US2663551A - Plate cooler - Google Patents

Plate cooler Download PDF

Info

Publication number
US2663551A
US2663551A US110588A US11058849A US2663551A US 2663551 A US2663551 A US 2663551A US 110588 A US110588 A US 110588A US 11058849 A US11058849 A US 11058849A US 2663551 A US2663551 A US 2663551A
Authority
US
United States
Prior art keywords
tube
casting
clamping
units
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US110588A
Inventor
Boling Cecil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEAT X CHANGER CO Inc
HEAT-X-CHANGER Co Inc
Original Assignee
HEAT X CHANGER CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEAT X CHANGER CO Inc filed Critical HEAT X CHANGER CO Inc
Priority to US110588A priority Critical patent/US2663551A/en
Application granted granted Critical
Publication of US2663551A publication Critical patent/US2663551A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49359Cooling apparatus making, e.g., air conditioner, refrigerator

Definitions

  • This invention relates to heat exchange units and the manufacture thereof, and more in particular to units for cooling liquids or the like by the extraction of heat by ice or a cold fluid such as water or air.
  • the present invention is related to that of United States Patent No. 2,466,676, which issued April 12, 1949, and also to copending applications, Serial No. 16,050, i'lled March 20, 1948, and Serial No. 75,052, filed February 7, 1949.
  • the illustrative embodiments of the present invention are liquid coolers in the form of flat plates each having a cooling coil imbedded therein. These units may be used for cooling water or other liquids such as-various beverages by passing the liquid through the cooling coil while the plate is in contact with ice or cold water or is positioned in a cold chamber such as a refrigerator.
  • liquid for human consumption such as water and various beverages
  • liquid for human consumption such as water and various beverages
  • the illustrative embodiments of the present invention are units which are used for this general purpose, but which have advantages not obtained with prior devices.
  • An object of the present invention is to provide units of the above character which are efcient and dependable in use, sturdy in construction, light in weight, inexpensive to manufacture, and efficient in the utilization of materials.
  • a further object is to provide for the manufacture of units of the above character in a manner which avoids the difficulties encountered in the past in the manufacture of similar units.
  • a further object is to provide improvements in the manufacture of units formed by a pipe or tube embedded in a casting.
  • a further object is to provide an extremely eiicient and dependable manner of holding tubing or pipes in place during the casting of metal therearound.
  • Fig. 1 is a top plan view with parts broken away of a cooling unit which is one embodiment of the invention
  • Fig. 2 is an end elevation from the right-hand end of Fig. 1 with parts broken away;
  • Fig. 3 is a sectional view on the line 3-3 of Fig. 1J
  • Fig. 4 is an enlarged fragmentary view. of one of the clamping elements of the embodiment of Figs. 1 to 3;
  • Fig. 5 is an enlarged sectional view on the line 5 5 of Fig. 7;
  • Fig. 6 is a sectional view on the line 6--6 of Fig. 7;
  • Fig. 7 is a view similar to Fig. 1 but showing another embodiment of the invention.
  • a flat rectangular plate or casting 2 of cast aluminum has embedded therein a copper tube 4.
  • Tube 4 is formed by twelve substantially' parallel tube portions or runs 6 connected respectively at their ends by U-tube portions into the continuous tube, and the two ends of the tube are connected respectively to two ttings 8.
  • each fitting 8 has a main body portion I0 which is hexagonal in crosssection with an annular groove l2 therearound. Portion l0 is partially embedded within casting 2 so that groove I2 and a hexagonal shape cooperate to anchor the fitting rigidly in the casting. The other end portion of the fitting projects from the casting and may be engaged by a wrench to hold the device from turning.
  • a threaded nipple portion I4 Integral with this externally projecting portion is a threaded nipple portion I4 which is adapted to receive an internally threaded pipe connection, thus to provide a fluid connection to the iitting and the adjacent end of tube 4.
  • a boss I6 On the bottorn surface of casting 2 adjacent each of the corners, there is a boss I6 which is a segment of a sphere and is integral with the main portion of the casting. These bosses act as feet to support the unit upon a flat surface or a frame, and during use provide a space for drainage from around the plate; for example, when the cooling medium is ice supported by the plate the water is readily drained olf.
  • tube 4 be properly positioned so that each run 6 is properly spaced from the edges of the casting and, also, from the adjacent runs. Furthermore, it is important that tube l be surrounded by a casting of uniform high strength so that the unit will not be injured when subjected to extreme stresses such as are involved if water is frozen in the tube. Accordingly, prior to the casting operation, the tube is formed into the desired shape and is then clamped so as to hold the tube portions in their respective positions during the casting operation.
  • the clamping means in this embodiment is in ,the form of two identical clamping assemblies I7 and I9 positioned, as shown in Figure 1, adjacent the ends of tube runs, and extending transversely thereof.
  • the details of clamping assembly Il are shown in Figure 3, and will now be discussed.
  • Extending along the top of the tube runs is a 'lat steel strip I8 and extending down the bottom of the tubes are three clamping brackets 20, each formedb'y a flat rsteel strip having its ends bent through varcs and terminating in rightiangle ends.
  • Each of these clamping brackets embraces four of the tube runs and is held to strip I8 by two clamping units 22, each formed by a short round threaded rod 2l! of aluminum and two steel push-on nuts 26.
  • the push-on nuts are of the type shown in Figure 4 and are appliedby'pushing them onto the ends of rod 2A to the positions shown.
  • Each of these nuts hasj an annularirim portion and two radially projecting arms which l extend toward each other and, also, upwardly above the plane of the rim portion. These arms Vhave arcuate end surfaces which project into the threads on the opposite sides of the rod 2d.
  • the two arms tend to bite intothe sides of rod 24 and hold the nut from moving from the position shown toward the end of the rod and the rim portion of the nut lies iiat against the surface :of the steel strip.
  • each of the clamping brackets 2B is held so that it presses tightly against/the four tube runs and holds them against the strip I8.
  • this clamping means -or tube clamp construction gives extreme Vrigidity to the tube assembly prior to and during the casting operation. Furthermore, it is so constructed and arranged that it is easily assembled arid-it performs its functions in an ecient inanner, and it remains in place and is embedded into the casting', and under some circumstances, portions of the clamping means may even be vpartially melted so that the clamping means is thoroughly fused to the casting. This promotes the ovving of the molten metal around all surfaces of tube 4 so that there are no voids. At the same time, theclamping means not only holds the tube during" the casting operation, but it also strengthens' the' completed unit.
  • tube i is copper
  • the casting is aluminum (that is, a substantially pure aluminum or l an alloy such as aluminum containing a small percentage of copf per) ⁇ and during the casting operation, the aluminum shrinks onto the copper in the manner outlined in the copending applications referred to above, so as to give a very high rate of heat ⁇ transfer between the tube yand the casting.
  • a heat exchange unit is provided which is extremely efficient in operation, yand at the same time, it is sturdy due 'In part to the strengthening eiect of the tube and the clamping means within the casting.
  • tube i is rst bent Vto the desired shape, and fittings 8 are attached and soldered into place. Strips I8 are then put in place', and the clamping brackets clamped to "the strip, thus rigidly holding the tube runs in place.
  • the tube assembly is then placed in a I'iio'ld and is supported by fittings 8.
  • the molten aluminum is poured into the'mold and, as indicated above, it hows around the tube asseiribly, and ills the spaces in and around the various portions' of the clamping assemblies.
  • the Yele- -ments of .the clamping assemblies are relatively small in cross section, and there are no cavities or recesse's'which the' molten metal can notenter. Thus', whenfthe molten meta'rhardens the'castin'g ⁇ vv'hat similar to that of Figures 1 to 4; however,
  • the tube 28 is spiral (see A'gf'T) (with one end at the center having a ttng sa projecting downwardly (See also Fig' 5) and withthether end being at one corner (Fig. 7) cftlie unit and having a tting 32 projecting up- -wardly-.w'1ube28 is embedded in a casting 30 similarto casting 2.
  • the upwardly projecting fitting 32 is similar to fittings 8 and fitting 34 is substantially cylindrical with an extension 36 by meansgof which itinay be Vconnected by brazing to a tube (not shown).
  • the tube is clampedinto desired form by a main clamping' assembly A35 shown in Fig.
  • the main clamping assembly 35 (Fig. 5.) is formed by a top steel strip 33 having ktwo clamping strips 60, also o'f steel; and Ieach 'ernbracing the seven fullturn'sof the tube. Each clamping strip is held in place by a pair of clamp'- ing units -62 identical with units 2.2 of Figs. l1 to 4.
  • the auxiliary clamp-ing 'unit 37 iis lformed by a top steel strip M, a clamping 'strip 46 and a'pair of clamping units 8, rigidly holding these strips together. Units are identical 'with units 't2 and 22.
  • the clampingassembly 39 (shown at the right hand .side of Fig. 7) is identical with assembly 3l. Y v
  • the .heat ⁇ exchange unit of Figs. 5to '7 is adapted to be positioned in the bottoni' of an -ic'echamber and to' support a "cake of ice.
  • the liquid to b'e cooled passes to the unit through a pipe ⁇ corine'cted to tting 22 and it is withdrawn through a pipe connected to fitting 3%.
  • This einbodiment of the invention has many of the ⁇ advantages possessed by the embodiment of Figs'. 1 to 4in that it is ercient and dependent in operation, light in weight and sturdy in construction, and it is adaptable to various uses. Both of the embodiments may be subjected to extreme abuse' without impairing their usefulness.
  • the arrangement and construction is such that Afull advantage is taken of the various characteristics of the metals from which these units are made.
  • the higher coeiiicient of expansion and shrinking of the aluminum causes the casting to place' the tube under compression so that when stresses are later exerted from the inside of the tube, they are resisted bythe tube andthe casting working together.
  • this compressed condition of the Vtube' improves the heat transfer relationship s'o' that the heat passes readily between thetube and the casting.
  • the tube is bent into a at coil or is fiat wound" yso that-the ⁇ enclosing casting may be a flat' rectangular plate as shown.
  • This particular construction has important advantages for certain applications.
  • the tubes are copper and for certain conditions of use this is preferable. However, under some circumstances other tubings such as stainless steel may be used.
  • a liquid tube adapted to have a liquid ow therethrough for the carrying on of a heat transfer operation, said tube being bent into the form of a flat tube conguration with the tube having its axis substantially in a single plane and with the tube being substantially confined between two parallel planes which are spaced apart a distance equal to the outside diameter of the tube, said tube having successive portions which extend in a predetermined spaced relationship with respect to each other, a pair of fittings attached respectively to the ends of said tube, one of said ttings comprises a metal block which has a radial opening into which the end of the tube extends and an axial passageway connected thereto to provide the iiuid connection with said end of the tube, s aid last-mentioned fitting having a portion which is non-circular in cross-section and has iiat side surfaces, said last-mentioned tting having an anchor portion to which the tube end is attached and having a connecting portion remote therefrom and project

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

C. BOLIN G PLATE COOLER Dec. 22, 1953 .3 Sheets-Sheet l Filed Aug. 1'6. 1949 I L l I l I l I IIIPIIIIIIIIII I I I I l I I M l I l l II||||||||Ll l l I I I 'IWI/.f I I I l I I l l I I I IIIIMIIF. I l I l I I I I I I I l l I l I I I I l I LI I \\\H |||||\H|/ L Si u T I+ III LHQ I I I l I l l I I l l I I l l Il. Il ||||||I.l|\\ ITI rllll? Full ,Il A ,I N IY- m.
ISI*
Cecil Boli BY MVM *j ATTO INVENTOR c. BOLING 2,663,551
PLATE COOLER 3 Sheets-Sheet 2 Dec. 22, 1953 Filed Aug. 16, 1949 ATTOR w IAM, mh f l`| ,nl w 0 f @N @v r A m .m H A I 1 l CY E @y L QN ff,
ni ...i ,.M
All
C. BOLING PLATE COOLER Dec. 22', 1953 3 Sheets-Sheet 3 Filed Aug. 16, 1949 INVENTQR Cecil Bohn l Patented Dec. 22, 1953 PLATE COOLER Cecil Boling, Brewster, N. Y., assignor to The Heat-X-Chan'ger Co., Inc., Brewster, N. Y., a
corporation of New York Application August 16, 1949, Serial No. 110,588
3r Claims.
This invention relates to heat exchange units and the manufacture thereof, and more in particular to units for cooling liquids or the like by the extraction of heat by ice or a cold fluid such as water or air.
The present invention is related to that of United States Patent No. 2,466,676, which issued April 12, 1949, and also to copending applications, Serial No. 16,050, i'lled March 20, 1948, and Serial No. 75,052, filed February 7, 1949.
The illustrative embodiments of the present invention are liquid coolers in the form of flat plates each having a cooling coil imbedded therein. These units may be used for cooling water or other liquids such as-various beverages by passing the liquid through the cooling coil while the plate is in contact with ice or cold water or is positioned in a cold chamber such as a refrigerator.
In the past, liquid for human consumption, such as water and various beverages, have been cooled by placing them in refrigerators or by flowing the liquid through'a pipe or the like which is subjected to refrigeration. The illustrative embodiments of the present invention are units which are used for this general purpose, but which have advantages not obtained with prior devices.
An object of the present invention is to provide units of the above character which are efcient and dependable in use, sturdy in construction, light in weight, inexpensive to manufacture, and efficient in the utilization of materials. A further object is to provide for the manufacture of units of the above character in a manner which avoids the difficulties encountered in the past in the manufacture of similar units. A further object is to provide improvements in the manufacture of units formed by a pipe or tube embedded in a casting. A further object is to provide an extremely eiicient and dependable manner of holding tubing or pipes in place during the casting of metal therearound. These and other objects will be in part obvious, and in part pointed out below.
In the drawings which show two embodiments of the invention:
Fig. 1 is a top plan view with parts broken away of a cooling unit which is one embodiment of the invention;
Fig. 2 is an end elevation from the right-hand end of Fig. 1 with parts broken away;
Fig. 3 is a sectional view on the line 3-3 of Fig. 1J
Fig. 4 .is an enlarged fragmentary view. of one of the clamping elements of the embodiment of Figs. 1 to 3;
Fig. 5 is an enlarged sectional view on the line 5 5 of Fig. 7;
Fig. 6 is a sectional view on the line 6--6 of Fig. 7;
Fig. 7 is a view similar to Fig. 1 but showing another embodiment of the invention.
Referring particularly to Fig. 1 of the drawing, a flat rectangular plate or casting 2 of cast aluminum has embedded therein a copper tube 4. Tube 4 is formed by twelve substantially' parallel tube portions or runs 6 connected respectively at their ends by U-tube portions into the continuous tube, and the two ends of the tube are connected respectively to two ttings 8. Referring to Fig. 2, each fitting 8 has a main body portion I0 which is hexagonal in crosssection with an annular groove l2 therearound. Portion l0 is partially embedded within casting 2 so that groove I2 and a hexagonal shape cooperate to anchor the fitting rigidly in the casting. The other end portion of the fitting projects from the casting and may be engaged by a wrench to hold the device from turning. Integral with this externally projecting portion is a threaded nipple portion I4 which is adapted to receive an internally threaded pipe connection, thus to provide a fluid connection to the iitting and the adjacent end of tube 4. On the bottorn surface of casting 2 adjacent each of the corners, there is a boss I6 which is a segment of a sphere and is integral with the main portion of the casting. These bosses act as feet to support the unit upon a flat surface or a frame, and during use provide a space for drainage from around the plate; for example, when the cooling medium is ice supported by the plate the water is readily drained olf.
During manufacture of this unit, it is important that tube 4 be properly positioned so that each run 6 is properly spaced from the edges of the casting and, also, from the adjacent runs. Furthermore, it is important that tube l be surrounded by a casting of uniform high strength so that the unit will not be injured when subjected to extreme stresses such as are involved if water is frozen in the tube. Accordingly, prior to the casting operation, the tube is formed into the desired shape and is then clamped so as to hold the tube portions in their respective positions during the casting operation.
The clamping means in this embodiment is in ,the form of two identical clamping assemblies I7 and I9 positioned, as shown in Figure 1, adjacent the ends of tube runs, and extending transversely thereof. The details of clamping assembly Il are shown in Figure 3, and will now be discussed. Extending along the top of the tube runs is a 'lat steel strip I8 and extending down the bottom of the tubes are three clamping brackets 20, each formedb'y a flat rsteel strip having its ends bent through varcs and terminating in rightiangle ends. Each of these clamping brackets embraces four of the tube runs and is held to strip I8 by two clamping units 22, each formed by a short round threaded rod 2l! of aluminum and two steel push-on nuts 26. The push-on nuts are of the type shown in Figure 4 and are appliedby'pushing them onto the ends of rod 2A to the positions shown. Each of these nuts 'hasj an annularirim portion and two radially projecting arms which l extend toward each other and, also, upwardly above the plane of the rim portion. These arms Vhave arcuate end surfaces which project into the threads on the opposite sides of the rod 2d. Thus, the two arms tend to bite intothe sides of rod 24 and hold the nut from moving from the position shown toward the end of the rod and the rim portion of the nut lies iiat against the surface :of the steel strip. In this Way, each of the clamping brackets 2B is held so that it presses tightly against/the four tube runs and holds them against the strip I8.
Referring again 'to Figure l, this clamping means -or tube clamp construction gives extreme Vrigidity to the tube assembly prior to and during the casting operation. Furthermore, it is so constructed and arranged that it is easily assembled arid-it performs its functions in an ecient inanner, and it remains in place and is embedded into the casting', and under some circumstances, portions of the clamping means may even be vpartially melted so that the clamping means is thoroughly fused to the casting. This promotes the ovving of the molten metal around all surfaces of tube 4 so that there are no voids. At the same time, theclamping means not only holds the tube during" the casting operation, but it also strengthens' the' completed unit.
Inthe illustrative embodiment, tube i is copper, and the casting is aluminum (that is, a substantially pure aluminum or l an alloy such as aluminum containing a small percentage of copf per) `and during the casting operation, the aluminum shrinks onto the copper in the manner outlined in the copending applications referred to above, so as to give a very high rate of heat `transfer between the tube yand the casting. Thus, a heat exchange unit is provided which is extremely efficient in operation, yand at the same time, it is sturdy due 'In part to the strengthening eiect of the tube and the clamping means within the casting.
In manufacturing the unit, tube i is rst bent Vto the desired shape, and fittings 8 are attached and soldered into place. Strips I8 are then put in place', and the clamping brackets clamped to "the strip, thus rigidly holding the tube runs in place. The tube assembly is then placed in a I'iio'ld and is supported by fittings 8. The molten aluminum is poured into the'mold and, as indicated above, it hows around the tube asseiribly, and ills the spaces in and around the various portions' of the clamping assemblies. The Yele- -ments of .the clamping assemblies are relatively small in cross section, and there are no cavities or recesse's'which the' molten metal can notenter. Thus', whenfthe molten meta'rhardens the'castin'g `vv'hat similar to that of Figures 1 to 4; however,
inthfis embodiment, the tube 28 is spiral (see A'gf'T) (with one end at the center having a ttng sa projecting downwardly (See also Fig' 5) and withthether end being at one corner (Fig. 7) cftlie unit and having a tting 32 projecting up- -wardly-.w'1ube28 is embedded in a casting 30 similarto casting 2. The upwardly projecting fitting 32 is similar to fittings 8 and fitting 34 is substantially cylindrical with an extension 36 by meansgof which itinay be Vconnected by brazing to a tube (not shown). During manufacture; the tube is clampedinto desired form by a main clamping' assembly A35 shown in Fig. 5, and two auxiliary clamping assemblies 3l and 3S of the type shown in Fig. Gand positioned as shown in Fig. '7. The main clamping assembly 35 (Fig. 5.) is formed by a top steel strip 33 having ktwo clamping strips 60, also o'f steel; and Ieach 'ernbracing the seven fullturn'sof the tube. Each clamping strip is held in place by a pair of clamp'- ing units -62 identical with units 2.2 of Figs. l1 to 4. The auxiliary clamp-ing 'unit 37 iis lformed by a top steel strip M, a clamping 'strip 46 and a'pair of clamping units 8, rigidly holding these strips together. Units are identical 'with units 't2 and 22. The clampingassembly 39 (shown at the right hand .side of Fig. 7) is identical with assembly 3l. Y v
The .heat `exchange unit of Figs. 5to '7 is adapted to be positioned in the bottoni' of an -ic'echamber and to' support a "cake of ice. The liquid to b'e cooled passes to the unit through a pipe `corine'cted to tting 22 and it is withdrawn through a pipe connected to fitting 3%. This einbodiment of the invention has many of the `advantages possessed by the embodiment of Figs'. 1 to 4in that it is ercient and dependent in operation, light in weight and sturdy in construction, and it is adaptable to various uses. Both of the embodiments may be subjected to extreme abuse' without impairing their usefulness.
As disclosed in the' patent referred to` above, and the copending applications', the arrangement and construction is such that Afull advantage is taken of the various characteristics of the metals from which these units are made. During manufacture, the higher coeiiicient of expansion and shrinking of the aluminum causes the casting to place' the tube under compression so that when stresses are later exerted from the inside of the tube, they are resisted bythe tube andthe casting working together. Furthermore, this compressed condition of the Vtube'improves the heat transfer relationship s'o' that the heat passes readily between thetube and the casting. VUnder some circumstances, there vis an actual metallic bondv lbetvs'feen the outside tube wall and the' casting, but even if such a bond does notexfist, the high heat transfer relationship is maintained throughout a wide range f operating temperatures.
In bot-h of the illustrative embodiments the tube is bent into a at coil or is fiat wound" yso that-the `enclosing casting may be a flat' rectangular plate as shown. This particular construction has important advantages for certain applications. In each of the embodiments the tubes are copper and for certain conditions of use this is preferable. However, under some circumstances other tubings such as stainless steel may be used.
As many possible embodiments may be made of the mechanical features of the above invention and as the art herein described might be varied in various parts, all without departing from the scope of the invention, it is to be understood that all matter hereinbefore set forth, or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
I claim:
1. In a heat exchange unit of the character described, the combination of, a liquid tube adapted to have a liquid ow therethrough for the carrying on of a heat transfer operation, said tube being bent into the form of a flat tube conguration with the tube having its axis substantially in a single plane and with the tube being substantially confined between two parallel planes which are spaced apart a distance equal to the outside diameter of the tube, said tube having successive portions which extend in a predetermined spaced relationship with respect to each other, a pair of fittings attached respectively to the ends of said tube, one of said ttings comprises a metal block which has a radial opening into which the end of the tube extends and an axial passageway connected thereto to provide the iiuid connection with said end of the tube, s aid last-mentioned fitting having a portion which is non-circular in cross-section and has iiat side surfaces, said last-mentioned tting having an anchor portion to which the tube end is attached and having a connecting portion remote therefrom and projecting from the axis of the tube end, a block of cast aluminum surrounding said tube with a wall thickness suicient to withstand substantial forces within the tube and surrounding intimately the entire external surface of the tube between said fittings and enclosing said anchor portion of said last-mentioned fitting with the connecting portion thereof projecting from a surface of said block and providing a iiuid connection through said tting to the tube, said anchor portion of the tting and the tube end providing a rigid anchor within the block with an interlocking relationship which prevents axial and turning movement of the tting with respect to the block, and an embedded clamping structure for said tube comprising a plurality of strips and strip-holding means, said strips being in parallel mating sets with the strips of each set extending upon the two sides of the coil along said parallel planes with each strip extending across a plurality of said successive portions of the tube transversely thereto and along one of said parallel planes and each strip being substantially straight throughout the Zones of contact with the tube, said strip-holding means interconnecting the mating strips and extending therebetween to hold the strips rigidly against the tube, said strip-holding means being out of contact with the tube and the strips and the holding means forming a structure which permits the entry of molten aluminum during the casting operation.
2. The heat exchanger unit as described in claim l, wherein said tube is in the form of a plurality of substantially parallel straight portions interconnected respectively at their ends by U portions, and wherein said block is provided with integral protrusions which act as feet to support the unit.
3. A heat exchange unit as described in claim 1, wherein said tube is in the form of a spiral with one end centrally positioned and has its fitting projecting from one side of said block and With the other end adjacent the periphery of the block with its fitting projecting from the other side of the block.
CECIL BOLING.
References Cited in the le of this patent UNITED STATES PATENTS Number Name Date 1,454,291 Lehman May 8, 1923 1,702,565 'Foster Feb. 19, 1929 1,737,347 Wilson NOV. 26, 1929 1,847,573 Rupp Mar. 1, 1932 1,989,996 Mautsch Feb. 5, 1935 2,161,019 Coy June 6, 1939 2,166,161 Kleist July 18, 1939 2,466,676 Boling et al. Apr. 12, 1949
US110588A 1949-08-16 1949-08-16 Plate cooler Expired - Lifetime US2663551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US110588A US2663551A (en) 1949-08-16 1949-08-16 Plate cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US110588A US2663551A (en) 1949-08-16 1949-08-16 Plate cooler

Publications (1)

Publication Number Publication Date
US2663551A true US2663551A (en) 1953-12-22

Family

ID=22333844

Family Applications (1)

Application Number Title Priority Date Filing Date
US110588A Expired - Lifetime US2663551A (en) 1949-08-16 1949-08-16 Plate cooler

Country Status (1)

Country Link
US (1) US2663551A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011323A (en) * 1957-10-23 1961-12-05 Carbonic Dispenser Inc Ice plate
US4196775A (en) * 1977-09-19 1980-04-08 The Unites States Of America As Represented By The Secretary Of The Navy Shock-mounted, liquid cooled cold plate assembly
US4558499A (en) * 1982-06-14 1985-12-17 Acushnet Company Method of making a mold frame
US5484015A (en) * 1993-12-03 1996-01-16 Kyees; Melvin Cold plate and method of making same
US20030230399A1 (en) * 2002-06-14 2003-12-18 Hurlbert Kathryn M. Apparatus and method for extracting heat from a device
US20050028964A1 (en) * 2003-08-04 2005-02-10 Cleland James M. Cold plate for beer dispensing tower
US20060050483A1 (en) * 2004-09-08 2006-03-09 Wilson Michael J Liquid cooled heat sink with cold plate retention mechanism
US20100314081A1 (en) * 2009-06-12 2010-12-16 Reis Bradley E High Temperature Graphite Heat Exchanger
US20140131014A1 (en) * 2012-11-14 2014-05-15 Cooler Master Development Corporation Heat dissipating device
US20180078997A1 (en) * 2015-04-13 2018-03-22 Hitachi Kokusai Electric Inc. Liquid-cooling cold plate and method for manufacturing same
US20190129479A1 (en) * 2016-04-15 2019-05-02 Zheming Zhou Water cooling plate composed of multi channels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1454291A (en) * 1921-02-01 1923-05-08 Bethlehem Foundry & Machine Co Cast-metal container
US1702565A (en) * 1925-06-25 1929-02-19 Howard L Foster Coil for artificial-refrigerating systems
US1737347A (en) * 1927-01-22 1929-11-26 Standard Oil Co Heat exchanger
US1847573A (en) * 1930-03-12 1932-03-01 Commercial Iron Works Platen for presses with heating coils
US1989996A (en) * 1931-02-26 1935-02-05 Manuf Generale Metallurg Sa Heat exchange unit
US2161019A (en) * 1937-06-28 1939-06-06 Joseph A Coy Heat exchanger
US2166161A (en) * 1937-02-27 1939-07-18 Dole Refrigerating Co Cooling apparatus
US2466676A (en) * 1946-04-19 1949-04-12 Boling Liquid cooling unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1454291A (en) * 1921-02-01 1923-05-08 Bethlehem Foundry & Machine Co Cast-metal container
US1702565A (en) * 1925-06-25 1929-02-19 Howard L Foster Coil for artificial-refrigerating systems
US1737347A (en) * 1927-01-22 1929-11-26 Standard Oil Co Heat exchanger
US1847573A (en) * 1930-03-12 1932-03-01 Commercial Iron Works Platen for presses with heating coils
US1989996A (en) * 1931-02-26 1935-02-05 Manuf Generale Metallurg Sa Heat exchange unit
US2166161A (en) * 1937-02-27 1939-07-18 Dole Refrigerating Co Cooling apparatus
US2161019A (en) * 1937-06-28 1939-06-06 Joseph A Coy Heat exchanger
US2466676A (en) * 1946-04-19 1949-04-12 Boling Liquid cooling unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011323A (en) * 1957-10-23 1961-12-05 Carbonic Dispenser Inc Ice plate
US4196775A (en) * 1977-09-19 1980-04-08 The Unites States Of America As Represented By The Secretary Of The Navy Shock-mounted, liquid cooled cold plate assembly
US4558499A (en) * 1982-06-14 1985-12-17 Acushnet Company Method of making a mold frame
US5484015A (en) * 1993-12-03 1996-01-16 Kyees; Melvin Cold plate and method of making same
US20030230399A1 (en) * 2002-06-14 2003-12-18 Hurlbert Kathryn M. Apparatus and method for extracting heat from a device
US8584738B2 (en) * 2002-06-14 2013-11-19 Lockheed Martin Corporation Apparatus and method for extracting heat from a device
US7363962B2 (en) 2003-08-04 2008-04-29 Cleland Sales Corporation Cold plate for beer dispensing tower
US20050028964A1 (en) * 2003-08-04 2005-02-10 Cleland James M. Cold plate for beer dispensing tower
US7149087B2 (en) 2004-09-08 2006-12-12 Thermal Corp. Liquid cooled heat sink with cold plate retention mechanism
US20060050483A1 (en) * 2004-09-08 2006-03-09 Wilson Michael J Liquid cooled heat sink with cold plate retention mechanism
US20100314081A1 (en) * 2009-06-12 2010-12-16 Reis Bradley E High Temperature Graphite Heat Exchanger
US20140131014A1 (en) * 2012-11-14 2014-05-15 Cooler Master Development Corporation Heat dissipating device
US9347712B2 (en) * 2012-11-14 2016-05-24 Cooler Master Development Corporation Heat dissipating device
US20180078997A1 (en) * 2015-04-13 2018-03-22 Hitachi Kokusai Electric Inc. Liquid-cooling cold plate and method for manufacturing same
US10532401B2 (en) * 2015-04-13 2020-01-14 Hitachi Kokusai Electric Inc. Liquid-cooling cold plate and method for manufacturing same
US20190129479A1 (en) * 2016-04-15 2019-05-02 Zheming Zhou Water cooling plate composed of multi channels

Similar Documents

Publication Publication Date Title
US2663551A (en) Plate cooler
US3739842A (en) Water cooler heat exchanger
CN101844184B (en) Phase-change non-destructive pipe expanding method for inner finned tube
US3750248A (en) Method for making evaporator or condenser construction
US2466676A (en) Liquid cooling unit
US2075511A (en) Heat exchanger
CN105486128A (en) Integrated flat single-face phase-change restraining heat conducting board type heat exchanger and manufacturing method thereof
US3469415A (en) Heat exchanger for a beverage dispensing machine
US2458189A (en) Method of expanding tubing by freezing liquid therein
US2722733A (en) Method of making heat exchanger tube
US1799991A (en) Refrigerating apparatus
US2052014A (en) Heat transfer method and apparatus
US2487257A (en) Method of expanding containers by freezing liquid therein
US2039556A (en) Beverage cooler
CN214620182U (en) Novel refrigeration plate evaporator
GB2080509A (en) Heat Exchanger and Method of Manufacture Thereof
CN211782261U (en) Intermittent operation heat exchanger
US2013187A (en) Heat exchanger
CN113048817A (en) Manufacturing method of heat exchange device
CN111219948A (en) Intermittent operation heat exchange device and end constant temperature method
US2573583A (en) Plate type refrigerant evaporator
US3360942A (en) Thermoelectric heat pump assembly
JP5341436B2 (en) Refrigerator heat exchanger and method for cooling liquefied gas using the heat exchanger
JP3715440B2 (en) Heat storage system using carbon fiber and its appliance
CN219914131U (en) Condenser pipe mounting frame for refrigeration