WO2016166125A1 - Pecvd-boot - Google Patents

Pecvd-boot Download PDF

Info

Publication number
WO2016166125A1
WO2016166125A1 PCT/EP2016/058062 EP2016058062W WO2016166125A1 WO 2016166125 A1 WO2016166125 A1 WO 2016166125A1 EP 2016058062 W EP2016058062 W EP 2016058062W WO 2016166125 A1 WO2016166125 A1 WO 2016166125A1
Authority
WO
WIPO (PCT)
Prior art keywords
pecvd
boot
wafers
boat
plate
Prior art date
Application number
PCT/EP2016/058062
Other languages
English (en)
French (fr)
Inventor
Torsten Kornmeyer
Hans-Peter VÖLK
Original Assignee
Kornmeyer Carbon-Group Gmbh
Centrotherm Photovoltaics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kornmeyer Carbon-Group Gmbh, Centrotherm Photovoltaics Ag filed Critical Kornmeyer Carbon-Group Gmbh
Priority to CN201680034106.0A priority Critical patent/CN107750282B/zh
Priority to DE112016001714.6T priority patent/DE112016001714A5/de
Priority to US15/566,030 priority patent/US20180119278A1/en
Publication of WO2016166125A1 publication Critical patent/WO2016166125A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67313Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements

Definitions

  • the invention relates to a PECVD boat with at least one boot plate for receiving wafers, for transport in and out of vacuum coating chambers.
  • PECVD boats are used for example in the plasma-enhanced chemical vapor deposition (PECVD).
  • PECVD is a process for depositing thin films of gas phase into a solid state on a substrate such as a wafer.
  • the PECVD process is carried out in an evacuated vacuum chamber
  • PECVD boats consisting of individual boat plates, simultaneously introduced into the vacuum chamber and remain there during the PECVD process on these plasma boats.
  • Fig. 1 (prior art) is a boat plate 10 of a PECVD boat to
  • the PECVD boats fulfill the task of transporting the wafers 11 during transport and during the transport
  • Deposition process required electrical potential can be applied to the wafer.
  • the wafers 11 rest on or hang on the boot plate 10, wherein the necessary electrical contact is additionally produced via the holding pins 14 on the existing example of graphite boot plate 10.
  • the boat plates 10 are provided with free grooves 12 or openings, which are smaller than the wafer 11, so that each wafer 11 rests on a frame-shaped area of the boat plate, which in each case surrounds an opening.
  • the wafer edge thus always has a circulating thermal and electrical contact with the frame of the boot plate 10.
  • the time required for the warm-up is determined in particular by the number of wafers to be heated, the mass of the PECVD boat, the homogenization time until a uniform temperature distribution is achieved, and the manner in which the heating takes place. It is understood that the warm-up time as well as the subsequent homogenization time are in the interest of an effective and rapid
  • the wafer temperature is significantly influenced or determined by the temperature of the graphite plate, the mass of currently used boot plates is 4 to 5 times the mass of the wafers.
  • the invention has for its object to provide a low-mass PECVD boat for receiving wafers and for transport in and out of vacuum chambers, with an increase in throughput of the machine through greater wafer capacity and shorter process cycles and energy savings in the heating and homogenization phase achieved becomes .
  • the boot plate is vertically aligned and provided with a plurality of longitudinally aligned in the boot plate upwardly open U-shaped receiving slots for receiving wafers, such that the inserted into the receiving slots Align wafer with the plate line of the boot plate.
  • each receiving slot is limited by lateral support arms and a lower frame of the boot plate, so that the inserted into the Aufnähmeschlitz wafer is partially encompassed by the lateral support arms.
  • each receiving slot by providing the lateral support arms and the lower frame member each with a receiving element directed inwardly into the receiving slot and which is fork-like or the respective outer edge of the inserted wafer u- or v-shaped embrace and the wafer after the
  • the spacer and connecting elements are made of a non-conductive material, such as Al O3, quartz glass or ceramic.
  • the boat plates are made of graphite, CFC or titanium and are produced by shaping machining processes.
  • Sehl warelich is also an energy savings in the cooling and Ausschleusphase due to the reduced boot mass and the resulting reduced cooling costs achieved.
  • FIG. 1 shows a boot plate for accommodating wafers according to the prior art
  • Fig. 2 a boot plate according to the invention in standing
  • Fig. 3 a PECVD boat, consisting of several parallel spaced apart side by side and interconnected boat plates;
  • Fig. 4 a recording element for wafers in enlarged
  • Fig. 2 is a wafer holder 20 according to the invention
  • Boot plate 21 are limited.
  • the length of the support arms 24 is dimensioned so that they only reach about half the height of the wafer used.
  • For securely receiving the wafers 22 are from the support arms 24 and the lower sturdye1ement 25 inward in the
  • Receiving elements 26 is in each case a groove incorporated, in which the outer edge of the wafer can engage.
  • receiving elements 26 embrace the respective outer edge of the wafer 22 slightly fork-like or u- or v-shaped, positively locking and thus fix the wafers 22 after insertion into the receiving elements 26, so that they are held securely after being inserted into the receiving elements 26 (FIG. Fig. 4).
  • the simultaneous recording of two wafers 22 in each Aufnähmeschlitz 23 is possible, so that a separation on the back of the wafer can be avoided.
  • the boat plate 21 is characterized by shaping
  • the thickness of the boot plate 21 must be greater than the thickness of two wafers inserted into the receiving elements 26. For the secure recording of the wafers 22 suffice in each
  • Receiving elements 26 are present.
  • each wafer 22 becomes vertical
  • a wafer boat or PECVD boat 27 is shown, which consists of a plurality of spaced-apart and mechanically interconnected
  • Boot plates 21 is in a vertical orientation.
  • holes 28 for receiving spacers and connecting elements are provided, which consists of a non-conductive
  • Material such as AI2O3, quartz glass or ceramic, to avoid short circuits.
  • the boat plates 21 can be made of graphite, CFC or titanium and can by known shaping
  • PECVD boat 27 can also be a
  • the wafers 22 are only held in place in three places in the boot plates 21, they stand largely free at a defined distance from the Aufnähmeschlitz 23.
  • the heating power can thus achieve the wafer 22 much better, without first having to heat the mass of the boot plate 21. This leads to a significant shortening of the heating and cooling processes and the homogenization time.
  • the mass / area ratio has changed greatly in favor of the wafer 22. Based on its mass, the wafers 22 have a much larger surface area than the boot plate 21.
  • the boot plates according to the invention 21 or. the composite of these PECVD boats 27 can in very many
  • Photovoltaic especially suitable for processes in which TMA, SiNox and SiN layers are deposited suitable.
  • the boot plates 21 according to the invention can be made simply from graphite, CFC (carbon fiber reinforced carbon) or titanium by shaping processing methods including
  • the thickness of the boot plates 21 must be greater than the thickness of the wafers 22 to be inserted into the receiving elements 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Die Erfindung betrifft ein PECVD-Boot mit mindestens einer Bootplatte zur Aufnahme von Wafern, zum Transport in und aus Vakuum-Beschichtungskammern. Durch die Erfindung soll ein massearmes PECVD-Boot zur Aufnahme von Wafern, zum Transport in und aus Vakuumkammern geschaffen werden, mit dem eine Steigerung des Durchsatzes der Vakuum-Beschichtungskammern durch größere Waferkapazität und verkürzte Prozesszyklen sowie eine Energieeinsparung in der Heiz- und Homogenisierungsphase erreicht wird. Erreicht wird das dadurch, dass die Bootplatte (21) senkrecht ausgerichtet ist und mit mehreren in Längsrichtung der Bootplatte (21) ausgerichteten nach oben offenen u-förmigen Aufnahmeschlitzen (23) zur Aufnahme von Wafern (22) versehen sind, derart, dass die in die Aufnahmeschlitze (23) eingesetzten Wafer (22) mit der Plattenlinie der Bootplatte (21) fluchten.

Description

PECVD-Boot
Die Erfindung betrifft ein PECVD-Boot mit mindestens einer Bootplatte zur Aufnahme von Wafern, zum Transport in und aus Vakuum-Beschichtungskammern .
PECVD-Boote werden beispielsweise bei der Plasma-Enhanced Chemical Vapor Deposition ( PECVD) eingesetzt . Bei der PECVD handelt es sich um ein Verfahren zur AbScheidung von dünnen Filmen aus der Gasphase in einen festen Zustand auf einem Substrat , wie beispielsweise einem Wafer. Das PECVD- Verfahren wird in einer evakuierten Vakuumkammer
durchgeführt , indem eine möglichst große Anzahl an Wafern auf sogenannten Plasma- oder PECVD-Booten, bestehend aus einzelnen Bootplatten, gleichzeitig in die Vakuumkammer eingebracht werden und dort während des PECVD-Verfahrens auf diesen Plasmabooten verbleiben .
Um einen PECVD-Prozess ausführen zu können, ist es
erforderlich, dass die mit dem oder den PECVD-Booten
eingebrachten Wafer und die PECVD-Boote selbst auf eine vorgegebene Prozesstemperatur aufgewärmt werden .
Üblicherweise eingesetzte PECVD-Boote , bzw . die Bootplatten, werden derzeit aus einem elektrisch leitfähigen Material , wie Graphit oder Titan, hergestellt . In Fig . 1 (Stand der Technik) ist eine Bootplatte 10 eines PECVD-Bootes zur
Aufnahme von j eweils mehreren rechteckigen oder
quadratischen Wafern 11 in liegender Anordnung nach dem Stand der Technik in der Draufsicht dargestellt . Für die sichere Halterung je eines Wafers 11 über einer Freifräsung 12 sind an dem die Freifräsung 12 umgebenden Rand 13 der Bootplatte 10 drei Haltepins 14 vorgesehen, so dass die auf die Bootplatte 10 aufgelegten Wafer 11 beim Transport der nicht verrutschen können . Im Interesse einer möglichst großen aferkapazität sind gewöhnlich mehrere derartige Bootplatten 10 mittels
entsprechender Distanzstücke übereinander gestapelt , ein PECVD-Boot mit größerer Waferkapazität bildend, miteinander verbunden .
Die PECVD-Boote erfüllen einerseits die Aufgabe , die Wafer 11 während des Transportes und während des
Abscheideprozesses sicher zu halten, und andererseits muss über das PECVD-Boot , bzw . die Bootplatten, ein für den
Abscheideprozess erforderliches elektrisches Potential an die Wafer angelegt werden .
Die Wafer 11 liegen auf oder hängen an der Bootplatte 10 , wobei der notwendige elektrische Kontakt zusätzlich über die Haltepins 14 auf der beispielsweise aus Graphit bestehenden Bootplatte 10 hergestellt wird .
Um die thermische Masse zu reduzieren, sind die Bootplatten 10 mit Freifräsungen 12 oder Durchbrüchen versehen, die kleiner sind als die Wafer 11 , so dass j eder Wafer 11 auf einem rahmenförmigen Bereich der Bootplatte , der j eweils einen Durchbruch umgibt , aufliegt . Der Waferrand hat somit immer einen umlaufenden thermischen und elektrischen Kontakt zum Rahmen der Bootplatte 10.
Die für das Aufwärmen benötigte Zeit wird insbesondere von der Anzahl der aufzuwärmenden Wafer, der Masse des PECVD- Bootes , der Homogenisierungszeit , bis eine gleichmäßige Temperaturverteilung erreicht ist , und der Art und Weise , wie die Heizung erfolgt , bestimmt . Es versteht sich, dass die Aufwärmzeit sowie die nachfolgende Homogenisierungszeit im Interesse eines effektiven und schnellen
Abscheideprozesses möglichst kurz sein sollten .
Die Wafer-Temperatur wird maßgeblich durch die Temperatur der Graphitplatte beeinflusst oder bestimmt , wobei die Masse der derzeit verwendeten Bootplatten das 4 - bis 5-fache der Masse der Wafer beträgt .
Bei manchen Prozessschritten ist es nur möglich, das PECVD- Boot durch Konvektion und/oder Wärmestrahlung aufzuheizen - ohne Zuhilfenahme von Plasmaunterstützung . Die Folge sind lange Heizphasen und somit ein Verlust von
Maschinenkapazität und Durchsatz . Weiterhin führt die vergleichsweise hohe Masse des zumeist viele Bootplatten enthaltenden PECVD-Bootes zu einer großen thermischen
Trägheit .
Die Folge sind zu lange Heiz - /Kühl - und
Stabilisierungszeiten (Homogenisierungszeiten) , bis die Wafer auf die gewünschte Prozesstemperatur aufgeheizt oder nach dem PECVD- Prozess wieder abgekühlt sind . Der Erfindung liegt die Aufgabe zugrunde , ein massearmes PECVD-Boot zur Aufnahme von Wafern sowie zum Transport in und aus Vakuumkammern zu schaffen, mit dem eine Steigerung des Durchsatzes der Maschine durch größere Waferkapazität und verkürzte Prozesszyklen sowie eine Energieeinsparung in der Heiz - und Homogenisierungsphase erreicht wird .
Die der Erfindung zugrunde liegende Aufgabe wird durch die Merkmale des Hauptanspruchs gelöst , indem die Bootplatte senkrecht ausgerichtet ist und mit mehreren in Längsrichtung der Bootplatte ausgerichteten nach oben offenen u- förmigen Aufnahmeschlitzen zur Aufnahme von Wafern versehen sind, derart , dass die in die Aufnahmeschlitze eingesetzten Wafer mit der Plattenlinie der Bootplatte fluchten .
Weitere vorteilhafte Ausgestaltungen gehen aus den
zugehörigen Unteransprüchen hervor .
So wird j eder Aufnähmeschlitz durch seitliche Haltearme und ein unteres Rahmene1ement der Bootplatte begrenzt , so dass der in den Aufnähmeschlitz eingesteckte Wafer durch die seitlichen Haltearme teilweise umgriffen wird .
Um die Wärmeleitung auf ein Minimum zu begrenzen, sind in j edem Aufnähmeschlitz drei Aufnahmeelemente vorgesehen , indem die seitlichen Haltearme und das untere Rahmenelement jeweils mit einem Aufnahmeelement versehen sind, die einwärts in den Aufnähmeschlitz gerichtet sind und die die jeweilige Außenkante des eingesetzten Wafers gabelähnlich oder u- oder v-förmig umgreifen und den Wafer nach dem
Einstecken in die j ewei 1 s drei Aufnahmeelemente durch dessen Eigengewicht fixieren .
Im Interesse einer höheren Waferkapazität und zur Vermeidung einer AbScheidung auf der Waferrückseite können in die
Aufnahmeelemente j edes Aufnahmeschlitzes j eweils zwei Wafer in Form einer Back- to-Back Beladung (Rücken- zu-Rücken
Beladung) eingesetzt werden . Weiterhin ist es von Vorteil , wenn mehrere Bootplatten parallel abstandsweise nebeneinander angeordnet und
miteinander zu einem PECVD-Boot verbundenen sind, wobei sich zwischen den Bootplatten Distanz - und Verbindungselemente befinden .
Die Distanz - und Verbindungselemente bestehen aus einem nicht leitenden Material , wie AI O3 , Quarzglas oder Keramik .
Weiterhin bestehen die Bootplatten aus Graphit , CFC oder Titan und sind durch formgebende Bearbeitungsverfahren hergestellt .
Die besonderen Vorteile der erf indungsgemäßen Bootplatte bzw . des PECVD-Bootes sind in einer geringeren thermischen Masse zu sehen, wodurch ein schnelleres Aufheizen/Abkühlen und Homogenisieren des mit Wafern bestückten PECVD-Bootes erreicht wird .
Weitere Vorteile sind mehr Wafer im Boot - also eine erhöhte Produktionskapazität und es wird die Plattendicke genutzt und stellt keinen Raumverlust mehr dar, da die Wafer in der Plattenlinie stehen .
Auch wird eine DurchsatzSteigerung der Maschine durch mehr Waferkapazität und verkürzte Prozesszyklen infolge der schnelleren Aufhei zprozesse erreicht und in der Folge ergibt sich eine Energieeinsparung in der Heiz - /Homogenisierungs - phase auch durch die reduzierte Bootmasse, woraus eine
Reduzierung der Heizenergie resultiert .
Sehl ießlich wird auch eine Energieeinsparung in der Abkühl - und Ausschleusphase infolge der reduzierten Bootmasse und dem daraus resultierten verringerten Kühlaufwand erreicht .
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel näher erläutert . In den zugehörigen Zeichnungen zeigen :
Fig . 1 eine Bootplatte zur liegenden Aufnahme von Wafern nach dem Stand der Technik;
Fig . 2 : eine erfindungsgemäße Bootplatte in stehender
Anordnung zur Aufnahme von Wafern;
Fig . 3 : ein PECVD-Boot , bestehend aus mehreren parallel abstandsweise nebeneinander angeordneten und miteinander verbundenen Bootplatten; und
Fig . 4: ein Aufnahmeelernent für Wafer in vergrößerter
Darstellung .
In Fig . 2 ist ein erf indungsgemäßer Waferhalter 20
dargestellt , der hier aus einer senkrecht bzw . hochkant ausgerichteten Bootplatte 21 besteht , die der Aufnahme von mehreren Wafern 22 dient. Im dargestellten Fall ist die Aufnahme von maximal drei Wafern 22 vorgesehen . Zur sicheren Aufnahme der Wafer 22 sind in der Bootplatte 21 drei in Längsrichtung der Bootplatte 21 hintereinander angeordnete Aufnahmeschlitze 23 vorgesehen, die durch Haltearme 24 seitlich und durch ein unteres Rahmene1ement 25 der
Bootplatte 21 begrenzt werden . Die Länge der Haltearme 24 ist so bemessen, dass sie lediglich bis etwa zur halben Höhe der eingesetzten Wafer reichen . Zur sicheren Aufnahme der Wafer 22 stehen aus den Haltearmen 24 und dem unteren Rahmene1ement 25 einwärts in den
Aufnähmeschlitz 23 gerichtete Aufnahmeelernente 26 hervor . In die in den Aufnähmeschlitz 23 ragende Stirnseite der
Aufnahmee1emente 26 ist j eweils eine Nut eingearbeitet , in die die Außenkante des Wafers eingreifen kann . Die
Aufnahmeelernente 26 umgreifen somit die j eweilige Außenkante des Wafers 22 geringfügig gabelähnlich oder u- oder v- förmig, formschlüssig und fixieren somit die Wafer 22 nach dem Einstecken in die Aufnahmee1emente 26 , so dass dieser nach dem Einstecken in die Aufnahmee1emente 26 sicher gehalten werden ( Fig . 4 ) . Auch die gleichzeitige Aufnahme von zwei Wafern 22 in j edem Aufnähmeschlitz 23 ist möglich, so dass eine AbScheidung auf der Waferrückseite vermieden werden kann . Die Bootplatte 21 wird durch formgebende
Bearbeitungsverfahren , wie Fräsen, aus einem Stück
gefertigt . Es versteht sich, dass die Dicke der Bootplatte 21 größer sein muss als die Dicke von zwei Rücken in die Aufnahmee1emente 26 eingesetzten Wafer . Für die sichere Aufnahme der Wafer 22 genügen in j edem
Aufnähmeschlitz 23 drei solche Aufnahmee1emente 26 und zwar gemäß Fig . 2 am oberen Ende des j eweils linken Haltearms 24 , etwa in der Mitte des j eweils rechten Haltearms 24 sowie im j eweils rechten Drittel des unteren Rahmenelements 25. Auf die genaue Position dieser Aufnahmeelemente 26 kommt es nicht an, sondern wesentlich ist , dass zur sicheren Aufnahme der Wafer 22 im Aufnähmeschlitz 26 drei solche
Aufnahmeelemente 26 vorhanden sind .
Auf diese Weise wird j eder Wafer 22 in vertikaler
Ausrichtung in drei Punkten dreidimensional und durch dessen Eigengewicht sicher und mit der Bootplatte 21 fluchtend fixiert , so dass die Wafer 22 bei einer Bewegung der
Bootplatte 21 in einer im Wesentlichen senkrechten
Gebrauchsläge der Bootplatte 21 nicht herausfallen können .
In Fig . 3 ist ein Waferboot bzw. PECVD-Boot 27 dargestellt, das aus einer Vielzahl von abstandsweise nebeneinander angeordneten und mechanisch miteinander verbundenen
Bootplatten 21 in senkrechter Ausrichtung besteht . Für die mechanische Verbindung der Bootplatten 21 sind Bohrungen 28 zur Aufnahme von Distanz- und Verbindungselementen (nicht dargestellt) vorgesehen, die aus einem nicht leitenden
Material , wie AI2O3, Quarzglas oder Keramik, bestehen, um Kurzschlüsse zu vermeiden .
Die Bootplatten 21 können aus Graphit , CFC oder Titan bestehen und können durch bekannte formgebende
Bearbeitungsverfahren einfach hergestellt werden .
Mit dem erfindungsgemäßen PECVD-Boot 27 kann auch eine
RückseitenbeSchichtung durch eine Back- to-Back-Beladung der Wafer 22 realisiert werden, indem je zwei Wafer 22 mit ihren j eweiligen Rückseiten aneinander liegend in j eden der
Aufnahmeschlitze 23 jeder Bootplatte 21 gestellt bzw .
gesteckt werden .
Dadurch, dass die Wafer 22 nur j ewei1s an drei Stellen in den Bootplatten 21 festgehalten werden, stehen diese weitgehend frei in einem definierten Abstand zum Aufnähmeschlitz 23. Das hat den besonderen Vorteil , dass die Wafer 22 thermisch weitestgehend von der Bootplatte 21 bzw . dem PECVD-Boot 27 entkoppelt sind . Die Heizleistung kann den Wafer 22 somit wesentlich besser erreichen, ohne zuerst die Masse der Bootplatte 21 aufheizen zu müssen . Das führt zu einer deutlichen Verkürzung der Aufheiz - und Abkühlprozesse und der Homogenisierungszeit .
Durch die erfindungsgemäße Ausgestaltung der Bootplatten 21 hat sich das Masse- /Flächenverhältnis stark zu Gunsten der Wafer 22 verändert . Bezogen auf seine Masse haben die Wafer 22 eine wesentlich größere Oberfläche als die Bootplatte 21.
Die erfindungsgemäßen Bootplatten 21 bzw . die aus diesen zusammengesetzten PECVD- Boote 27 können in sehr vielen
PECVD- Prozessen eingesetzt werden und sind im Bereich der
Photovoltaik speziell für Prozesse geeignet , bei denen TMA- , SiNox- und SiN-Schichten abgeschieden werden , geeignet .
Die erfindungsgemäßen Bootplatten 21 können einfach aus Graphit , CFC (Carbon faserverstärktes Carbon) oder Titan durch formgebende Bearbeitungsverfahren einschließlich der
Aufnahmeelernente 26 einstückig hergestellt werden . Die Dicke der Bootplatten 21 muss größer sein als die Dicke der in die Aufnahmeelemente 26 einzusetzenden Wafer 22.
Bezugszeichenliste Bootplatte
Wafer
Freifräsung
Rand
Haltepin Waferhalter
Bootplatte
Wafer
Aufnahmeschlitz
Haltearm
unteres Rahmene1ement
Aufnahmeelement
PECVD-Boot
Bohrung

Claims

Patentansprüche
1. PECVD-Boot mit mindestens einer Bootplatte zur Aufnahme von Wafern, zum Transport in und aus Vakuum- Beschichtungskammern , dadurch gekennzeichnet , dass die
Bootplatte (21) senkrecht ausgerichtet ist mit mehreren in Längsrichtung der Bootplatte (21) ausgerichteten nach oben offenen u- förmigen Aufnahmeschlitzen ( 23 ) zur Aufnahme von Wafern (22 ) versehen sind, derart , dass die in die
Aufnahmeschlitze (23 ) eingesetzten Wafer ( 22 ) mit der
Plattenlinie der Bootplatte (21) fluchten .
2. PECVD-Boot nach Anspruch 1 , dadurch gekennzeichnet , dass j eder Aufnähmeschlitz ( 23 ) durch seitliche Haltearme ( 24 ) und ein unteres Rahmenelement (25) der Bootplatte (21) begrenzt ist , so dass der in den Aufnahmeschlitz (23 ) eingesetzte Wafer ( 22 ) durch die seitlichen Haltearme (24) teilweise umgriffen wird .
3. PECVD-Boot nach Anspruch 2 , dadurch gekennzeichnet , dass drei Aufnahmeelemente (26) vorgesehen sind, indem die seitlichen Haltearme ( 24 ) und das untere Rahmenelement (25) jeweils mit einem Aufnähmee1ement (26) versehen sind, die einwärts in den Aufnähmeschlitz ( 23 ) gerichtet sind und die die j eweilige Außenkante des eingesetzten Wafers (22 ) gabelähnlich oder u- förmig umgreifen und durch das
Eigengewicht des Wafers ( 22 ) f ixieren .
4. PECVD-Boot nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet , dass in die Aufnahmeelemente (26 ) j edes Aufnahmeschlitzes ( 23 ) j eweils zwei Wafer ( 22 ) in Form einer Back- to-Back Beladung eingesetzt sind .
5. PECVD-Boot nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , dass mehrere Bootplatten (21) parallel abstandsweise nebeneinander angeordneten und miteinander zu einem PECVD-Boot (27) verbundenen sind .
6. PECVD-Boot nach Anspruch 5 , dadurch gekennzeichnet , dass sich zwischen den Bootplatten (21) Distanz - und
Verbindungselemente aus einem nicht leitenden Material befinden .
7. PECVD-Boot nach Anspruch 6 , dadurch gekennzeichnet , dass die Distanz- oder Verbindungselemente aus A1203; Quarzglas oder Keramik bestehen .
8. PECVD-Boot nach einem der Ansprüche 1 bis 7 , dadurch gekennzeichnet , dass die Bootplatten (21) aus Graphit , CFC oder Titan bestehen und durch formgebende Bearbeitungs - verfahren hergestellt sind .
PCT/EP2016/058062 2015-04-13 2016-04-13 Pecvd-boot WO2016166125A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680034106.0A CN107750282B (zh) 2015-04-13 2016-04-13 Pecvd舟
DE112016001714.6T DE112016001714A5 (de) 2015-04-13 2016-04-13 Pecvd-boot
US15/566,030 US20180119278A1 (en) 2015-04-13 2016-04-13 Pecvd boat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015105599 2015-04-13
DE102015105599.6 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016166125A1 true WO2016166125A1 (de) 2016-10-20

Family

ID=55809080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/058062 WO2016166125A1 (de) 2015-04-13 2016-04-13 Pecvd-boot

Country Status (5)

Country Link
US (1) US20180119278A1 (de)
CN (1) CN107750282B (de)
DE (1) DE112016001714A5 (de)
TW (1) TWI714574B (de)
WO (1) WO2016166125A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058163A1 (fr) * 2016-10-31 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Porte echantillon
CN108103481A (zh) * 2018-01-25 2018-06-01 无锡盈芯半导体科技有限公司 衬底自动挟式石英舟
WO2019238821A1 (de) 2018-06-13 2019-12-19 Nippon Kornmeyer Carbon Group Gmbh Plasmaboot zur aufnahme von wafern mit regulierter plasmaabscheidung

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10947640B1 (en) * 2016-12-02 2021-03-16 Svagos Technik, Inc. CVD reactor chamber with resistive heating for silicon carbide deposition
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10388861B1 (en) * 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296228A1 (en) 2018-03-23 2019-09-26 Spin Transfer Technologies, Inc. Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
CN109440084A (zh) * 2018-09-29 2019-03-08 东方日升新能源股份有限公司 一种用于太阳能电池双面镀膜的石墨舟
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
CN110646430A (zh) * 2019-10-29 2020-01-03 太极半导体(苏州)有限公司 一种晶圆检验治具
CN111118478A (zh) * 2019-12-31 2020-05-08 湖南红太阳光电科技有限公司 一种制备异质结电池薄膜的pecvd设备
WO2024168346A1 (en) * 2023-02-10 2024-08-15 Kayaku Advanced Materials, Inc. Plasma-enhanced chemical vapor deposition reactors and associated methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194892A1 (de) * 2013-06-06 2014-12-11 Centrotherm Photovoltaics Ag Haltevorrichtung, verfahren zu deren herstellung und verwendung derselben
US20150068948A1 (en) * 2013-09-11 2015-03-12 Samsung Electronics Co., Ltd. Wafer loaders having buffer zones

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133876A1 (de) * 1971-07-07 1973-01-18 Siemens Ag Anordnung zum eindiffundieren von dotierstoffen
US4461386A (en) * 1981-05-13 1984-07-24 Rca Corporation Rack for transporting recorded discs
US4661033A (en) * 1984-08-22 1987-04-28 Pacific Western Systems, Inc. Apparatus for unloading wafers from a hot boat
US5356475A (en) * 1993-02-22 1994-10-18 Lsi Logic Corporation Ceramic spacer assembly for ASM PECVD boat
US7055702B1 (en) * 2000-06-06 2006-06-06 Saint-Gobain Ceramics & Plastics, Inc. Slip resistant horizontal semiconductor wafer boat
US20040188319A1 (en) * 2003-03-28 2004-09-30 Saint-Gobain Ceramics & Plastics, Inc. Wafer carrier having improved processing characteristics
CN2713631Y (zh) * 2004-07-12 2005-07-27 西安希朗材料科技有限公司 传输承载晶片的高纯碳化硅卡座式部件
US20080050522A1 (en) * 2006-08-23 2008-02-28 Atomic Energy Council-Institute Of Nuclear Energy Research Preparative method for protective layer of susceptor
US8535445B2 (en) * 2010-08-13 2013-09-17 Veeco Instruments Inc. Enhanced wafer carrier
CN202839564U (zh) * 2012-08-06 2013-03-27 京隆科技(苏州)有限公司 晶舟的抽片移转治具
DE102015004419A1 (de) * 2015-04-02 2016-10-06 Centrotherm Photovoltaics Ag Waferboot und Plasma-Behandlungsvorrichtung für Wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194892A1 (de) * 2013-06-06 2014-12-11 Centrotherm Photovoltaics Ag Haltevorrichtung, verfahren zu deren herstellung und verwendung derselben
US20150068948A1 (en) * 2013-09-11 2015-03-12 Samsung Electronics Co., Ltd. Wafer loaders having buffer zones

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058163A1 (fr) * 2016-10-31 2018-05-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Porte echantillon
CN108103481A (zh) * 2018-01-25 2018-06-01 无锡盈芯半导体科技有限公司 衬底自动挟式石英舟
WO2019238821A1 (de) 2018-06-13 2019-12-19 Nippon Kornmeyer Carbon Group Gmbh Plasmaboot zur aufnahme von wafern mit regulierter plasmaabscheidung
DE102018114159A1 (de) 2018-06-13 2019-12-19 Nippon Kornmeyer Carbon Group Gmbh Plasmaboot zur Aufnahme von Wafern mit regulierter Plasmaabscheidung
US11873559B2 (en) 2018-06-13 2024-01-16 Nippon Kornmeyer Carbon Group Gmbh Plasma boat for receiving wafers with regulated plasma deposition

Also Published As

Publication number Publication date
TW201700779A (zh) 2017-01-01
US20180119278A1 (en) 2018-05-03
DE112016001714A5 (de) 2018-02-15
TWI714574B (zh) 2021-01-01
CN107750282B (zh) 2019-11-08
CN107750282A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2016166125A1 (de) Pecvd-boot
DE102015004419A1 (de) Waferboot und Plasma-Behandlungsvorrichtung für Wafer
DE102015004352A1 (de) Waferboot und Behandlungsvorrichtung für Wafer
DE102006025843B4 (de) Wafer-Transporteinrichtung, Prozesskammer diese enthaltend, Halbleiter-Wafer-Prozessierungssystem und Verfahren zum Prozessieren eines Halbleiter-Wafers
DE102015014903A1 (de) Waferboot und Plasma-Behandlungsvorrichtung für Wafer
DE102015004430B4 (de) Vorrichtung und Verfahren zur Plasmabehandlung von Wafern
DE102015111144A1 (de) Vorrichtung zur paarweisen Aufnahme von Substraten
WO2010085949A2 (de) Substratträger zur halterung von substraten
DE102013001374A1 (de) Vorrichtung zur Herstellung dreidimensionaler Objekte
EP3422396B1 (de) Vorrichtung zum transport eines substrats, behandlungsvorrichtung mit einer an einen substratträger einer solchen vorrichtung angepassten aufnahmeplatte und verfahren zum prozessieren eines substrates unter nutzung einer solchen vorrichtung zum transport eines substrats sowie behandlungsanlage
DE102014019381A1 (de) Systeme und Verfahren zum integrierten Re-Sputtern in einer physikalischen Gasphasenabscheidungs-Kammer
DE10358909A1 (de) Plasma-CVD-Vorrichtung sowie Filmherstellverfahren und Verfahren zur Herstellung eines Halbleiterbauteils unter Verwendung derselben
DE102009022412A1 (de) Vorrichtung zum gerichteten Erstarren geschmolzener Metalle
DE102018109738B3 (de) Haltevorrichtung für Wafer, Verfahren zur Temperierung einer Haltevorrichtung und Vorrichtung zur Behandlung von Wafern
DE112022000051T5 (de) Epitaxiewachstumsvorrichtung
WO2013127530A1 (de) Verfahren zur thermischen behandlung von siliziumcarbidsubstraten
DE102019002647A1 (de) Waferboot und Behandlungsvorrichtung für Wafer
DE102010035593A1 (de) Verfahren und Vorrichtung zum Behandeln eines Substrats mittels eines Plasmas
WO2018149840A2 (de) Vorrichtung und verfahren zur thermischen behandlung eines substrates mit einer gekühlten schirmplatte
WO2017220272A1 (de) Substrat-trägerelement für eine trägerhorde
DE102012206591A1 (de) Temperiereinrichtung und Vakuumsubstratbehandlungsanlage
EP3421638A1 (de) Vorrichtung zur hochtemperatur-cvd mit einer stapelanordnung aus gasverteilern und aufnahmeplatten
DE202012100763U1 (de) Temperiereinrichtung und Vakuumprozessanlage
WO2016156606A1 (de) Plasma-behandlungsvorrichtung für wafer
WO2018137926A1 (de) Verfahren zum herstellen von peltierelementen sowie eines thermoelektrischen wärmeübertragers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16718620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566030

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001714

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112016001714

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16718620

Country of ref document: EP

Kind code of ref document: A1