WO2016167022A1 - 液冷式コールドプレートおよびその製造方法 - Google Patents

液冷式コールドプレートおよびその製造方法 Download PDF

Info

Publication number
WO2016167022A1
WO2016167022A1 PCT/JP2016/055076 JP2016055076W WO2016167022A1 WO 2016167022 A1 WO2016167022 A1 WO 2016167022A1 JP 2016055076 W JP2016055076 W JP 2016055076W WO 2016167022 A1 WO2016167022 A1 WO 2016167022A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold plate
liquid
metal pipe
mold
metal
Prior art date
Application number
PCT/JP2016/055076
Other languages
English (en)
French (fr)
Inventor
悟 氏家
崇弘 大黒
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2017512219A priority Critical patent/JP6474142B2/ja
Priority to US15/556,307 priority patent/US10532401B2/en
Publication of WO2016167022A1 publication Critical patent/WO2016167022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0072Casting in, on, or around objects which form part of the product for making objects with integrated channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • F28D1/0383Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/146Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded overmolded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • F28F9/0258Arrangements for coupling connectors with flow lines of quick acting type, e.g. with snap action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to a liquid-cooled cold plate for cooling high temperature electronic components such as semiconductor devices, CPUs, FETs, power amplifiers and the like used for electronic circuits in an electronic apparatus using a liquid refrigerant, and a method for manufacturing the same. .
  • a large number of circuit boards are densely mounted in housings of electronic devices such as communication equipment, video equipment, and broadcasting equipment.
  • Semiconductor devices, CPUs (Central Processing Units), and FETs (Field Effect Transistors: field effects) are mounted on each circuit board.
  • Transistors, power amplifiers, and other electronic components that generate high heat are mounted, and thus a cooling device for cooling the electronic device is required.
  • Electronic components that generate high heat such as semiconductor devices, CPUs, power amplifiers, etc., have a narrow effective operating temperature range, and therefore it is necessary to cool each electronic component individually rather than cooling the entire electronic device. For this reason, recent cooling devices for electronic devices cool a cooling pipe through which a liquid refrigerant passes close to each electronic component.
  • a flat cooling pipe is meandered and attached to a water-cooled cold plate on which heat-generating parts are arranged, and the thermal contact area between the water-cooled cold plate and the flat cooling pipe It has been proposed to increase the cooling efficiency by increasing the temperature.
  • the present invention has been made in view of such a conventional situation, and the position of the metal pipe embedded in the cold plate body is not affected by the direction or flow pressure in which the molten metal is poured during casting.
  • the metal pipe embedded in the cold plate body can be placed at a desired position, such as a metal pipe can be placed directly under the heat-generating component, so that stable cooling performance can be obtained.
  • An object of the present invention is to provide a liquid-cooled cold plate and a method for manufacturing the same.
  • a method for manufacturing a liquid-cooled cold plate is a method for manufacturing a liquid-cooled cold plate in which a metal pipe for supplying a cooling liquid is embedded in a mold and cast.
  • a fixing metal fitting attached to the metal pipe so as to maintain the positional accuracy of the plurality of metal pipes embedded in the mold, and in the mold with the fixing metal fitting attached to the metal pipe It is characterized by pouring molten metal into the metal and molding by casting.
  • the method for manufacturing a liquid-cooled cold plate according to the present invention is the above-described method for manufacturing a liquid-cooled cold plate, which is the fixing bracket or the protrusion provided on the fixing bracket.
  • the molten metal is poured into the mold in a state where the mold is positioned by fitting with the concave portion of the mold, and cast molding is performed.
  • a method for manufacturing a liquid-cooled cold plate according to the present invention is the above-described method for manufacturing a water-cooled cold plate, wherein the fixing bracket for the liquid-cooled cold plate formed by casting The protrusion is flatly processed by milling.
  • the method for manufacturing a liquid-cooled cold plate according to the present invention is the above-described method for manufacturing a liquid-cooled cold plate, wherein the convex portion provided on the mold is attached to the fixture.
  • the molten metal is poured into the mold in a state where the positioning is performed by fitting with the provided concave portion, and cast molding is performed.
  • a method for manufacturing a liquid-cooled cold plate according to the present invention is a method for manufacturing a liquid-cooled cold plate in which a metal pipe for supplying a coolant is embedded in a mold and cast.
  • a method for manufacturing a liquid-cooled cold plate according to the present invention is the above-described method for manufacturing a liquid-cooled cold plate, wherein a plurality of the metal-made cold plates are embedded in the mold. It has a fixing metal fitting to be attached to the metal pipe so as to maintain the positional relationship between the pipes, and is cast and shaped by pouring a molten metal into the mold in a state where the fixing metal fitting is attached to the metal pipe. To do.
  • a method for manufacturing a liquid-cooled cold plate according to the present invention is a method for manufacturing a liquid-cooled cold plate as described above, and a pair of metals protruding from the liquid-cooled cold plate body
  • the molten metal is poured into the mold in a state where positioning is performed by fitting the two fixing brackets to the mold, and cast molding is performed.
  • a method for manufacturing a liquid-cooled cold plate according to the present invention is the above-described method for manufacturing a liquid-cooled cold plate, wherein at least a part of the metal pipe has a flat shape. It is characterized by that.
  • a liquid-cooled cold plate manufacturing method is the above-described liquid-cooled cold plate manufacturing method, wherein the pair of liquid-cooled cold plate bodies protrude from the liquid-cooled cold plate body.
  • a connection bent portion of the metal pipe at a position facing the entrance / exit of the metal pipe protrudes from the liquid-cooled cold plate body.
  • a liquid-cooled cold plate includes a metal pipe for supplying a cooling liquid and a cold plate body formed by casting the metal pipe therein.
  • a liquid-cooled cold plate provided, having a fixing bracket attached to the metal pipe so as to maintain a positional relationship between the plurality of metal pipes embedded in the cold plate main body, It is cast in a state of being attached to the metal pipe, and is integrated with the cold plate body.
  • a liquid-cooled cold plate includes a metal pipe for supplying a cooling liquid and a cold plate body formed by casting the metal pipe therein.
  • a liquid-cooled cold plate provided, wherein an entrance / exit of the pair of metal pipes and a connection bent portion of the metal pipe at a position facing the entrance / exit of the pair of metal pipes protrude from the cold plate main body. It is characterized by that.
  • the liquid-cooled cold plate according to the present invention is the liquid-cooled cold plate described above, wherein at least a part of the metal pipe is flattened. .
  • the metal pipe embedded in the cold plate body can be arranged at a desired position, such as being able to arrange the metal pipe directly under the heat generating component, and stable cooling performance can be obtained.
  • Embodiment 1 of the present invention It is the front view and sectional drawing of a liquid cooling type cold plate concerning Embodiment 1 of the present invention.
  • the liquid cooling type cold plate which concerns on Embodiment 1 of this invention it is explanatory drawing for demonstrating the attachment method at the time of attaching a metal pipe fixing metal fitting to a metal pipe.
  • It is an assembly figure which shows the state which attached the metal pipe fixing metal fitting to the metal pipe in the liquid cooling type cold plate which concerns on Embodiment 1 of this invention.
  • FIG. 10 is an explanatory diagram for explaining an operation when fitting a coupler of a liquid-cooled cold plate to a coupler on the shelf side in a liquid-cooled cold plate according to Embodiment 4 of the present invention.
  • FIGS. 1A and 1B are a front view and a sectional view of a liquid-cooled cold plate according to Embodiment 1 of the present invention, where FIG. 1A is a front view and FIG. 1B is a cross-sectional view taken along the AA plane shown in FIG.
  • FIG. 2 is an explanatory diagram for explaining an attachment method when attaching a metal pipe fixing bracket to a metal pipe in the liquid-cooled cold plate according to the first embodiment of the present invention.
  • FIG. 1A is a front view
  • FIG. 1B is a cross-sectional view taken along the AA plane shown in FIG.
  • FIG. 2 is an explanatory diagram for explaining an attachment method when attaching a metal pipe fixing bracket to a metal pipe in the liquid-cooled cold plate according to the first embodiment of the present invention.
  • FIG. 1A is a front view
  • FIG. 1B is a cross-sectional view taken along the AA plane shown in FIG.
  • FIG. 2 is an explanatory diagram for explaining an attachment method when attach
  • FIG. 3 is an assembly diagram illustrating a state in which a metal pipe fixing bracket is attached to a metal pipe in the liquid-cooled cold plate according to the first embodiment of the present invention, (a) is a front view, and (b) is (a). 2 is a cross-sectional view taken along the BB plane shown in FIG. Moreover, FIG. 4 is a figure which shows the state which opened the casting_mold
  • the liquid-cooled cold plate 1 according to the first embodiment of the present invention is not limited to an electronic device such as a communication device, a video device, or a broadcasting device, and may be an electronic device including a circuit board on which electronic components that generate high heat are mounted. In this case, the present invention can be applied.
  • a liquid-cooled cold plate 1 As shown in FIG. 1, a liquid-cooled cold plate 1 according to Embodiment 1 of the present invention includes a metal pipe 3, a cold plate body 2, a metal pipe fixing bracket (1) 41, and a metal pipe fixing bracket (2 ) 42 and a coupler 61.
  • the liquid-cooled cold plate 1 is supplied with a cooling liquid such as water in the metal pipe 3, and has a high heat disposed right above the flat tube straight portion 3 b of the metal pipe 3 embedded in the cold plate body 2.
  • the high heat-generating component 201 is cooled by removing heat from the emitted electronic component (hereinafter referred to as “high heat-generating component”) 201 (n portion in FIG. 1A).
  • the liquid-cooled cold plate 1 are not components of the liquid-cooled cold plate 1, but are for showing the arrangement relationship with the liquid-cooled cold plate 1.
  • the cold plate 1 is in contact with the cold plate 1 while being mounted on a circuit board (not shown).
  • the metal pipe 3 directly under the high heat-generating component 201 is a flat tube, it may be a round tube other than the flat tube.
  • the metal pipe 3 is processed into a U shape by a bender and then partially flattened by a press machine, and includes a round tube straight portion 3c, a round tube straight portion 3a, and a round tube bent portion. 3e, a flat tube straight portion 3b, and a round tube straight portion 3d. Further, the round tube straight portion 3 a and the flat tube straight portion 3 b of the metal pipe 3 are embedded in the cold plate main body 2, and the round tube straight portion 3 c, the round tube straight portion 3 d, and the round tube bent portion 3 e are formed on the cold plate main body 2. A coupler 61 is attached to the tip of the round tube straight portions 3c and 3d.
  • the metal pipe 3 is made of a material such as copper or stainless steel.
  • the cold plate body 2 is formed by casting a metal pipe 3 in a mold, which will be described later, and then pouring a molten metal such as aluminum or aluminum alloy into the mold.
  • the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2) 42 have arc-shaped concave grooves 41a and 42a and elliptical concave grooves according to the shape of the metal pipe 3 to be sandwiched.
  • the round tube straight portion 3a and the flat tube straight line are provided.
  • the part 3b is attached and fixed so as to be coupled and fixed at a predetermined position (a place avoiding a position immediately below the high heat-generating component 201 shown by m part in FIG. 1A).
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are made of, for example, aluminum, and are attached to the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 in the mold. Molten metal is poured into the.
  • the coupler 61 is a fluid coupling that is attached to each of the end portions of the round tube straight portions 3c and 3d of the metal pipe 3, and when the liquid-cooled cold plate 1 is mounted in an electronic device, the coupler 301a on the shelf 301 side described later. And connected.
  • the fixing pin 43 is inserted into the through hole 41 c of the metal pipe fixing metal fitting (1) 41 and the through hole 42 c of the metal pipe fixing metal fitting (2) 42, and is press-fitted and fixed by the fixing pin 43.
  • the plane opposite to the surface on which the concave grooves of the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are formed is the plane of the cold plate body 2. It is designed with a more convex dimension, and the misalignment of the metal pipe 3 is reduced by sandwiching and pressing the convex portion with a mold.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 attached to the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 are formed into a mold (1) 101.
  • the mold (1) 101 and the mold (2) 102 are clamped in a state of being fitted in the groove 101a and the groove 102a of the mold (2) 102.
  • a molten metal is poured into the mold (1) 101 and mold (2) 102 that have been clamped, and the liquid-cooled cold plate 1 shown in FIG. 1 is cast and shaped.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are sandwiched and pressed from both sides by the concave groove 101a of the mold (1) 101 and the concave groove 102a of the mold (2) 102.
  • the displacement and deformation of the metal pipe 3 due to the flow pressure of the molten metal can be suppressed, whereby the displacement and deformation of the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 can be reduced.
  • the above-described concave groove is provided in the mold using a metal mold.
  • the concave groove is formed in the mold during mold clamping.
  • the metal pipe fixing metal fitting can be substituted by making it larger than the inside dimension of the mold after clamping. Further, as shown in FIG. 4, after casting, the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2) 42 are convex from the plane of the cold plate main body 2, and therefore the surface of the liquid-cooled cold plate 1 The smoothness of the surface of the liquid-cooled cold plate 1 is ensured by milling the whole or only the protruding portions of the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2).
  • the positioning between the mold and the metal pipe fixing bracket is performed by fitting the convex portion of the metal pipe fixing bracket into the concave groove of the mold.
  • a positioning pin is provided on the surface in contact with the metal pipe fixing bracket, and a concave hole for fitting the positioning pin is provided at a position corresponding to the positioning pin of the metal pipe fixing bracket. Positioning between them may be performed.
  • the above-described concave groove is provided in the mold using a metal mold. However, for example, when a sand mold is used as the mold, a concave hole is formed during mold clamping. In this way, it is possible to substitute the positioning pin protruding dimension larger than the mold inner dimension considering the mold deformation error after clamping.
  • the liquid-cooled cold plate 1 As described above, according to the liquid-cooled cold plate 1 according to the first embodiment of the present invention, it is embedded in the cold plate main body without being affected by the flowing direction or flow pressure of the molten metal at the time of casting.
  • the metal pipe embedded in the cold plate body can be placed in the desired position, such as the metal pipe can be placed directly under the heat generating parts, so that the displacement and deformation of the metal pipe can be reduced and stable. Cooling performance can be obtained.
  • FIGS. 5A and 5B are a front view and a cross-sectional view of a liquid-cooled cold plate according to Embodiment 2 of the present invention, where FIG. 5A is a front view and FIG. 5B is a cross-sectional view taken along the CC plane shown in FIG.
  • FIG. 6 is a view showing a state in which a cast mold is opened when a liquid-cooled cold plate according to Embodiment 2 of the present invention is manufactured.
  • FIG. 5A is a front view
  • FIG. 5B is a cross-sectional view taken along the CC plane shown in FIG.
  • FIG. 6 is a view showing a state in which a cast mold is opened when a liquid-cooled cold plate according to Embodiment 2 of the present invention is manufactured.
  • FIG. 5A is a front view
  • FIG. 5B is a cross-sectional view taken along the CC plane shown in FIG.
  • FIG. 6 is a view showing a state in which a cast mold is opened when a
  • the liquid-cooled cold plate 11 according to the second embodiment of the present invention is not limited to an electronic device such as a communication device, a video device, or a broadcasting device, and may be an electronic device including a circuit board on which electronic components that generate high heat are mounted. In this case, the present invention can be applied.
  • the liquid-cooled cold plate 11 As shown in FIG. 5, the liquid-cooled cold plate 11 according to the second embodiment of the present invention includes a metal pipe 4, a cold plate body 12, and a coupler 61. Further, the liquid-cooled cold plate 11 is supplied with a cooling liquid such as water into the metal pipe 4, and has a high heat disposed just above the round tube straight portion 4 b of the metal pipe 4 embedded in the cold plate body 12.
  • the high heat-generating component 201 is cooled by removing heat from the emitted electronic component (hereinafter, referred to as a high heat-generating component) 201 (n portion in FIG. 5A).
  • the metal pipe 4 directly under the high heat-generating component 201 is a round tube, it may be a flat tube other than the round tube.
  • the metal pipe 4 is processed into a U shape by a bender, and is composed of round tube straight portions 4c and 4a, a round tube bent portion 4e, and round tube straight portions 4b and 4d. Further, the round tube straight portion 4 a and the round tube straight portion 4 b of the metal pipe 4 are embedded in the cold plate main body 12, and the round tube straight portion 4 c, the round tube straight portion 4 d, and the round tube bent portion 4 e are formed on the cold plate main body 12. A coupler 61 is attached to the tip of the round tube straight portions 4c and 4d.
  • the metal pipe 4 is made of a material such as copper or stainless steel.
  • the cold plate body 12 is cast and shaped by pouring a molten metal such as aluminum or aluminum alloy into a mold, which will be described later, and as shown in FIG. 5, a pair of recesses (1) with the metal pipe 4 interposed therebetween.
  • a plurality of 12a and recesses (2) 12b are provided at predetermined locations (locations avoiding directly under the high heat-generating component 201 indicated by p portion in FIG. 5A).
  • the concave portion (1) 12a and the concave portion (2) 12b are formed by a convex portion 111a of the mold (1) 111 and a convex portion 112a of the mold (2) 112 described later.
  • the coupler 61 is a fluid coupling that is attached to each of the tip portions of the round tube straight portions 4c and 4d of the metal pipe 4, and when the liquid-cooled cold plate 11 is mounted in an electronic device, the coupler 301a on the shelf 301 side to be described later. And connected.
  • the manufacturing method of the liquid cooling type cold plate 11 which concerns on Embodiment 2 of this invention is demonstrated with reference to FIG.
  • the mold (1) 111 and the mold (2) 102 are arranged at predetermined positions (recesses (1) 12a and recesses (2) 12b of the cold plate main body 12 indicated by p part in FIG. 5 (a)).
  • the round tube straight portion 4a of the metal pipe 4 is formed by the convex portion 111a of the mold (1) 111 and the convex portion 112a of the mold (2) 102.
  • the round tube straight portion 4b is sandwiched at the same time, and the round tube straight portion 4a and the round tube straight portion 4b of the metal pipe 4 are positioned. Then, the molten metal is poured into the mold (1) 111 and mold (2) 112 that have been clamped, and the liquid-cooled cold plate 11 shown in FIG. 5 is cast and shaped. That is, the metal at the time of casting is obtained by sandwiching and pressing the round tube straight portion 4a and the round tube straight portion 4b of the metal pipe 4 from both sides with the convex portion 111a of the mold (1) 111 and the convex portion 112a of the mold (2) 112. The displacement and deformation of the metal pipe 4 due to the flow pressure of the molten metal can be suppressed, whereby the displacement and deformation of the round tube straight portion 4a and the round tube straight portion 4b of the metal pipe 4 can be reduced.
  • the manufacturing method in the case of the metal pipe 3 which has the flat tube straight part 3b which is a component of the liquid cooling type cold plate 1 which concerns on Embodiment 1 of this invention in the said Example is demonstrated.
  • the mold (1) 121 and the mold (2) 122 are placed at predetermined positions (the concave portion (1) 12a and the concave portion (2) 12b of the cold plate main body 12 indicated by the p portion in FIG. 5 (a)).
  • the convex portion 121a and the convex portion 122a formed in accordance with the shape of the round tube straight portion 3a of the metal pipe 3, and the shape of the flat tube straight portion 3b of the metal pipe 3, respectively.
  • molten metal is poured into the mold (1) 121 and mold (2) 122 that have been clamped, and the liquid-cooled cold plate 11 shown in FIG. 5 is cast and shaped. That is, the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 are sandwiched from both sides by the convex portions 121a and 121b of the mold (1) 121 and the convex portions 122a and 122b of the mold (2) 122.
  • the deformation of the metal pipe 3 due to the flow pressure of the molten metal at the time of casting can be suppressed, and thereby the positional deviation between the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 can be reduced. .
  • the liquid-cooled cold plate 11 is embedded in the cold plate body without being affected by the flowing direction or the flow pressure of the molten metal.
  • the metal pipe embedded in the cold plate body can be placed in the desired position, such as the metal pipe can be placed directly under the heat generating parts, so that the displacement and deformation of the metal pipe can be reduced and stable. Cooling performance can be obtained.
  • FIG. 8 is a front view and a cross-sectional view of a liquid-cooled cold plate according to Embodiment 3 of the present invention, where (a) is a front view and (b) is a cross-sectional view taken along the DD plane shown in (a).
  • FIG. 6C is a cross-sectional view taken along the line EE shown in FIG.
  • FIG. 9 is a view showing a state in which a cast mold is opened when a liquid-cooled cold plate according to Embodiment 3 of the present invention is manufactured. 8 and 9, the same components as those in FIGS.
  • the liquid-cooled cold plate 81 according to the third embodiment of the present invention combines the techniques of the liquid-cooled cold plate according to the first and second embodiments.
  • the metal pipe fixing bracket is used in order to reduce the displacement and deformation of the metal pipe embedded in the cold plate body, but in order to further reduce the displacement and deformation of the metal pipe. It is necessary to increase the number of metal pipe fixing metal fittings and to close the interval (pitch) for attaching the metal pipe fixing metal fittings to the metal pipe. However, by increasing the number of metal pipe fixing metal fittings, the flow of molten metal at the time of casting is hindered and the cost is increased.
  • the metal pipe is pressed from both sides by the convex portions provided on the mold in order to reduce the displacement and deformation of the metal pipe embedded in the cold plate body.
  • the two techniques of the first and second embodiments are used to reduce the number of metal pipe fixing metal fittings and to mold a metal pipe in the middle of the place where the metal pipe fixing metal fitting is attached to the metal pipe.
  • the displacement and deformation of the metal pipe can be further reduced without being affected by the direction and flow pressure of the molten metal during casting. Therefore, it is possible to further improve the cooling performance.
  • the liquid-cooled cold plate 81 according to the third embodiment of the present invention is not limited to an electronic device such as a communication device, a video device, or a broadcasting device, and may be an electronic device including a circuit board on which electronic components that generate high heat are mounted. In this case, the present invention can be applied.
  • the liquid-cooled cold plate 81 includes a metal pipe 3, a cold plate body 82, a metal pipe fixing bracket (1) 41, and a metal pipe fixing bracket (2 ) 42 and a coupler 61. Further, the liquid-cooled cold plate 81 is supplied with a cooling liquid such as water in the metal pipe 3, and has a high heat disposed right above the flat tube straight portion 3 b of the metal pipe 3 embedded in the cold plate body 82.
  • the high heat-generating component 201 is cooled by removing heat from the emitted electronic component (hereinafter referred to as a high heat-generating component) 201 (n portion in FIG. 8A).
  • the plurality of high heat generating components 201 illustrated in FIG. 8 is not a component of the liquid-cooled cold plate 81, but is for showing an arrangement relationship with the liquid-cooled cold plate 81.
  • the cold plate 81 is brought into contact with the cold plate 81 while being mounted on a circuit board (not shown).
  • the metal pipe 3 directly under the high heat-generating component 201 is a flat tube, it may be a round tube other than the flat tube.
  • the cold plate body 82 is cast and shaped by pouring a molten metal such as aluminum or aluminum alloy into a mold, which will be described later.
  • a molten metal such as aluminum or aluminum alloy
  • FIG. (1) 82a, recessed portion (2) 82b and recessed portion (3) 82c, recessed portion (4) 82d at predetermined locations (location avoiding directly under the high heat-generating component 201 shown in the r and s portions in FIG. 8A) Have multiple.
  • the concave portion (1) 82a, the concave portion (2) 82b, the concave portion (3) 82c, and the concave portion (4) 82d are a convex portion 131b of the mold (1) 131 and a convex portion 132b of the mold (2) 132, which will be described later.
  • the protrusion 131c of 131 and the protrusion 132c of the mold (2) 132 are formed.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 place the round tube straight portion 3a and the flat tube straight portion 3b at predetermined positions (see FIG. 8A). It is attached so as to be coupled and fixed at a location avoiding a position directly below the high heat-generating component 201 indicated by m.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are made of, for example, aluminum, and are attached to the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 in the mold. Molten metal is poured into the.
  • the fixing pin 43 is inserted into the through hole 41 c of the metal pipe fixing metal fitting (1) 41 and the through hole 42 c of the metal pipe fixing metal fitting (2) 42, and press-fitted and fixed by the fixing pin 43.
  • the plane of the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 opposite to the surface where the concave grooves are formed is from the plane of the cold plate body 82. It is designed with dimensions that are convex, and this convex part is sandwiched and pressed by a mold to reduce the displacement and deformation of the metal pipe 3.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 attached to the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 are cast ( 1)
  • the mold (1) 131 and the mold (2) 132 are clamped in a state of being fitted into the groove 131a of the 131 and the groove 132a of the mold (2) 132.
  • the above-described concave groove is provided in the mold using a metal mold.
  • the concave groove is formed in the mold during mold clamping.
  • the metal pipe fixing metal fitting can be substituted by making it larger than the inside dimension of the mold after clamping.
  • the mold (1) 131 and the mold (2) 132 are placed at predetermined positions (recesses of the cold plate body 82 indicated by r and s in FIG. 8 (a)).
  • the convex part 132b and the convex part 131c and the convex part 132c which were formed according to the shape of the flat tube straight part 3b of the metal pipe 3 are provided.
  • the round tube straight portion 4a of the metal pipe 3 is formed by the convex portion 131b of the mold (1) 131 and the convex portion 132b of the mold (2) 132. Further, the flat tube straight portion 3b of the metal pipe 3 is simultaneously sandwiched by the convex portion 131c of the mold (1) 131 and the convex portion 132c of the mold (2) 132, and the round tube straight portion 3a and the flat tube straight portion of the metal pipe 3 are sandwiched. Positioning 3b is performed.
  • molten metal is poured into the mold (1) 131 and mold (2) 132 that have been clamped, and a liquid-cooled cold plate 81 shown in FIG. 8 is cast and shaped.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are sandwiched and pressed by the concave groove 131a of the mold (1) 131 and the concave groove 132a of the mold (2) 132, while the mold (1) 131 is pressed.
  • the molten metal at the time of casting is obtained by sandwiching and pressing the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 with the convex portion 131b, the convex portion 131c and the convex portion 132b and the convex portion 132c of the mold (2) 132. Since the displacement and deformation of the metal pipe 3 due to the flow pressure of the metal pipe 3 can be suppressed as much as possible, the displacement and deformation of the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 can be further reduced.
  • the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2) 42 are convex from the plane of the cold plate main body 82.
  • the surface of the liquid-cooled cold plate 81 is ensured by milling the entire surface of the plate 81 or only the protruding portions of the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42.
  • the positioning between the mold and the metal pipe fixing bracket is performed by fitting the convex portion of the metal pipe fixing bracket into the concave groove of the mold.
  • a positioning pin is provided on the surface in contact with the metal pipe fixing bracket, and a concave hole for fitting the positioning pin is provided at a position corresponding to the positioning pin of the metal pipe fixing bracket. You may make it perform positioning between.
  • the above-described concave groove is provided in the mold using a metal mold. However, for example, when a sand mold is used as the mold, a concave hole is formed during mold clamping. In this way, it is possible to substitute the positioning pin protruding dimension larger than the mold inner dimension considering the mold deformation error after clamping.
  • the liquid-cooled cold plate 81 As described above, according to the liquid-cooled cold plate 81 according to the third embodiment of the present invention, it is embedded in the cold plate body without being affected by the direction or flow pressure at which the molten metal is poured.
  • the metal pipe embedded in the cold plate body can be placed in the desired position, such as the metal pipe can be placed directly under the heat generating parts, so that the displacement and deformation of the metal pipe can be reduced and stable. Cooling performance can be obtained.
  • the cooling performance can be further improved.
  • FIG. 10 is an explanatory diagram for explaining an attachment method when attaching a metal pipe fixing bracket and a coupler fixing bracket to a metal pipe in a liquid-cooled cold plate according to Embodiment 4 of the present invention.
  • FIG. 5B is a front view showing details of the coupler fixing metal fitting.
  • FIG. 11 is an assembly diagram illustrating a state in which a metal pipe fixing bracket and a coupler fixing bracket are attached to a metal pipe in a liquid-cooled cold plate according to Embodiment 4 of the present invention.
  • FIG. 10 is an explanatory diagram for explaining an attachment method when attaching a metal pipe fixing bracket and a coupler fixing bracket to a metal pipe in a liquid-cooled cold plate according to Embodiment 4 of the present invention.
  • FIG. 5B is a front view showing details of the coupler fixing metal fitting.
  • FIG. 11 is an assembly diagram illustrating a state in which a metal pipe fixing bracket and a coupler fixing bracket are attached to a metal pipe in a liquid-cooled cold plate
  • the liquid-cooled cold plate 31 according to the fourth embodiment of the present invention is not limited to an electronic device such as a communication device, a video device, and a broadcasting device, and may be an electronic device including a circuit board on which electronic components that generate high heat are mounted. In this case, the present invention can be applied.
  • the configuration of the liquid-cooled cold plate 31 according to Embodiment 4 of the present invention is the same as the configuration of the liquid-cooled cold plate 1 according to Embodiment 1 of the present invention, but the positioning method of the metal pipe 3 at the time of manufacturing is the same. Different. That is, in the liquid-cooled cold plate 31 according to the fourth embodiment, when the liquid-cooled cold plate 31 is mounted in the electronic device, as shown in FIG.
  • the coolant supplied to the liquid-cooled cold plate 31 Since the two couplers 61 that are the entrances and exits must be simultaneously slid and fitted to the two couplers 301a on the shelf 301 side that is the counterpart, the positional accuracy of the two couplers 61 of the liquid-cooled cold plate 31 is further improved. It is a thing.
  • the fixing pin 43 is inserted into the through hole 41c of the metal pipe fixing metal fitting (1) 41 and the through hole 42c of the metal pipe fixing metal fitting (2) 42, respectively. Then, press-fit and fix with the fixing pin 43.
  • the plane opposite to the surface on which the concave grooves of the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are formed is more convex than the plane of the cold plate body 2. The size of the metal pipe 3 is reduced by sandwiching and pressing the convex portion with a mold.
  • the two couplers 61 are attached to the tips of the two couplers 61 attached to the metal pipe 3 by fitting the two round holes 51 a provided in the coupler fixing bracket 51. While being fixed, the couplers 61 are positioned so as to have a predetermined interval.
  • the coupler fixing bracket 51 is made of a material such as stainless steel.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 attached to the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 are formed into a mold (1) 101.
  • the mold (1) is fitted into the groove 101a of the mold (2) and the groove (102a).
  • 101 and mold (2) 102 are clamped.
  • a molten metal is poured into the mold (1) 101 and mold (2) 102 that have been clamped, and a liquid-cooled cold plate 31 having the same shape as that in FIG. 1 is cast and shaped.
  • the metal pipe fixing bracket (1) 41 and the metal pipe fixing bracket (2) 42 are sandwiched and pressed from both sides by the concave groove 101a of the mold (1) 101 and the concave groove 102a of the mold (2) 102.
  • the deformation of the metal pipe 3 due to the flow pressure of the molten metal can be suppressed, and thereby the positional deviation between the round tube straight portion 3a and the flat tube straight portion 3b of the metal pipe 3 can be reduced.
  • the coupler fixing metal 51 is cast-molded in a state where the coupler fixing metal fitting 51 is fitted to predetermined portions of the mold (1) 101 and the mold (2) 102, the positional deviation between the two couplers 61 can be reduced. Therefore, when the liquid-cooled cold plate 31 is slidably connected to the shelf 301, the connection work between the coupler 61 of the liquid-cooled cold plate 31 and the coupler 301a on the shelf 301 side can be easily performed.
  • the coupler fixing metal 51 may be removed from the coupler 61 after casting and reused. Further, as shown in FIG. 4, after casting, the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2) 42 are convex from the plane of the cold plate main body 2, and therefore the surface of the liquid-cooled cold plate 1 The smoothness of the surface of the liquid-cooled cold plate 1 is ensured by milling the whole or only the protruding portions of the metal pipe fixing metal fitting (1) 41 and the metal pipe fixing metal fitting (2).
  • the liquid-cooled cold plate 31 As described above, according to the liquid-cooled cold plate 31 according to the fourth embodiment of the present invention, it is embedded in the cold plate body without being affected by the direction or flow pressure at which the molten metal is poured.
  • the metal pipe embedded in the cold plate body can be placed in the desired position, such as the metal pipe can be placed directly under the heat generating parts, so that the displacement and deformation of the metal pipe can be reduced and stable. Cooling performance can be obtained. Further, the workability at the time of connecting the coupler of the liquid-cooled cold plate and the coupler on the shelf side can be improved.
  • the present invention is not limited to electronic devices such as communication devices, video devices, and broadcasting devices, but is used in industries that manufacture electronic devices including circuit boards on which electronic components that generate high heat are mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

課題: 鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることが可能な液冷式コールドプレートおよびその製造方法を提供する。 解決手段: 冷却液を供給する金属製配管を鋳型内に埋設し鋳込み造形する液冷式コールドプレートの製造方法であって、前記鋳型内に埋設される複数の前記金属製配管同士の位置関係を維持すべく前記金属製配管に取り付ける固定金具を有し、前記金属製配管に前記固定金具を取り付けた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。

Description

液冷式コールドプレートおよびその製造方法
 本発明は、電子装置内の電子回路に使用される半導体デバイス、CPU、FET、電力増幅器などの高熱を発する電子部品を液体冷媒を用いて冷却するための液冷式コールドプレートおよびその製造方法に関する。
 通信機器や映像機器や放送機器などの電子装置のハウジング内には多数の回路基板が密に搭載され、各回路基板上に半導体デバイス、CPU(Central Processing Unit)、FET(Field Effect Transistor:電界効果トランジスタ)、電力増幅器などの高熱を発する電子部品が実装されているので、電子装置を冷却する冷却装置が必要になる。半導体デバイス、CPU、電力増幅器などの高熱を発する電子部品は、その有効動作温度範囲が狭く、よって、電子装置全体を冷却するのではなく電子部品それぞれを個々に冷却する必要がある。このため、最近の電子装置用の冷却装置は、液体冷媒を通す冷却管を各電子部品に近接させて冷却している。
 例えば、特許文献1の水冷式コールドプレートおよびその製造方法では、発熱部品を配置する水冷式コールドプレートに扁平冷却管を蛇行させて取付けて、該水冷式コールドプレートと扁平冷却管との熱接触面積を高めて冷却効率を高めることが提案されている。
特許第3154247号公報
 特許文献1の水冷式コールドプレートは、断面形状が丸の金属パイプを蛇行状に加工した後、金属パイプの少なくともアルミニウムプレート内に埋め込まれる部分を偏平化し、偏平化した蛇行状の金属パイプをスペーサーを介して鋳型内に設置し、その後鋳型内にアルミニウム溶湯を流し込んで蛇行状の金属パイプをアルミニウム溶湯により鋳込んでアルミニウムプレートとしている。
 しかし、特許文献1の水冷式コールドプレートにおいては、鋳型内での金属パイプの位置決めに用いるスペーサーとして、表裏とも平坦な面で形成された棒材を使用しているため、アルミニウム溶湯を鋳型内に流し込む方向によっては、アルミニウム溶湯の流圧によって金属パイプが変形して位置ずれを起こし、冷却すべき発熱部品との位置が合わなくなり、冷却性能が安定しないという問題があった。
 本発明は、このような従来の事情に鑑みなされたものであり、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることが可能な液冷式コールドプレートおよびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、冷却液を供給する金属製配管を鋳型内に埋設し鋳込み造形する液冷式コールドプレートの製造方法であって、前記鋳型内に埋設される複数の前記金属製配管同士の位置精度を維持すべく前記金属製配管に取り付ける固定金具を有し、前記金属製配管に前記固定金具を取り付けた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、前記固定金具又は前記固定金具に設けた凸部が前記鋳型の凹部と嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した水冷式コールドプレートの製造方法であって、鋳込み造形された前記液冷コールドプレートに対する前記固定金具の突出をフライス加工によって平面処理することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、前記鋳型に設けた凸部が前記固定金具に設けた凹部と嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、冷却液を供給する金属製配管を鋳型内に埋設し鋳込み造形する液冷式コールドプレートの製造方法であって、前記鋳型に前記金属製配管を押止するための配管押さえ部を設け、前記配管押さえ部で前記金属製配管を押止した状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、前記鋳型内に埋設される複数の前記金属製配管同士の位置関係を維持すべく前記金属製配管に取り付ける固定金具を有し、前記金属製配管に前記固定金具を取り付けた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、当該液冷コールドプレート本体から突出する一対の金属製配管の出入り口の位置関係を維持すべく前記一対の金属製配管の出入り口に取り付ける第2の固定金具を有し、前記一対の金属製配管の出入り口に前記第2の固定金具を取り付け、前記第2の固定金具が前記鋳型に嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、前記金属製配管の少なくとも一部を扁平形状にしたことを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートの製造方法は、上記した液冷式コールドプレートの製造方法であって、当該液冷コールドプレート本体から突出する前記一対の金属製配管の出入り口と対向する位置の金属製配管の接続曲り部が前記液冷コールドプレート本体から突出していることを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートは、冷却液を供給する金属製配管と、前記金属製配管が内部に鋳込まれて形成されたコールドプレート本体とを備えた液冷式コールドプレートであって、前記コールドプレート本体に埋設された複数の前記金属製配管同士の位置関係を維持すべく前記金属製配管に取り付ける固定金具を有し、前記固定金具は、前記金属製配管に取り付けられた状態で鋳込まれ、前記コールドプレート本体と一体化されることを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートは、冷却液を供給する金属製配管と、前記金属製配管が内部に鋳込まれて形成されたコールドプレート本体とを備えた液冷式コールドプレートであって、一対の金属製配管の出入り口と、前記一対の金属製配管の出入り口と対向する位置の金属製配管の接続曲り部とが前記コールドプレート本体から突出していることを特徴とする。
 また、上記目的を達成するために、本発明に係る液冷式コールドプレートは、上記した液冷式コールドプレートであって、前記金属製配管の少なくとも一部を扁平形状にしたことを特徴とする。
 以上説明したように、本発明によれば、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることができる。
本発明の実施形態1に係る液冷式コールドプレートの正面図並びに断面図である。 本発明の実施形態1に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具を取り付ける際の取付方法を説明するための説明図である。 本発明の実施形態1に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具を取り付けた状態を示す組立図である。 本発明の実施形態1に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。 本発明の実施形態2に係る液冷式コールドプレートの正面図並びに断面図である。 本発明の実施形態2に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。 本発明の実施形態2に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態の他の例を示す図である。 本発明の実施形態3に係る液冷式コールドプレートの正面図並びに断面図である。 本発明の実施形態3に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。 本発明の実施形態4に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具並びにカプラ固定金具を取り付ける際の取付方法を説明するための説明図である。 本発明の実施形態4に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具並びにカプラ固定金具を取り付けた状態を示す組立図である。 本発明の実施形態4に係る液冷式コールドプレートにおいて、液冷式コールドプレートのカプラをシェルフ側のカプラに嵌合させる際の動作を説明するための説明図である。
<実施形態1>  以下、本発明の実施形態1に係る液冷式コールドプレートについて、図1~図4を参照して説明する。図1は、本発明の実施形態1に係る液冷式コールドプレートの正面図並びに断面図であり、(a)は正面図、(b)は(a)に示すA-A面で切断した場合の断面図である。図2は、本発明の実施形態1に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具を取り付ける際の取付方法を説明するための説明図である。図3は、本発明の実施形態1に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具を取り付けた状態を示す組立図であり、(a)は正面図、(b)は(a)に示すB-B面で切断した場合の断面図である。また、図4は、本発明の実施形態1に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。
 なお、本発明の実施形態1に係る液冷式コールドプレート1は、通信機器や映像機器や放送機器などの電子装置に限らず、高熱を発する電子部品を実装した回路基板を備える電子装置であれば、本発明を適用することは可能である。
[液冷式コールドプレート1の構成]
 本発明の実施形態1に係る液冷式コールドプレート1は、図1に示すように、金属パイプ3と、コールドプレート本体2と、金属パイプ固定金具(1)41と、金属パイプ固定金具(2)42と、カプラ61とから構成されている。また、液冷式コールドプレート1は、金属パイプ3内に水等の冷却液が供給され、コールドプレート本体2に埋設された金属パイプ3の扁平管直線部3bの真上に配置された高熱を発する電子部品(以下、高発熱部品という)201(図1(a)のn部)から熱を奪うことにより、高発熱部品201の冷却を行う。
 なお、図1に記載した複数の高発熱部品201は、液冷式コールドプレート1の構成部品ではなく、液冷式コールドプレート1との間の配置関係を示すためのものであり、液冷式コールドプレート1と個々に接触する場合だけでなく、図示していない回路基板等に実装された状態で纏まって接触する場合もある。また、高発熱部品201直下の金属パイプ3を扁平管にしているが、扁平管以外の丸管等であってもよい。
 金属パイプ3は、ベンダーでU字形状に加工された後、プレス機で部分的に扁平加工が施されたものであり、丸管直線部3cと、丸管直線部3aと、丸管曲り部3eと、扁平管直線部3bと、丸管直線部3dとから構成されている。また、金属パイプ3の丸管直線部3aと扁平管直線部3bはコールドプレート本体2内に埋設され、丸管直線部3c、丸管直線部3dおよび丸管曲り部3eはコールドプレート本体2の外部に配置され、丸管直線部3cおよび3dの先端にカプラ61が取り付けられる。
 なお、金属パイプ3は、例えば銅やステンレス鋼等の材料からできている。
 コールドプレート本体2は、後述する鋳型内に金属パイプ3を埋め込んだ後、鋳型内にアルミニウムやアルミニウム合金等の金属溶湯を流し込むことによって鋳込み造形される。
 金属パイプ固定金具(1)41および金属パイプ固定金具(2)42は、図2に示すように、挟持する金属パイプ3の形状に合わせ、円弧形状の凹溝41a,42aおよび楕円形状の凹溝41b,42bを各々有し、鋳型内に埋設される金属パイプ3の丸管直線部3aと扁平管直線部3bとの間の位置精度を維持するために、丸管直線部3aと扁平管直線部3bとを所定の位置(図1(a)のm部で示す高発熱部品201の直下を避けた箇所)で結合・固定するよう取り付けられる。また、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42は、例えばアルミニウム製であり、金属パイプ3の丸管直線部3aと扁平管直線部3bに取り付けられた状態で鋳型内に金属溶湯が流し込まれる。
 カプラ61は、金属パイプ3の丸管直線部3cおよび3dの先端部分にそれぞれ取り付けられる流体継手であり、液冷式コールドプレート1を電子装置内に搭載する際、後述するシェルフ301側のカプラ301aと嵌合接続される。
[液冷式コールドプレート1の製造方法]
 次に、本発明の実施形態1に係る液冷式コールドプレート1の製造方法について、図2~図4を参照して説明する。
 金属パイプ3を鋳型内に埋設する前に、まず、図2および図3に示すように、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの所定の箇所(図1(a)のm部で示す高発熱部品201の直下を避けた箇所)を金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝41a,42a並びに凹溝41b,42bでそれぞれ挟み込んだ後、金属パイプ固定金具(1)41の貫通穴41cおよび金属パイプ固定金具(2)42の貫通穴42cに固定ピン43を挿入し、固定ピン43で圧入固定する。なお、後述する図4で示すように、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝が形成された面とは反対側の平面は、コールドプレート本体2の平面より凸となる寸法で設計されており、この凸部を鋳型で挟み込んで押さえることにより、金属パイプ3の位置ずれを小さくする。
 そして、図4に示すように、金属パイプ3の丸管直線部3aおよび扁平管直線部3bに取り付けた金属パイプ固定金具(1)41および金属パイプ固定金具(2)42が鋳型(1)101の凹溝101aおよび鋳型(2)102の凹溝102aに嵌合した状態で鋳型(1)101および鋳型(2)102の型締めが行われる。型締めされた鋳型(1)101および鋳型(2)102内に金属溶湯が流し込まれ、図1に示す液冷式コールドプレート1が鋳込み造形される。
 つまり、鋳型(1)101の凹溝101aおよび鋳型(2)102の凹溝102aで金属パイプ固定金具(1)41および金属パイプ固定金具(2)42を両側から挟み込んで押さえつけることにより、鋳込み時の金属溶湯の流圧による金属パイプ3の位置ずれや変形を抑えることができ、これによって、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置ずれや変形を小さくすることができる。
 なお、上記実施例では、金属製の鋳型を用いて上述した凹溝を鋳型に設けるよう説明しているが、例えば鋳型として砂型を用いる場合には、型締めの際に鋳型に凹溝が形成されるように金属パイプ固定金具の寸法を型締め後の鋳型内寸より大きめにしておくことで代用可能である。
 また、図4のように、鋳込み造形後、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42はコールドプレート本体2平面より凸形状となるため、液冷式コールドプレート1の表面全体、若しくは、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の突き出た箇所のみをフライス加工することにより、液冷式コールドプレート1表面の平滑度を確保するようにする。
 また、上記実施例においては、鋳型の凹溝に金属パイプ固定金具の凸部を嵌合させることにより鋳型と金属パイプ固定金具との間の位置決めを行ったが、これとは逆に、鋳型の金属パイプ固定金具と接する面上に位置決めピンを設け、金属パイプ固定金具の当該位置決めピンに対応する位置に当該位置決めピンが嵌合する凹穴を設けるようにして、鋳型と金属パイプ固定金具との間の位置決めを行うようにしてもよい。
 なお、上記実施例では、金属製の鋳型を用いて上述した凹溝を鋳型に設けるよう説明しているが、例えば鋳型として砂型を用いる場合には、型締めの際に凹穴が形成されるように位置決めピンの突出寸法を型締め後の鋳型変形誤差を考慮した鋳型内寸より大きめにしておくことで代用可能である。
 以上説明したように、本発明の実施形態1に係る液冷式コールドプレート1によれば、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることができる。
<実施形態2>  以下、本発明の実施形態2に係る液冷式コールドプレートについて、図5~図7を参照して説明する。図5は、本発明の実施形態2に係る液冷式コールドプレートの正面図並びに断面図であり、(a)は正面図、(b)は(a)に示すC-C面で切断した場合の断面図である。図6は、本発明の実施形態2に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。図7は、本発明の実施形態2に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態の他の例を示す図である。また、図5~図7において、図1~図4と同じ構成には同符号を付しており、既に説明したものについては適宜説明を省略する。
 なお、本発明の実施形態2に係る液冷式コールドプレート11は、通信機器や映像機器や放送機器などの電子装置に限らず、高熱を発する電子部品を実装した回路基板を備える電子装置であれば、本発明を適用することは可能である。
[液冷式コールドプレート11の構成]
 本発明の実施形態2に係る液冷式コールドプレート11は、図5に示すように、金属パイプ4と、コールドプレート本体12と、カプラ61とから構成されている。また、液冷式コールドプレート11は、金属パイプ4内に水等の冷却液が供給され、コールドプレート本体12に埋設された金属パイプ4の丸管直線部4bの真上に配置された高熱を発する電子部品(以下、高発熱部品という)201(図5(a)のn部)から熱を奪うことにより、高発熱部品201の冷却を行う。
 なお、図5に記載した複数の高発熱部品201は、液冷式コールドプレート11の構成部品ではなく、液冷式コールドプレート11との間の配置関係を示すためのものであり、液冷式コールドプレート11と個々に接触する場合だけでなく、図示していない回路基板等に実装された状態で纏まって接触する場合もある。また、高発熱部品201直下の金属パイプ4を丸管にしているが、丸管以外の扁平管等であってもよい。
 金属パイプ4は、ベンダーでU字形状に加工されたものであり、丸管直線部4c,4aと、丸管曲り部4eと、丸管直線部4b,4dとから構成されている。また、金属パイプ4の丸管直線部4aと丸管直線部4bはコールドプレート本体12内に埋設され、丸管直線部4c、丸管直線部4dおよび丸管曲り部4eはコールドプレート本体12の外部に配置され、丸管直線部4cおよび4dの先端にカプラ61が取り付けられる。
 なお、金属パイプ4は、例えば銅やステンレス鋼等の材料からできている。
 コールドプレート本体12は、後述する鋳型内にアルミニウムやアルミニウム合金等の金属溶湯を流し込むことによって鋳込み造形され、図5に示すように、金属パイプ4を間に挟むようにして、対となる凹部(1)12aおよび凹部(2)12bを所定の箇所(図5(a)のp部で示す高発熱部品201の直下を避けた箇所)に複数有している。なお、凹部(1)12aおよび凹部(2)12bは、後述する鋳型(1)111の凸部111aおよび鋳型(2)112の凸部112aによって形成される。
 カプラ61は、金属パイプ4の丸管直線部4cおよび4dの先端部分にそれぞれ取り付けられる流体継手であり、液冷式コールドプレート11を電子装置内に搭載する際、後述するシェルフ301側のカプラ301aと嵌合接続される。
[液冷式コールドプレート11の製造方法]
 次に、本発明の実施形態2に係る液冷式コールドプレート11の製造方法について、図6を参照して説明する。
 鋳型(1)111および鋳型(2)102は、図6に示すように、所定の位置(図5(a)のp部で示すコールドプレート本体12の凹部(1)12aおよび凹部(2)12bに対応する位置)に、それぞれ金属パイプ4の形状に合わせて形成された凸部111aおよび凸部112aを有している。そして、鋳型(1)111および鋳型(2)112が型締めされると、鋳型(1)111の凸部111aおよび鋳型(2)102の凸部112aによって、金属パイプ4の丸管直線部4aおよび丸管直線部4bが同時に挟まれ、金属パイプ4の丸管直線部4aおよび丸管直線部4bの位置決めがなされる。そして、型締めされた鋳型(1)111および鋳型(2)112内に金属溶湯が流し込まれ、図5に示す液冷式コールドプレート11が鋳込み造形される。
 つまり、鋳型(1)111の凸部111aおよび鋳型(2)112の凸部112aで金属パイプ4の丸管直線部4aおよび丸管直線部4bを両側から挟み込んで押さえつけることにより、鋳込み時の金属溶湯の流圧による金属パイプ4の位置ずれや変形を抑えることができ、これによって、金属パイプ4の丸管直線部4aおよび丸管直線部4bの位置ずれや変形を小さくすることができる。
 次に、上記実施例において、金属パイプが本発明の実施形態1に係る液冷式コールドプレート1の構成品である扁平管直線部3bを有する金属パイプ3の場合の製造方法について説明する。
 図7に示すように、鋳型(1)121および鋳型(2)122は、所定の位置(図5(a)のp部で示すコールドプレート本体12の凹部(1)12aおよび凹部(2)12bに相当する位置)に、それぞれ金属パイプ3の丸管直線部3aの形状に合わせて形成された凸部121aおよび凸部122aと、金属パイプ3の扁平管直線部3bの形状に合わせて形成された凸部121bおよび凸部122bとを有している。そして、鋳型(1)121および鋳型(2)122が型締めされると、鋳型(1)121の凸部121aおよび鋳型(2)122の凸部122aによって金属パイプ3の丸管直線部4aが、また、鋳型(1)121の凸部121bおよび鋳型(2)122の凸部122bによって金属パイプ3の扁平管直線部3bが挟まれ、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置決めがなされる。そして、型締めされた鋳型(1)121および鋳型(2)122内に金属溶湯が流し込まれ、図5に示す液冷式コールドプレート11が鋳込み造形される。
 つまり、鋳型(1)121の凸部121a,凸部121bおよび鋳型(2)122の凸部122a,凸部122bで金属パイプ3の丸管直線部3aおよび扁平管直線部3bを両側から挟み込んで押さえつけることにより、鋳込み時の金属溶湯の流圧による金属パイプ3の変形を抑えることができ、これにより金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置ずれを小さくすることができる。
 以上説明したように、本発明の実施形態2に係る液冷式コールドプレート11によれば、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることができる。
<実施形態3>  以下、本発明の実施形態3に係る液冷式コールドプレートについて、図8および図9を参照して説明する。図8は、本発明の実施形態3に係る液冷式コールドプレートの正面図並びに断面図であり、(a)は正面図、(b)は(a)に示すD-D面で切断した場合の断面図、また、(c)は(a)に示すE-E面で切断した場合の断面図である。図9は、本発明の実施形態3に係る液冷式コールドプレートを製造する際、鋳造後の鋳型を開いた状態を示す図である。また、図8および図9において、図1~図7と同じ構成には同符号を付しており、既に説明したものについては適宜説明を省略する。
 因みに、本発明の実施形態3に係る液冷式コールドプレート81は、実施形態1および実施形態2に係る液冷式コールドプレートの技術を兼ね備えたものである。
 実施形態1においては、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくするために金属パイプ固定金具を使用しているが、金属パイプの位置ずれや変形をより小さくするためには、金属パイプ固定金具の数を増やし、金属パイプに金属パイプ固定金具を取り付ける間隔(ピッチ)を密にする必要がある。しかし、金属パイプ固定金具の数を増やすことによって、鋳込みの際の金属溶湯の流れが阻害されたり、また、コストアップにもなってしまう。
 また、実施形態2においては、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくするために鋳型に設けた凸部で金属パイプを両側から押さえ込むようにしているが、金属パイプの位置ずれや変形をより小さくするためには、鋳型の凸部の数を増やして金属パイプを押さえる箇所を増やす、つまり、鋳型の凸部の間隔(ピッチ)を密にする必要がある。しかし、鋳型の凸部で金属パイプを押さえる箇所を増やすことによって、コールドプレート本体に形成される凹部の数が増えるため、コールドプレートとしての冷却性能が低下してしまう。
 そこで、本実施形態3では、実施形態1および実施形態2の2つの技術を使い、金属パイプ固定金具の数を減らすと共に、金属パイプに金属パイプ固定金具を取り付けた箇所の中間の金属パイプを鋳型の凸部で押さえるようして鋳込み造形することによって、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、金属パイプの位置ずれや変形を更に小さくすることができ、経済的で、更なる冷却性能の向上を図ることができる。
 なお、本発明の実施形態3に係る液冷式コールドプレート81は、通信機器や映像機器や放送機器などの電子装置に限らず、高熱を発する電子部品を実装した回路基板を備える電子装置であれば、本発明を適用することは可能である。
[液冷式コールドプレート81の構成]
 本発明の実施形態3に係る液冷式コールドプレート81は、図8に示すように、金属パイプ3と、コールドプレート本体82と、金属パイプ固定金具(1)41と、金属パイプ固定金具(2)42と、カプラ61とから構成されている。また、液冷式コールドプレート81は、金属パイプ3内に水等の冷却液が供給され、コールドプレート本体82に埋設された金属パイプ3の扁平管直線部3bの真上に配置された高熱を発する電子部品(以下、高発熱部品という)201(図8(a)のn部)から熱を奪うことにより、高発熱部品201の冷却を行う。
 なお、図8に記載した複数の高発熱部品201は、液冷式コールドプレート81の構成部品ではなく、液冷式コールドプレート81との間の配置関係を示すためのものであり、液冷式コールドプレート81と個々に接触する場合だけでなく、図示していない回路基板等に実装された状態で纏まって接触する場合もある。また、高発熱部品201直下の金属パイプ3を扁平管にしているが、扁平管以外の丸管等であってもよい。
 コールドプレート本体82は、後述する鋳型内にアルミニウムやアルミニウム合金等の金属溶湯を流し込むことによって鋳込み造形され、図8(c)に示すように、金属パイプ3を間に挟むようにして、対となる凹部(1)82a,凹部(2)82bおよび凹部(3)82c,凹部(4)82dを所定の箇所(図8(a)のr部およびs部示す高発熱部品201の直下を避けた箇所)に複数有している。なお、凹部(1)82a,凹部(2)82bおよび凹部(3)82c,凹部(4)82dは、後述する鋳型(1)131の凸部131b,鋳型(2)132の凸部132bおよび鋳型(1)131の凸部131c,鋳型(2)132の凸部132cによって形成される。
 金属パイプ固定金具(1)41および金属パイプ固定金具(2)42は、上述した図3と同様に、丸管直線部3aと扁平管直線部3bとを所定の位置(図8(a)のm部で示す高発熱部品201の直下を避けた箇所)で結合・固定するよう取り付けられる。また、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42は、例えばアルミニウム製であり、金属パイプ3の丸管直線部3aと扁平管直線部3bに取り付けられた状態で鋳型内に金属溶湯が流し込まれる。
[液冷式コールドプレート81の製造方法]
 次に、本発明の実施形態3に係る液冷式コールドプレート81の製造方法について、図9を参照して説明する。
 金属パイプ3を鋳型内に埋設する前に、まず、上述した図2および図3と同様に、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの所定の箇所(図8(a)のm部で示す高発熱部品201の直下を避けた箇所)を金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝41a,42a並びに凹溝41b,42bでそれぞれ挟み込んだ後、金属パイプ固定金具(1)41の貫通穴41cおよび金属パイプ固定金具(2)42の貫通穴42cに固定ピン43を挿入し、固定ピン43で圧入固定する。なお、上述した図4と同様に、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝が形成された面とは反対側の平面は、コールドプレート本体82の平面より凸となる寸法で設計されており、この凸部を鋳型で挟み込んで押さえることにより、金属パイプ3の位置ずれや変形を小さくする。
 それから、図9(a)に示すように、金属パイプ3の丸管直線部3aおよび扁平管直線部3bに取り付けた金属パイプ固定金具(1)41および金属パイプ固定金具(2)42が鋳型(1)131の凹溝131aおよび鋳型(2)132の凹溝132aに嵌合した状態で鋳型(1)131および鋳型(2)132の型締めが行われる。
 なお、上記実施例では、金属製の鋳型を用いて上述した凹溝を鋳型に設けるよう説明しているが、例えば鋳型として砂型を用いる場合には、型締めの際に鋳型に凹溝が形成されるように金属パイプ固定金具の寸法を型締め後の鋳型内寸より大きめにしておくことで代用可能である。
 また、同時に、図9(b)に示すように、鋳型(1)131および鋳型(2)132は、所定の位置(図8(a)のr部およびs部で示すコールドプレート本体82の凹部(1)82a,凹部(2)82bおよび凹部(3)82c,凹部(4)82dに相当する位置)に、それぞれ金属パイプ3の丸管直線部3aの形状に合わせて形成された凸部131bおよび凸部132bと、金属パイプ3の扁平管直線部3bの形状に合わせて形成された凸部131cおよび凸部132cとを有している。そして、鋳型(1)131および鋳型(2)132が型締めされると、鋳型(1)131の凸部131bおよび鋳型(2)132の凸部132bによって金属パイプ3の丸管直線部4a、また、鋳型(1)131の凸部131cおよび鋳型(2)132の凸部132cによって金属パイプ3の扁平管直線部3bが同時に挟まれ、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置決めがなされる。
 そして、型締めされた鋳型(1)131および鋳型(2)132内に金属溶湯が流し込まれ、図8に示す液冷式コールドプレート81が鋳込み造形される。
 つまり、鋳型(1)131の凹溝131aおよび鋳型(2)132の凹溝132aで金属パイプ固定金具(1)41および金属パイプ固定金具(2)42を挟み込んで押さえつける一方、鋳型(1)131の凸部131b,凸部131cおよび鋳型(2)132の凸部132b,凸部132cで金属パイプ3の丸管直線部3aおよび扁平管直線部3bを挟み込んで押さえつけることにより、鋳込み時の金属溶湯の流圧による金属パイプ3の位置ずれや変形を極力抑えることができるので、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置ずれや変形を更に小さくすることができる。
 また、図9(a)に示すように、鋳込み造形後、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42はコールドプレート本体82平面より凸形状となるため、液冷式コールドプレート81の表面全体、若しくは、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の突き出た箇所のみをフライス加工することにより、液冷式コールドプレート81表面の平滑度を確保するようにする。
 また、上記実施例においては、鋳型の凹溝に金属パイプ固定金具の凸部を嵌合させることにより鋳型と金属パイプ固定金具との間の位置決めを行ったが、これとは逆に、鋳型の金属パイプ固定金具と接する面上に位置決めピンを設け、また、金属パイプ固定金具の当該位置決めピンに対応する位置に当該位置決めピンが嵌合する凹穴を設けるようにして、鋳型と金属パイプ固定金具との間の位置決めを行うようにしてもよい。
 なお、上記実施例では、金属製の鋳型を用いて上述した凹溝を鋳型に設けるよう説明しているが、例えば鋳型として砂型を用いる場合には、型締めの際に凹穴が形成されるように位置決めピンの突出寸法を型締め後の鋳型変形誤差を考慮した鋳型内寸より大きめにしておくことで代用可能である。
 以上説明したように、本発明の実施形態3に係る液冷式コールドプレート81によれば、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることができる。
 また、金属パイプ固定金具の数を減らす一方、金属パイプに金属パイプ固定金具を取り付けた箇所の中間の金属パイプを鋳型の凸部で押さえるようして鋳込み造形するようにしたので、経済的で、更なる冷却性能の向上を図ることができる。
<実施形態4>  以下、本発明の実施形態3に係る液冷式コールドプレートについて、図10~図12を参照して説明する。図10は、本発明の実施形態4に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具並びにカプラ固定金具を取り付ける際の取付方法を説明するための説明図であり、(a)は正面図、(b)はカプラ固定金具の詳細を示す図である。図11は、本発明の実施形態4に係る液冷式コールドプレートにおいて、金属パイプに金属パイプ固定金具並びにカプラ固定金具を取り付けた状態を示す組立図である。図12は、本発明の実施形態4に係る液冷式コールドプレートにおいて、液冷式コールドプレートのカプラをシェルフ側のカプラに嵌合させる際の動作を説明するための説明図である。また、図10~図12において、図1~図9と同じ構成には同符号を付しており、既に説明したものについては適宜説明を省略する。
 なお、本発明の実施形態4に係る液冷式コールドプレート31は、通信機器や映像機器や放送機器などの電子装置に限らず、高熱を発する電子部品を実装した回路基板を備える電子装置であれば、本発明を適用することは可能である。
[液冷式コールドプレート31の構成]
 本発明の実施形態4に係る液冷式コールドプレート31の構成は、本発明の実施形態1に係る液冷式コールドプレート1の構成と同様であるが、製造時における金属パイプ3の位置決め方法が異なる。つまり、本実施形態4に係る液冷式コールドプレート31においては、液冷式コールドプレート31を電子装置内に搭載する際、図12に示すように、液冷式コールドプレート31に供給する冷却液の出入り口である2つのカプラ61を相手先であるシェルフ301側の2つのカプラ301aに同時にスライド嵌合させなければならないため、液冷式コールドプレート31の2つのカプラ61の位置精度をより高めるようにしたものである。
[液冷式コールドプレート31の製造方法]
 次に、本発明の実施形態4に係る液冷式コールドプレート31の製造方法について、図10および図11を参照して説明する。
 本発明の実施形態1に係る液冷式コールドプレート1と同様に、図2および図3に示すように、金属パイプ3を鋳型内に埋設する前に、まず、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの所定の箇所(図1(a)のm部で示す高発熱部品201の直下を避けた箇所)を金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝41a,42a並びに凹溝41b,42bでそれぞれ挟み込んだ後、金属パイプ固定金具(1)41の貫通穴41cおよび金属パイプ固定金具(2)42の貫通穴42cに固定ピン43を挿入し、固定ピン43で圧入固定する。なお、図4で示すように、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の凹溝が形成された面とは反対側の平面は、コールドプレート本体2の平面より凸となる寸法で設計されており、この凸部を鋳型で挟み込んで押さえることにより、金属パイプ3の位置ずれを小さくする。
 更に、図10に示すように、カプラ固定金具51に設けた2つの丸穴51aを金属パイプ3に取り付けられた2つのカプラ61の先端に嵌合させることにより、カプラ固定金具51でカプラ61が固定されるとともに、カプラ61同士が所定の間隔となるよう位置決めされる。
 なお、カプラ固定金具51は、例えばステンレス等の材料からできている。
 そして、図4に示すように、金属パイプ3の丸管直線部3aおよび扁平管直線部3bに取り付けた金属パイプ固定金具(1)41および金属パイプ固定金具(2)42が鋳型(1)101の凹溝101aおよび鋳型(2)102の凹溝102aに嵌合すると共に、カプラ固定金具51も鋳型(1)101および鋳型(2)102の所定の箇所に嵌合した状態で、鋳型(1)101および鋳型(2)102の型締めが行われる。型締めされた鋳型(1)101および鋳型(2)102内に金属溶湯が流し込まれ、図1と同形状の液冷式コールドプレート31が鋳込み造形される。
 つまり、鋳型(1)101の凹溝101aおよび鋳型(2)102の凹溝102aで金属パイプ固定金具(1)41および金属パイプ固定金具(2)42を両側から挟み込んで押さえつけることにより、鋳込み時の金属溶湯の流圧による金属パイプ3の変形を抑えることができ、これによって、金属パイプ3の丸管直線部3aおよび扁平管直線部3bの位置ずれを小さくすることができる。
 更に、カプラ固定金具51も鋳型(1)101および鋳型(2)102の所定の箇所に嵌合した状態で鋳込み造形がなされるので、2つのカプラ61の位置ずれを小さくすることができる。
 したがって、液冷式コールドプレート31をシェルフ301にスライド接続させる際に、液冷式コールドプレート31のカプラ61とシェルフ301側のカプラ301aとの接続作業が容易に行える。
 なお、カプラ固定金具51は、鋳造後にカプラ61から取り外して、再利用するようにすればよい。
 また、図4のように、鋳込み造形後、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42はコールドプレート本体2平面より凸形状となるため、液冷式コールドプレート1の表面全体、若しくは、金属パイプ固定金具(1)41および金属パイプ固定金具(2)42の突き出た箇所のみをフライス加工することにより、液冷式コールドプレート1表面の平滑度を確保するようにする。
 以上説明したように、本発明の実施形態4に係る液冷式コールドプレート31によれば、鋳込みの際の金属溶湯が流し込まれる方向や流圧に影響されることなく、コールドプレート本体内に埋め込まれる金属パイプの位置ずれや変形を小さくすることができるので、発熱部品の直下に金属パイプを配置することができるなど、コールドプレート本体内に埋め込まれる金属パイプを所望の位置に配置でき、安定した冷却性能を得ることができる。
 また、液冷式コールドプレートのカプラとシェルフ側のカプラとの接続作業時の作業性を向上させることができる。
 なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。
 この出願は、2015年4月13日に出願された日本出願特願2015-081660を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 本発明は、通信機器や映像機器や放送機器などの電子装置に限らず、高熱を発する電子部品を実装した回路基板を備える電子装置を製造する産業で利用される。
 1:液冷式コールドプレート、2:コールドプレート本体、3:金属パイプ、3a:丸管直線部、3b:扁平管直線部、3c:丸管直線部、3d:丸管直線部、3e:丸管曲り部、4:金属パイプ、4a:丸管直線部、4b:丸管直線部、4c:丸管直線部、4d:丸管直線部、4e:丸管曲り部、11:液冷式コールドプレート、12:コールドプレート本体、12a:凹部(1)、12b:凹部(2)、22:コールドプレート本体、22a:凹部(1)、22b:凹部(2)、22c:凹部(3)、22d:凹部(4)、31:液冷式コールドプレート、41:金属パイプ固定金具(1)、41a:円弧形状の凹溝、41b:楕円形状の凹溝、41c:貫通穴、42:金属パイプ固定金具(2)、42a:円弧形状の凹溝、42b:楕円形状の凹溝、42c:貫通穴、43:固定ピン、51:カプラ固定金具、51a:丸穴、61:カプラ、81:液冷式コールドプレート、82:コールドプレート本体、82a:凹部(1)、82b:凹部(2)、82c:凹部(3)、82d:凹部(4)、101:鋳型(1)、101a:凹溝、102:鋳型(2)、102a:凹溝、111:鋳型(1)、111a:凸部、112:鋳型(2)、112a:凸部、121:鋳型(1)、121a:凸部、121b:凸部、122:鋳型(2)、122a:凸部、122b:凸部、131:鋳型(1)、131a:凹溝、131b:凸部、131c:凸部、132:鋳型(2)、132a:凹溝、132b:凸部、132c:凸部、201:高発熱部品、301:シェルフ、301a:カプラ。  

Claims (15)

  1.  冷却液を供給する金属製配管を鋳型内に埋設し鋳込み造形する液冷式コールドプレートの製造方法であって、
     前記鋳型内に埋設される複数の前記金属製配管同士の位置精度を維持すべく前記金属製配管に取り付ける固定金具を有し、
     前記金属製配管に前記固定金具を取り付けた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  2.  請求項1記載の液冷式コールドプレートの製造方法であって、
     前記固定金具又は前記固定金具に設けた凸部が前記鋳型の凹部と嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  3.  請求項2記載の液冷式コールドプレートの製造方法であって、
     鋳込み造形された前記液冷コールドプレートに対する前記固定金具の突出をフライス加工によって平面処理することを特徴とする液冷式コールドプレートの製造方法。
  4.  請求項1記載の液冷式コールドプレートの製造方法であって、
     前記鋳型に設けた凸部が前記固定金具に設けた凹部と嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  5.  冷却液を供給する金属製配管を鋳型内に埋設し鋳込み造形する液冷式コールドプレートの製造方法であって、
     前記鋳型に前記金属製配管を押止するための配管押さえ部を設け、
     前記配管押さえ部で前記金属製配管を押止した状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  6.  請求項5記載の液冷式コールドプレートの製造方法であって、
     前記鋳型内に埋設される複数の前記金属製配管同士の位置関係を維持すべく前記金属製配管に取り付ける固定金具を有し、
     前記金属製配管に前記固定金具を取り付けた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  7.  請求項1に記載の液冷式コールドプレートの製造方法であって、
     当該液冷コールドプレート本体から突出する一対の金属製配管の出入り口の位置関係を維持すべく前記一対の金属製配管の出入り口に取り付ける第2の固定金具を有し、
     前記一対の金属製配管の出入り口に前記第2の固定金具を取り付け、前記第2の固定金具が前記鋳型に嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  8.  請求項5に記載の液冷式コールドプレートの製造方法であって、
     当該液冷コールドプレート本体から突出する一対の金属製配管の出入り口の位置関係を維持すべく前記一対の金属製配管の出入り口に取り付ける第2の固定金具を有し、
     前記一対の金属製配管の出入り口に前記第2の固定金具を取り付け、前記第2の固定金具が前記鋳型に嵌合することによって位置決めがなされた状態で前記鋳型内に金属溶湯を流し込んで鋳込み造形することを特徴とする液冷式コールドプレートの製造方法。
  9.  請求項1に記載の液冷式コールドプレートの製造方法であって、
     前記金属製配管の少なくとも一部を扁平形状にしたことを特徴とする液冷式コールドプレートの製造方法。
  10.  請求項5に記載の液冷式コールドプレートの製造方法であって、
     前記金属製配管の少なくとも一部を扁平形状にしたことを特徴とする液冷式コールドプレートの製造方法。
  11.  請求項1に記載の液冷式コールドプレートの製造方法であって、
     当該液冷コールドプレート本体から突出する前記一対の金属製配管の出入り口と対向する位置の金属製配管の接続曲り部が前記液冷コールドプレート本体から突出していることを特徴とする液冷式コールドプレートの製造方法。
  12.  請求項5に記載の液冷式コールドプレートの製造方法であって、
     当該液冷コールドプレート本体から突出する前記一対の金属製配管の出入り口と対向する位置の金属製配管の接続曲り部が前記液冷コールドプレート本体から突出していることを特徴とする液冷式コールドプレートの製造方法。
  13.  冷却液を供給する金属製配管と、前記金属製配管が内部に鋳込まれて形成されたコールドプレート本体とを備えた液冷式コールドプレートであって、
     前記コールドプレート本体に埋設された複数の前記金属製配管同士の位置関係を維持すべく前記金属製配管に取り付ける固定金具を有し、
     前記固定金具は、前記金属製配管に取り付けられた状態で鋳込まれ、前記コールドプレート本体と一体化されることを特徴とする液冷式コールドプレート。
  14.  請求項13に記載の液冷式コールドプレートであって、
     一対の金属製配管の出入り口と、前記一対の金属製配管の出入り口と対向する位置の金属製配管の接続曲り部とが前記コールドプレート本体から突出していることを特徴とする液冷式コールドプレート。
  15.  請求項14に記載の液冷式コールドプレートであって、
     前記金属製配管の少なくとも一部を扁平形状にしたことを特徴とする液冷式コールドプレート。  
PCT/JP2016/055076 2015-04-13 2016-02-22 液冷式コールドプレートおよびその製造方法 WO2016167022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017512219A JP6474142B2 (ja) 2015-04-13 2016-02-22 液冷式コールドプレートおよびその製造方法
US15/556,307 US10532401B2 (en) 2015-04-13 2016-02-22 Liquid-cooling cold plate and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081660 2015-04-13
JP2015-081660 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167022A1 true WO2016167022A1 (ja) 2016-10-20

Family

ID=57125918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055076 WO2016167022A1 (ja) 2015-04-13 2016-02-22 液冷式コールドプレートおよびその製造方法

Country Status (3)

Country Link
US (1) US10532401B2 (ja)
JP (1) JP6474142B2 (ja)
WO (1) WO2016167022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176535A1 (zh) * 2017-03-31 2018-10-04 华中科技大学 一种新型机械泵液冷散热系统
WO2019050122A1 (ko) * 2017-09-06 2019-03-14 이현환 냉매파이프가 매립되는 방열장치의 케이싱, 이의 제조장치 및 제조방법
JP2020532434A (ja) * 2017-09-04 2020-11-12 エムエイチ テクノロジズ インコーポレーテッドMh Technologies Inc. 冷却装置の製造方法及びそれを用いたモータハウジング冷却装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI129941B (en) * 2018-05-21 2022-11-15 Valmet Technologies Oy Heat exchanger with a belt and method of making the same
CN110142395B (zh) * 2019-06-25 2020-10-09 遵义航天新力精密铸锻有限公司 铝合金冷却板铸造工艺
CN112737197A (zh) * 2020-12-30 2021-04-30 东南大学 一种电机端部冷却水道及其制作方法
CN116118433A (zh) * 2021-11-12 2023-05-16 富联精密电子(天津)有限公司 电动车冷却系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123854A (ja) * 1990-09-10 1992-04-23 Toyota Motor Corp 管体の鋳ぐるみ方法
JPH04172168A (ja) * 1990-11-05 1992-06-19 Kobe Steel Ltd 銅合金鋳物への銅管鋳ぐるみ鋳造方法
JPH06304739A (ja) * 1993-04-20 1994-11-01 Furukawa Electric Co Ltd:The 水冷式コールドプレートおよびその製造方法
JP2000340728A (ja) * 1999-05-26 2000-12-08 Mitsubishi Electric Corp ヒートシンクおよびその製造方法
JP2011125893A (ja) * 2009-12-17 2011-06-30 Yokogawa Electric Corp 水冷式コールドプレート

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663551A (en) * 1949-08-16 1953-12-22 Heat X Changer Co Inc Plate cooler
US4720981A (en) * 1986-12-23 1988-01-26 American Standard Inc. Cooling of air conditioning control electronics
US5154792A (en) * 1990-12-28 1992-10-13 Basf Corporation Bonding method employing urethane adhesives having good heat transfer properties
US5697428A (en) * 1993-08-24 1997-12-16 Actronics Kabushiki Kaisha Tunnel-plate type heat pipe
US5484015A (en) * 1993-12-03 1996-01-16 Kyees; Melvin Cold plate and method of making same
US5829516A (en) * 1993-12-15 1998-11-03 Aavid Thermal Products, Inc. Liquid cooled heat sink for cooling electronic components
US6031751A (en) * 1998-01-20 2000-02-29 Reliance Electric Industrial Company Small volume heat sink/electronic assembly
US20160262284A1 (en) * 2015-03-03 2016-09-08 Asia Vital Components (China) Co., Ltd. Cold plate structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123854A (ja) * 1990-09-10 1992-04-23 Toyota Motor Corp 管体の鋳ぐるみ方法
JPH04172168A (ja) * 1990-11-05 1992-06-19 Kobe Steel Ltd 銅合金鋳物への銅管鋳ぐるみ鋳造方法
JPH06304739A (ja) * 1993-04-20 1994-11-01 Furukawa Electric Co Ltd:The 水冷式コールドプレートおよびその製造方法
JP2000340728A (ja) * 1999-05-26 2000-12-08 Mitsubishi Electric Corp ヒートシンクおよびその製造方法
JP2011125893A (ja) * 2009-12-17 2011-06-30 Yokogawa Electric Corp 水冷式コールドプレート

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176535A1 (zh) * 2017-03-31 2018-10-04 华中科技大学 一种新型机械泵液冷散热系统
JP2020532434A (ja) * 2017-09-04 2020-11-12 エムエイチ テクノロジズ インコーポレーテッドMh Technologies Inc. 冷却装置の製造方法及びそれを用いたモータハウジング冷却装置
EP3681021A4 (en) * 2017-09-04 2021-06-09 MH Technologies Inc. METHOD OF MANUFACTURING A COOLING DEVICE AND ENGINE HOUSING COOLING DEVICE USING IT
JP7033809B2 (ja) 2017-09-04 2022-03-11 エムエイチ テクノロジズ インコーポレーテッド 冷却装置の製造方法及びそれを用いたモータハウジング冷却装置
US11670985B2 (en) 2017-09-04 2023-06-06 Mh Technologies Inc. Method for manufacturing cooling device and motor housing cooling device using same
WO2019050122A1 (ko) * 2017-09-06 2019-03-14 이현환 냉매파이프가 매립되는 방열장치의 케이싱, 이의 제조장치 및 제조방법

Also Published As

Publication number Publication date
JP6474142B2 (ja) 2019-02-27
US10532401B2 (en) 2020-01-14
US20180078997A1 (en) 2018-03-22
JPWO2016167022A1 (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6474142B2 (ja) 液冷式コールドプレートおよびその製造方法
JP4539425B2 (ja) ヒートパイプ式ヒートシンク及びその製造方法
US20110100604A1 (en) Heat radiating device and manufacturing method of heat radiating device
WO2009104575A1 (ja) パイプ接続部品の製造方法、ケーシング構成部材の製造方法および中空部品へのパイプ接続構造
WO2003073816A1 (en) Finned- tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same
US8245763B2 (en) Heat dissipation device with guilding lines and soldered heat pipes and manufacturing method thereof
KR20150053135A (ko) 열교환기 및 그 제조방법
CN105081273B (zh) 金属件及金属件成型方法
CN102706205A (zh) 热交换器及接合热交换器的管的方法
JPWO2010047129A1 (ja) 冷却装置を有するリニアモータコイル組立体
JP4985127B2 (ja) 熱交換器およびその製造方法
JP2008166356A (ja) アルミニューム製ヒートシンクの製造方法
JP5259522B2 (ja) 熱転写装置
TW200839981A (en) Heat sink
JP5429749B2 (ja) 水冷式コールドプレート
JP2016025097A (ja) 液冷ジャケット及び液冷ジャケットの製造方法
JP2010194719A (ja) スプルーブッシュ及びスプルーブッシュの製造方法
JP2014013848A (ja) 熱交換器
JP6360722B2 (ja) くし歯形放熱ピン部材を用いたパワー半導体の水冷用ピン付き放熱板
JP2017059713A (ja) 放熱器の製造方法
CN106612603A (zh) 一种新型铝铜复合管散热腔体压铸制造工艺
JP5021290B2 (ja) ヘリボーン型液冷ヒートシンクおよびその製造方法
JPH06304739A (ja) 水冷式コールドプレートおよびその製造方法
KR20080047191A (ko) 자동변속기용 오일냉각기 제조방법
JP7031666B2 (ja) 成形装置及び成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512219

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15556307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779814

Country of ref document: EP

Kind code of ref document: A1