS. 3 and 4, when observed from the upstream side in the transport direction, the formation regions over the entire length in the thickness direction of the joints 9 of both lower refractory bricks 7 facing each other do not overlap each other in the width direction. , A mode in which the formation regions of the joints 10 of the connecting refractory bricks 8 across the entire thickness in the thickness direction do not overlap each other in the width direction.
 更に、本実施形態では、接続用耐火レンガ8における目地10の屈曲部10a(又は第二部分10c)は、上部耐火レンガ6よりも外側、すなわち、炉外に位置している。これにより、目地10のうちの炉内に面する部分を、厚み方向に沿った直線状の第一部分10bのみで構成し、炉内に面する目地10の形状を単純化している。なお、接続用耐火レンガ8における目地10の屈曲部10a(又は第二部分10c)は、上部耐火レンガ6の下方に位置していてもよいし、上部耐火レンガ6よりも内側の炉内に位置していてもよい。 Furthermore, in the present embodiment, the bent portion 10a (or the second portion 10c) of the joint 10 in the connecting refractory brick 8 is located outside the upper refractory brick 6, that is, outside the furnace. Thus, the portion of the joint 10 facing the inside of the furnace is configured only by the linear first portion 10b along the thickness direction, and the shape of the joint 10 facing the inside of the furnace is simplified. The bent portion 10a (or the second portion 10c) of the joint 10 in the connecting refractory brick 8 may be located below the upper refractory brick 6 or in the furnace inside the upper refractory brick 6. You may have.
 次に、以上のように構成された製造装置を用いたガラス物品の製造方法を説明する。 Next, a method of manufacturing a glass article using the manufacturing apparatus configured as described above will be described.
 図1に示すように、ガラス物品の製造方法は、成形炉1内で成形体5から溶融ガラスGmを流下してガラスリボンGを成形する成形工程と、熱処理炉2内で成形されたガラスリボンGを搬送方向に沿って搬送しながらガラスリボンGに熱処理を施す熱処理工程と、冷却ゾーン3内で熱処理されたガラスリボンGを搬送方向に沿って搬送しながらガラスリボンGを室温付近まで冷却する冷却工程と、を備えている。 As shown in FIG. 1, a glass article manufacturing method includes a forming step of forming a glass ribbon G by flowing molten glass Gm from a formed body 5 in a forming furnace 1, and a glass ribbon formed in a heat treatment furnace 2. A heat treatment step of heat-treating the glass ribbon G while transporting G along the transport direction, and cooling the glass ribbon G to near room temperature while transporting the glass ribbon G heat-treated in the cooling zone 3 along the transport direction. And a cooling step.
 成形工程は、成形体5から流下したガラスリボンGを成形炉1の下部耐火レンガ7を用いて冷却し、ガラスリボンGの偏肉を調整(低減)する調整工程を備えている。調整工程では、下部耐火レンガ7を介してガラスリボンGの熱を炉外に放熱することで、ガラスリボンGを冷却する。 The forming process includes an adjusting process of adjusting (reducing) the uneven thickness of the glass ribbon G by cooling the glass ribbon G flowing down from the formed body 5 using the lower refractory brick 7 of the forming furnace 1. In the adjusting step, the glass ribbon G is cooled by radiating the heat of the glass ribbon G to the outside of the furnace through the lower refractory brick 7.
 ここで、調整工程における冷却は、ガラスリボンGの偏肉を調整することを目的とし、熱処理工程における冷却(徐冷)は、ガラスリボンGの反りや歪を調整することを目的としており、両者の目的は異なる。調整工程のガラスリボンGの温度は、例えば1000~1300℃であり、熱処理工程のガラスリボンGの温度は、例えば500~1000℃である。また、調整工程のガラスリボンGの粘度は、例えば20000~300000poiseであり、熱処理工程のガラスリボンGの粘度は、例えば10~1016poiseである。 Here, the cooling in the adjusting step is intended to adjust the uneven thickness of the glass ribbon G, and the cooling (gradual cooling) in the heat treatment step is intended to adjust the warpage and distortion of the glass ribbon G. Has different purposes. The temperature of the glass ribbon G in the adjusting step is, for example, 1000 to 1300 ° C., and the temperature of the glass ribbon G in the heat treating step is, for example, 500 to 1000 ° C. The viscosity of the glass ribbon G in the adjusting step is, for example, 20,000 to 300,000 poise, and the viscosity of the glass ribbon G in the heat treating step is, for example, 10 5 to 10 16 poise.
 調整工程では、上述したように、下部耐火レンガ7及び接続用耐火レンガ8の目地9,10は、ガラスリボンG側から観察した場合に幅方向の位置が搬送方向で変化し、かつ、搬送方向の上流側から観察した場合に幅方向の位置が厚み方向で変化している。そのため、調整工程において、目地9,10に対向する位置でガラスリボンGの幅方向の所定部位だけが局所的に冷却されるという事態が抑制され、ガラスリボンGの表面に筋状の凸欠陥が形成されるのを防止できる。したがって、表面平滑性に優れた高品位なガラス物品を提供できる。 In the adjusting step, as described above, the joints 9 and 10 of the lower refractory bricks 7 and the connecting refractory bricks 8 have their widthwise positions changed in the carrying direction when observed from the glass ribbon G side, and the carrying direction. The position in the width direction changes in the thickness direction when observed from the upstream side of. Therefore, in the adjustment step, a situation in which only a predetermined portion in the width direction of the glass ribbon G is locally cooled at a position facing the joints 9 and 10 is suppressed, and streaky convex defects are formed on the surface of the glass ribbon G. It can be prevented from being formed. Therefore, a high-quality glass article having excellent surface smoothness can be provided.
 なお、本発明は上記の実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、更に種々なる形態で実施し得る。 It should be noted that the present invention is not limited to the above-described embodiment at all, and may be carried out in various forms without departing from the gist of the present invention.
 上記の実施形態では、下部耐火レンガ7及び接続用耐火レンガ8の目地9,10が、搬送方向の上流側から観察した場合に、二つの屈曲部9a,10aを有し、全体として階段状を呈する場合を説明したが、屈曲部9a,10aの数は特に限定されない。例えば、下部耐火レンガ7の目地9は、搬送方向の上流側から観察した場合に、例えば、図5に示すように屈曲部9aを一つとしてもよいし、図6に示すように屈曲部9aを三つとしてもよいし、図7に示すように屈曲部9aを四つ以上としてもよい。もちろん、例えば、図8に示すように、搬送方向の上流側から観察した場合に、目地9を厚み方向に対して傾斜した直線状などとし、屈曲部のない形状としてもよい。これら事項は、接続用耐火レンガ8の目地10にも同様に適用できる。 In the above-described embodiment, the joints 9 and 10 of the lower refractory brick 7 and the connecting refractory brick 8 have two bent portions 9a and 10a when viewed from the upstream side in the transport direction, and have a step-like shape as a whole. Although the case has been described, the number of bent portions 9a and 10a is not particularly limited. For example, the joint 9 of the lower refractory brick 7 may have one bent portion 9a as shown in FIG. 5 or may be one bent portion 9a as shown in FIG. 6 when observed from the upstream side in the transport direction. May be three or four or more bent portions 9a may be provided as shown in FIG. Of course, for example, as shown in FIG. 8, when observed from the upstream side in the transport direction, the joint 9 may have a linear shape inclined with respect to the thickness direction, or may have a shape without a bent portion. These matters can be similarly applied to the joint 10 of the refractory brick 8 for connection.
 上記の実施形態において、図9に示すように、下部耐火レンガ7の目地9をガラスリボンG側から観察した場合に、目地9の上端点9dの幅方向位置は、隣接する目地9の下端点9eの幅方向位置と同じであってもよい。このようにすれば、局所的に冷却されるという事態をより確実に抑制できる。 In the above embodiment, as shown in FIG. 9, when the joint 9 of the lower refractory brick 7 is observed from the glass ribbon G side, the width direction position of the upper end point 9d of the joint 9 is the lower end point of the adjacent joint 9. It may be the same as the position of 9e in the width direction. By doing so, it is possible to more reliably suppress the situation of local cooling.
 上記の実施形態では、屈曲部9a,10aを二直線が交わる角部で構成する場合を説明したが、屈曲部9a,10aは円弧などの湾曲部で構成されていてもよい。 In the above embodiment, the case where the bent portions 9a and 10a are formed by the corners where the two straight lines intersect has been described, but the bent portions 9a and 10a may be formed by the curved portions such as arcs.
 上記の実施形態では、下部耐火レンガ7及び接続用耐火レンガ8の目地9,10が、(1)ガラスリボンG側から観察した場合に幅方向の位置が搬送方向で変化し、かつ、(2)搬送方向の上流側から観察した場合に幅方向の位置が厚み方向で変化する場合を説明したが、少なくとも下部耐火レンガ7の目地9の幅方向の位置が、上記の(1)及び(2)のいずれか一方を満たしていればよい。なお、上記の(1)のみを満たす場合、目地は、搬送方向の上流側から観察すると厚み方向に沿った直線状となり、上記の(2)のみを満たす場合、目地は、ガラスリボンG側から観察すると搬送方向に沿った直線状となる。 In the above embodiment, the joints 9 and 10 of the lower refractory bricks 7 and the connecting refractory bricks 8 have a position in the width direction that changes in the transport direction when (1) the glass ribbon G side is observed, and (2) ) The case where the position in the width direction changes in the thickness direction when observed from the upstream side in the transport direction has been described, but at least the position in the width direction of the joint 9 of the lower refractory brick 7 is the same as the above (1) and (2). ) It is sufficient if either one of them is satisfied. When only the above (1) is satisfied, the joint is linear along the thickness direction when observed from the upstream side in the transport direction, and when only the above (2) is satisfied, the joint is from the glass ribbon G side. When observed, it becomes a straight line along the transport direction.
 上記の実施形態では、オーバーフローダウンドロー法によりガラスリボンGを成形する場合を説明したが、スロットダウンドロー法、リドロー法などの他のダウンドロー法によりガラスリボンGを成形するようにしてもよい。 In the above embodiment, the case where the glass ribbon G is formed by the overflow downdraw method has been described, but the glass ribbon G may be formed by another downdraw method such as a slot downdraw method or a redraw method.
1   成形炉
2   熱処理炉
3   冷却ゾーン
4   ローラ対
5   成形体
6   上部耐火レンガ
7   下部耐火レンガ
8   接続用耐火レンガ
9   下部耐火レンガの目地
10  接続用耐火レンガの目地
G   ガラスリボン
Gm  溶融ガラス
 
1 Forming Furnace 2 Heat Treatment Furnace 3 Cooling Zone 4 Roller Pair 5 Molded Body 6 Upper Refractory Bricks 7 Lower Refractory Bricks 8 Connection Refractory Bricks 9 Lower Refractory Bricks Joints 10 Connection Refractory Bricks Joints G Glass Ribbon Gm Molten Glass

Claims (10)

  1.  成形炉内で成形体から溶融ガラスを流下してガラスリボンを成形する成形工程と、前記成形工程で成形された前記ガラスリボンを搬送方向に沿って搬送しながら、前記ガラスリボンに熱処理を施す熱処理工程と、を備えたガラス物品の製造方法において、
     前記成形工程は、前記成形体から流下した前記ガラスリボンの表面と前記ガラスリボンの厚み方向で対向する前記成形炉の下部耐火レンガを用いて、前記ガラスリボンを冷却する工程を備え、
     前記下部耐火レンガは、前記ガラスリボンの幅方向で複数に分割されており、
     前記搬送方向の上流側から観察した場合に、隣接する前記下部耐火レンガ間の目地の前記幅方向の位置が、前記厚み方向で変化することを特徴とするガラス物品の製造方法。
    A forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a heat treatment for heat-treating the glass ribbon while conveying the glass ribbon formed in the forming step in a conveying direction. In a method of manufacturing a glass article, which comprises a step,
    The forming step includes a step of cooling the glass ribbon by using a lower refractory brick of the forming furnace facing the surface of the glass ribbon flowing down from the formed body in the thickness direction of the glass ribbon,
    The lower refractory brick is divided into a plurality in the width direction of the glass ribbon,
    The method for manufacturing a glass article, wherein the position in the width direction of the joint between the adjacent lower refractory bricks changes in the thickness direction when observed from the upstream side in the transport direction.
  2.  前記搬送方向の上流側から観察した場合に、隣接する前記下部耐火レンガ間の目地が、屈曲部を有することを特徴とする請求項1に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1, wherein the joint between the lower refractory bricks adjacent to each other has a bent portion when observed from the upstream side in the transport direction.
  3.  前記ガラスリボン側から観察した場合に、隣接する前記下部耐火レンガ間の目地の前記幅方向の位置が、前記搬送方向で変化することを特徴とする請求項1又は2に記載のガラス物品の製造方法。 When observed from the glass ribbon side, the position in the width direction of the joint between the adjacent lower refractory bricks changes in the transport direction, the manufacturing of the glass article according to claim 1 or 2. Method.
  4.  前記ガラスリボン側から観察した場合に、隣接する前記下部耐火レンガ間の目地は、前記搬送方向に対して傾斜する方向に延びることを特徴とする請求項3に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 3, wherein the joint between the lower refractory bricks adjacent to each other extends in a direction inclined with respect to the transport direction when observed from the glass ribbon side.
  5.  前記成形炉は、前記成形体と対向する上部耐火レンガと、前記下部耐火レンガが前記上部耐火レンガよりも前記ガラスリボン側に接近するように、前記上部耐火レンガの下端部及び前記下部耐火レンガの上端部を繋ぐ接続用耐火レンガと、を備えていることを特徴とする請求項1~4のいずれか1項に記載のガラス物品の製造方法。 The forming furnace, the upper refractory bricks facing the molded body, as the lower refractory bricks closer to the glass ribbon side than the upper refractory bricks, the lower end of the upper refractory bricks and the lower refractory bricks. The method for manufacturing a glass article according to any one of claims 1 to 4, further comprising: a refractory brick for connection that connects upper end portions.
  6.  前記接続用耐火レンガは、前記幅方向で複数に分割されており、前記搬送方向の上流側から観察した場合に、隣接する前記接続用耐火レンガ間の目地の前記幅方向の位置が、前記厚み方向で変化することを特徴とする請求項5に記載のガラス物品の製造方法。 The connection refractory bricks are divided into a plurality in the width direction, when viewed from the upstream side of the transport direction, the width direction position of the joint between the adjacent connection refractory bricks, the thickness. The method for producing a glass article according to claim 5, wherein the glass article changes in direction.
  7.  前記搬送方向の上流側から観察した場合に、隣接する前記接続用耐火レンガ間の目地が、屈曲部を有することを特徴とする請求項6に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 6, wherein the joint between the refractory bricks for connection has a bent portion when observed from the upstream side in the transport direction.
  8.  前記ガラスリボン側から観察した場合に、隣接する前記接続用耐火レンガ間の目地の前記幅方向の位置が、前記搬送方向で変化することを特徴とする請求項6又は7に記載のガラス物品の製造方法。 The position in the width direction of the joint between the adjacent refractory bricks for connection, when observed from the glass ribbon side, changes in the transport direction, the glass article according to claim 6 or 7. Production method.
  9.  前記ガラスリボン側から観察した場合に、隣接する前記接続用耐火レンガ間の目地は、前記搬送方向に対して傾斜する方向に延びることを特徴とする請求項8に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 8, wherein, when observed from the glass ribbon side, joints between adjacent refractory bricks for connection extend in a direction inclined with respect to the transport direction.
  10.  成形炉内で成形体から溶融ガラスを流下してガラスリボンを成形する成形工程と、前記成形工程で成形された前記ガラスリボンを搬送方向に沿って搬送しながら、前記ガラスリボンに熱処理を施す熱処理工程と、を備えたガラス物品の製造方法において、
     前記成形工程は、前記成形体から流下した前記ガラスリボンの表面と前記ガラスリボンの厚み方向で対向する前記成形炉の下部耐火レンガを用いて、前記ガラスリボンを冷却する工程を備え、
     前記下部耐火レンガは、前記ガラスリボンの幅方向で複数に分割されており、
     前記ガラスリボン側から観察した場合に、隣接する前記下部耐火レンガ間の目地の前記幅方向の位置が、前記搬送方向で変化することを特徴とするガラス物品の製造方法。
     
    A forming step of forming a glass ribbon by flowing molten glass from a formed body in a forming furnace, and a heat treatment for heat-treating the glass ribbon while conveying the glass ribbon formed in the forming step in a conveying direction. In a method of manufacturing a glass article, which comprises a step,
    The forming step includes a step of cooling the glass ribbon by using a lower refractory brick of the forming furnace facing the surface of the glass ribbon flowing down from the formed body in the thickness direction of the glass ribbon,
    The lower refractory brick is divided into a plurality in the width direction of the glass ribbon,
    The method for manufacturing a glass article, wherein the position of the joint between the lower refractory bricks adjacent to each other changes in the width direction when observed from the glass ribbon side.
PCT/JP2019/041294 2018-10-26 2019-10-21 Glass article manufacturing method WO2020085297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980069167.4A CN112867697B (en) 2018-10-26 2019-10-21 Method for manufacturing glass article
KR1020217010436A KR20210082443A (en) 2018-10-26 2019-10-21 Method for making glass articles
JP2020553387A JP7415252B2 (en) 2018-10-26 2019-10-21 Method for manufacturing glass articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018201712 2018-10-26
JP2018-201712 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085297A1 true WO2020085297A1 (en) 2020-04-30

Family

ID=70331465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041294 WO2020085297A1 (en) 2018-10-26 2019-10-21 Glass article manufacturing method

Country Status (5)

Country Link
JP (1) JP7415252B2 (en)
KR (1) KR20210082443A (en)
CN (1) CN112867697B (en)
TW (1) TWI799659B (en)
WO (1) WO2020085297A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105667A1 (en) * 2012-01-13 2013-07-18 AvanStrate株式会社 Manufacturing device and molding device for glass substrate
WO2015125943A1 (en) * 2014-02-21 2015-08-27 AvanStrate株式会社 Glass plate production method and glass plate production device
JP2016210634A (en) * 2015-04-30 2016-12-15 日本電気硝子株式会社 Manufacturing apparatus of sheet glass, and manufacturing method of sheet glass

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362698A (en) * 1966-01-26 1968-01-09 Detrick M H Co Refractory lining structure for a rotary kiln
JPH07252517A (en) * 1994-03-10 1995-10-03 Tokyo Yogyo Co Ltd Aod furnace
CN101028964B (en) * 2007-02-08 2010-11-17 河南安彩高科股份有限公司 Device and method for controlling glass-board thickness evenness
CN102471121B (en) * 2009-07-13 2015-03-04 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
JP5456789B2 (en) * 2010-08-27 2014-04-02 AvanStrate株式会社 Glass substrate manufacturing apparatus and glass substrate manufacturing method
JP5994992B2 (en) 2012-12-20 2016-09-21 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP2016104676A (en) * 2013-03-21 2016-06-09 旭硝子株式会社 Float glass manufacturing apparatus and float glass manufacturing method
JP2014193780A (en) * 2013-03-28 2014-10-09 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing device
JP6638381B2 (en) * 2015-12-22 2020-01-29 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
CN108373167A (en) * 2018-03-08 2018-08-07 新疆湘晟新材料科技有限公司 Titanium tetrachloride boiling chloridizing furnace stops gas brick lining and brickwork method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105667A1 (en) * 2012-01-13 2013-07-18 AvanStrate株式会社 Manufacturing device and molding device for glass substrate
WO2015125943A1 (en) * 2014-02-21 2015-08-27 AvanStrate株式会社 Glass plate production method and glass plate production device
JP2016210634A (en) * 2015-04-30 2016-12-15 日本電気硝子株式会社 Manufacturing apparatus of sheet glass, and manufacturing method of sheet glass

Also Published As

Publication number Publication date
KR20210082443A (en) 2021-07-05
JPWO2020085297A1 (en) 2021-09-24
CN112867697B (en) 2023-05-23
TWI799659B (en) 2023-04-21
TW202106636A (en) 2021-02-16
JP7415252B2 (en) 2024-01-17
CN112867697A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
JP5076443B2 (en) Glass ribbon manufacturing apparatus and manufacturing method thereof
TWI551557B (en) A method for manufacturing a glass substrate, and a manufacturing apparatus for a glass substrate
EP2455346B1 (en) Glass plate manufacturing method
JP5994992B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
US10570046B2 (en) Method of manufacturing glass sheet
WO2017150266A1 (en) Facility for manufacturing glass sheet and method for manufacturing glass sheet
KR101833809B1 (en) Method for producing glass plate
TW201834980A (en) Method for molding molten glass, molding apparatus, and method for producing glass articles
JP5241223B2 (en) Glass plate manufacturing method and manufacturing equipment
JP5983406B2 (en) Float plate glass manufacturing apparatus and float plate glass manufacturing method
JP6767866B2 (en) Glass substrate manufacturing method and glass substrate manufacturing equipment
WO2015093432A1 (en) Apparatus for manufacturing float glass and method for manufacturing float glass
KR102459796B1 (en) Manufacturing method for glass plate and manufacturing apparatus for glass plate
WO2020085297A1 (en) Glass article manufacturing method
JP2015105206A (en) Manufacturing method of glass plate, and glass plate
JP6007277B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6403255B2 (en) GLASS PLATE MANUFACTURING METHOD AND GLASS PLATE
WO2022130928A1 (en) Method for producing glass article
JP2019116415A (en) Method and apparatus for manufacturing glass substrate
JP2019064846A (en) Method and apparatus for manufacturing glass substrate
TW201410621A (en) Thin sheet glass manufacturing method
JP6571415B2 (en) Manufacturing method of glass substrate
KR20230041714A (en) Manufacturing method of glass article
JP6587844B2 (en) Display glass plate manufacturing method and display glass plate manufacturing apparatus
JP2012167014A (en) Method and equipment for producing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876159

Country of ref document: EP

Kind code of ref document: A1