WO2016167322A1 - 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン - Google Patents

高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン Download PDF

Info

Publication number
WO2016167322A1
WO2016167322A1 PCT/JP2016/062027 JP2016062027W WO2016167322A1 WO 2016167322 A1 WO2016167322 A1 WO 2016167322A1 JP 2016062027 W JP2016062027 W JP 2016062027W WO 2016167322 A1 WO2016167322 A1 WO 2016167322A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
mass
alloy casting
thermal conductivity
casting
Prior art date
Application number
PCT/JP2016/062027
Other languages
English (en)
French (fr)
Inventor
泉実 山元
織田 和宏
久育 小島
奈緒子 佐藤
若林 亮
谷畑 昭人
Original Assignee
日本軽金属株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, 本田技研工業株式会社 filed Critical 日本軽金属株式会社
Priority to CN201680021296.2A priority Critical patent/CN107429335B/zh
Priority to JP2016554692A priority patent/JP6113371B2/ja
Priority to MX2017012952A priority patent/MX2017012952A/es
Priority to EP16780113.3A priority patent/EP3284840B1/en
Priority to US15/565,940 priority patent/US10920301B2/en
Publication of WO2016167322A1 publication Critical patent/WO2016167322A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy casting excellent in high-temperature strength and thermal conductivity and a method for producing the same.
  • the aluminum alloy casting of the present invention is particularly suitable for an internal combustion engine piston.
  • Aluminum alloy generally decreases in strength as the temperature rises. For this reason, aluminum alloys used in parts used at high temperatures such as pistons for internal combustion engines have many additive elements such as Si, Cu, Ni, Mg, and Fe, and second phase particles that are difficult to soften even at high temperatures. By increasing the amount of crystallized matter, the strength reduction at high temperature has been suppressed.
  • Fe is an effective element for maintaining the high-temperature strength.
  • coarse needle-like crystallized products are easily formed. This coarse needle-like crystallized material becomes a starting point of destruction, and instead reduces elongation and strength. Accordingly, Mn has been added to agglomerate the Fe-based crystallized product.
  • Patent Document 1 proposes to shorten the acicular Fe-based crystallized material and prevent coarsening without adding Mn by irradiating the molten metal with ultrasonic vibration during casting.
  • the method of irradiating with ultrasonic waves during casting has problems such as equipment cost and productivity, and production cost is high.
  • the needle-like Fe-based crystallized material is short, and has excellent high-temperature strength and heat resistance without adding Mn (factor for reducing heat resistance) or irradiating ultrasonic waves (factor for increasing production cost).
  • An object of the present invention is to provide an alloy casting, a manufacturing method thereof, and an aluminum alloy piston for an internal combustion engine using the casting.
  • Fe-based crystallization can be achieved without reducing the Mn content or performing ultrasonic irradiation by suppressing the amount of Fe added in the alloy composition and rapidly cooling during casting. I found that I can shorten the length of things. As a result of further research, it was newly found that the average length of the Fe-based crystallized product can be shortened to the extent that the mechanical properties of the piston are not impaired (100 ⁇ m or less) when cooling at a high speed of 100 ° C./s or more during casting. I found it.
  • the crystallization temperature of the Al—Ni—Cu-based compound decreases when the ratio Cu / Ni ratio of the Cu and Ni content of the cast aluminum alloy melt is increased.
  • the time is short, and the casting is completed with almost no growth of the crystallized Al—Ni—Cu-based compound (of course, under the influence of the casting speed).
  • the Al—Ni—Cu-based compound becomes finer and the castability and mechanical properties are improved. Further, it has been found that if the crystallized material is made finer, chipping of the work material during finish cutting can be suppressed.
  • the aluminum alloy casting of this invention is Si: 12.0 to 13.5 mass% Cu: 4.5 to 5.5 mass% Mg: 0.6 to 1.0 mass% Ni: 0.7-1.3mass% Fe: 1.15 to 1.25 mass% Ti: 0.10 to 0.2 mass% P: 0.004 to 0.02 mass%
  • the balance has a chemical composition consisting of Al and inevitable impurities
  • the long axis length of the Al—Fe—Si-based crystallized product is characterized in that the average length of 10 crystallized items from the largest is 100 ⁇ m or less.
  • the Cu / Ni content ratio Cu / Ni is 3.4 or more. More preferably, Cu / Ni is 4 or more.
  • the aluminum alloy casting of the present invention is particularly suitable for an aluminum alloy piston for an internal combustion engine.
  • the method for producing an aluminum alloy casting of the present invention is characterized in that an aging treatment is performed after casting a molten aluminum alloy having the above chemical composition at a cooling rate of 100 ° C./S or more.
  • the long axis length of the Al—Fe—Si-based crystallized product is 100 ⁇ m or less in terms of the average length of the 10 crystallized items from the largest.
  • an aluminum alloy melt having the above-described chemical composition is cast at a cooling rate of 100 ° C./S or more, and then subjected to an aging treatment so that Al is observed in an observation field of 0.2 mm 2.
  • the major axis length of the Fe-Si-based crystallized material can be set to 100 ⁇ m or less in terms of the average length of the 10 largest crystallized materials, and is required for aluminum alloy pistons for internal combustion engines. High temperature strength and thermal conductivity can be achieved.
  • ⁇ Chemical composition> Si crystallizes out as primary Si and has the effect of improving the high temperature strength of the piston by dispersion strengthening. This effect becomes significant when the Si content is 12.0 mass% or more. On the other hand, when the Si content exceeds 13.5 mass%, the thermal conductivity decreases. In addition, the amount of crystallized matter increases, and elongation and workability decrease. Further, Si precipitates as an Mg—Si based precipitate by aging treatment, and has an effect of improving thermal conductivity as well as improving strength by dispersion strengthening.
  • Cu has the effect of improving the high temperature strength.
  • it crystallizes out as an Al-Ni-Cu-based crystallized product, and improves the high temperature strength by dispersion strengthening. This effect becomes significant when 4.5 mass% or more is added.
  • the addition amount exceeds 5.5 mass%, the thermal conductivity is lowered.
  • the alloy density increases and the specific strength cannot be improved.
  • Ni has the effect of improving the high temperature strength. When added simultaneously with Cu, it crystallizes out as an Al—Ni—Cu-based crystallized product, and improves the high temperature strength by dispersion strengthening. This effect becomes remarkable when 0.7 mass% or more is added. On the other hand, if the added amount exceeds 1.3 mass%, the thermal conductivity is lowered. In addition, the alloy density increases and the specific strength cannot be improved. Further, among the elements added to the piston of the present invention, Ni is a particularly expensive element, so that the production cost increases as the amount of Ni added increases.
  • the Cu / Ni ratio 3.4 or more
  • the Cu / Ni content ratio Cu / Ni is set to 3.4 or more.
  • the crystallization temperature of the Al—Ni—Cu compound decreases, so that the time from the start of crystallization to the completion of solidification can be shortened.
  • the casting is completed with little crystallized Al—Ni—Cu-based compound growing (under the influence of the casting speed). Therefore, the Al—Ni—Cu-based compound becomes finer and the mechanical properties are improved.
  • the castability is improved. This effect becomes remarkable when the Cu / Ni ratio is 3.4 or more, and more preferably 4 or more.
  • Mg has the effect of improving the high temperature strength. This effect becomes remarkable when the Mg content is 0.6 mass% or more. In addition, when an aging treatment is performed, it precipitates as a Mg—Si-based precipitate, and the strength and thermal conductivity are improved. On the other hand, if the Mg content exceeds 1.0 mass%, the thermal conductivity decreases. In addition, the amount of crystallized matter increases, and elongation and workability decrease.
  • Ti 0.10 to 0.2 mass%
  • Ti serves as a crystallization nucleus of the Al-Fe-Si-based crystallized material, and has an effect of improving the high-temperature strength by finely and uniformly dispersing the Al-Fe-Si-based crystallized product. This effect becomes significant when 0.10 mass% or more is added. On the other hand, if it exceeds 0.2 mass%, the thermal conductivity is lowered.
  • P forms an AlP compound and acts as a crystallization nucleus when primary crystal Si is crystallized, and has the effect of finely and uniformly dispersing primary crystal Si and improving high-temperature strength. This effect becomes significant when the P content is 0.004 mass% or more. When P content exceeds 0.02 mass%, the hot-water flow property at the time of casting will worsen, and castability will fall.
  • ⁇ Long axis length of crystallized product 100 ⁇ m or less>
  • major axis length of the crystallized substance is larger than 100 ⁇ m, when a large force is applied to the piston, it becomes a starting point of destruction, and the tensile strength of the piston may be lowered.
  • ⁇ Cooling rate during casting 100 ° C./s or more>
  • the cooling rate during casting is 100 ° C./s or more
  • the long axis length of the crystallized product of the alloy of the present invention can be suppressed to 100 ⁇ m or less, and the tensile strength can be increased.
  • a method for casting at a cooling rate of 100 ° C./s or more there is a die casting method.
  • ⁇ Aging treatment> By performing the aging treatment, Mg—Si compounds and Al—Cu compounds are precipitated, and the high-temperature strength is increased. Moreover, this precipitation reduces the solid solution amount of Mg, Si, and Cu in the Al matrix and improves the thermal conductivity. Furthermore, since the distortion generated in the piston when quenched during casting is eliminated, the thermal conductivity is also improved from that viewpoint. Desirable aging treatment conditions are as follows. Holding temperature: 200-300 ° C (most preferably 250 ° C) Holding time: 10-60 min (most preferably 20 min)
  • Table 1 shows the chemical composition of each sample.
  • Inventive compositions 1 to 3 have all the component contents and Cu / Ni ratios within the specified range of the present invention, and Comparative compositions 1 to 9 have at least one of the respective component contents and Cu / Ni ratio defined by the present invention.
  • Aluminum alloy melts having the respective chemical compositions shown in Table 1 were prepared and cast into 100 mm ⁇ ⁇ 200 mmH cylinders at a cooling rate of 110 ° C./s within the specified range of the present invention by vacuum die casting. The obtained die-cast material was aged at a holding temperature of 250 ° C. and a holding time of 20 minutes.
  • the compositions are Invention Compositions 1 to 3 within the specified range of the present invention, and the cooling rate during casting is 110 ° C./s satisfying the specified range of 100 ° C./s or more of the present invention.
  • the crystallized product size was 87 ⁇ m to 96 ⁇ m, which satisfied the specified range of 100 ⁇ m or less of the present invention.
  • the mechanical properties were as follows and stable results were obtained. 350 ° C .: Tensile strength 88-92 MPa Elongation at break 9.5-10% Room temperature: Tensile strength 270-280 MPa Elongation at break 0.3-0.5%
  • the thermal conductivity was 120 to 122 W / (m ⁇ k), and stable results were obtained. The surface properties were good, and the machinability was stable and good results were obtained.
  • Comparative Examples 1 to 9 the cooling rate satisfied the specified range of the present invention, but the composition was Comparative Compositions 1 to 9 outside the specified range of the present invention. .
  • Comparative Example 1 Since the Fe content was excessive with respect to the specified composition of the present invention, the average length of the Al-Fe-Si-based crystallized product exceeded 150 ⁇ m, the upper limit of the specified range of the present invention, 100 ⁇ m.
  • the elongation at break at room temperature is as low as less than 0.1%, so that the tensile strength at room temperature is inferior at 250 MPa.
  • the thermal conductivity is also low at 115 W / (m ⁇ k), and the surface properties after cutting are poor ( ⁇ ).
  • Example 1 a molten aluminum alloy having the chemical composition shown in Table 1 was prepared. Unlike Example 1, 100 mm ⁇ at a cooling rate of 25 ° C./s, which is outside the specified range of the present invention, by the gravity mold casting method. Cast into a cylinder of ⁇ 200 mmH. The obtained heavy cast material was aged at a holding temperature of 250 ° C. and a holding time of 20 minutes.
  • Comparative Examples 11, 12, and 13 are invention compositions 1, 2, and 3, but the cooling rate during casting was 25 ° C./s, which is slower than the specified range of 100 ° C./s of the present invention.
  • Comparative Examples 21 to 29 the compositions were Comparative Compositions 1 to 9 as in Example 1, and the cooling rate during casting was 25 ° C./s, which is lower than the specified range of 100 ° C./s of the present invention.
  • the cast material cast by gravity casting which has the same composition but a slow cooling rate at the time of casting, has a long major axis length of Al-Fe-Si based crystallized material, mechanical properties, It can be seen that the elongation drop in the room temperature tensile test is particularly remarkable.
  • the cooling rate during casting is increased. It is essential to control.
  • the high-temperature strength and thermal conductivity required for an aluminum alloy piston for an internal combustion engine can be achieved by controlling the chemical composition and the major axis length of the crystallized product.
  • an aluminum alloy casting that achieves high temperature strength and thermal conductivity required for an aluminum alloy piston for an internal combustion engine by controlling a chemical composition and a cooling rate during casting. Can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法およびこの鋳物を用いた内燃機関用アルミニウム合金製ピストンを提供する。 Si: 12.0~13.5mass% Cu: 4.5~5.5mass% Mg: 0.6~1.0mass% Ni: 0.7~1.3mass% Fe: 1.15~1.25mass% Ti: 0.10~0.2mass% P : 0.004~0.02mass% を含み、残部がAlと不可避不純物からなる化学組成を有し、 0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さが、大きい方から10個の晶出物の平均長さで100μm以下であるアルミニウム合金鋳物。これから成る内燃機関用アルミニウム合金製ピストン。上記化学組成を有するアルミニウム合金の溶湯を、冷却速度100℃/s以上で鋳造した後、時効処理を行うアルミニウム合金鋳物の製造方法。

Description

高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン
 本発明は、高温強度と熱伝導率に優れたアルミニウム合金製鋳物およびその製造方法に関するものである。本発明のアルミニウム合金鋳物は、特に内燃機関用ピストンに適している。
 アルミニウム合金は一般的に温度が高いほど強度が低下する。そのため内燃機関用ピストンなど高温下で使用される部品に用いられるアルミニウム合金は、Si、Cu、Ni、Mg、及びFeなどの添加元素を多くし、高温化でも軟化しにくい第二相粒子などの晶出物量を多くすることにより高温時の強度低下を抑制してきた。
 添加元素の中で特にFeは、高温強度を維持するために有効な元素であるが、添加量が多くなってくると粗大な針状の晶出物を形成しやすくなる。この粗大な針状の晶出物は破壊の起点になり、かえって伸びと強度を低下させる。そこで、Mnを添加し、Fe系晶出物を塊状化させることが行われてきた。
 しかし、Mnの添加量が多いとアルミニウム合金の熱伝導率が低下し、熱放散による温度低下がしにくくなり、ピストンが長時間高温に曝され負荷が大きくなる。
 そこで、本出願人らは、鋳造の際に溶湯に超音波振動を照射することにより、Mnを添加することなく、針状のFe系晶出物を短くし、粗大化を防止することを提案した(特許文献1)。
特許第5482899号公報
 しかし、上記提案のように鋳造の際に超音波照射する方法は、装置費用、生産性等の問題があり、生産コストが掛かっていた。
 そこで、本発明では、Mnの添加(耐熱性低下要因)や超音波の照射(生産コスト増加要因)を行うことなく、針状Fe系晶出物が短く、高温強度および耐熱性に優れたアルミニウム合金鋳物、その製造方法およびこの鋳物を用いた内燃機関用アルミニウム合金製ピストンを提供することを目的とする。
 本発明者が鋭意研究を行った結果、合金組成においてFeの添加量を抑え、かつ鋳造時に急速に冷却することにより、Mn含有量の低下や超音波照射を行わなくても、Fe系晶出物の長さを短くできることを見出した。さらに研究を行った結果、鋳造の際に、100℃/s以上の高速で冷却するとピストンの機械特性を損なわない程度(100μm以下)までFe系晶出物の平均長さを短くできることを新規に見出した。
 更に、望ましくは、鋳造するアルミニウム合金溶湯のCuとNiの含有量の比Cu/Ni比を大きくするとAl-Ni-Cu系化合物の晶出温度が低下するので、晶出開始から凝固完了までの時間が短くてすみ、晶出したAl-Ni-Cu系化合物がほとんど成長することなく鋳造が完了する(もちろん鋳造速度の影響下において)。その結果、Al-Ni-Cu系化合物が微細になり、鋳造性および機械特性が向上することも見出した。さらに晶出物を微細にすると仕上げ切削の際の被削材の欠けを抑制できることができることがわかった。
 そこで、上記の課題を解決するために、本発明のアルミニウム合金鋳物は、
 Si: 12.0~13.5mass%
 Cu: 4.5~5.5mass%
 Mg: 0.6~1.0mass%
 Ni: 0.7~1.3mass%
 Fe: 1.15~1.25mass%
 Ti: 0.10~0.2mass%
 P : 0.004~0.02mass%
を含み、残部がAlと不可避不純物からなる化学組成を有し、
0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さが、大きい方から10個の晶出物の平均長さで100μm以下である
ことを特徴とする。
 本発明の望ましい態様においては、CuとNiの含有量の比Cu/Niが3.4以上である。更に望ましくはCu/Niは4以上である。
 本発明のアルミニウム合金鋳物は、特に内燃機関用アルミニウム合金製ピストンに適している。
 本発明のアルミニウム合金鋳物の製造方法は、上記の化学組成を有するアルミニウム合金溶湯を冷却速度100℃/S以上で鋳造した後、時効処理を行うことを特徴とする。
 本発明のアルミニウム合金鋳物は、0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さが、大きい方から10個の晶出物の平均長さで100μm以下としたことにより、内燃機関用アルミニウム合金製ピストンに要求される優れた高温強度および熱伝導率を達成できる。
 本発明のアルミニウム合金鋳物の製造方法は、上記の化学組成を有するアルミニウム合金溶湯を冷却速度100℃/S以上で鋳造した後、時効処理を行うことにより、0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さが、大きい方から10個の晶出物の平均長さで100μm以下とすることを可能とし、内燃機関用アルミニウム合金製ピストンに要求される優れた高温強度および熱伝導率を達成できる。
 以下、本発明の構成要件の限定理由を説明する。
 <化学組成>
 〔Si:12.0~13.5mass%〕
 Siは初晶Siとして晶出し、分散強化によりピストンの高温強度を向上させる作用を有する。この効果は、Si含有量が12.0mass%以上で顕著となる。
 一方、Si含有量が13.5mass%を超えると熱伝導率が低下する。また、晶出物量も増加し、伸びや加工性が低下する。
 更にSiは、時効処理によりMg-Si系析出物として析出し、分散強化により強度を向上させるだけでなく、同時に熱伝導性を向上させる効果もある。
 〔Cu:4.5~5.5mass%〕
 Cuは高温強度を向上させる作用がある。Niと同時に添加するとAl-Ni-Cu系晶出物として晶出し、分散強化により高温強度を向上させる。この作用は4.5mass%以上の添加で顕著となる。
 一方、添加量が5.5mass%を超えると熱伝導率を低下させてしまう。また合金密度が高くなって比強度の向上が得られなくなる。
 〔Ni:0.7~1.3mass%〕
 Niは、高温強度を向上させる作用がある。Cuと同時に添加するとAl-Ni-Cu系晶出物として晶出し、分散強化により高温強度を向上させる。この作用は0.7mass%以上の添加で顕著となる。
 一方、添加量が1.3mass%を超えると熱伝導率を低下させてしまう。また合金密度が高くなって比強度の向上が得られなくなる。また、本発明のピストンに添加される元素の中で、Niは特に高価な元素であるためNiの添加量が増加すると生産コストが高くなり。
 〔望ましくは、Cu/Ni比:3.4以上〕
 本発明の望ましい態様においては、CuとNiの含有量の比Cu/Niを3.4以上にする。
 Cu/Ni比が高くなるとAl-Ni-Cu系化合物の晶出温度が低下するので、晶出開始から凝固完了までの時間が短くてすむ。その結果、晶出したAl-Ni-Cu系化合物がほとんど成長することなく鋳造が完了する(鋳造速度の影響下において)。そのため、Al-Ni-Cu系化合物が微細になり、機械特性が向上する。同時に鋳造性も向上する。この作用はCu/Ni比が3.4以上で顕著となり、更に望ましくは4以上である。
 〔Mg:0.6~1.0mass%〕
 Mgは高温強度を向上させる作用を有する。この効果はMg含有量が0.6mass%以上で顕著となる。また、時効処理するとMg-Si系析出物として析出し、強度および熱伝導性が向上する。
 一方、Mg含有量が1.0mass%を超えると熱伝導率が低下する。また、晶出物量も増加し、伸びや加工性が低下する。
 〔Fe:1.15~1.25mass%〕
 FeはSiと同時に添加させるとAl‐Fe‐Si系晶出物を形成して分散強化に寄与し、高温強度を向上させる。この効果はFeの添加量が1.15mass%以上で顕著となる。
 一方、添加量が1.25mass%を超えて添加すると鋳造時の冷却速度を高くしても晶出物の粗大化を抑制することが難しくなる。
 〔Ti:0.10~0.2mass%〕
 TiはAl‐Fe‐Si系晶出物の晶出核となり、Al‐Fe‐Si系晶出物を微細均一に分散させ高温強度を向上させる作用がある。この作用は0.10mass%以上の添加で顕著となる。逆に0.2mass%を超えて添加すると熱伝導性が低下する。
 〔P:0.004~0.02mass%〕
 PはAlP化合物を形成し、初晶Siが晶出する際の晶出核として作用し、初晶Siを微細均一に分散させ、高温強度を向上させる作用がある。この作用は、P含有量が0.004mass%以上で顕著となる。P含有量が0.02mass%を超えると鋳造の際の湯流れ性が悪くなり、鋳造性が低下してしまう。
 〔不可避的不純物〕
 上記元素以外に一般に不可避的に混入する不純物は許容される。ただし、Mnは熱伝導性への意影響が大きいのでMn含有量を0.2%以下に規制することが望ましい。
 <晶出物の長軸長さ:100μm以下>
 晶出物の長軸長さが100μmより大きくなるとピストンに大きな力が加わった際に、破壊の起点となり、ピストンの引張強度を低下させる虞がある。
 <鋳造時の冷却速度:100℃/s以上>
 鋳造時の冷却速度を100℃/s以上にすると本発明組成の合金の晶出物の長軸長さを100μm以下に抑えることができ、引張強度を高めることができる。
 なお、冷却速度100℃/s以上で鋳造する方法としては、ダイカスト法がある。
 <時効処理>
 時効処理することにより、Mg-Si系化合物およびAl-Cu系化合物が析出し、高温強度が増す。またこの析出により、Al母相中のMg、Si、Cuの固溶量が減少し、熱伝導率が向上する。さらに鋳造時に急冷した際にピストンに生じた歪が解消されるので、その観点からも熱伝導率が向上する。
 望ましい時効処理条件は下記のとおりである。
  保持温度:200~300℃(最も望ましくは、250℃)
  保持時間:10~60min(最も望ましくは、20min)
 以下に、本発明を実施例により、更に詳細に説明する。
<試料の作製>
 化学組成の影響を確認するために、化学組成を本発明の規定範囲内と規定範囲外とし、製造条件は本発明の規定範囲内で一定として、試料を作製した。
Figure JPOXMLDOC01-appb-T000001
 表1に各試料の化学組成を示す。発明組成1~3は各成分含有量およびCu/Ni比が全て本発明の規定範囲内であり、比較組成1~9は各成分含有量およびCu/Ni比のうち少なくとも1つが本発明の規定範囲外である。
 表1の各化学組成を有するアルミニウム合金溶湯を用意し、真空ダイカスト法により本発明の規定範囲内である冷却速度110℃/sで100mmφ×200mmHの円柱に鋳造した。
 得られたダイカスト材を保持温度250℃、保持時間20minで時効処理した。
<測定および観察>
 時効処理後の試料について、以下の測定および観察を行った。
 光学顕微鏡観察により、0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さで大きい方から10個の晶出物の平均長さ測定して晶出物サイズとした。
 350℃および室温での引張試験による機械特性と、室温での熱伝導率とを測定した。
 鋳物の表面を、機械切削し、その表面の目視観察を行い、表面性状により切削加工性を判定した。
 測定および観察の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<結果の評価>
 発明例1~3は、組成が本発明の規定範囲内の発明組成1~3であり、かつ、鋳造時の冷却速度が本発明の規定範囲100℃/s以上を満たす110℃/sであったことにより、晶出物サイズ、機械特性、熱伝導率、切削加工性の全てについて良好な結果が得られた。
 特に、晶出物サイズは87μm~96μmであり、本発明の規定範囲である100μm以下を満たしていた。
 機械特性は、下記のとおりであり、安定した結果が得られた。
  350℃:引張強度88~92MPa
       破断伸び9.5~10%
  室温  :引張強度270~280MPa
       破断伸び0.3~0.5%
 熱伝導率は、120~122W/(m・k)であり、安定した結果が得られた。
 表面性状は良好であり、切削加工性は安定して良好な結果が得られた。
 なお、発明例1~3において、Cu/Ni比が高いものほど、晶出物が微細であり、室温での破断伸び、引張強度および表面粗さに優れる傾向にあることがわかる。
 比較例1~9は、冷却速度は本発明の規定範囲を満たすが、組成が本発明の規定範囲外の比較組成1~9であったため、発明例に比較して以下のように劣っていた。
 〔比較例1〕
 本発明の規定組成に対してFe含有量が過剰であったため、Al‐Fe‐Si系晶出物の平均長さが150μmと本発明の規定範囲上限100μmを超えており、発明例と比べて、室温での破断伸びが0.1%未満と低く、そのため室温での引張強度が250MPaと劣る。熱伝導率も115W/(m・k)と低く、切削加工後の表面性状も悪い(×)。
 〔比較例2〕
 Cu含有量が不足しNi含有量が過剰でCu/Ni比が小さかったため、Al‐Fe‐Si系晶出物の平均長さが130μmと規定上限を超えており、熱伝導度が117W/(m・k)と低く、切削加工後の表面性状も悪い(×)。
 〔比較例3〕
 Fe含有量が不足したため、350℃での高温引張強度が80MPaと劣る。
 〔比較例4〕
 Cu含有量が過剰であるため、晶出物平均長さが121μmと規定上限を超えており、そのため室温での破断伸びが0.1%未満と低く、切削加工後の表面性状も悪い(×)。また熱伝導率も114W/(m・k)と劣る。
 〔比較例5〕
 Ni含有量が不足しているため、350℃での高温引張強度が75MPaと劣る。
 〔比較例6〕
 Mg含有量が不足しているため、350℃での高温引張強度が78MPaと劣る。
 〔比較例7〕
 Mg含有量が過剰なため、晶出物平均長さが116μmと規定上限を超えており、そのため室温での破断伸びが0.1%未満と低く、切削加工後の表面性状も悪い(×)。
 〔比較例8〕
 Si含有量が不足しているため、350℃での高温引張強度が78MPaと劣る。
 〔比較例9〕
 Si含有量が過剰なため、晶出物平均長さが113μmと規定上限を超えており、そのため室温での破断伸びが0.1%未満と低く、切削加工後の表面性状も悪い(×)。
<試料の作製>
 実施例1と同様に表1に示す化学組成を有するアルミニウム合金溶湯を用意し、実施例1とは異なり重力金型鋳造法により本発明の規定範囲外である冷却速度25℃/sで、100mmφ×200mmHの円柱に鋳造した。
 得られた重鋳材を保持温度250℃、保持時間20minで時効処理した。
<測定および観察>
 時効処理後の試料について、実施例1と同様に測定および観察を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
<結果の評価>
 表3中、比較例11、12、13は、組成が発明組成1、2、3であるが、鋳造時の冷却速度が本発明の規定範囲100℃/sより遅い25℃/sであった。
 比較例21~29は、組成が実施例1と同じく比較組成1~9であり、更に、鋳造時の冷却速度が本発明の規定範囲100℃/sより遅い25℃/sであった。
 表2と表3より、同じ組成であっても鋳造時の冷却速度の遅い重力鋳造で鋳造した鋳造材は、Al‐Fe‐Si系晶出物の長軸長さが長く、機械的特性、特に室温引張試験での伸びの低下が著しいことがわかる。
 このように、本発明の効果を達成するには、化学組成を制御した上で、晶出物の長軸長さを短く制御する必要があり、そのためには、鋳造時の冷却速度を高速に制御することが必須である。
 本発明のアルミニウム合金鋳物によれば、化学組成および晶出物の長軸長さを制御したことにより、内燃機関用アルミニウム合金製ピストンに要求される高温強度および熱伝導率を達成できる。
 本発明のアルミニウム合金鋳物の製造方法によれば、化学組成および鋳造時の冷却速度を制御したことにより、内燃機関用アルミニウム合金製ピストンに要求される高温強度および熱伝導率を達成したアルミニウム合金鋳物を製造できる。

Claims (5)

  1.  Si: 12.0~13.5mass%
     Cu: 4.5~5.5mass%
     Mg: 0.6~1.0mass%
     Ni: 0.7~1.3mass%
     Fe: 1.15~1.25mass%
     Ti: 0.10~0.2mass%
     P : 0.004~0.02mass%
    を含み、残部がAlと不可避不純物からなる化学組成を有し、
    0.2mmの観察視野において、Al‐Fe‐Si系晶出物の長軸長さが、大きい方から10個の晶出物の平均長さで100μm以下である
    ことを特徴とする高温強度および熱伝導率に優れたアルミニウム合金鋳物。
  2.  請求項1において、
     CuとNiの含有量の比Cu/Niが3.4以上である
    ことを特徴とするアルミニウム合金鋳物。
  3.  請求項1又は2記載のアルミニウム合金鋳物からなる
    ことを特徴とする内燃機関用アルミニウム合金製ピストン。
  4.  請求項1または2記載の化学組成を有するアルミニウム合金の溶湯を、冷却速度100℃/S以上で鋳造した後、時効処理を行う
    ことを特徴とする高温強度および熱伝導率に優れたアルミニウム合金鋳物の製造方法。
  5.  請求項4において、前記鋳造をダイカスト法により行うことを特徴とする高温強度および熱伝導率に優れたアルミニウム合金鋳物の製造方法。
PCT/JP2016/062027 2015-04-15 2016-04-14 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン WO2016167322A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680021296.2A CN107429335B (zh) 2015-04-15 2016-04-14 高温强度和导热率优异的铝合金铸件及其制造方法和内燃机用铝合金制活塞
JP2016554692A JP6113371B2 (ja) 2015-04-15 2016-04-14 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン
MX2017012952A MX2017012952A (es) 2015-04-15 2016-04-14 Pieza de fundicion de aleacion de aluminio que tiene resistencia a alta temperatura y conductividad termica superior, metodo para fabricar la misma, y piston de fundicion de aleacion de aluminio para motor de combustion interna.
EP16780113.3A EP3284840B1 (en) 2015-04-15 2016-04-14 Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine
US15/565,940 US10920301B2 (en) 2015-04-15 2016-04-14 Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015083605 2015-04-15
JP2015-083605 2015-04-15

Publications (1)

Publication Number Publication Date
WO2016167322A1 true WO2016167322A1 (ja) 2016-10-20

Family

ID=57126209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062027 WO2016167322A1 (ja) 2015-04-15 2016-04-14 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン

Country Status (6)

Country Link
US (1) US10920301B2 (ja)
EP (1) EP3284840B1 (ja)
JP (1) JP6113371B2 (ja)
CN (1) CN107429335B (ja)
MX (1) MX2017012952A (ja)
WO (1) WO2016167322A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411166A (zh) * 2018-02-28 2018-08-17 山东河山机械股份有限公司 一种压铸铝合金及其制备方法
CN109355534A (zh) * 2018-12-14 2019-02-19 广东省海洋工程装备技术研究所 一种多元共晶Al-Si合金材料及其制备方法和活塞
JP7179226B2 (ja) * 2020-04-21 2022-11-28 日本軽金属株式会社 アルミニウム成形体及びその製造方法
US11851758B2 (en) * 2021-04-20 2023-12-26 Applied Materials, Inc. Fabrication of a high temperature showerhead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473044A (en) * 1987-09-12 1989-03-17 Toyota Motor Corp Heat-resistant and high-strength aluminum alloy for piston
JPH08134578A (ja) * 1994-11-02 1996-05-28 Nippon Light Metal Co Ltd 高温強度及び靭性に優れたダイカスト用アルミニウム合金及び製造方法
WO2012008470A1 (ja) * 2010-07-16 2012-01-19 日本軽金属株式会社 高温強度と熱伝導率に優れたアルミニウム合金及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378342B2 (ja) * 1994-03-16 2003-02-17 日本軽金属株式会社 耐摩耗性に優れたアルミニウム鋳造合金及びその製造方法
JP3552565B2 (ja) * 1999-01-11 2004-08-11 日本軽金属株式会社 高温疲労強度に優れたダイカスト製ピストンの製造方法
DE102011083971A1 (de) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils und Motorbauteil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473044A (en) * 1987-09-12 1989-03-17 Toyota Motor Corp Heat-resistant and high-strength aluminum alloy for piston
JPH08134578A (ja) * 1994-11-02 1996-05-28 Nippon Light Metal Co Ltd 高温強度及び靭性に優れたダイカスト用アルミニウム合金及び製造方法
WO2012008470A1 (ja) * 2010-07-16 2012-01-19 日本軽金属株式会社 高温強度と熱伝導率に優れたアルミニウム合金及びその製造方法

Also Published As

Publication number Publication date
EP3284840A4 (en) 2018-09-05
EP3284840A1 (en) 2018-02-21
CN107429335A (zh) 2017-12-01
EP3284840B1 (en) 2019-06-12
US10920301B2 (en) 2021-02-16
MX2017012952A (es) 2018-02-01
JPWO2016167322A1 (ja) 2017-04-27
CN107429335B (zh) 2019-06-28
US20180094338A1 (en) 2018-04-05
JP6113371B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
KR101159790B1 (ko) 고연성 및 고인성의 마그네슘 합금 및 이의 제조방법
KR101124235B1 (ko) 알루미늄 합금 및 알루미늄 합금 주물
WO2016015488A1 (zh) 铝合金及其制备方法和应用
JP6113371B2 (ja) 高温強度および熱伝導率に優れたアルミニウム合金鋳物、その製造方法および内燃機関用アルミニウム合金製ピストン
WO2010086951A1 (ja) 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP2007169712A (ja) 塑性加工用アルミニウム合金
CN112391562B (zh) 一种铝合金及其制备方法
WO2013054716A1 (ja) Al-Fe-Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法
WO2017033663A1 (ja) アルミニウム合金押出材及びその製造方法
WO2013157653A1 (ja) マグネシウム合金及びその製造方法
JP2014152375A (ja) 内燃機関用ピストン材料及びその製造方法
EP3505648B1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JP2009203516A (ja) アルミニウム合金
KR20160024837A (ko) 절삭성이 우수한 알루미늄 합금 압출재 및 그의 제조 방법
JP5004032B2 (ja) 高温強度に優れ、低熱膨張性を有するアルミニウム基合金およびその製造方法
WO2016132994A1 (ja) アルミニウム合金加工材及びその製造方法
JP6452042B2 (ja) マグネシウム合金の製造方法
KR100909699B1 (ko) 충격에너지가 향상된 알루미늄 합금 및 이로부터 제조된압출재
JP2011162883A (ja) 高強度アルミニウム合金、高強度アルミニウム合金鋳物の製造方法および高強度アルミニウム合金部材の製造方法
WO2015030121A1 (ja) 表面粗さを抑制し、生産性に優れた快削アルミニウム合金押出材
JP2016169431A5 (ja)
WO2018193543A1 (ja) Al-Si-Fe系アルミニウム合金鋳造材及びその製造方法
JP2022506542A (ja) 2xxxアルミニウムリチウム合金
JP2022513644A (ja) アルミニウム押出合金
RU2573463C1 (ru) Теплопрочный электропроводный сплав на основе алюминия

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554692

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780113

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016780113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012952

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15565940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE