WO2016166872A1 - フーリエ変換型分光光度計 - Google Patents
フーリエ変換型分光光度計 Download PDFInfo
- Publication number
- WO2016166872A1 WO2016166872A1 PCT/JP2015/061751 JP2015061751W WO2016166872A1 WO 2016166872 A1 WO2016166872 A1 WO 2016166872A1 JP 2015061751 W JP2015061751 W JP 2015061751W WO 2016166872 A1 WO2016166872 A1 WO 2016166872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- light
- light source
- laser light
- mirror
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims abstract description 46
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
- G01J3/453—Interferometric spectrometry by correlation of the amplitudes
- G01J3/4535—Devices with moving mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/2866—Markers; Calibrating of scan
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N2021/3595—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
Definitions
- the present invention relates to a Fourier transform type spectrophotometer.
- FTIR Fast Fourier Transform Infrared Spectrometer
- Such FTIR is configured, for example, as shown in FIG. 4 (see Patent Document 1). That is, the FTIR has a main interferometer that is housed in the interferometer chamber 400 and includes an infrared light source 410, a condensing mirror 431a, a collimator mirror 431b, a beam splitter 440, a moving mirror 450, and a fixed mirror 460.
- infrared light emitted from the infrared light source 410 is divided into two by a beam splitter 440 via a condenser mirror 431a and a collimator mirror 431b, one being a fixed mirror 460 and the other being a moving mirror.
- the light is reflected at 450, and united again in the same optical path to become infrared interference light.
- the infrared interference light is collected by the parabolic mirror 432, enters the sample chamber 470, and is irradiated onto the sample S, the infrared interference light is absorbed at a wavelength specific to the sample S.
- the absorbed infrared interference light is detected by the infrared light detector 480 via the ellipsoidal mirror 433, and the spectrum is created by Fourier transform.
- a control interferometer shown in FIG. 4 is used to measure the moving speed of the moving mirror 450.
- the control interferometer includes a laser light source 420, first and second laser reflecting mirrors 421 and 422, a beam splitter 440, a moving mirror 450, and a fixed mirror 460.
- the laser light emitted from the laser light source 420 is introduced onto the same optical path as the infrared light by the first laser light reflecting mirror 421, and the same interference system (beam splitter 440, Laser interference light is generated by passing through the movable mirror 450 and the fixed mirror 460).
- the laser interference light is extracted from the optical path of the infrared interference light by the second laser light reflecting mirror 422 and detected by the laser light detector 490.
- the moving speed of the movable mirror 450 is calculated based on the detected laser interference light.
- the beam splitter 440, the movable mirror 450, and the fixed mirror 460 are shared with the main interferometer.
- the first and second laser beam reflecting mirrors 421 and 422 are optical components not included in the main interferometer. Therefore, in order to obtain the position information of the movable mirror 450 by the control interferometer as shown in FIG. 4, it is necessary to add these reflecting mirrors separately from the configuration of the main interferometer.
- the increase in the number of optical components causes problems such as an increase in the size of the apparatus and an increase in the effort for adjusting the optical axis. Furthermore, a part of the infrared light path is blocked by the member for fixing the reflecting mirror.
- the present invention has been made in view of the above points, and an object of the present invention is to easily adjust the optical axis by reducing the number of optical components in a Fourier transform spectrophotometer having a control interferometer. And miniaturizing the device.
- a first aspect of the present invention made to solve the above-described problem includes a main interferometer that includes a measurement light source, a beam splitter, a movable mirror, and a fixed mirror, and generates interference light of measurement light, and a laser light source.
- a Fourier transform spectrophotometer comprising: a control interferometer that includes the beam splitter, the movable mirror, and the fixed mirror and generates laser interference light; a) a reflection surface that reflects the measurement light emitted from the measurement light source toward the beam splitter; and a first through hole that extends along the optical axis direction of the measurement light reflected by the reflection surface.
- a first reflector b) A laser light source holding unit that holds the laser light source so that the laser light emitted from the laser light source passes through the first through hole and enters the beam splitter.
- a second aspect of the present invention made to solve the above-described problem includes a main interferometer that includes a measurement light source, a beam splitter, a movable mirror, and a fixed mirror, and generates interference light of measurement light.
- a control light interferometer that includes a laser light source, the beam splitter, the moving mirror, and the fixed mirror, generates laser interference light, a laser light detector that detects the laser interference light, and interference light of the measurement light.
- a Fourier transform spectrophotometer comprising a measuring light detector to detect, a) a reflection surface for reflecting the measurement light reflected by the movable mirror and the fixed mirror by the beam splitter and reflecting the interference light of the measurement light toward the measurement light detector; A second through mirror through which a laser interference light traveling from the beam splitter toward the reflection surface along with the interference light passes, b) A laser detector holding unit that holds the laser light detector so that the laser interference light that has passed through the second through hole is incident on the laser light detector.
- an infrared light source a visible light source, an ultraviolet light source, or the like can be used as the measurement light source.
- the first and second reflecting mirrors may be a collimator mirror or a condensing mirror for making the measurement light parallel light.
- a reflecting mirror for laser light is placed on the optical path of the measurement light, and the laser beam is reflected by the reflecting mirror. Is introduced into the optical path of the measurement light, or the laser interference light is taken out from the optical path of the interference light of the measurement light.
- the first through hole is formed in the first reflecting mirror for reflecting the measurement light from the measurement light source toward the beam splitter, and the laser light is measured through the through hole. Were introduced into the beam splitter together with the measurement light. Therefore, in the first aspect, the laser light from the laser light source can be introduced onto the optical path of the measurement light without installing the reflected light for the laser light.
- the second through-hole is formed in the second reflecting mirror for reflecting the interference light of the measurement light toward the measurement light detector, and the laser interference light is transmitted through the through-hole.
- the light was separated from the interference light and made incident on the laser light detector. Therefore, in the second aspect, the laser interference light can be separated from the optical path of the interference light of the measurement light and detected by the laser detector without installing a laser reflecting mirror.
- a third aspect of the present invention is the first reflecting mirror, the first through hole, and the light source holding unit according to the first aspect, and the second reflecting mirror, the second through hole, and the laser according to the second aspect. And a detector holding unit.
- the measurement light and the laser light are incident on the first reflecting mirror and the first through hole, respectively, and are incident on the beam splitter in a state where the optical axes of the measurement light and the laser light coincide with each other.
- the interference light of the laser interference light and the measurement light is generated by the beam splitter, the fixed mirror, and the movable mirror, and the interference light of the laser interference light and the measurement light is incident on the second reflecting mirror and the second through hole, respectively.
- the interference light of the laser interference light and the measurement light are separated and enter the laser detector and the measurement light detector, respectively.
- the Fourier transform spectrophotometer In the Fourier transform spectrophotometer according to the present invention, a conventionally used reflector for introducing laser light from a laser light source into the optical path of measurement light and laser interference light are separated from interference light of measurement light. Therefore, at least one of the reflecting mirrors is unnecessary, and the number of optical components to be used is reduced. Further, the Fourier transform spectrophotometer can be miniaturized by reducing the number of optical components. By reducing the number of optical components, the labor for adjusting the optical axis is reduced, and the optical axis can be easily adjusted.
- the schematic block diagram of FTIR by embodiment of this invention The schematic block diagram of FTIR at the time of using only the 1st reflective mirror and laser light source holding
- FIG. 1 is a schematic configuration diagram of FTIR according to the present embodiment. Note that components that are the same as or correspond to those already shown in FIG. 4 are given the same reference numerals in the last two digits, and description thereof will be omitted as appropriate.
- This FTIR has an infrared light source 110, a collimator mirror 131, a beam splitter 140, a moving mirror 150, a fixed mirror 160, and a parabolic mirror 132 in the interferometer chamber 100, similar to the FTIR of FIG.
- a sample chamber 170 in which the sample S is accommodated outside the chamber 100 and an infrared light detector 180 are provided.
- the first and second laser light reflecting mirrors 421 and 422 in the prior art are not provided.
- the laser light source 120 is attached to the outside of the housing of the interferometer chamber 100 by a laser light source holding unit 101 made of screws, mounting brackets, and the like.
- the laser light detector 190 is also attached to the outside of the housing of the interferometer chamber 100 by a laser light detector holding part 102 made of screws, mounting brackets, and the like.
- the collimator mirror 131 has a parabolic first reflecting surface 131a and a first through hole 131b.
- the first reflecting surface 131a causes the light incident from the infrared light source 110 to enter the beam splitter 140 as parallel light.
- the first through hole 131b has a circular cross-sectional shape, and its diameter is about twice the beam width of the laser light emitted from the laser light source 120.
- One opening of the first through hole 131b is provided in the center of the first reflecting surface 131a, and the other opening is provided on an end surface different from the first reflecting surface 131a of the collimator mirror 131.
- the opening on the end face is opposed to the laser light emitting portion of the laser light source 120 with a window for transmitting the laser light attached to the housing of the interferometer chamber 100 interposed therebetween.
- the first through hole 131b is formed to extend along the optical axis direction of the infrared light reflected by the first reflecting surface 131a.
- the parabolic mirror 132 has a second reflecting surface 132a and a second through hole 132b on the parabolic surface.
- the second reflecting surface 132a collects the infrared interference light incident from the beam splitter 140 on the sample S.
- the second through-hole 132b has a circular cross-sectional shape, and its diameter is about twice the beam width of the laser light emitted from the laser light source 120.
- One opening of the second through-hole 132b is provided at the center of the second reflecting surface 132a, and the other opening is provided on an end surface different from the second reflecting surface 132a of the parabolic mirror 132.
- the opening on the end face is opposed to the light receiving surface of the laser light detector 190 with a window for transmitting laser light attached to the housing of the interferometer chamber 100 interposed therebetween.
- the second through hole 132b is formed to extend along the optical axis direction of the infrared interference light reflected by the second reflecting surface 132a.
- the parabolic mirror 132 is arranged so that the laser interference light incident from the beam splitter 140 passes through the second through hole 132b.
- Infrared light emitted from the infrared light source 110 is reflected by the first reflecting surface 131 a of the collimator mirror 131 to become parallel light, and enters the beam splitter 140.
- the laser light emitted from the laser light source 120 passes through the first through hole 131 b and enters the beam splitter 140.
- the optical axis of the laser light that has passed through the first through hole 131b is It coincides with the optical axis of infrared light.
- the laser light and the infrared light whose optical axes coincide with each other enter the beam splitter 140, and are reflected by the movable mirror 150 and the fixed mirror 160 to become laser interference light and infrared interference light, respectively.
- the two interference lights are incident on the parabolic mirror 132 with their optical axes aligned.
- infrared interference light When infrared interference light enters the second reflecting surface 132a of the parabolic mirror 132, the infrared interference light is reflected in the direction of the infrared light detector 180, and the sample in the sample chamber 170 provided in the optical path. S is irradiated and absorbed at a wavelength characteristic of the sample S. The absorbed infrared interference light is detected by the infrared light detector 180 via the detector ellipsoidal mirror 133.
- the laser interference light incident on the parabolic mirror 132 passes through the second through hole 132b and enters the laser light detector 190.
- the infrared interference light is reflected by the second reflecting surface 132a, and only the laser interference light passes through the second through hole 132b.
- the infrared interference light and the laser interference light are separated by the parabolic mirror 132.
- the laser interference light is detected by a laser light detector 190.
- the laser light source 120 is attached to the outside of the housing of the interferometer chamber 100 in the above embodiment, it may be attached to the inside of the interferometer chamber 100.
- the first through hole 131 b faces the laser emission portion of the laser light source 120 without passing through a window that transmits the laser light provided in the housing of the interferometer chamber 100.
- the laser light source holding unit 101 may be provided at a position away from the housing inside or outside the interferometer chamber 100 and the laser light source 120 may be disposed.
- the laser light detector 190 can be provided inside the interferometer chamber 100, or can be provided inside or outside the interferometer chamber 100 at a position away from the housing.
- the temperature rise of the laser light source 120 can be suppressed.
- a He-Ne laser or a VCSEL Very Cavity Surface Emitting LASER: vertical cavity surface emitting laser
- the temperature of the interferometer chamber rises due to the heat generated by the infrared light source or the like in addition to the heat generated by the laser light source itself, so that the output of the laser light source changes.
- the output frequency of the laser light source changes as the temperature of the laser light source rises as shown in Patent Document 2, so that the sample cannot be analyzed stably. .
- the laser light source 120 is provided outside the interferometer chamber 100, so that the heat of the laser light source can be released to the outside. Further, it is hardly affected by exhaust heat from other devices such as the infrared light source 110. Furthermore, by inserting a spacer made of a material having high thermal resistance between the laser light source 120 and the housing, even when the temperature in the interferometer chamber 100 rises, the influence on the laser light source 120 can be suppressed.
- the laser light source holding unit 101 is used to fix the laser light source 120 to the housing of the interferometer chamber 100.
- the structure further includes a mechanism for adjusting the optical axis of the laser light source 120. It is good. With such a configuration, the optical axis of the laser light source 120 can be finely adjusted after the laser light source 120 is attached to the housing of the interferometer chamber 100, so that the optical axis can be adjusted with higher accuracy. Is possible.
- the first and second through holes have a circular cross-sectional shape, but may be a square or other polygonal shape as long as the laser beam can pass linearly.
- the diameter of the through hole is about twice the beam width of the laser beam, it may be larger or smaller than the beam width.
- the diameter of the through hole increases, the areas of the first and second reflection surfaces decrease, and the amount of infrared light reflected by these reflection surfaces decreases, so the diameter of the through hole is an interference of laser light. It is desirable that the state is small as long as it can be detected by the laser light detector.
- the said through-hole was provided in the center of the 1st and 2nd reflective mirror, you may provide in another position.
- the infrared light source 110 is provided inside the interferometer chamber 100 in the above embodiment, it can also be provided outside the interferometer chamber 100.
- an opening for allowing infrared light to enter the interferometer chamber 100 is provided in the housing of the interferometer chamber 100. By providing a window that allows infrared light to pass through the opening, airtightness in the interferometer chamber 100 can be maintained.
- both the first reflecting mirror and laser light source holding unit according to the first aspect of the present invention and the second reflecting mirror and laser light detector holding unit according to the second aspect are used. As shown in FIGS. 2 and 3, either one of them can be used.
- the FTIR shown in FIG. 2 uses the first reflecting mirror according to the first aspect of the present invention, the optical axis of the laser light and the infrared light being matched by the laser light source holding unit, and the second reflecting mirror for the prior art.
- infrared light and laser light respectively emitted from the infrared light source 210 and the laser light source 220 hold the first reflecting surface 231a, the first through hole 231b, and the laser light source 220, as in the above embodiment.
- the optical axis becomes the same by the laser light source holding unit 201 to be incident on the beam splitter 240.
- the laser light and the infrared light incident on the beam splitter 240 become laser interference light and infrared interference light via the beam splitter 240, the moving mirror 250, and the fixed mirror 260.
- the infrared interference light is irradiated in the direction of the infrared light detector 280 by the parabolic mirror 232, and the laser interference light is directed in the direction of the laser light detector 290 by the second laser reflecting mirror 222 as in the prior art.
- the light axis can be changed to separate each light.
- the FTIR shown in FIG. 3 uses the first laser reflecting mirror of the prior art to match the optical axes of the laser light and the infrared light, and the second reflecting mirror and laser light detector according to the second aspect of the present invention.
- This is an example in which the laser interference light and the infrared interference light are separated using the holding unit 202.
- infrared light emitted from the infrared light source 310 is reflected by the collimator mirror 331 and enters the beam splitter 340.
- the laser light emitted from the laser light source 320 is reflected by the first laser reflecting mirror 321 in the same manner as in the prior art, so that it has the same optical axis as the infrared light reflected by the collimator mirror 331, and the beam splitter. Incident to 340. Thereafter, the laser light and the infrared light incident on the beam splitter 340 become laser interference light and infrared interference light via the beam splitter 340, the moving mirror 350, and the fixed mirror 360. These interference lights are separated by the second reflecting surface 332a and the second through hole 332b, as in the above embodiment.
- beam splitters 150,250,350,450 ... moving mirrors 160,260,360 460 ... fixed mirrors 170, 270, 370, 470 ... sample chambers 180, 280, 380, 480 ... Infrared light detector 190, 290, 390, 490 ... Laser light detector 421, 422 ... Laser reflecting mirror S ... Sample
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
コントロール干渉計を有するフーリエ変換型分光光度計において、光学部品の部品点数を削減することで光軸調整を容易にするとともに、装置を小型化する。測定用光源110から発せられた測定光をビームスプリッタ140に向けて反射する反射面131aと、反射面131aで反射された前記測定光の光軸方向に沿って延びる第1貫通孔131bとを有する第1反射鏡131と、レーザ光源120から発せられたレーザ光が前記第1貫通孔131bを通過してビームスプリッタ140に入射するようにレーザ光源120を保持するレーザ光源保持部とにより、測定光とレーザ光の光軸を一致させる。従来の測定光とレーザ光の光軸を一致させるためのレーザ用反射鏡が必要なくなることで、部品点数を削減でき、光軸調整を容易にし、装置の小型化ができる。
Description
本発明は、フーリエ変換型分光光度計に関する。
FTIR(フーリエ変換型赤外分光光度計:Fourier Transform Infrared spectroscope)は、赤外光源からの赤外光をビームスプリッタで2つに分割して一方を固定鏡、もう一方を移動鏡に照射し、それら反射光を再び同一光路に導くことで、干渉光を発生させる。この干渉光は測定対象の試料に照射され、その透過光又は反射光が検出器により検出され、検出信号としてデータ処理装置に送られる。データ処理装置は検出信号をフーリエ変換することによりスペクトルを作成し、このスペクトルのピーク波長、ピーク強度等から該試料の定性分析や定量分析を行う。
このようなFTIRは、例えば図4に示すように構成される(特許文献1参照)。すなわち、FTIRは、干渉計室400内に収容された、赤外光源410、集光鏡431a、コリメータ鏡431b、ビームスプリッタ440、移動鏡450、固定鏡460から構成される主干渉計を有する。主干渉計において、赤外光源410から射出された赤外光は集光鏡431a、コリメータ鏡431bを経由してビームスプリッタ440で2つに分割され、一方は固定鏡460、もう一方は移動鏡450で反射され、再び同一光路で合一されて赤外干渉光となる。該赤外干渉光が放物面鏡432により集光され、試料室470へ入射し、試料Sへ照射されると、試料Sに特有の波長において吸収を受ける。吸収を受けた赤外干渉光は楕円面鏡433を経由して赤外光検出器480で検出され、フーリエ変換されることにより前記スペクトルが作成される。
このようなFTIRでは、移動鏡450の移動速度を一定に保つことで、前記スペクトルを高い精度で取得することができる。移動鏡450の移動速度の測定には、図4に示すコントロール干渉計が用いられる。コントロール干渉計は、レーザ光源420、第1及び第2レーザ用反射鏡421、422、ビームスプリッタ440、移動鏡450、固定鏡460から構成される。コントロール干渉計では、レーザ光源420から発せられたレーザ光は、第1レーザ光用反射鏡421により前記赤外光と同じ光路上に導入され、該赤外光と同じ干渉系(ビームスプリッタ440、移動鏡450、固定鏡460)を通過することでレーザ干渉光が生成される。該レーザ干渉光は、第2レーザ光用反射鏡422により前記赤外干渉光の光路から取り出され、レーザ光検出器490により検出される。検出されたレーザ干渉光に基づいて移動鏡450の移動速度が算出される。
前記コントロール干渉計に用いられる光学部品のうち、ビームスプリッタ440、移動鏡450、固定鏡460は前記主干渉計と共用している。一方で、第1及び第2レーザ光用反射鏡421、422は、主干渉計にはない光学部品である。従って、図4のようなコントロール干渉計により移動鏡450の位置情報を得るためには、これらの反射鏡を主干渉計の構成とは別に追加する必要がある。しかしながら、光学部品が増えることにより、装置のサイズが大きくなったり、光軸調整の手間が増える等の問題が生じる。さらに、前記反射鏡を固定するための部材により、赤外光路の一部が遮られることも問題となっていた。
本発明は上記の点に鑑みて成されたものであり、その目的とするところはコントロール干渉計を有するフーリエ変換型分光光度計において、光学部品の部品点数を削減することで光軸調整を容易にするとともに、装置を小型化することである。
上記課題を解決するために成された本発明の第1の態様は、測定用光源、ビームスプリッタ、移動鏡、及び固定鏡を含み、測定光の干渉光を生成する主干渉計と、レーザ光源と、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、レーザ干渉光を生成するコントロール干渉計と、を具備するフーリエ変換型分光光度計において、
a) 前記測定用光源から発せられた測定光を前記ビームスプリッタに向けて反射する反射面と、該反射面で反射された前記測定光の光軸方向に沿って延びる第1貫通孔とを有する第1反射鏡と、
b) 前記レーザ光源から発せられたレーザ光が前記第1貫通孔を通過して前記ビームスプリッタに入射するように該レーザ光源を保持するレーザ光源保持部と
を備えることを特徴とする。
a) 前記測定用光源から発せられた測定光を前記ビームスプリッタに向けて反射する反射面と、該反射面で反射された前記測定光の光軸方向に沿って延びる第1貫通孔とを有する第1反射鏡と、
b) 前記レーザ光源から発せられたレーザ光が前記第1貫通孔を通過して前記ビームスプリッタに入射するように該レーザ光源を保持するレーザ光源保持部と
を備えることを特徴とする。
また、上記課題を解決するために成された本発明の第2の態様は、測定用光源、ビームスプリッタ、移動鏡、及び固定鏡を含み、測定光の干渉光を生成する主干渉計と、レーザ光源と、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、レーザ干渉光を生成するコントロール干渉計と、前記レーザ干渉光を検出するレーザ光検出器と、前記測定光の干渉光を検出する測定光検出器と、を具備するフーリエ変換型分光光度計において、
a) 前記移動鏡及び前記固定鏡によって反射された測定光が前記ビームスプリッタにより合一されて成る該測定光の干渉光を前記測定光検出器に向けて反射する反射面と、前記測定光の干渉光と共に前記ビームスプリッタから該反射面に向けて進行するレーザ干渉光が通過する第2貫通孔と、を有する第2反射鏡と、
b) 前記第2貫通孔を通過した前記レーザ干渉光が前記レーザ光検出器に入射するように該レーザ光検出器を保持するレーザ検出器保持部と
を備えることを特徴とする。
a) 前記移動鏡及び前記固定鏡によって反射された測定光が前記ビームスプリッタにより合一されて成る該測定光の干渉光を前記測定光検出器に向けて反射する反射面と、前記測定光の干渉光と共に前記ビームスプリッタから該反射面に向けて進行するレーザ干渉光が通過する第2貫通孔と、を有する第2反射鏡と、
b) 前記第2貫通孔を通過した前記レーザ干渉光が前記レーザ光検出器に入射するように該レーザ光検出器を保持するレーザ検出器保持部と
を備えることを特徴とする。
第1及び第2の態様に係るフーリエ変換型分光光度計において、測定用光源は赤外光源、可視光源、紫外光源などを用いることができる。また、第1及び第2反射鏡は、平面鏡のほかに、測定光を平行光にするためのコリメータ鏡や集光鏡などを用いてもよい。
主干渉計とコントロール干渉計が共通のビームスプリッタ、移動鏡、固定鏡を有するフーリエ変換型分光光度計では、測定光の光路上にレーザ光用の反射鏡を配置し、該反射鏡によってレーザ光を測定光の光路上に導入したり、レーザ干渉光を測定光の干渉光の光路から取り出したりしていた。これに対して上記第1の態様では、測定用光源からの測定光をビームスプリッタに向けて反射するための第1反射鏡に第1貫通孔を形成し、この貫通孔を通してレーザ光を測定光の光路上に導入して、測定光と共にビームスプリッタに入射させた。従って、第1の態様では、レーザ光用の反射光を設置することなくレーザ光源からのレーザ光を測定光の光路上に導入することができる。
また、上記第2の態様では、測定光の干渉光を測定光検出器に向けて反射するための第2反射鏡に第2貫通孔を形成し、この貫通孔を通してレーザ干渉光を測定光の干渉光と分離してレーザ光検出器に入射させた。従って、第2の態様では、レーザ用反射鏡を設置することなく、レーザ干渉光を測定光の干渉光の光路から分離してレーザ検出器で検出することができる。
さらに、本発明の第3の態様は、上記第1の態様に係る第1反射鏡、第1貫通孔及び光源保持部と、第2の態様に係る第2反射鏡、第2貫通孔及びレーザ検出器保持部とを備えることを特徴とする。この構成では測定光及びレーザ光が第1反射鏡及び第1貫通孔にそれぞれ入射することで、測定光とレーザ光の光軸が一致した状態でビームスプリッタに入射する。その後、ビームスプリッタ、固定鏡、移動鏡によりレーザ干渉光及び測定光の干渉光が生成され、該レーザ干渉光及び測定光の干渉光が第2反射鏡及び第2貫通孔にそれぞれ入射することで、レーザ干渉光と測定光の干渉光が分離され、それぞれレーザ検出器及び測定光検出器に入射する。
本発明に係るフーリエ変換型分光光度計では、従来用いられていた、レーザ光源からのレーザ光を測定光の光路に導入するための反射鏡、及びレーザ干渉光を測定光の干渉光から分離するための反射鏡の少なくとも一つが不要となり、使用する光学部品の点数が減少する。また、光学部品点数が減少することでフーリエ変換型分光光度計の小型化も可能となる。光学部品が減少することで光軸調整の手間が減り、光軸調整が容易になる。
以下に本発明を実施するための形態について図面を参照しつつ説明する。
図1は本実施形態に係るFTIRの概略構成図である。なお、既に図4で示したものと同一又は対応する構成要素については下二桁が共通する符号を付し、適宜説明を省略する。
このFTIRは図4のFTIRと同様に、干渉計室100の中に赤外光源110、コリメータ鏡131、ビームスプリッタ140、移動鏡150、固定鏡160、放物面鏡132を有し、干渉計室100の外に試料Sが収容される試料室170と赤外光検出器180を有する。但し、従来技術における第1及び第2レーザ光反射鏡421、422は有していない。また、レーザ光源120はネジや取り付け金具等からなるレーザ光源保持部101により干渉計室100の筐体の外側に取り付けられている。また、レーザ光検出器190もネジや取り付け金具等からなるレーザ光検出器保持部102により干渉計室100の筐体の外側に取り付けられている。
コリメータ鏡131は放物面状の第1反射面131a及び第1貫通孔131bを有している。第1反射面131aは赤外光源110から入射した光を平行光としてビームスプリッタ140へ入射させる。第1貫通孔131bは断面形状が円形であり、その直径はレーザ光源120から射出されるレーザ光のビーム幅の2倍程度である。第1貫通孔131bの一方の開口は、第1反射面131aの中央に設けられており、他方の開口はコリメータ鏡131の第1反射面131aとは別の端面に設けられている。該端面の開口は干渉計室100の筐体に取り付けられたレーザ光を透過する窓を挟んでレーザ光源120のレーザ光射出部分に対向している。また、第1貫通孔131bは前記第1反射面131aで反射された赤外光の光軸方向に沿って延びるように形成される。
放物面鏡132は放物面上の第2反射面132a及び第2貫通孔132bを有している。第2反射面132aはビームスプリッタ140から入射してきた赤外干渉光を試料Sに集光させる。第2貫通孔132bは断面形状が円形であり、その直径はレーザ光源120から発せられるレーザ光のビーム幅の2倍程度である。第2貫通孔132bの一方の開口は、第2反射面132aの中央に設けられており、他方の開口は放物面鏡132の第2反射面132aとは別の端面に設けられている。該端面の開口は干渉計室100の筐体に取り付けられたレーザ光を透過する窓を挟んでレーザ光検出器190の受光面に対向している。また、第2貫通孔132bは前記第2反射面132aで反射された赤外干渉光の光軸方向に沿って延びるように形成される。放物面鏡132は、ビームスプリッタ140から入射したレーザ干渉光が第2貫通孔132bを通過するように配置される。
本実施の形態のFTIRの動作について図1を参照しつつ説明する。赤外光源110から射出された赤外光はコリメータ鏡131の第1反射面131aで反射されて平行光となり、ビームスプリッタ140へ入射する。一方で、レーザ光源120から射出されたレーザ光は第1貫通孔131bを通過し、ビームスプリッタ140へ入射する。このとき、第1反射面131aで反射された前記赤外光の光軸方向に沿って第1貫通孔131bが延びているため、第1貫通孔131bを通過した前記レーザ光の光軸は前記赤外光の光軸と一致する。
それぞれの光軸が一致した前記レーザ光と前記赤外光はビームスプリッタ140に入射し、移動鏡150及び固定鏡160で反射され、それぞれレーザ干渉光及び赤外干渉光となる。該2つの干渉光は光軸が一致したまま、放物面鏡132に入射する。
放物面鏡132の第2反射面132aに赤外干渉光が入射すると、該赤外干渉光は赤外光検出器180の方向へ反射され、その光路中に設けられた試料室170の試料Sに照射され、試料Sに特有の波長において吸収を受ける。吸収を受けた赤外干渉光は、検出器用楕円面鏡133を経由して赤外光検出器180により検出される。
放物面鏡132に入射したレーザ干渉光は、第2貫通孔132bを通過し、レーザ光検出器190に入射する。ここで前記赤外干渉光は、第2反射面132aにより反射されており、前記レーザ干渉光のみが第2貫通孔132bを通過する。このように前記赤外干渉光と前記レーザ干渉光は放物面鏡132により分離される。該レーザ干渉光はレーザ光検出器190により検出される。
以上、本発明に係るフーリエ変換型赤外分光光度計の一実施形態について説明したが、本発明の趣旨の範囲であれば、適宜変更、修正を行うことができる。
例えば、上記実施の形態ではレーザ光源120を干渉計室100の筐体の外側に取り付けているが、干渉計室100の内側に取り付けてもよい。この場合、第1貫通孔131bは干渉計室100の筐体に設けられたレーザ光を透過する窓を経由せずにレーザ光源120のレーザ射出部分に対向する。また、干渉計室100の内部又は外部において、前記筐体から離れた位置にレーザ光源保持部101を設け、レーザ光源120を配置してもよい。レーザ光検出器190もレーザ光源120と同様に干渉計室100の内部に設けたり、干渉計室100の内部又は外部において筐体から離れた位置に設けることが可能である。
レーザ光源120を干渉計室100の筐体の外部に設ける場合、レーザ光源120の温度上昇を抑制することが可能となる。通常、FTIRのレーザ光源にはHe-NeレーザやVCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)などが用いられる。これらのレーザ光源が干渉計室の内部に設けられると、レーザ光源自身の発熱の他に赤外光源等から発せられる熱により干渉計室内の温度が上昇するため、レーザ光源の出力が変化する。特にレーザ光源としてVCSELを用いる場合、特許文献2に示すようにレーザ光源の温度が上昇することにより、該レーザ光源の出力周波数が変化するため、安定して試料の分析ができなくなることもあった。
これに対し、上記実施の形態ではレーザ光源120を干渉計室100の外部に設けることにより、レーザ光源の熱を外部に放出することができる。また、赤外光源110などの他の機器による排熱の影響もほとんど受けることがない。さらに、熱抵抗の高い素材のスペーサをレーザ光源120と前記筐体の間に挿入することにより、干渉計室100内の温度が上昇した場合でも、レーザ光源120への影響を抑えることもできる。
また、上記実施の形態ではレーザ光源保持部101を干渉計室100の筐体にレーザ光源120を固定するために用いたが、さらに、レーザ光源120の光軸を調整するための機構を有する構成としてもよい。このような構成とすることで、レーザ光源120を干渉計室100の筐体に取り付けたあと、レーザ光源120の光軸を微調整することができるため、より高い精度で光軸調整を行うことが可能となる。
上記実施の形態では、第1及び第2貫通孔の断面形状を円形としたが、レーザ光が直線的に通過できる形状であれば四角形やその他多角形としてもよい。また、前記貫通孔の直径をレーザ光のビーム幅の2倍程度としたが、該ビーム幅よりも大きくても小さくてもよい。ただし、前記貫通孔の直径が大きくなると第1及び第2反射面の面積が小さくなり、これら反射面で反射される赤外光の光量が低下するため、該貫通孔の直径はレーザ光の干渉状態をレーザ光検出器で検出できる範囲で小さいことが望ましい。また、前記貫通孔を第1及び第2反射鏡の中央に設けたが、それ以外の位置に設けてもよい。
さらに、上記実施の形態では赤外光源110を干渉計室100の内部に設けたが、干渉計室100の外部に設けることも可能である。この場合、干渉計室100内に赤外光を入射させるための開口部を干渉計室100の筐体に設ける。この開口部に赤外光を通過させる窓を設けることで、干渉計室100内の気密性を保つことができる。
また、上記実施の形態では本発明の第1の態様に係る第1反射鏡、レーザ光源保持部と、第2の態様に係る第2反射鏡、レーザ光検出器保持部の両方を用いたが、図2、図3に示すようにどちらか一方を用いることもできる。
図2に示すFTIRは、本発明の第1の態様に係る第1反射鏡、レーザ光源保持部によりレーザ光と赤外光の光軸を一致させ、従来技術の第2レーザ用反射鏡を用いてレーザ干渉光と赤外干渉光を分離する例である。この構成では、赤外光源210及びレーザ光源220からそれぞれ射出された赤外光及びレーザ光は、上記実施の形態と同様に、第1反射面231a、第1貫通孔231b及びレーザ光源220を保持するレーザ光源保持部201により光軸が同一となり、ビームスプリッタ240へ入射する。
その後、ビームスプリッタ240へ入射した前記レーザ光及び前記赤外光は、ビームスプリッタ240、移動鏡250、固定鏡260を経由して、レーザ干渉光と赤外干渉光となる。前記赤外干渉光は放物面鏡232により赤外光検出器280の方向へ照射され、レーザ干渉光は、従来技術と同様に第2レーザ用反射鏡222によりレーザ光検出器290の方向へ光軸が変更されてそれぞれの光を分離することができる。
その後、ビームスプリッタ240へ入射した前記レーザ光及び前記赤外光は、ビームスプリッタ240、移動鏡250、固定鏡260を経由して、レーザ干渉光と赤外干渉光となる。前記赤外干渉光は放物面鏡232により赤外光検出器280の方向へ照射され、レーザ干渉光は、従来技術と同様に第2レーザ用反射鏡222によりレーザ光検出器290の方向へ光軸が変更されてそれぞれの光を分離することができる。
図3に示すFTIRは、従来技術の第1レーザ用反射鏡を用いてレーザ光と赤外光の光軸を一致させ、本発明の第2の態様に係る第2反射鏡、レーザ光検出器保持部202を用いてレーザ干渉光と赤外干渉光を分離する例である。この構成では、赤外光源310から射出された赤外光は、コリメータ鏡331により反射され、ビームスプリッタ340へ入射される。レーザ光源320から射出されたレーザ光は、従来技術と同様に第1レーザ用反射鏡321に反射されることで、前記コリメータ鏡331により反射された赤外光と同一の光軸となり、ビームスプリッタ340へ入射する。
その後、ビームスプリッタ340へ入射した前記レーザ光及び前記赤外光は、ビームスプリッタ340、移動鏡350、固定鏡360を経由して、レーザ干渉光と赤外干渉光となる。これら干渉光は、上記実施の形態と同様に、第2反射面332a及び第2貫通孔332bにより分離される。
その後、ビームスプリッタ340へ入射した前記レーザ光及び前記赤外光は、ビームスプリッタ340、移動鏡350、固定鏡360を経由して、レーザ干渉光と赤外干渉光となる。これら干渉光は、上記実施の形態と同様に、第2反射面332a及び第2貫通孔332bにより分離される。
100、200、300、400…干渉計室
101、201、301…レーザ光源保持部
102、202、302…レーザ光検出器保持部
110、210、310、410…赤外光源
120、220、320、420…レーザ光源
131、231、331、431…コリメータ鏡
131a、231a、331a…第1反射面
131b、231b…第1貫通孔
132、232、332、432…放物面鏡
132a、232a、332a…第2反射面
132b、332b…第2貫通孔
133、233、333、433…検出器用楕円面鏡
140、240、340、440…ビームスプリッタ
150、250、350、450…移動鏡
160、260、360、460…固定鏡
170、270、370、470…試料室
180、280、380、480…赤外光検出器
190、290、390、490…レーザ光検出器
421、422…レーザ用反射鏡
S…試料
101、201、301…レーザ光源保持部
102、202、302…レーザ光検出器保持部
110、210、310、410…赤外光源
120、220、320、420…レーザ光源
131、231、331、431…コリメータ鏡
131a、231a、331a…第1反射面
131b、231b…第1貫通孔
132、232、332、432…放物面鏡
132a、232a、332a…第2反射面
132b、332b…第2貫通孔
133、233、333、433…検出器用楕円面鏡
140、240、340、440…ビームスプリッタ
150、250、350、450…移動鏡
160、260、360、460…固定鏡
170、270、370、470…試料室
180、280、380、480…赤外光検出器
190、290、390、490…レーザ光検出器
421、422…レーザ用反射鏡
S…試料
Claims (3)
- 測定用光源、ビームスプリッタ、移動鏡、及び固定鏡を含み、測定光の干渉光を生成する主干渉計と、レーザ光源と、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、レーザ干渉光を生成するコントロール干渉計と、を具備するフーリエ変換型分光光度計において、
a) 前記測定用光源から発せられた測定光を前記ビームスプリッタに向けて反射する反射面と、該反射面で反射された前記測定光の光軸方向に沿って延びる第1貫通孔とを有する第1反射鏡と、
b) 前記レーザ光源から発せられたレーザ光が前記第1貫通孔を通過して前記ビームスプリッタに入射するように該レーザ光源を保持するレーザ光源保持部と
を備えることを特徴とするフーリエ変換型赤外分光光度計。 - 測定用光源、ビームスプリッタ、移動鏡、及び固定鏡を含み、測定光の干渉光を生成する主干渉計と、レーザ光源と、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、レーザ干渉光を生成するコントロール干渉計と、前記レーザ干渉光を検出するレーザ光検出器と、前記測定光の干渉光を検出する測定光検出器と、を具備するフーリエ変換型分光光度計において、
a) 前記移動鏡及び前記固定鏡によって反射された測定光が前記ビームスプリッタにより合一されて成る該測定光の干渉光を前記測定光検出器に向けて反射する反射面と、前記測定光の干渉光と共に前記ビームスプリッタから該反射面に向けて進行するレーザ干渉光が通過する第2貫通孔と、を有する第2反射鏡と、
b) 前記第2貫通孔を通過した前記レーザ干渉光が前記レーザ光検出器に入射するように該レーザ光検出器を保持するレーザ検出器保持部と
を備えることを特徴とするフーリエ変換型赤外分光光度計。 - 更に、
c) 前記測定用光源から発せられた測定光を前記ビームスプリッタに向けて反射する反射面と、該反射面で反射された前記測定光の光軸方向に沿って延びる第1貫通孔とを有する第1反射鏡と、
d) 前記レーザ光源から発せられたレーザ光が前記第1貫通孔を通過して前記ビームスプリッタに入射するように該レーザ光源を保持するレーザ光源保持部と
を備えることを特徴とする請求項2に記載のフーリエ変換型赤外分光光度計。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/061751 WO2016166872A1 (ja) | 2015-04-16 | 2015-04-16 | フーリエ変換型分光光度計 |
CN201580077537.0A CN107430033A (zh) | 2015-04-16 | 2015-04-16 | 傅里叶变换型分光光度计 |
US15/565,002 US20180113026A1 (en) | 2015-04-16 | 2015-04-16 | Fourier transform spectroscope |
JP2017512155A JP6380662B2 (ja) | 2015-04-16 | 2015-04-16 | フーリエ変換型分光光度計 |
EP15889210.9A EP3285053A4 (en) | 2015-04-16 | 2015-04-16 | Fourier transform spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/061751 WO2016166872A1 (ja) | 2015-04-16 | 2015-04-16 | フーリエ変換型分光光度計 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016166872A1 true WO2016166872A1 (ja) | 2016-10-20 |
Family
ID=57125717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061751 WO2016166872A1 (ja) | 2015-04-16 | 2015-04-16 | フーリエ変換型分光光度計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180113026A1 (ja) |
EP (1) | EP3285053A4 (ja) |
JP (1) | JP6380662B2 (ja) |
CN (1) | CN107430033A (ja) |
WO (1) | WO2016166872A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019009391A1 (ja) * | 2017-07-06 | 2019-01-10 | 浜松ホトニクス株式会社 | 光モジュール |
WO2022196015A1 (ja) | 2021-03-18 | 2022-09-22 | 株式会社島津製作所 | 分析装置 |
DE102022001846A1 (de) | 2021-05-31 | 2022-12-01 | Shimadzu Corporation | Infrarotlichtquellenvorrichtung und fourier-transformations-infrarotspektrometer |
WO2023042454A1 (ja) * | 2021-09-14 | 2023-03-23 | 株式会社島津製作所 | フーリエ変換赤外分光光度計 |
JP7468406B2 (ja) | 2021-02-26 | 2024-04-16 | 株式会社島津製作所 | フーリエ変換赤外分光光度計 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112567196B (zh) * | 2018-09-03 | 2023-07-11 | 株式会社岛津制作所 | 干涉仪移动镜位置测定装置和傅里叶变换红外分光光谱仪 |
CN109405973A (zh) * | 2018-12-27 | 2019-03-01 | 荧飒光学科技(上海)有限公司 | 傅里叶变换光谱仪用干涉仪 |
CN109975213B (zh) * | 2019-05-05 | 2024-01-26 | 荧飒光学科技(上海)有限公司 | 傅里叶变换光谱仪用全反射装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100721A (ja) * | 1981-12-11 | 1983-06-15 | Kiyomi Sakai | フ−リエ変換型赤外分光光度計 |
JPS61501876A (ja) * | 1984-04-13 | 1986-08-28 | ベツクマン インスツルメンツ インコ−ポレ−テツド | インタ−フェログラムのためのサンプル信号発生装置および方法 |
JPH04502214A (ja) * | 1989-10-06 | 1992-04-16 | メジャレックス コーポレイション | 干渉計を含む走査センサーシステム |
JPH1090065A (ja) * | 1996-09-11 | 1998-04-10 | Kurabo Ind Ltd | フーリエ変換分光器のデータ処理方法及びデータ処理装置 |
US20030103210A1 (en) * | 2001-12-05 | 2003-06-05 | Bruker Optik Gmbh | Digital FTIR spectrometer |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4711573A (en) * | 1983-03-07 | 1987-12-08 | Beckman Instruments, Inc. | Dynamic mirror alignment control |
WO1984003560A1 (en) * | 1983-03-07 | 1984-09-13 | Beckman Instruments Inc | Dynamic mirror alignment control |
US5241179A (en) * | 1991-09-09 | 1993-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Thermoluminescence sensor for the remote detection of chemical agents and their simulants |
US5406090A (en) * | 1993-02-22 | 1995-04-11 | Mattson Instruments, Inc. | Spectrometer and IR source therefor |
DK78096A (da) * | 1996-07-12 | 1998-01-13 | Foss Electric As | Interferometer |
JPH10160570A (ja) * | 1996-11-27 | 1998-06-19 | Kishimoto Akira | 粉末atr測定方法及び装置並びに赤外分光光度計 |
DE102004014984B4 (de) * | 2004-03-26 | 2006-05-11 | Wacker Chemie Ag | Verfahren zur Bestimmung des substitutionellen Kohlenstoffgehalts in poly- oder monokristallinem Silicium |
US7903252B2 (en) * | 2005-01-13 | 2011-03-08 | The Curators Of The University Of Missouri | Noise cancellation in fourier transform spectrophotometry |
CN202229843U (zh) * | 2011-09-23 | 2012-05-23 | 北京华夏科创仪器技术有限公司 | 红外光谱干涉仪和采用该干涉仪的红外光谱仪 |
WO2017218778A1 (en) * | 2016-06-15 | 2017-12-21 | Si-Ware Systems | Integrated spectral unit |
-
2015
- 2015-04-16 WO PCT/JP2015/061751 patent/WO2016166872A1/ja active Application Filing
- 2015-04-16 US US15/565,002 patent/US20180113026A1/en not_active Abandoned
- 2015-04-16 JP JP2017512155A patent/JP6380662B2/ja active Active
- 2015-04-16 CN CN201580077537.0A patent/CN107430033A/zh active Pending
- 2015-04-16 EP EP15889210.9A patent/EP3285053A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100721A (ja) * | 1981-12-11 | 1983-06-15 | Kiyomi Sakai | フ−リエ変換型赤外分光光度計 |
JPS61501876A (ja) * | 1984-04-13 | 1986-08-28 | ベツクマン インスツルメンツ インコ−ポレ−テツド | インタ−フェログラムのためのサンプル信号発生装置および方法 |
JPH04502214A (ja) * | 1989-10-06 | 1992-04-16 | メジャレックス コーポレイション | 干渉計を含む走査センサーシステム |
JPH1090065A (ja) * | 1996-09-11 | 1998-04-10 | Kurabo Ind Ltd | フーリエ変換分光器のデータ処理方法及びデータ処理装置 |
US20030103210A1 (en) * | 2001-12-05 | 2003-06-05 | Bruker Optik Gmbh | Digital FTIR spectrometer |
Non-Patent Citations (1)
Title |
---|
See also references of EP3285053A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11629946B2 (en) | 2017-07-06 | 2023-04-18 | Hamamatsu Photonics K.K. | Mirror unit and optical module |
US11624605B2 (en) | 2017-07-06 | 2023-04-11 | Hamamatsu Photonics K.K. | Mirror unit and optical module |
CN110799885A (zh) * | 2017-07-06 | 2020-02-14 | 浜松光子学株式会社 | 光学组件 |
US11054309B2 (en) | 2017-07-06 | 2021-07-06 | Hamamatsu Photonics K.K. | Optical module |
US11879731B2 (en) | 2017-07-06 | 2024-01-23 | Hamamatsu Photonics K.K. | Mirror unit and optical module |
US11187579B2 (en) | 2017-07-06 | 2021-11-30 | Hamamatsu Photonics K.K. | Optical device |
JP6514841B1 (ja) * | 2017-07-06 | 2019-05-15 | 浜松ホトニクス株式会社 | 光モジュール |
US11209260B2 (en) | 2017-07-06 | 2021-12-28 | Hamamatsu Photonics K.K. | Optical module having high-accuracy spectral analysis |
US11067380B2 (en) | 2017-07-06 | 2021-07-20 | Hamamatsu Photonics K.K. | Optical module |
US11635290B2 (en) | 2017-07-06 | 2023-04-25 | Hamamatsu Photonics K.K. | Optical module |
WO2019009391A1 (ja) * | 2017-07-06 | 2019-01-10 | 浜松ホトニクス株式会社 | 光モジュール |
US11629947B2 (en) | 2017-07-06 | 2023-04-18 | Hamamatsu Photonics K.K. | Optical device |
JP7468406B2 (ja) | 2021-02-26 | 2024-04-16 | 株式会社島津製作所 | フーリエ変換赤外分光光度計 |
WO2022196015A1 (ja) | 2021-03-18 | 2022-09-22 | 株式会社島津製作所 | 分析装置 |
DE102022001846A1 (de) | 2021-05-31 | 2022-12-01 | Shimadzu Corporation | Infrarotlichtquellenvorrichtung und fourier-transformations-infrarotspektrometer |
WO2023042454A1 (ja) * | 2021-09-14 | 2023-03-23 | 株式会社島津製作所 | フーリエ変換赤外分光光度計 |
Also Published As
Publication number | Publication date |
---|---|
EP3285053A4 (en) | 2018-05-02 |
US20180113026A1 (en) | 2018-04-26 |
JP6380662B2 (ja) | 2018-08-29 |
EP3285053A1 (en) | 2018-02-21 |
CN107430033A (zh) | 2017-12-01 |
JPWO2016166872A1 (ja) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380662B2 (ja) | フーリエ変換型分光光度計 | |
JP2019506607A5 (ja) | ||
JPH04504908A (ja) | 投受光装置 | |
US9074930B2 (en) | Spectrometer and method of operating same | |
EP2982965A1 (en) | Optical system for generating beam of reference light and method for splitting beam of light to generate beam of reference light | |
KR20170089403A (ko) | 두께 측정 장치 및 두께 측정 방법 | |
JP2014523517A (ja) | 分光装置 | |
US10760968B2 (en) | Spectrometric measuring device | |
US9594253B2 (en) | Spectral apparatus, detection apparatus, light source apparatus, reaction apparatus, and measurement apparatus | |
Kovalev et al. | An LED multichannel spectral ellipsometer with binary modulation of the polarization state | |
US7149033B2 (en) | UV visual light beam combiner | |
CN104752947A (zh) | 一种基于光谱色散原理调节激光相干长度的方法和装置 | |
JP7486178B2 (ja) | 分光分析装置 | |
JP2016125826A (ja) | 分析装置 | |
JP3830483B2 (ja) | 反射分光スペクトル観測のための光学配置 | |
JP5900248B2 (ja) | 分光光度計 | |
US10557791B2 (en) | Optical Analyzer | |
US20150015878A1 (en) | Raman spectroscopic analyzing apparatus | |
JP2005172568A (ja) | 光学装置及びそれを有する測定装置 | |
KR101484695B1 (ko) | 광파이버와 분광장치를 연결하는 연결장치 및 열간 슬래브의 청정도 측정 시스템 | |
JP7356498B2 (ja) | プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置 | |
KR20090118367A (ko) | 분광분석기 | |
JP2009063311A (ja) | ガス検知装置 | |
JP6367091B2 (ja) | 質量分析装置および質量分析方法 | |
JPH0815149A (ja) | レーザ式ガス分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15889210 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017512155 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15565002 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |