WO2016165821A1 - Procede de controle de la pression incluant une detection d'ebullition - Google Patents

Procede de controle de la pression incluant une detection d'ebullition Download PDF

Info

Publication number
WO2016165821A1
WO2016165821A1 PCT/EP2016/000601 EP2016000601W WO2016165821A1 WO 2016165821 A1 WO2016165821 A1 WO 2016165821A1 EP 2016000601 W EP2016000601 W EP 2016000601W WO 2016165821 A1 WO2016165821 A1 WO 2016165821A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
tank
boiling
liquid
isolation valve
Prior art date
Application number
PCT/EP2016/000601
Other languages
English (en)
Inventor
Aurélien GROUSSARD
Thierry Collet
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to KR1020177031812A priority Critical patent/KR102573430B1/ko
Priority to CN201680021901.6A priority patent/CN107438531B/zh
Priority to US15/566,615 priority patent/US10416688B2/en
Publication of WO2016165821A1 publication Critical patent/WO2016165821A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/02Modifications to reduce the effects of instability, e.g. due to vibrations, friction, abnormal temperature, overloading or imbalance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03519Valve arrangements in the vent line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/077Fuel tanks with means modifying or controlling distribution or motion of fuel, e.g. to prevent noise, surge, splash or fuel starvation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • G01L19/083Means for indicating or recording, e.g. for remote indication electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/0321Fuel tanks characterised by special sensors, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03236Fuel tanks characterised by special filters, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • B60K2015/03269Flap valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • B60K2015/03302Electromagnetic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • B60K2015/03514Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems with vapor recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0341Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/036Control means using alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles

Definitions

  • the present invention relates to liquid tight tanks, such as those used for storing liquid fuel in vehicles, and more particularly the problems related to the control of the pressure inside such a tank.
  • the pressure inside a tank depends on the quantity of liquid added, typically by filling the tank, or withdrawn, typically by drawing, for example to the engine in the case of a fuel, but also the conditions of the tank. environment: temperature and atmospheric pressure.
  • a difficulty related to the temperature is that it is undergone, without being able to be controlled, with amplitudes being able to be very large.
  • a vehicle for example, can be subjected to very low temperatures in winter or at very high temperatures, in summer in full sun.
  • the pressure control was solved passively by means of venting, if necessary through at least one valve calibrated at the maximum limit pressure. and / or the minimum pressure limit.
  • a tank was liquid-tight, in order to keep its liquid content, but a vent open or able to open, allowed the gas to pass.
  • air could be admitted from the outside to the tank, and in case of overpressure the gas could be escaped from the tank to the outside, in both cases, to restore an acceptable pressure. : between the two limit pressures.
  • Such a gas, charged with vapor from the liquid, in the case of a volatile liquid, constitutes, in the case of a fuel, a pollutant, and it is no longer possible, by regulation, to degas freely in the environment.
  • the tanks are impervious to both liquids and gases. It is possible, under certain conditions, to reduce the pressure, by capturing the vapor by means of a filter, also called canister. This filter can then be regenerated by draining captured steam to the engine for burning.
  • a filter also called canister. This filter can then be regenerated by draining captured steam to the engine for burning.
  • DE 199 13 440 A1 which relates to a fuel tank which is designed for a maximum pressure which is higher than the ambient pressure.
  • Each connecting pipe / valve between the fuel tank and the ambient pressure can be closed.
  • the electric tank / mechanical vent valve defines a pressure in the tank which is higher than the ambient pressure but does not significantly exceed the maximum pressure.
  • the electrically actuated valve is opened by an electronic control unit, when the operating pressure exceeds a limit value of the defined pressure, which is greater than the ambient pressure, but not greater than the maximum pressure.
  • the invention relates to a pressure control method, for a reservoir assembly comprising a sealed reservoir adapted to receive a liquid, a filter capable of capturing vapors from the liquid, a pipe connecting the reservoir to the filter, and a valve of isolation arranged to selectively close the pipe, said method comprising an ebuilition detection of the liquid contained in the tank, wherein the ebuilition detection comprises the following steps:
  • the method when a boiling is detected, the method further comprises a step of issuing an alert to the attention of an operator and / or a calculator.
  • the method when boiling is detected, further comprises a step of closing and / or maintaining the closure of the isolation valve.
  • the isolation valve is kept closed by default.
  • the method also comprises the following steps:
  • a boiling detection is carried out regularly.
  • a boiling detection is performed during a request to open a filler flap of the tank.
  • a request to open a filler flap of the tank is allowed, if the pressure measured in the tank is substantially equal to the external pressure, and is otherwise delayed.
  • FIG. 1 presents an overview of a reservoir assembly in its context
  • FIG. 2 presents the evolution of the pressure as a function of time and the principle of the detection of boiling
  • FIG. 3 presents a flowchart of the boiling detection
  • FIG. 4 illustrates the definition of boiling in a pressure / temperature diagram
  • FIG. 5 presents an abacus indicating the boiling temperature as a function of the pressure
  • FIG. 6 shows a flowchart of the process following a boiling detection.
  • FIG. 1 illustrates a reservoir assembly 1, of the type that can be controlled under pressure by a method according to the invention.
  • This tank assembly 1 comprises a tank 2, a filter or canister 3, a pipe 4 and an isolation valve 5.
  • the tank 2 is suitable for receiving and containing a liquid 6.
  • the tank 2 is impervious to liquids, to gases.
  • the liquid 6 may be a volatile liquid.
  • the filter 3 is capable of capturing vapors from the liquid 6.
  • the pipe 4 is arranged to connect the tank 2 to the filter 3, in a sealed manner, to both liquids and gases.
  • the pipe 4 is advantageously stitched in the upper part of the tank 2 in order to avoid being connected to the liquid 6, but preferably to steam.
  • the isolation valve 5 is disposed across the pipe 4 so as to selectively seal it.
  • the isolation valve 5 can be controlled, advantageously by a signal of electrical control, in the closed position, in which the position of the pipe 4 is closed, preventing any transfer between the tank 2 and the filter 3, or in the open position, in which the position of the pipe 4 is passing and allows a transfer of the tank 2 to filter 3 or vice versa.
  • the tank 2 may further comprise a filling hatch 9, able to be selectively opened or closed, in order to allow the tank 2 to be filled with liquid 6.
  • the tank assembly 1 is disposed in a motor vehicle, and the liquid 6 is a volatile fuel.
  • the tank 2 may also comprise at least one outlet and a pipe (not shown) for drawing the liquid 6 for drawing the liquid 6 to a consumer, such as for example a motor 13, in the case of a fuel.
  • the tank 2 can still be equipped with a pump 10 for drawing liquid e.
  • the tank assembly 1 may further comprise, advantageously disposed on the tank 2, a pressure sensor 7 able to measure the pressure inside the tank 2.
  • the tank assembly 1 may further comprise, advantageously arranged on the tank 2, a temperature sensor 8 able to measure the temperature inside the tank 2.
  • the various electronically interfaceable components (valves 5, 12, sensors 7, 8,...) are advantageously interfaced with at least one computer 15, such as a motor control unit 15 (in English "Engine Control Unit” or ECU).
  • a motor control unit 15 in English "Engine Control Unit” or ECU.
  • the electrical interfaces between the computer 15 and the components 5, 7, 8, 12 are represented by dashed lines.
  • the filter 3 comprises a first connection connecting it to the pipe 4. It also comprises a second connection connecting it to a venting 14.
  • the filter 3 has the function of capturing these vapors.
  • a low pressure or depression, ie a pressure lower than the atmospheric pressure, in the tank 2, can be increased by opening the isolation valve 5. Air, entering for example through the venting of the filter 3, can then enter the tank 2.
  • a significant pressure or overpressure, ie a pressure greater than atmospheric pressure, in the tank 2, can be reduced by opening the isolation valve 5.
  • Air possibly charged with steam from the liquid 6, then leaves the tank 2 and goes to the filter 3. The air escapes, via the venting 14, while the steam is captured by the filter 3.
  • the filter 3 comprises a filter material, for example activated carbon. As this filter material charges captured steam, the capacity of the filter 3 decreases.
  • the capacity of the filter 3 can be regenerated.
  • another pipe 1 1 is disposed between the filter 3 and a consumer 13 of steam, thereby purging the filter 3.
  • a purge valve 12 such as a canister purge valve or in English "canister purge solenoid" or CPS.
  • a consumer is, for example, a motor 13, advantageously capable of burning steam.
  • a liquid 6 is a body present mainly in the liquid phase.
  • a vapor phase of said body may also be present.
  • a vaporization of the liquid 6 can occur at the interface between the two phases, ie at the surface of the liquid 6.
  • the vaporization phenomenon is in this case essentially surface and leads to a pressure variation of moderate amplitude. As long as there is no boiling, the partial pressure or saturation vapor pressure remains lower than the pressure in the tank 2.
  • FIG. 2 shows a diagram showing the pressure P, in ordinates, as a function of time t, as abscissa. This diagram shows a first curve 30 corresponding to a lack of boiling and a second curve 31 corresponding to a boiling presence. We are here in a constant volume, as formed by the sealed tank 2.
  • a boiling situation can be detected by observing the rate of change of the partial pressure.
  • the partial pressure contributes to the "total" pressure inside the tank 2 and these two quantities present comparable variations.
  • the "total" pressure inside the tank 2 can be measured, for example, by means of a pressure sensor 7 disposed on the tank 2.
  • the boiling detection is performed by comparing the slope or time derivative d of the pressure with a threshold S. If the time derivative d is greater than the threshold S, boiling is detected. If, on the other hand, the time derivative d is less than or equal to the threshold S, no boiling is present.
  • the threshold S is an empirically determined constant. According to one embodiment, the time derivative d of the pressure is measured, during an application of a temperature variation, for a first set of samples according to variable experimental conditions (different initial temperatures, stirred or unsteady liquid, different types of liquid (variable PVR, etc.) but still in the absence of boiling and a second set of samples under varying experimental conditions but this time in the presence of boiling.
  • the threshold S is chosen so as to separate the two sets of samples.
  • the time derivative d dP / dt of the pressure is estimated by calculating a rate of variation ⁇ / ⁇ .
  • the principle consists in opening the isolation valve 5 during a duration M and in measuring the corresponding pressure variation ⁇ , ⁇ 1, ⁇ 2.
  • the detection of boiling can be carried out by carrying out the following steps, illustrated with reference to the flowchart of FIG. 3.
  • a first step 40 an initial pressure Pi is measured in the tank 2, then the isolation valve 5 is opened.
  • the isolation valve 5 is kept open for a given opening time M.
  • the valve is closed 5, then to a measurement of a final pressure Pf in the tank 2.
  • this estimate of the time derivative d is compared with a threshold S. If d is greater than the threshold S, which is the case for ⁇ 2 / ⁇ , a boiling is detected and the process continues in step 44. If d is below the threshold S, which is the case for ⁇ 1 / ⁇ , an absence of boiling is noted and the process continues in step 45.
  • the opening time At must be sufficient for the pressure variation ⁇ . ⁇ 1, ⁇ 2 to be significant, while being as small as possible. In practice, an opening time ⁇ t of between 1 and 10 seconds is satisfactory. An opening time of 2 seconds is a good compromise.
  • a first recipient may be an operator.
  • an alert is advantageously sent to the attention of the driver, for example by means of an indicator on the dashboard.
  • Another recipient can be at least one calculator.
  • a computer such as the ECU 15, is advantageously alerted.
  • a boiling state by the presence of bubbles in the liquid / fuel 6, can prevent a start / restart or disrupt the operation of the engine 13. Also knowledge of a boiling state is useful to the ECU 15.
  • the isolation valve 5 As illustrated by the flowchart of FIG. 6, if it turns out that the isolation valve 5 is open when a boiling condition is detected, it should be closed. In a coherent manner, if the isolation valve 5 is closed, it is advisable to do the utmost to keep it closed. This is illustrated by a step 45 of closing or maintaining the closure.
  • a closed position of the isolation valve 5 may prove to be an effective corrective measure in case of boiling, as will be described.
  • Figure 4 shows a pressure diagram (the ordinate) / temperature (abscissa) on which is shown a first location '20 boiling points for a first fluid.
  • a liquid is boiling if the pressure / temperature operating point is below the curve 20. It is not boiling if the pressure / temperature operating point is above the curve 20.
  • the second Place 21 is similar for a second, less volatile liquid (boiling at a higher temperature) than the first.
  • the place 20 can correspond to a "winter" fuel, while the place 21 may correspond to a "summer” fuel.
  • the low pressure value 22 is, for example, the atmospheric pressure (1000.10-3 atm).
  • the high pressure value 23 may be arbitrary, but it is assumed that it is lower than a maximum limit pressure Pmax that can be supported by the tank 2.
  • this liquid 6 has an operating point 26, situated on the locus 20.
  • the liquid 6 is so boiling. It follows a strong release of steam. If the isolation valve 5 is closed, the pressure in the reservoir containing the liquid 6 increases. The operating point then moves to point 28 and in doing so passes above location 20: boiling is stopped. Another reading may be the following. For a pressure 23, the boiling point, at place 20, is the point 27, which corresponds to a temperature 25, greater than the temperature 24 of the liquid 6.
  • the RVP Reading Vapor Pressure
  • the RVP is an indicator, characteristic of the volatility of a liquid 6, homogeneous at a pressure. The higher the RVP, the more volatile the liquid is and has a low boiling point.
  • This diagram shows a first curve 50 corresponding to a first pressure and a second curve 51 corresponding to a second pressure, greater than the first pressure.
  • a liquid 6 is boiling if its point of definition (RVP.Temperature) is above curve 50,51, and is not boiling below curve 50.51.
  • RVP.Temperature point of definition
  • This abacus reads as follows. For a liquid 6 defined by a given volatility 52, read as the abscissa (here 690 hPa), the vertical line intersects the first curve 50, corresponding to a first pressure, at a point of ordinate 53, representing the boiling temperature ( here 51 ° C) of this liquid 6 at said first pressure.
  • the vertical line intersects the second curve 51, corresponding to a second pressure, at a point of ordinate 54, representing the boiling point (here 56 ° C) of this liquid 6 at said second pressure.
  • the boiling point 53.54 increasing with the increase in the pressure produced by the boiling, the effective temperature of the liquid 6 may be lower than the boiling temperature, so the liquid 6 ceases to boil.
  • the detection of a boil advantageously leads to closing the isolation valve 5.
  • the fact that the filter 3 has a limited capacity is a reason that encourages maintaining the isolation valve 5 closed in order to control the times when the filter 3 is used.
  • the method of estimating the charge of the filter 3 still requires a controlled environment for the filter 3 and also encourages keeping the isolation valve 5 closed. Also, according to one embodiment, the isolation valve 5 is kept closed by default.
  • the pressure control method as illustrated in the flowchart of FIG. 6, comprises in a regular manner and whatever the state relating to a possible boiling, the following steps.
  • the pressure P in the tank 2 is measured, for example by means of a pressure sensor 7. This pressure P is compared, during the step 47 with a minimum limit pressure Pmin of tank 2 and with a maximum limit pressure Pmax of the tank 2.
  • the tank 2 If the pressure P is lower than the minimum limit pressure Pmin of the tank 2, the tank 2 is in depression and may be damaged. Thus, during a step 48, it is advisable to open the isolation valve 5. This makes it possible to enter the tank 2, for example via the venting 14 of the filter 3, for example air, to allow the pressure P to go up to eventually reach a value close to atmospheric pressure. This situation is not very problematic in that no exit from the system is deplorable and that there is therefore no risk of pollution.
  • the tank 2 If the pressure P is greater than the maximum pressure limit Pmax of the tank 2, the tank 2 is overpressurized and may be damaged. Thus, during a step 48, it is advisable to open the isolation valve 5. This makes it possible to remove air, if any loaded with vapor from the liquid 6, out of the tank 2. This is is carried out through the filter 3, which lets out the air via its venting 14, and captures, within the limit of its capacity, the steam. This allows the pressure P to drop, until it reaches, if possible, a value close to the atmospheric pressure.
  • the process can be looped back, typically at the step 46 of measuring the pressure P.
  • the monitoring of the pressure of the tank 2, relative to the minimum limit pressures Pmin and maximum Pmax, performed by steps 46-48 is advantageously carried out regularly to ensure the integrity of the tank 2.
  • this monitoring is to as much more useful following a boiling detection 44, the boiling situation producing a strong and rapid rise in pressure, and therefore a significant risk of reaching the maximum pressure limit Pmax.
  • the boiling detection may, according to a first embodiment, be carried out regularly.
  • the boiling detection can be performed on occurrence of an event.
  • a first event that can justify a suspicion of boiling is a significant variation in the pressure in the tank 2, for example detected by regular monitoring of the pressure.
  • Another type of event is a request to open the filler flap 9 of the tank 2.
  • the tank 2 being watertight, and being able to be subjected to a pressure different from the atmospheric pressure outside the tank 2, the filler hatch 9 must be locked.
  • This request is transmitted in the form of an opening request to the system which authorizes or not an opening. If opening is allowed, an unlock command is actually sent to the hatch 9, which can then be opened.
  • This treatment allows the system to perform certain checks or actions on the tank 2 before allowing or not opening.
  • One of the pre-checks is typically a boiling detection in that it can greatly modify the behavior to be followed.
  • An action prior to the actuation of an opening of the hatch 9 is typically to attempt to place the inside of the tank at a pressure as close as possible to the pressure outside, typically the atmospheric pressure.
  • the principle of processing an opening request is that an opening request must be positively followed by an unlocking in the majority of cases.
  • the system may defer an effective opening in order to previously carry out various verifications and / or actions.
  • the system will typically attempt to balance the pressures between the interior and exterior of the tank 2 before opening.
  • the system will advantageously carry out a boiling detection. If such a boiling detection is positive, the pressure balance may be difficult to achieve.
  • the system can then alert the operator to the boiling state, and / or the differential pressure state.
  • a risk of projection of hot liquid through the hatch 9 exists because of the boiling state and / or the state of overpressure.
  • the system can still request a confirmation of the opening request to the operator thus informed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Procédé de contrôle de la pression, pour un ensemble réservoir (1) comprenant un réservoir (2) étanche apte à accueillir un liquide (6), un filtre (3) apte à capturer des vapeurs issues du liquide (6), une canalisation (4) connectant le réservoir (2) au filtre (3), et une vanne d'isolement (5) disposée de manière à sélectivement obturer la canalisation (4), comprenant une détection d'ebullition du liquide contenu dans le réservoir (2).

Description

Procédé de contrôle de la pression incluant une détection d'ébullition
La présente invention concerne les réservoirs étanches pour liquide, tels ceux utilisés pour le stockage du carburant liquide dans les véhicules, et plus particulièrement les problèmes liés au contrôle de la pression à l'intérieur d'un tel réservoir.
Afin de ne pas endommager un tel réservoir, il convient d'y maintenir une pression inférieure à une (sur)pression limite maximale, mais aussi supérieure à une (dé)pression limite minimale.
La pression à l'intérieur d'un réservoir dépend de la quantité de liquide ajoutée, typiquement par remplissage du réservoir, ou retirée, typiquement par puisage, par exemple à destination du moteur dans le cas d'un carburant, mais encore des conditions d'environnement : température et pression atmosphérique. Une difficulté liée à la température est qu'elle est subie, sans pouvoir être maîtrisée, avec des amplitudes pouvant être très grandes. Ainsi un véhicule, par exemple, peut se trouver soumis à des températures très basses en plein hiver ou encore à des températures très élevées, en été en plein soleil.
Aux premiers temps des moteurs à combustion et de l'automobile, le contrôle de la pression était résolu passivement au moyen d'une mise à l'air libre, le cas échéant au travers d'au moins un clapet taré à la pression limite maximale et/ou à la pression limite minimale. Ainsi, un réservoir était étanche aux liquides, afin de conserver son contenu liquide, mais une mise à l'air libre ouverte ou apte à s'ouvrir, permettait de laisser passer les gaz. En cas de dépression, de l'air pouvait être admis depuis l'extérieur vers le réservoir, et en cas de surpression du gaz pouvait être échappé depuis le réservoir vers l'extérieur, afin, dans les deux cas, de rétablir une pression acceptable : comprise entre les deux pressions limites.
Un tel gaz, chargé de vapeur issue du liquide, dans le cas d'un liquide volatile, constitue, dans le cas d'un carburant, un polluant, et il n'est aujourd'hui plus possible, réglementairement, de dégazer librement dans l'environnement.
Aussi, actuellement, les réservoirs sont étanches tant aux liquides qu'aux gaz. Il est possible, sous certaines conditions, de réduire la pression, en capturant la vapeur au moyen d'un filtre, encore nommé canister. Ce filtre peut ensuite être régénéré, en vidangeant la vapeur capturée vers le moteur, pour y être brûlée.
Ceci impose de piloter de manière active la pression dans le réservoir, afin d'éviter tout risque d'endommagement du réservoir, tout en gérant le niveau de remplissage du filtre, notamment en fonction des phases de fonctionnement du moteur.
On connaît par exemple le document DE 199 13 440 A1 qui se rapporte à un réservoir de carburant qui est conçu pour un maximum de pression qui est supérieur à la pression ambiante. Chaque tuyau de raccordement / valve entre le réservoir de carburant et la pression ambiante peuvent être fermées. Pendant le fonctionnement du moteur à combustion interne, la vanne électrique de ventilation du réservoir / mécanique définit une pression dans le réservoir, qui est supérieure à la pression ambiante, mais ne dépasse pas considérablement le maximum de pression. La vanne actionnée électriquement est ouverte par une unité de commande électronique, lorsque la pression de fonctionnement dépasse une valeur limite de la pression définie, qui est supérieure à la pression ambiante, mais non supérieure au maximum de pression.
Dans ce contexte de contrôle de la pression, il apparaît particulièrement avantageux de détecter une éventuelle ébullition du liquide contenu dans le réservoir. En effet, une situation d'ébuilition conduit à une augmentation drastique des quantités de vapeur produite par le liquide, accompagnée d'une augmentation accélérée de la pression.
L'invention concerne un procédé de contrôle de la pression, pour un ensemble réservoir comprenant un réservoir étanche apte à accueillir un liquide, un filtre apte à capturer des vapeurs issues du liquide, une canalisation connectant le réservoir au filtre, et une vanne d'isolement disposée de manière à sélectivement obturer la canalisation, ledit procédé comprenant une détection d'ébuilition du liquide contenu dans le réservoir, où la détection d'ébuilition comprend les étapes suivantes :
• ouverture de la vanne d'isolement pendant une durée d'ouverture donnée, mesure d'une pression initiale dans le réservoir, avant ouverture de la vanne d'isolement,
• mesure d'une pression finale dans le réservoir, après fermeture de la vanne d'isolement,
• estimation d'une dérivée temporelle de la pression par calcul d'une variation de la pression rapportée à la durée d'ouverture,
• détection d'une ébullition si la dérivée temporelle est supérieure à un seuil.
Selon une autre caractéristique, lorsqu'une ébullition est détectée, le procédé comprend encore une étape d'émission d'une alerte à l'attention d'un opérateur et/ou d'un calculateur.
Selon une autre caractéristique, lorsqu'une ébullition est détectée, le procédé comprend encore une étape de fermeture et/ou maintien de la fermeture de la vanne d'isolement.
Selon une autre caractéristique, la vanne d'isolement est maintenue fermée par défaut.
Selon une autre caractéristique, le procédé comprend encore les étapes suivantes :
• surveillance de la pression dans le réservoir, • comparaison de la pression dans le réservoir avec une pression limite minimale du réservoir et avec une pression limite maximale du réservoir,
• ouverture de la vanne d'isolement si la pression dans le réservoir est inférieure à la pression limite minimale du réservoir ou si la pression dans le réservoir est supérieure à la pression limite maximale du réservoir.
Selon une autre caractéristique, une détection d'ébullition est réalisée régulièrement.
Selon une autre caractéristique, une détection d'ébullition est réalisée lors d'une demande d'ouverture d'une trappe de remplissage du réservoir.
Selon une autre caractéristique, une demande d'ouverture d'une trappe de remplissage du réservoir est autorisée, si la pression mesurée dans le réservoir est sensiblement égale à la pression extérieure, et est retardée sinon.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement de la description détaillée donnée ci-après à titre indicatif en relation avec des dessins sur lesquels :
- la figure 1 présente une vue d'ensemble d'un ensemble réservoir dans son contexte,
- la figure 2 présente l'évolution de la pression en fonction du temps et le principe de la détection d'ébullition,
- la figure 3 présente un organigramme de la détection d'ébullition,
- la figure 4 illustre la définition de l'ébullition dans un diagramme Pression/Température,
- la figure 5 présente un abaque indiquant la température d'ébullition en fonction de la pression,
- la figure 6 présente un organigramme du procédé suite à une détection d'ébullition.
La figure 1 illustre un ensemble réservoir 1 , du type apte à être contrôlé en pression par un procédé selon l'invention. Cet ensemble réservoir 1 comprend un réservoir 2, un filtre ou canister 3, une canalisation 4 et une vanne d'isolement 5. Le réservoir 2 est apte à accueillir et à contenir un liquide 6. Le réservoir 2 est étanche tant aux liquides, qu'aux gaz. Le liquide 6 peut être un liquide volatile. Aussi, le filtre 3 est apte à capturer des vapeurs issues du liquide 6. La canalisation 4 est disposée de manière à relier le réservoir 2 au filtre 3, de manière étanche, tant aux liquides qu'aux gaz. La canalisation 4 est avantageusement piquée en partie haute du réservoir 2 afin d'éviter d'être reliée au liquide 6, mais de préférence à la vapeur. La vanne d'isolement 5 est disposée, en travers de la canalisation 4 de manière à sélectivement l'obturer. Ainsi la vanne d'isolement 5 peut être commandée, avantageusement par un signal de commande électrique, en position fermée, dans laquelle la position de la canalisation 4 est obturée, empêchant tout transfert entre le réservoir 2 et le filtre 3, ou en position ouverte, dans laquelle la position de la canalisation 4 est passante et permet un transfert du réservoir 2 vers le filtre 3 ou réciproquement.
Le réservoir 2 peut encore comprendre une trappe de remplissage 9, apte à être sélectivement ouverte ou fermée, afin de permettre un remplissage du réservoir 2 en liquide 6.
Selon un cas d'utilisation, l'ensemble réservoir 1 est disposé dans un véhicule automobile, et le liquide 6 est un carburant volatile.
Le réservoir 2 peut encore comprendre au moins une sortie et une canalisation (non représentées) de puisage du liquide 6 permettant de puiser le liquide 6 à destination d'un consommateur, tel par exemple un moteur 13, dans le cas d'un carburant.
Le réservoir 2 peut encore être équipé d'une pompe 10 de puisage du liquidé e.
L'ensemble réservoir 1 peut encore comprendre, avantageusement disposé sur le réservoir 2, un capteur de pression 7 apte à mesurer la pression à l'intérieur du réservoir 2. L'ensemble réservoir 1 peut encore comprendre, avantageusement disposé sur le réservoir 2, un capteur de température 8 apte à mesurer la température à l'intérieur du réservoir 2.
Les différents composants électroniquement interfaçables (vannes 5,12, capteurs 7,8, ... ) sont avantageusement interfacés avec au moins un calculateur 15, tel un calculateur de contrôle moteur 15 (en anglais « Engine Control Unit » ou ECU). Les interfaces électriques entre le calculateur 15 et les composants 5, 7, 8, 12 sont figurées par des traits tiretés.
Le filtre 3 comprend une première connexion le reliant à la canalisation 4. Il comprend encore une deuxième connexion le reliant à une mise à l'air libre 14.
Il n'est pas souhaité que les vapeurs issues du liquide 6, par exemple parce qu'il s'agit de polluants, soient libérées dans l'atmosphère. Aussi le filtre 3 a pour fonction de capturer ces vapeurs.
Une pression faible ou dépression, soit une pression inférieure à la pression atmosphérique, dans le réservoir 2, peut être augmentée en ouvrant la vanne d'isolement 5. De l'air, entrant par exemple par la mise à l'air libre du filtre 3, peut alors pénétrer dans le réservoir 2.
De même, une pression importante ou surpression, soit une pression supérieure à la pression atmosphérique, dans le réservoir 2, peut être réduite en ouvrant la vanne d'isolement 5. De l'air, éventuellement chargé en vapeur issue du liquide 6, quitte alors le réservoir 2 et se dirige vers le filtre 3. L'air s'échappe, via la mise à l'air libre 14, tandis que la vapeur est capturée par le filtre 3.
Le filtre 3, comprend un matériau filtrant, par exemple du charbon actif. Au fur et à mesure que ce matériau filtrant se charge en vapeur capturée, la capacité du filtre 3 diminue.
La capacité du filtre 3 peut être régénérée. Pour cela une autre canalisation 1 1 est disposée entre le filtre 3 et un consommateur 13 de vapeur, permettant ainsi de purger le filtre 3. Ceci peut être contrôlé au moyen d'une vanne de purge 12 (telle une vanne de purge canister, soit en anglais « canister purge solenoid » ou CPS). Dans le cas d'un carburant, un consommateur est, par exemple, un moteur 13, avantageusement apte à brûler la vapeur.
Dans un tel environnement, il est possible, sous certaines conditions, de contrôler la purge/régénération du filtre 3. Il est encore possible d'estimer la capacité du filtre. Ceci fait l'objet d'autres demandes de brevet de la demanderesse.
Dans l'objectif de contrôler la pression dans le réservoir 2, il est très avantageux de pouvoir détecter une ébullition du liquide 6. En effet l'ébullition modifie drastiquement les conditions de dégagement de vapeur et, avec elles, le régime de variation de la pression.
Dans des conditions moyennes de température et de pression, un liquide 6 est un corps présent principalement en phase liquide.
En l'absence d'ébullition, une phase vapeur dudit corps peut aussi être présente. Une vaporisation du liquide 6 peut se produire à l'interface entre les deux phases, soit à la surface du liquide 6. Le phénomène de vaporisation est dans ce cas essentiellement surfacique et conduit à une variation de pression d'amplitude modérée. Tant qu'il n'y a pas d'ébullition, la pression partielle ou pression de vapeur saturante reste inférieure à la pression dans le réservoir 2.
Lorsque la pression partielle augmente jusqu'à devenir égale à la pression dans le réservoir 2, par définition, le point d'ébullition est atteint. A ce stade la pression partielle est apte à déplacer le liquide et, de la vapeur, sous forme de bulles, se forme dans tout le volume de liquide. Le phénomène de vaporisation, précédemment surfacique, devient volumique. Il s'ensuit une brusque augmentation du taux de production de vapeur, accompagnée d'une brusque augmentation de la pression.
Aussi, est-il très avantageux de pouvoir détecter une ébullition du liquide 6, dans le cadre du contrôle de la pression dans le réservoir 2.
En se basant sur la définition du point d'ébullition et sur les conséquences d'une ébullition sur la variation de la pression, plus particulièrement illustrée par la figure 2, il peut être réalisé une détection d'ébullition. La figure 2 représente un diagramme figurant la pression P, en ordonnées, en fonction du temps t, en abscisse. Sur ce diagramme apparaît une première courbe 30 correspondant à une absence d'ébullition et une deuxième courbe 31 correspondant à une présence d'ébullition. On est ici dans un volume constant, tel que formé par le réservoir 2 étanche.
II apparaît avec la courbe 30 que la pression partielle croit lentement jusqu'à une valeur d'équilibre asymptotique 32, dont la valeur s'établit en dessous de la valeur de pression 34 à l'intérieur du réservoir 2.
Au contraire, avec la courbe 31 , la pression partielle croit rapidement. Elle atteint éventuellement une valeur d'équilibre asymptotique 33, dont la valeur dépasse la valeur de pression 34 à l'intérieur du réservoir 2.
En se basant sur cette observation, il peut être détecté une situation d'ébullition en observant la vitesse de variation de la pression partielle. La pression partielle contribue à la pression « totale » à l'intérieur du réservoir 2 et ces deux grandeurs présentent des variations comparables. La pression « totale » à l'intérieur du réservoir 2 peut être mesurée, par exemple, au moyen d'un capteur de pression 7 disposé sur le réservoir 2.
La détection d'ébullition est réalisée en comparant la pente ou dérivée temporelle d de la pression avec un seuil S. Si la dérivée temporelle d est supérieure au seuil S, une ébullition est détectée. Si au contraire la dérivée temporelle d est inférieure ou égale au seuil S, aucune ébullition n'est présente.
Le seuil S est une constante déterminée empiriquement. Selon un mode de réalisation, la dérivée temporelle d de la pression est mesurée, lors d'une application d'une variation de température, pour un premier ensemble d'échantillons selon des conditions expérimentales variables (différentes températures initiales, liquide agité ou non, différents types de liquide (RVP variable), etc.) mais toujours en l'absence d'ébullition et un second ensemble d'échantillons selon des conditions expérimentales variables mais cette fois-ci en présence d'ébullition. Le seuil S est choisi de manière à séparer les deux ensembles d'échantillons.
La dérivée temporelle d = dP/dt de la pression est estimée en calculant un taux de variation ΔΡ/Δί. Le principe consiste à ouvrir la vanne d'isolement 5 pendant une durée M et à mesurer la variation de pression ΔΡ, ΔΡ1 , ΔΡ2 correspondante.
Pour cela la détection d'ébullition peut être réalisée en effectuant les étapes suivantes, illustrées en référence à l'organigramme de la figure 3. Au cours d'une première étape 40, il est mesuré une pression initiale Pi dans le réservoir 2, puis il est procédé à une ouverture de la vanne d'isolement 5. La vanne d'isolement 5 est maintenue ouverte pendant une durée d'ouverture M donnée. A l'issue de cette durée d'ouverture M, au cours d'une deuxième étape 41 , il est procédé à une fermeture de la vanne d'isolement 5, puis à une mesure d'une pression finale Pf dans le réservoir 2. Une troisième étape 42 calcule une estimée de la dérivée temporelle d de la pression en rapportant la variation de la pression ΔΡ, ΔΡ1 , ΔΡ2 égale à la différence Pf-Pi entre la pression finale Pf et la pression initiale Pi, à la durée d'ouverture A\, soit d = dP/dt = ΔΡ/Δί = (Ρί-Ρί)/Δί. Au cours d'une quatrième étape 43, cette estimée de la dérivée temporelle d est comparée à un seuil S. Si d est supérieure au seuil S, ce qui est le cas pour ΔΡ2/Δί, une ébullition est détectée et le procédé se poursuit à l'étape 44. Si d est inférieure au seuil S, ce qui est le cas pour ΔΡ1/Δί, une absence d'ébullition est constatée et le procédé se poursuit à l'étape 45.
La durée d'ouverture At doit être suffisante pour que la variation de pression ΔΡ.ΔΡ1 ,ΔΡ2 soit signifiante, tout en étant la plus réduite possible. Dans la pratique une durée d'ouverture At comprise entre 1 et 10 secondes est satisfaisante. Une durée d'ouverture At de 2 secondes constitue un bon compromis.
Lorsqu'une ébullition est détectée, une alerte, indiquant qu'une ébullition se produit, est avantageusement transmise. Un premier destinataire peut être un opérateur. Ainsi, dans le cas d'une application à un véhicule, une alerte est avantageusement envoyée à l'attention du conducteur, par exemple au moyen d'un indicateur au tableau de bord. Un autre destinataire, alternatif ou complémentaire, peut être au moins un calculateur. Ainsi dans le cas d'une application à un véhicule, un calculateur, tel que l'ECU 15, est avantageusement alerté.
Un état d'ébullition, par la présence de bulles dans le liquide/carburant 6, peut empêcher un démarrage/redémarrage ou perturber le bon fonctionnement du moteur 13. Aussi la connaissance d'un état d'ébullition est-elle utile à l'ECU 15.
Tel qu'illustré par l'organigramme de la figure 6, s'il s'avère que la vanne d'isolement 5 est ouverte lorsqu'une condition d'ébullition est détectée, il convient de la fermer. De manière cohérente, si la vanne d'isolement 5 est fermée, il convient de faire le maximum pour la maintenir fermée. Ceci est illustré par une étape 45 de fermeture ou de maintien de la fermeture.
En effet, une position fermée de la vanne d'isolement 5 peut s'avérer une mesure corrective efficace en cas d'ébullition, ainsi qu'il va être décrit.
La figure 4 présente un diagramme pression (en ordonnée) / température (en abscisse), sur lequel est représenté un premier lieu' 20 des points d'ébullition pour un premier liquide. Un liquide est en ébullition si le point de fonctionnement pression/température est situé en-dessous de la courbe 20. Il n'est pas en ébullition si le point de fonctionnement pression/température est situé au-dessus de la courbe 20. Le deuxième lieu 21 est similaire pour un deuxième liquide, moins volatile (atteignant une ébullition à température plus haute) que le premier. A titre indicatif le lieu 20 peut correspondre à un carburant « hiver », tandis que le lieu 21 peut correspondre à un carburant « été ». Il a encore été figuré une valeur basse de pression 22 et une valeur haute de pression 23. La valeur basse de pression 22 est, par exemple, la pression atmosphérique (1000.10-3 atm). La valeur haute de pression 23 peut être quelconque, mais il est supposé qu'elle est inférieure à une pression limite maximale Pmax supportable par le réservoir 2.
En considérant un liquide 6 de caractéristiques décrites par le lieu 20, à la pression 22, si sa température atteint ou dépasse une valeur 24 de température, ce liquide 6 présente un point de fonctionnement 26, situé sur le lieu 20. Le liquide 6 est donc en ébullition. Il s'ensuit un fort dégagement de vapeur. Si la vanne d'isolement 5 est fermée, la pression dans le réservoir contenant le liquide 6 augmente. Le point de fonctionnement se déplace alors vers le point 28 et ce faisant passe au-dessus du lieu 20 : l'ébullition est stoppée. Une autre lecture peut être la suivante. Pour une pression 23, le point d'ébullition, sur le lieu 20, est le point 27, qui correspond à une température 25, supérieure à la température 24 du liquide 6.
Ceci est encore visible sur l'abaque de la figure 5, figurant un diagramme température (en ordonnée) / RVP (en abscisse). La RVP (Pression de Vapeur Lue : en anglais « Read Vapor Pressure ») est un indicateur, caractéristique de la volatilité d'un liquide 6, homogène à une pression. Plus la RVP est élevée, plus le liquide est volatile et présente une température d'ébullition faible.
Sur ce diagramme est représentée une première courbe 50 correspondant à une première pression et une deuxième courbe 51 correspondant à une deuxième pression, supérieure à la première pression. A une pression donnée, correspondant à une courbe 50,51 , un liquide 6 est en ébullition si son point de définition (RVP.Température) est au-dessus de la courbe 50,51 , et n'est pas en ébullition en dessous de la courbe 50,51. Cet abaque se lit de la manière suivante. Pour un liquide 6 défini par une volatilité donnée 52, lue en abscisse (ici 690 hPa), la droite verticale coupe la première courbe 50, correspondant à une première pression, en un point d'ordonnée 53, figurant la température d'ébullition (ici 51 °C) de ce liquide 6 à ladite première pression. Pour ce même liquide 6, la droite verticale coupe la deuxième courbe 51 , correspondant à une deuxième pression, en un point d'ordonnée 54, figurant la température d'ébullition (ici 56°C) de ce liquide 6 à ladite deuxième pression. La température d'ébullition 53,54 augmentant avec l'augmentation de la pression produite par l'ébullition, la température effective du liquide 6 peut se retrouver inférieure à la température d'ébullition, aussi le liquide 6 cesse d'être en ébullition. Ainsi il apparaît qu'un confinement à volume constant, par fermeture ou maintien de la fermeture de la vanne d'isolement 5, peut avantageusement stopper une ébullition, en permettant qu'un nouvel équilibre de pression soit atteint.
La détection d'une ébullition conduit avantageusement à fermer la vanne d'isolement 5. Cependant d'autres raisons conduisent à fermer la vanne d'isolement 5. Le fait que le filtre 3 ait une capacité limitée est une raison qui incite à maintenir la vanne d'isolement 5 fermée afin de contrôler les temps où le filtre 3 est utilisé. Le procédé d'estimation de la charge du filtre 3 nécessite encore un environnement maîtrisé pour le filtre 3 et incite aussi à maintenir la vanne d'isolement 5 fermée. Aussi, selon un mode de réalisation, la vanne d'isolement 5 est maintenue fermée par défaut.
Le procédé de contrôle de la pression, tel qu'illustré à l'organigramme de la figure 6, comprend de manière régulière et quelle que soit l'état relatif à une éventuelle ébullition, les étapes suivantes.
Au cours d'une étape 46, la pression P dans le réservoir 2 est mesurée, par exemple au moyen d'un capteur de pression 7. Cette pression P est comparée, au cours de l'étape 47 avec une pression limite minimale Pmin du réservoir 2 et avec une pression limite maximale Pmax du réservoir 2.
Si la pression P est inférieure à la pression limite minimale Pmin du réservoir 2, le réservoir 2 est en dépression et risque d'être endommagé. Aussi il convient, au cours d'une étape 48, d'ouvrir la vanne d'isolement 5. Ceci permet de faire rentrer dans le réservoir 2, par exemple via la mise à l'air libre 14 du filtre 3, par exemple de l'air, afin de permettre à la pression P de remonter jusqu'à éventuellement atteindre une valeur proche de la pression atmosphérique. Cette situation est peu problématique en ce qu'aucune sortie du système n'est à déplorer et qu'il n'existe donc pas de risque de pollution.
Si la pression P est supérieure à la pression limite maximale Pmax du réservoir 2, le réservoir 2 est en surpression et risque d'être endommagé. Aussi il convient, au cours d'une étape 48, d'ouvrir la vanne d'isolement 5. Ceci permet de faire sortir de l'air, le cas échéant chargé de vapeur issue du liquide 6, hors du réservoir 2. Ceci s'effectue au travers du filtre 3, qui laisse échapper l'air via sa mise à l'air libre 14, et capture, dans la limite de sa capacité, la vapeur. Ceci permet à la pression P de baisser, jusqu'à atteindre, si possible, une valeur proche de la pression atmosphérique.
Cette situation peut devenir problématique, si la surpression se maintient au- delà de la capacité du filtre 3. Ici le procédé privilégie la sécurité qui nécessite de baisser la pression P, relativement à un risque de pollution par vapeur. Un endommagement du réservoir 2 pourrait conduire à une rupture, occasionnant une fuite encore plus conséquente et comprenant du liquide 6, encore plus préjudiciable en termes de pollution. Afin de limiter ce risque, il convient en amont, tant que la pression P est inférieure à la pression limite maximale Pmax, de veiller à purger le filtre 3 dès que possible.
Si la pression P est comprise entre la pression limite minimale Pmin et la pression limite maximale Pmax le procédé peut reboucler, typiquement à l'étape 46 de mesure de la pression P.
La surveillance de la pression du réservoir 2, relativement aux pressions limites minimale Pmin et maximale Pmax, réalisée par les étapes 46-48 est avantageusement réalisée de manière régulière afin d'assurer l'intégrité du réservoir 2. Cependant, cette surveillance est d'autant plus utile suite à une détection d'ébullition 44, la situation d'ébullition produisant une forte et rapide élévation de la pression, et donc un risque important d'atteindre la pression limite maximale Pmax.
Afin d'assurer une bonne réactivité, la détection d'ébullition peut, selon un premier mode de réalisation, être réalisée régulièrement.
Alternativement, afin de ne pas exagérément ouvrir la vanne d'isolement 5, la détection d'ébullition peut être réalisée sur apparition d'un événement. Un premier événement pouvant justifier une suspicion d'ébullition est une variation notable de la pression dans le réservoir 2, par exemple détectée par une surveillance régulière de la pression.
Un autre type d'événement est une demande d'ouverture de la trappe 9 de remplissage du réservoir 2. Le réservoir 2 étant étanche, et pouvant être sujet à une pression différente de la pression atmosphérique extérieure au réservoir 2, la trappe 9 de remplissage doit être verrouillée. Aussi, lorsqu'un opérateur souhaite réaliser un remplissage du réservoir 2, il effectue une requête en ce sens. Cette requête est transmise, sous forme d'une demande d'ouverture au système qui autorise ou non une ouverture. Si l'ouverture est autorisée, une commande de déverrouillage est effectivement envoyée à la trappe 9, qui peut alors être ouverte. Ce traitement permet au système de réaliser certaines vérifications ou actions sur le réservoir 2 avant d'autoriser ou non une ouverture. Une des vérifications préalables est typiquement une détection d'ébullition en ce qu'elle peut grandement modifier la conduite à suivre. Une action préalable à l'actuation d'une ouverture de la trappe 9 est typiquement de tenter de placer l'intérieur du réservoir à une pression la plus proche possible de la pression à l'extérieur, soit classiquement la pression atmosphérique.
Le principe de traitement d'une demande d'ouverture est qu'une requête d'ouverture doit être positivement suivie d'un déverrouillage dans la majorité des cas.
Cependant le système peut différer une ouverture effective afin de préalablement réaliser diverses vérifications et/ou actions. Le système va typiquement tenter d'équilibrer les pressions entre intérieur et extérieur du réservoir 2 avant ouverture. Le système va avantageusement réaliser une détection d'ébullition. Si une telle détection d'ébullition est positive, l'équilibre des pressions peut s'avérer délicat à atteindre.
Le système peut alors alerter l'opérateur sur l'état d'ébullition, et/ou sur l'état de pression différentiel. Un risque de projection de liquide chaud par la trappe 9 existe du fait de l'état d'ébullition et/ou de l'état de surpression.
Le système peut encore demander une confirmation de la requête d'ouverture à l'opérateur ainsi informé.

Claims

REVENDICATIONS
1. Procédé de contrôle de la pression, pour un ensemble réservoir (1 ) comprenant un réservoir (2) étanche apte à accueillir un liquide (6), un filtre (3) apte à capturer des vapeurs issues du liquide (6), une canalisation (4) connectant le réservoir (2) au filtre (3), et une vanne d'isolement (5) disposée de manière à sélectivement obturer la canalisation (4), caractérisé en ce qu'il comprend une détection d'ébullition du liquide contenu dans le réservoir (2), où la détection d'ébullition comprend les étapes suivantes :
• ouverture de la vanne d'isolement (5) pendant une durée d'ouverture (Ai) donnée,
• mesure d'une pression initiale (Pi) dans le réservoir (2), avant ouverture de la vanne d'isolement (5),
• mesure d'une pression finale (Pf) dans le réservoir (2), après fermeture de la vanne d'isolement (5),
• estimation d'une dérivée temporelle (d) de la pression par calcul d'une variation de la pression (ΔΡ) rapportée à la durée d'ouverture (At),
· détection d'une ébullition si la dérivée temporelle (d) est supérieure à un seuil (S).
2. Procédé selon la revendication 1 , où lorsqu'une ébullition est détectée, le procédé comprend encore une étape :
• d'émission d'une alerte à l'attention d'un opérateur et/ou d'un calculateur.
3. Procédé selon l'une quelconque des revendications 1 ou 2, où lorsqu'une ébullition est détectée, le procédé comprend encore une étape de :
• fermeture et/ou maintien de la fermeture de la vanne d'isolement (5).
4. Procédé selon l'une quelconque des revendications 1 à 3, où la vanne d'isolement (5) est maintenue fermée par défaut.
5. Procédé selon l'une quelconque des revendications 1 à 4, comprenant encore les étapes suivantes :
• surveillance de la pression dans le réservoir (2),
• comparaison de la pression dans le réservoir (2) avec une pression limite minimale (Pmin) du réservoir (2) et avec une pression limite maximale (Pmax) du réservoir (2), • ouverture de la vanne d'isolement (5) si la pression dans le réservoir (2) est inférieure à la pression limite minimale (Pmin) du réservoir (2) ou si la pression dans le réservoir (2) est supérieure à la pression limite maximale (Pmax) du réservoir (2).
6. Procédé selon l'une quelconque des revendications 1 à 5, où une détection d'ébullition est réalisée régulièrement.
7. Procédé selon l'une quelconque des revendications 1 à 6, où une détection d'ébullition est réalisée lors d'une demande d'ouverture d'une trappe (9) de remplissage du réservoir (2).
8. Procédé selon l'une quelconque des revendications 1 à 7, où une demande d'ouverture d'une trappe (9) de remplissage du réservoir (2) est autorisée, si la pression mesurée dans le réservoir (2) est sensiblement égale à la pression extérieure, et est retardée sinon.
9. Procédé selon l'une quelconque des revendications 1 à 8, où l'ensemble réservoir (1 ) est disposé dans un véhicule automobile, et où le liquide (6) est un carburant volatile.
PCT/EP2016/000601 2015-04-14 2016-04-12 Procede de controle de la pression incluant une detection d'ebullition WO2016165821A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177031812A KR102573430B1 (ko) 2015-04-14 2016-04-12 비등 탐지를 포함한 압력 모니터링 방법
CN201680021901.6A CN107438531B (zh) 2015-04-14 2016-04-12 包括沸腾检测的压力控制方法
US15/566,615 US10416688B2 (en) 2015-04-14 2016-04-12 Method for monitoring pressure including boil detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553257 2015-04-14
FR1553257A FR3035213B1 (fr) 2015-04-14 2015-04-14 Procede de controle de la pression incluant une detection d'ebullition

Publications (1)

Publication Number Publication Date
WO2016165821A1 true WO2016165821A1 (fr) 2016-10-20

Family

ID=53366146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/000601 WO2016165821A1 (fr) 2015-04-14 2016-04-12 Procede de controle de la pression incluant une detection d'ebullition

Country Status (5)

Country Link
US (1) US10416688B2 (fr)
KR (1) KR102573430B1 (fr)
CN (1) CN107438531B (fr)
FR (1) FR3035213B1 (fr)
WO (1) WO2016165821A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498515A1 (fr) * 2017-12-18 2019-06-19 Plastic Omnium Advanced Innovation and Research Procédé pour déterminer l'état thermodynamique du carburant dans un système de carburant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053398B1 (fr) * 2016-06-30 2018-08-10 Continental Automotive France Procede de controle d'une mesure de pression dans un reservoir de carburant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19913440A1 (de) 1999-03-25 2000-10-05 Bayerische Motoren Werke Ag Tankentlüftungssystem bei einem Kraftstofftank für Brennkraftmaschinen in Kraftfahrzeugen
US20110295482A1 (en) * 2010-05-28 2011-12-01 Ford Global Technologies, Llc Method and system for fuel vapor control
EP2468556A2 (fr) * 2010-12-21 2012-06-27 Audi Ag Procédé et dispositif de commande de la pression à l'intérieur d'un réservoir de carburant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223152A (ja) * 1998-02-05 1999-08-17 Mitsubishi Motors Corp 車両用エンジン冷却水温度状態表示装置
US7225796B2 (en) * 2005-05-04 2007-06-05 Gm Global Technology Operations, Inc. Control of induction system hydrocarbon emissions
US8434461B2 (en) * 2011-04-29 2013-05-07 Ford Global Technologies, Llc Method and system for fuel vapor control
CN104176262B (zh) * 2014-09-15 2016-05-04 北京航空航天大学 一种飞机保压油箱
DE102015012656A1 (de) * 2014-10-22 2016-04-28 Audi Ag Verfahren zum Betreiben einer Kraftstoffanlage für ein Kraftfahrzeug sowie entsprechende Kraftstoffanlage
JP6337806B2 (ja) * 2015-03-10 2018-06-06 トヨタ自動車株式会社 蒸発燃料処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19913440A1 (de) 1999-03-25 2000-10-05 Bayerische Motoren Werke Ag Tankentlüftungssystem bei einem Kraftstofftank für Brennkraftmaschinen in Kraftfahrzeugen
US20110295482A1 (en) * 2010-05-28 2011-12-01 Ford Global Technologies, Llc Method and system for fuel vapor control
EP2468556A2 (fr) * 2010-12-21 2012-06-27 Audi Ag Procédé et dispositif de commande de la pression à l'intérieur d'un réservoir de carburant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498515A1 (fr) * 2017-12-18 2019-06-19 Plastic Omnium Advanced Innovation and Research Procédé pour déterminer l'état thermodynamique du carburant dans un système de carburant
US10857875B2 (en) 2017-12-18 2020-12-08 Plastic Omnium Advanced Innovation And Research Method for determining the thermodynamic state of the fuel in a fuel system

Also Published As

Publication number Publication date
CN107438531A (zh) 2017-12-05
FR3035213B1 (fr) 2018-08-10
KR102573430B1 (ko) 2023-08-31
US10416688B2 (en) 2019-09-17
KR20170137132A (ko) 2017-12-12
FR3035213A1 (fr) 2016-10-21
CN107438531B (zh) 2019-11-01
US20180088603A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6509831B2 (ja) 車両用燃料貯蔵システムを減圧させるための方法及びシステム
JP6697857B2 (ja) 車両用液体貯蔵システムの充填作業を制御するための方法及びシステム
FR2723403A1 (fr) Procede pour controler l'aptitude au fonctionnement d'une installation de mise a l'atmosphere d'un reservoir de vehicule automobile.
FR2761307A1 (fr) Procede de verification du bon fonctionnement d'un dispositif d'aeration du reservoir d'un vehicule
WO2018002550A1 (fr) Procédé de contrôle d'une mesure de pression dans un réservoir de carburant
JP2009525223A (ja) 車両側給油時に蒸気を回収するための方法
WO2016165821A1 (fr) Procede de controle de la pression incluant une detection d'ebullition
US10549629B2 (en) Method for controlling depressurisation in a motor vehicle fuel tank
FR3078747A1 (fr) Detection de fuite dans un dispositif d'evaporation des vapeurs d'un carburant stocke dans un reservoir d'un moteur thermique de vehicule
WO1996030641A1 (fr) Procede de detection d'une surpression dans un systeme de recuperation de vapeurs de carburant pour vehicule automobile
CN107771246A (zh) 用于控制机动车辆燃料箱内部的压力的方法和计算机
EP1475523B1 (fr) Procédé et dispositif de détermination de la quantité de particules présente dans un média filtrant d'un système d'échappement d'un moteur thermique
WO2017005369A1 (fr) Procede et dispositif de determination d'un modele de debit au travers d'une vanne
JP6252565B2 (ja) 蒸発燃料処理装置
WO2017216442A1 (fr) Procédé de détection de fuite dans un système de recyclage des vapeurs de carburant
FR2990175A1 (fr) Procede de demande de demarrage ou de maintien en fonctionnement du moteur thermique d'un vehicule hybride en vue d'une purge du canister
US11852110B2 (en) Evaporated fuel treatment apparatus
FR3076903A1 (fr) Procédé de détermination de l'état thermodynamique du carburant dans un système de carburant
FR2936018A1 (fr) Procede de demarrage d'un moteur a combustion interne
EP2562023B1 (fr) Méthode de contrôle de la pression d'un système à carburant de véhicule hybride
WO2018150105A1 (fr) Procédé et dispositif d'aide au démarrage d'un moteur à combustion interne
US11040866B2 (en) Method for detecting defective gas flow in a purge device vent line
FR3100841A1 (fr) Détermination de la charge en hydrocarbures d’un filtre absorbant en circuit ouvert
WO2022161859A1 (fr) Dispositif et procede de purge d'un flux de gaz charge en vapeurs d'hydrocarbures
FR3042225A1 (fr) Procede et dispositif d'aide au demarrage d'un moteur a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16717252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031812

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16717252

Country of ref document: EP

Kind code of ref document: A1