WO2016165356A1 - 双面成像的微光学器件及其制备方法和应用 - Google Patents

双面成像的微光学器件及其制备方法和应用 Download PDF

Info

Publication number
WO2016165356A1
WO2016165356A1 PCT/CN2015/096764 CN2015096764W WO2016165356A1 WO 2016165356 A1 WO2016165356 A1 WO 2016165356A1 CN 2015096764 W CN2015096764 W CN 2015096764W WO 2016165356 A1 WO2016165356 A1 WO 2016165356A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microlens
micro
optical device
double
Prior art date
Application number
PCT/CN2015/096764
Other languages
English (en)
French (fr)
Inventor
徐良衡
庄孝磊
董兰新
游仁顺
Original Assignee
上海天臣包装材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天臣包装材料有限公司 filed Critical 上海天臣包装材料有限公司
Priority to US15/565,859 priority Critical patent/US20180111405A1/en
Priority to EP15889052.5A priority patent/EP3285096A4/en
Publication of WO2016165356A1 publication Critical patent/WO2016165356A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/342Moiré effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to a micro-optical device.
  • Moiré amplification technology based on microlens arrays and microtextographic arrays has received widespread attention in the field of anti-counterfeiting.
  • a safety device using a combination of a microlens array having a pore size of 50-250 microns and a microtextographic array is proposed by Drinkwater et al. in U.S. Patent No. 5,721,273;
  • RASteenblik et al. in U.S. Patent No. 2005/0180020 A1, extends the range of security elements based on microlens arrays by more sophisticated processing techniques and more variations, ie, reducing the aperture of the microlens to less than 50 microns. .
  • micro-optical device adopting the microlens structure described above is one-way imaging, and the stereoscopic image can only be seen from one side, which has certain limitations in both packaging materials and ticket anti-counterfeiting.
  • the double-sided imaging micro-optical device comprises a first microlens layer, a functional layer, a second microlens layer and a miniature graphic layer which are sequentially combined with each other;
  • the first microlens layer is a first microlens array arranged by a plurality of first microlenses
  • the second microlens layer is a second microlens array arranged by a plurality of second microlenses
  • the functional layer is disposed on a surface of the second microlens layer, and the material of the functional layer has a refractive index different from that of the surrounding material.
  • the invention has the beneficial effects that the prepared micro-optical device can be imaged on two sides, and the product prepared by the device can be used for packaging and bill anti-counterfeiting, and can present a stereoscopic image on both sides of the front and back, and is presented.
  • the two stereoscopic images are represented differently, which greatly enhances the product's appeal and anti-copy capabilities.
  • Figure 1 is a schematic view showing the structure of a micro-optical device for double-sided imaging.
  • FIG. 2 is a schematic diagram showing the transmission focus of the first microlens and the reflection focusing of the second microlens.
  • Figure 3 is a schematic diagram of the functional layer structure.
  • FIG. 4 is a schematic view showing a first microlens, a second microlens, and a thumbnail image in a periodic arrangement.
  • Figure 5 is a schematic view of the angle of the two layers of symmetrical axes during periodic arrangement.
  • FIG. 6 is a schematic view showing a case where the first microlens, the second microlens, and the thumbnail image are randomly arranged.
  • Figure 7 is a schematic diagram of a miniature picture creation.
  • Figure 8 is a schematic diagram of a micro-structured thumbnail.
  • Figure 9 is a schematic illustration of a double side windowing security line ticket using the micro-optical device of the present invention.
  • Figure 10 is a schematic view of the cut surface of the bill.
  • FIG. 11 is a schematic diagram of a stealth ciphertext structure.
  • Figure 12 is a schematic view showing the structure of a double-sided imaging micro-optical device incorporating holography.
  • Figure 13 is a schematic view showing the structure of another double-sided imaging micro-optical device incorporating holography.
  • the double-sided imaging micro-optical device comprises a first microlens layer 1, a functional layer 4, a second microlens layer 2 and a thumbnail layer 3 which are sequentially combined with each other;
  • the first microlens layer 1 is a first microlens array arranged by a plurality of first microlenses 11;
  • the second microlens layer 2 is a second microlens arranged by a plurality of second microlenses 21 Array
  • the functional layer is disposed on a surface of the second microlens layer, and the material of the functional layer has a refractive index different from that of the surrounding material.
  • the first microlens layer 1 is arranged by the first microlens 11 in a periodic arrangement or in a random arrangement to form a first microlens array
  • the second microlens layer 2 is composed of a plurality of
  • the second microlens 21 adopts a second microlens array arranged in a periodic arrangement manner or in a random arrangement manner;
  • the substrate of the first microlens layer 1 has a refractive index of 1.4 to 1.8.
  • the substrate of the first microlens layer 1 is selected from the group consisting of a hot press type material such as polyvinyl acetate, cellulose triacetate, polymethyl methacrylate, polystyrene, alkyd resin and toluene diisocyanate.
  • a hot press type material such as polyvinyl acetate, cellulose triacetate, polymethyl methacrylate, polystyrene, alkyd resin and toluene diisocyanate.
  • Polyurethane, polypropylene, polyethylene terephthalate-1,4-cyclohexanedimethanol ester also selected from ultraviolet curable materials such as epoxy acrylate, fatty acid modified epoxy acrylate, styrene a mixture with an epoxy acrylate;
  • the substrate of the second microlens layer 2 has a refractive index of 1.4 to 1.8;
  • the substrate of the second microlens layer 2 is selected from the group consisting of a hot press type material such as polyvinyl acetate, cellulose triacetate, polymethyl methacrylate, polystyrene, a mixture of alkyd resin and toluene diisocyanate, polyurethane, poly Propylene, polyethylene terephthalate-1,4-cyclohexanedimethanol ester; also selected from ultraviolet curable materials such as epoxy acrylate, fatty acid modified epoxy acrylate, styrene and epoxy a mixture of acrylates;
  • a hot press type material such as polyvinyl acetate, cellulose triacetate, polymethyl methacrylate, polystyrene, a mixture of alkyd resin and toluene diisocyanate, polyurethane, poly Propylene, polyethylene terephthalate-1,4-cyclohexanedimethanol ester
  • ultraviolet curable materials such as epoxy acrylate, fatty acid modified
  • the first microlens 11 or the second microlens 21 is a spherical lens or an aspheric lens;
  • the base geometry of the first or second microlens is one or a combination of a circle, a triangle, a rectangle or a regular hexagon, preferably a regular hexagon, because under the same lens aperture and lens spacing
  • the microlens at the base of the regular hexagon has the highest filling rate, and the higher the filling rate of the microlens, the clearer and brighter the macroscopically enlarged image information is obtained; see FIG. 4, which shows the first microlens 11 and the first 2 microlens 21 circular base microlens rectangular arrangement diagram, FIG. 4b is a schematic view of the first microlens 11 and the second microlens 21 regular hexagonal base microlens honeycomb arrangement;
  • the filling ratio refers to the ratio of the area occupied by the microlens to the total area, and the ratio of the total area of the first microlens 11 to the total area of the first microlens layer 1 is 40% to 90%; the second microlens 21 The ratio of the total area of the second microlens layer 2 is 40% to 90%;
  • the material of the functional layer has good permeability to visible light and has a refractive index different from that of the surrounding material, which is equivalent to forming a refractive index difference array of micro-arc structures in the material; thickness of the functional layer 4 10 to 1000 nm, preferably 10 to 100 nm;
  • the number of layers of the functional layer 4 is one or more layers, and the preferred number of layers is 1-3 layers.
  • the functional layer of the multilayer structure has more layers than the single layer film structure. Strong ability to totally reflect light;
  • Figure 3a shows a single layer film structure of the functional layer.
  • the refractive index of the material of the functional layer 4 is greater than the refractive index of the surrounding material. This structure can only cause a total reflection between the functional layer 4 and the surrounding material;
  • Figure 3b shows a two-layer film structure of a functional layer, the first functional film layer 41 is composited on the surface of the second microlens layer 1, and the second functional film layer 42 is composited on the surface of the first functional film layer 41. ;
  • the refractive index of the first functional film layer 41 is greater than the refractive index of the second functional film layer 42, and the difference between the refractive index of the first functional film layer 41 and the refractive index of the second functional film layer 42 is preferably 0.3 to 0.8;
  • the refractive index of the functional film layer 42 is greater than the refractive index of the surrounding material.
  • the micro-optical device has high transparency to the light incident from the first microlens layer, and for the light incident from the micro-texture layer, due to the existence of the arc-shaped refractive index difference, only part of the light can be transmitted, and some of the light will be transmitted. Reflected back due to the effect of total reflection.
  • the refractive index of the functional layer 4 is preferably 1.6-3.5, the difference between the refractive index of the material of the functional layer 4 and the refractive index of the surrounding material is 0.3-2.0, preferably 0.5-1.5, and the functional layer 4 is located at the second microlens.
  • the surface has the same filling rate as the second microlens layer.
  • the material of the functional layer 4 is selected from the group consisting of oxides, nitrides, carbides, inorganic metal salts, metals or metal alloys;
  • the oxide is selected from the group consisting of silicon SiO oxide, silicon dioxide SiO 2 , titanium dioxide TiO 2 , zirconium dioxide ZrO 2 , hafnium oxide HfO 2 , titanium oxide TiO, titanium trioxide Ti 3 O 5 , pentoxide Diterpenoid Nb 2 O 5 , tantalum pentoxide Ta 2 O 5 , yttrium oxide Y 2 O 3 or zinc oxide ZnO;
  • the nitride is selected from the group consisting of titanium nitride TiN, silicon nitride Si 3 N 4 or boron nitride BN;
  • the carbide is selected from silicon carbide SiC or boron carbide B 4 C;
  • the inorganic metal salt is selected from the group consisting of cesium fluoride NbF 3 , barium fluoride BaF 2 , cesium fluoride CeF 3 , magnesium fluoride MgF 2 , lanthanum fluoride LaF 3 , yttrium fluoride YF 3 , yttrium fluoride YbF 3 , Barium fluoride ErF 3 , zinc selenide ZnSe, zinc sulfide ZnS, barium titanate LaTiO 3 , barium titanate BaTiO 3 , barium titanate SrTiO 3 , barium titanate PrTiO 3 or cadmium sulfide CdS;
  • the metal is selected from the group consisting of aluminum Al, copper Cu, titanium Ti, silicon Si, gold Au, silver Ag, indium In, magnesium Mg, zinc Zn, platinum Pt, germanium Ge, nickel Ni;
  • the metal alloy is selected from the group consisting of a gold-niobium alloy AuGe, a gold-nickel alloy AuNi, a nickel-chromium alloy NiCr, a titanium-aluminum alloy TiAl, a copper-indium-gallium alloy CuInGa, a copper-indium-gallium-selenium alloy CuInGaSe, a zinc-aluminum alloy ZnAl or an aluminum-silicon alloy AlSi;
  • the micro-texture layer 3 is a micro-image array arranged in a periodic arrangement or a random arrangement manner, and the material of the micro-texture layer 3 is selected from a hot-press type material such as polyvinyl acetate, cellulose triacetate, poly a mixture of methyl methacrylate, polystyrene, alkyd resin and toluene diisocyanate, polyurethane, polypropylene, polyethylene terephthalate-1,4-cyclohexanedimethanol ester; a UV curable material such as epoxy acrylate, fatty acid modified epoxy acrylate, a mixture of styrene and epoxy acrylate, having a thickness of 0.5 to 5 microns;
  • a hot-press type material such as polyvinyl acetate, cellulose triacetate, poly a mixture of methyl methacrylate, polystyrene, alkyd resin and toluene diisocyanate, polyurethane, polypropylene,
  • the size of the thumbnail image is a pattern or text of the order of micrometers, and the thumbnail image is one or more of transparency, color, reflection, interference, dispersion or polarization, as long as the graphic part and other places can be generated. Contrast. Due to the small size of the miniature graphics, the current general printing equipment cannot print such a fine graphic structure, and can be prepared by the printing method of the miniature graphic disclosed in the applicant's Chinese patent 201110074244.0.
  • FIG. 7 is a schematic diagram of making a miniature image by using a squeegee method
  • FIG. 8 a is a grating structure in the miniature “Tian” word stroke, which has a different optical characteristic and forms a surrounding structure. Contrast can reflect the miniature "day”.
  • Figure 8b shows a raster structure in the miniature "Tian” stroke, and the other part is another orientation of the grating junction. The structure of the gratings with different orientations is contrasted to form a miniature text "day”.
  • the thumbnail layer 3 is located near the transmission focal plane of the first microlens layer 1 and also near the reflection focal plane of the second microlens layer 2.
  • FIG. 2a is a schematic diagram of the transmission focus of the first microlens 11 .
  • the distance d 1 between the first microlens layer 1 and the thumbnail layer 3 and the structural parameters of the first microlens 11 satisfy the following relationship:
  • D 1 is the aperture of the first microlens 11, preferably the first microlens 11 has a diameter D 1 of 20 to 500 microns;
  • h 1 is the spherical crown height of the first microlens 11 , and preferably, the spherical crown height of the first microlens 11 is 6 to 100 ⁇ m;
  • n 1 is the material refractive index of the first microlens 11, preferably, the material refractive index of the first microlens 11 is 1.4 to 1.8;
  • An arc-shaped high refractive index functional layer 4 exists between the first microlens layer 1 and the microtexture layer 3, which has a certain influence on the propagation of light.
  • the functional layer 4 has a thickness of only a few tens of nanometers, so the effect on light propagation is negligible and negligible;
  • Figure 2b shows a schematic view of the reflection focus of the second microlens 21.
  • the distance d 2 between the second microlens layer 2 and the thumbnail layer 3 and the structural parameters of the second microlens 21 satisfy the following relationship:
  • D 2 is the aperture of the second microlens 21 , and preferably, the second microlens 21 has a pore diameter of 20 to 1000 ⁇ m;
  • h 2 is the spherical crown height of the second microlens 21, and the preferred second microlens 21 has a spherical crown height of 2 to 100 ⁇ m;
  • the functional layer 4 when the observer observes from the side of the first microlens layer, the functional layer 4 is transparent to the imaging of the first microlens (the influence is small and negligible).
  • a first visual effect such as stereoscopic and swaying is generated by satisfying the Moiré amplification condition between the first microlens layer and the thumbnail layer.
  • the functional layer 4 When the observer observes from the side of the thumbnail layer, the functional layer 4 is also transparent for both the first microlens layer and the microtext layer, but at this time, the thumbnail layer and the first microlens layer are also transparent. The position of 1 is inverted, and the condition of Moir amplification is not satisfied, so that no obvious visual effect can be produced.
  • the light incident from the micro-texture layer is partially totally reflected back, which is equivalent to the micro-lens layer 2 being reflected and imaged by the second micro-lens layer 2, and the miniature image is reduced.
  • a condition of moiré amplification is satisfied between the layer and the second microlens layer, resulting in a second visual effect such as stereoscopic and swaying.
  • the brightness of the second visual effect is affected by the ambient light intensity and the magnitude of the refractive index difference of the functional layer. The stronger the ambient light intensity, the more the total reflected light is, and the second visual effect is more obvious. The greater the refractive index difference of the functional layer, the stronger the ability of total reflection light and the more obvious the second visual effect.
  • the first microlens and the second micro of the first microlens layer 1 are The second microlens of the lens layer 2 and the thumbnail image of the thumbnail layer 3 are all arranged periodically, and have two mutually perpendicular symmetry axes of A1 and B1 in the plane, and A1 is an symmetry axis of the array X direction, and B1 is The Y-axis symmetry axis of the array (three-layer structure, each layer is XY-axis symmetric). Each cell in each layer has a fixed arrangement period along the axis of symmetry.
  • the first microlens layer 1 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • m 1 is the first visual effect macro magnification
  • T 1 is the arrangement period of the first microlens array layer
  • T 3 is the arrangement period of the thumbnail image array
  • ⁇ 1 is the first microlens
  • A1 and B1 are the symmetry axes of the first microlens array
  • A3 and B3 are the symmetry axes of the miniature image array
  • T 1 20 to 500 ⁇ m
  • T 3 20 to 500 ⁇ m
  • ⁇ 1 0 to 5 °
  • first visual effect macroscopic magnification refers to the ratio of the size of the macroscopic thumbnail image seen by the eye from the side of the first microlens layer to the actual size of the thumbnail image
  • the second microlens layer 2 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • m 2 is the macroscopic magnification of the second visual effect
  • T 2 is the arrangement period of the second microlens array
  • T 3 is the arrangement period of the miniature image array
  • ⁇ 2 is the symmetry axis and the thumbnail of the second microlens array The angle between the symmetry axes of the array
  • T 2 20 to 1000 ⁇ m
  • T 3 is the same as formula (3)
  • micro magnification of the second visual effect refers to the ratio of the size of the macroscopic thumbnail image seen by the eye from the side of the thumbnail layer to the actual size of the thumbnail image
  • the first microlens layer 1, the second microlens layer 2, and the thumbnail layer 3 are schematic views when randomly arranged, and the units are randomly distributed, and there is no axis of symmetry in the plane.
  • the superposition of two random arrays of identical dot arrays with small size and angular differences produces another type of moiré, the "Glass Pattern” phenomenon.
  • the moire fringes produced by the periodically arranged lattice are also periodically arranged and can extend all the way to the entire plane.
  • the Glass Pattern phenomenon produces a single moire fringe only at a certain center point of the entire plane.
  • the same three-dimensional sway effect as the periodic arrangement can be generated by using the Glass Pattern principle and the lens imaging effect.
  • the difference is that the periodic arrangement produces the stereoscopic shaking effect of the periodic macrotext, and the random distribution arrangement produces the stereoscopic shaking effect of the single macrotext.
  • the preparation method of the invention comprises the following steps:
  • multiple times of plating are performed using functional layer materials having different refractive indices, preferably 1 to 3 times of plating;
  • the overall thickness of the film refers to the second microlens substrate, the second microlens layer, The functional layer and the total thickness of the first microlens layer substrate.
  • the first microlens layer substrate is selected from the group consisting of a hot press type material such as polyvinyl acetate, cellulose triacetate, polymethyl methacrylate, polystyrene, a mixture of alkyd resin and toluene diisocyanate, polyurethane, polypropylene Polyethylene terephthalate-1,4-cyclohexanedimethanol ester; also selected from ultraviolet curable materials such as epoxy acrylate, fatty acid modified epoxy acrylate, styrene and epoxy acrylate a mixture of esters.
  • the first microlens layer 1 is then prepared on a first microlens substrate, preferably by an ultraviolet molding method.
  • the method of the ultraviolet molding method is conventional, and can be found in the literature CYChang, SYYang, MHChu, "Rapid fabrication of Ultraviolet-cured polymer microlens arrays by soft roller stamping process” [J]. Micromech. Microeng. 84 (2007) 355-361 reported in the literature;
  • the double-sided imaging micro-optical device of the invention can be used for preparing a ticket security line
  • FIG. 9 is a schematic illustration of a double side windowing security line ticket using the micro-optical device of the present invention. Both sides of the AB of the bill partially expose the micro-optical device of the present invention, and FIG. 10 is a schematic view of the cut surface of the bill.
  • the first visual effect of the micro-optical device of the present invention can be seen by observing the security line from the A-side window 131.
  • the second visual effect of the micro-optical device of the present invention can be seen by observing the security line from the B-side opening window 132.
  • the anti-counterfeiting feature of the security line is enhanced.
  • the base geometry of the first microlens 11 and the second microlens 21 is a regular hexagon
  • the first microlens 11, the second microlens 21, and the miniature image are all arranged in a periodic manner;
  • the first microlens 11 and the second microlens 21 are both spherical lenses.
  • the filling rate of the first microlens 1 is 80%;
  • the filling rate of the second microlens layer 2 is 79%
  • the functional layer is a 65 nm thick zinc sulfide coating with a refractive index of 2.35;
  • the thumbnail layer 3 is located near the transmission focal plane of the first microlens layer 1, and the distance d 1 between the first microlens layer 1 and the thumbnail layer 3 and the structural parameters of the first microlens 11 satisfy the following relationship:
  • the thumbnail layer 3 is also located near the reflection focal plane of the second microlens 21.
  • the distance d2 between the second microlens 2 and the thumbnail layer 3 and the structural parameters of the second microlens 21 satisfy the following relationship:
  • the first microlens layer 1 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • the second microlens layer 2 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • a second microlens layer having a pore diameter of 60 ⁇ m and a spherical crown height of 10 ⁇ m was prepared by an ultraviolet molding process, and a surface of the second microlens layer was plated with a thickness of 65 nm. Zinc coating.
  • a polyethylene resin is coated on the surface of the zinc sulfide plating layer so that the overall thickness of the film layer reaches 43.5 ⁇ m. Then, a first microlens layer having a pore diameter of 30 ⁇ m and a spherical crown height of 6 ⁇ m was prepared by a UV molding process on a polyethylene resin.
  • microtext layer was prepared on the other side of the PET substrate.
  • the preparation method of the miniature graphic printing method disclosed in the applicant's Chinese Patent No. 201110074244.0 is adopted.
  • the period ratio of the microlens array to the miniature image array and the angle ⁇ have the most direct influence on the visual effect.
  • the system produces a stereoscopic stereoscopic effect.
  • the period ratio of the microlens array to the miniature image array is greater than 1, the visual effect is stereoscopic sinking; the period ratio of the microlens array to the miniature graphic array is less than 1, and the visual effect is reflected as a stereoscopic floating.
  • the period ratio of the microlens to the miniature text is equal to 1, and ⁇ ⁇ 0, the system produces a visual effect of orthogonal sway.
  • a first microlens layer and a microtexture layer there are three layers of relationship combinations: a first microlens layer and a microtexture layer, a second microlens layer and a microtexture layer, and a first microlens layer and a second microlens layer.
  • thumbnail image parameters are fixed, a combination of various visual effects can be realized by designing different first microlens parameters and second microlens parameters;
  • the final effect is that the first visual effect is orthogonal sway, and the second The visual effect is a three-dimensional sinking, and both the first visual effect and the second visual effect can see a faint moiré.
  • the base geometry of the first microlens 11 and the second microlens 21 is circular;
  • the first microlens 11, the second microlens 21, and the thumbnail image are all randomly arranged;
  • the first microlens 11 and the second microlens 21 are both spherical lenses.
  • the filling rate of the first microlens layer 1 is 68%
  • the filling rate of the second microlens layer 2 is 68%
  • the functional layer is a 30 nm thick zinc sulfide coating and a 40 nm post crucible coating with refractive indices of 2.35 and 1.8, respectively.
  • the thumbnail layer 3 is located near the transmission focal plane of the first microlens layer 1, and the distance d 1 between the first microlens layer 1 and the thumbnail layer 3 and the structural parameters of the first microlens 11 satisfy the following relationship:
  • the thumbnail layer 3 is also located near the reflection focal plane of the second microlens 21.
  • the distance d 2 between the second microlens 2 and the thumbnail layer 3 and the structural parameters of the second microlens 21 satisfy the following relationship:
  • the first microlens layer 1 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • the second microlens layer 2 and the miniature graphic layer 3 satisfy the following relationships among the parameters:
  • a second microlens layer having a pore diameter of 80 ⁇ m and a spherical crown height of 12 ⁇ m was prepared by a UV molding process on a 23 ⁇ m thick PET substrate, and a thickness of 30 nm was plated on the surface of the second microlens layer, respectively.
  • Zinc sulphide coating and 40 nm thick ruthenium plating were prepared by a UV molding process on a 23 ⁇ m thick PET substrate, and a thickness of 30 nm was plated on the surface of the second microlens layer, respectively.
  • a polyethylene resin was applied to the surface of the ruthenium plating layer so that the overall thickness of the film layer was 58 ⁇ m. Then, a first microlens layer having a pore diameter of 40 ⁇ m and a spherical crown height of 8 ⁇ m was prepared by a UV molding process on a polyethylene resin.
  • microtext layer was prepared on the other side of the PET substrate.
  • the preparation method of the miniature graphic printing method disclosed in the applicant's Chinese Patent No. 201110074244.0 is adopted.
  • a two-sided imaged micro-optical device as shown in Figure 11 is prepared, wherein:
  • Embodiment 1 under the structural parameter, the information of the second visual effect cannot be directly recognized, and needs to be recognized by the illumination of the additional point source or the parallel source.
  • this embodiment is a variant of Embodiment 1, and other structures are unchanged, and a layer of holographic information layer 9 is added between the first microlens layer and the second microlens layer.
  • holographic technology is very mature, and lithography holography can produce a variety of colorful holographic effects.
  • the generation of the holographic effect is essentially the interference fringes produced by the grating structures of different incident wavelengths with different incident wavelengths.
  • Microlens arrays are made up of many micron-sized spherical lenses, each of which converges light to form a highly divergent cone of light.
  • the microlens array is directly combined with the hologram, and the characteristic of the concentrated light of the microlens destroys the propagation path of the interference fringes, and the holographic effect disappears.
  • the existence of the micro-arc functional layer only produces a micro-arc refractive index difference in the material, and the refractive index difference has little effect on the light propagation, and the interference light generated by the holographic information layer can pass through the micro
  • the curved functional layer is observed by the human eye. Therefore, in the present embodiment, when viewed from the side of the first microlens, only the first visual effect can be seen, and the holographic information is not visible. When viewed from the side of the thumbnail layer, not only the second visual effect but also the holographic information can be seen.
  • a second microlens layer having a pore diameter of 60 ⁇ m and a spherical crown height of 10 ⁇ m was prepared by an ultraviolet molding process, and a surface of the second microlens layer was plated with a thickness of 65 nm. Zinc coating.
  • a polyethylene resin is coated on the surface of the zinc sulfide plating layer so that the total thickness of the film layer reaches 30 ⁇ m.
  • a specific holographic information layer is prepared by a hot molding process on a polyethylene resin, and then surface-treated, and then the polyethylene resin is coated again to make the total thickness of the film layer reach 43.5 micrometers, and the pore diameter is 30 micrometers by a UV molding process.
  • the first microlens layer having a crown height of 6 microns.
  • microtext layer was prepared on the other side of the PET substrate.
  • the preparation method of the miniature graphic printing method disclosed in the applicant's Chinese Patent No. 201110074244.0 is adopted.
  • Figure 13 is another variation of the structure.
  • the holographic information layer is placed between the second microlens layer 2 and the thumbnail layer 3, and the same effect as that of FIG. 12 can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

一种双面成像的微光学器件及其制备方法和应用。该双面成像的微光学器件,包括依次相互复合的第一微透镜层(1)、功能层(4)、第二微透镜层(2)和微缩图文层(3),第一微透镜层(1)为由复数个第一微透镜(11)排列的第一微透镜阵列,第二微透镜层(2)为由复数个第二微透镜(21)排列的第二微透镜阵列;功能层(4)设置于第二微透镜层(2)表面,功能层(4)的材料具有不同于周围材料的折射率。微光学器件可以在两个面成像,采用该器件制备的产品用于包装和票据防伪后,可在正反两个面都呈现立体图像,且所呈现的两种立体图像的表现形式是不同的,这大大增强了产品的吸引力和防复制能力。

Description

双面成像的微光学器件及其制备方法和应用 技术领域
本发明涉及一种微光学器件。
背景技术
基于微透镜阵列和微图文阵列的莫尔放大技术得到防伪领域的普遍关注。Drinkwater等人在美国专利No.5712731中提出了使用孔径在50-250微米的微透镜阵列与微图文阵列相结合的安全器件;
R.A.Steenblik等人在美国专利No.2005/0180020A1中通过更精密的加工技术以及更多的变换形式,将基于微透镜阵列的安全元件范围进行了扩展,即将微透镜的孔径减小至50微米以下。
而上述采用微透镜结构的微光学器件都是单向成像,只能从一面看到立体晃动图像,这无论是做包装材料还是票据防伪,都存在一定的局限性。
发明内容
本发明的目的是公开一种双面成像的微光学器件及其制备方法和应用,以克服现有技术存在的缺陷。
所述的双面成像的微光学器件,包括依次相互复合的第一微透镜层、功能层、第二微透镜层和微缩图文层;
所述第一微透镜层为由复数个第一微透镜排列的第一微透镜阵列;
所述第二微透镜层为由复数个第二微透镜采排列的第二微透镜阵列;
所述功能层设置于第二微透镜层表面,功能层的材料具有不同于周围材料的折射率。
本发明的有益效果是,所制备的微光学器件,可以在两个面成像,采用该器件制备的产品用于包装和票据防伪后,可在正反两个面都呈现立体图像,且所呈现的两种立体图像的表现形式是不同的,这大大增强了产品的吸引力和防复制能力。
附图说明
图1为双面成像的微光学器件结构示意图。
图2为第一微透镜透射聚焦示意图和第二微透镜的反射聚焦示意图。
图3为功能层结构示意图。
图4为第一微透镜、第二微透镜和微缩图文均为周期排布时的示意图。
图5为周期排布时两层对称轴夹角示意图。
图6为第一微透镜、第二微透镜和微缩图文均为随机排布时的示意图。
图7为一种微缩图文制作示意图。
图8为一种微结构微缩图文示意图。
图9为采用本发明微光学器件的双侧开窗安全线票据示意图。
图10为票据切面示意图。
图11为一种隐形密文结构示意图。
图12为一种结合全息的双面成像微光学器件结构示意图。
图13为另一种结合全息的双面成像微光学器件结构示意图。
具体实施方式
参见图1,所述的双面成像的微光学器件,包括依次相互复合的第一微透镜层1、功能层4、第二微透镜层2和微缩图文层3;
所述第一微透镜层1为由复数个第一微透镜11排列的第一微透镜阵列;
所述第二微透镜层2为由复数个第二微透镜21排列的第二微透镜 阵列;
所述功能层设置于第二微透镜层表面,功能层的材料具有不同于周围材料的折射率。
优选的,所述第一微透镜层1由所述的第一微透镜11采用周期排布方式或者随机排布方式排列成为第一微透镜阵列,所述第二微透镜层2由复数个第二微透镜21采用周期排布方式或者随机排布方式排列的第二微透镜阵列;
所述的第一微透镜层1的基材的折射率为1.4~1.8,
所述的第一微透镜层1的基材选自热压型材料如聚醋酸乙烯酯、三醋酸纤维素、聚甲基丙烯酸甲酯、聚苯乙烯、醇酸树脂和甲苯二异氰酸酯的混合物、聚氨酯、聚丙烯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯;也可选自紫外固化型材料如环氧丙烯酸酯、脂肪酸改性环氧丙烯酸酯、苯乙烯和环氧丙烯酸酯的混合物;
所述的第二微透镜层2的基材的折射率为1.4~1.8;
第二微透镜层2的基材选自热压型材料如聚醋酸乙烯酯、三醋酸纤维素、聚甲基丙烯酸甲酯、聚苯乙烯、醇酸树脂和甲苯二异氰酸酯的混合物、聚氨酯、聚丙烯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯;也可选自紫外固化型材料如环氧丙烯酸酯、脂肪酸改性环氧丙烯酸酯、苯乙烯和环氧丙烯酸酯的混合物;
所述第一微透镜11或第二微透镜21为球面透镜或非球面透镜;
所述第一微透镜或第二微透镜的基部几何形状为圆形、三角形、矩形或正六边形的一种或组合,优选的为正六边形,因为在相同的透镜孔径和透镜间距条件下,正六边形基部的微透镜具有最高的填充率,而微透镜填充率越高,得到的宏观放大的图文信息越清晰明亮;参见图4,图4a所示为第一微透镜11和第二微透镜21圆形基部微透镜矩形排列示意图,图4b所示为第一微透镜11和第二微透镜21正六边形基部微透镜蜂窝状排列示意图;
所谓填充率是指微透镜所占的面积与总面积之比,第一微透镜11的总面积与第一微透镜层1的总面积之比为40%~90%;第二微透镜21 与第二微透镜层2的总面积之比为40%~90%;
所述功能层的材料对可见光具有良好的透过性,且具有不同于周围材料的折射率,这就相当于在材料内形成了一层微弧状结构的折射率差阵列;功能层4的厚度为10~1000纳米,优选的为10~100纳米;
优选的,如图3所示,所述的功能层4的层数为1层或多层,优选的层数为1~3层,多层结构的功能层,相比单层膜结构具有更强的全反射光线的能力;
图3a所示为功能层的单层膜结构,功能层4材料的折射率大于周围材料的折射率,这种结构只能在功能层4与周围材料之间发生一次全反射;
图3b所示为功能层的双层膜结构,第一功能膜层41复合在所述的第二微透镜层1表面,第二功能膜层42复合在所述的第一功能膜层41表面;
第一功能膜层41的折射率大于第二功能膜层42的折射率,第一功能膜层41的折射率与第二功能膜层42的折射率的差值优选为0.3~0.8;第二功能膜层42的折射率大于周围材料的折射率,这种结构可以在第一功能膜层41与第二功能膜层42以及第二功能膜层42与周围材料之间反生两次全反射,因此较单层膜结构具有更强的全反射光的能力。理论上这种膜层数越多,其全反射光的能力也越强。
微光学器件对从第一微透镜层入射的光具有很高的透过性,而对从微缩图文层入射的光,由于弧状折射率差的存在,只有部分光线可以透过,部分光线会因全反射的作用而反射回来。
所述的功能层4材料折射率优选的为1.6-3.5,功能层4材料的折射率与周围材料的折射率的差值为0.3~2.0,优选0.5~1.5,功能层4位于第二微透镜表面,填充率与第二微透镜层相同。
所述功能层4的材料选自氧化物、氮化物、碳化物、无机金属盐、金属或金属合金;
所述的氧化物选自一氧化硅SiO、二氧化硅SiO2、二氧化钛TiO2、二氧化锆ZrO2、二氧化铪HfO2、一氧化钛TiO、五氧化三钛Ti3O5、五氧化二铌Nb2O5、五氧化二钽Ta2O5、氧化钇Y2O3或氧化锌ZnO;
所述的氮化物物选自氮化钛TiN、氮化硅Si3N4或氮化硼BN;
所述的碳化物选自碳化硅SiC或碳化硼B4C;
所述的无机金属盐选自氟化钕NbF3、氟化钡BaF2、氟化铈CeF3、氟化镁MgF2、氟化镧LaF3、氟化钇YF3、氟化镱YbF3、氟化铒ErF3、硒化锌ZnSe、硫化锌ZnS、钛酸镧LaTiO3、钛酸钡BaTiO3、钛酸锶SrTiO3、钛酸镨PrTiO3或硫化镉CdS;
所述的金属选自铝Al、铜Cu、钛Ti、硅Si、金Au、银Ag、铟In、镁Mg、锌Zn、铂Pt、锗Ge、镍Ni;
所述的金属合金选自金锗合金AuGe、金镍合金AuNi、镍铬合金NiCr、钛铝合金TiAl、铜铟镓合金CuInGa、铜铟镓硒合金CuInGaSe、锌铝合金ZnAl或铝硅合金AlSi;
所述的微缩图文层3为周期排布方式或者随机排布方式排列的微缩图文阵列,微缩图文层3的材料选自热压型材料如聚醋酸乙烯酯、三醋酸纤维素、聚甲基丙烯酸甲酯、聚苯乙烯、醇酸树脂和甲苯二异氰酸酯的混合物、聚氨酯、聚丙烯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯;也可选自紫外固化型材料如环氧丙烯酸酯、脂肪酸改性环氧丙烯酸酯、苯乙烯和环氧丙烯酸酯的混合物,厚度为0.5~5微米;
所述的微缩图文的尺寸,为微米数量级的图案或文字,微缩图文为透明、色彩、反射、干涉、色散或偏振特性中的一种或几种,只要图文部分与其他地方能产生对比即可。由于微缩图文的尺寸较小,目前通用的印刷设备无法印刷出如此精细的图文结构,可以采用申请人的中国专利201110074244.0公开了的微缩图文的印刷方法进行制备。
参见图7和图8,图7为一种利用刮墨方式制作微缩图文的示意图,图8a为微缩图文“天”字笔画内为光栅结构,由于光栅具有不同的光学特性,与周围形成对比即可体现出微缩图文“天”。图8b所示为微缩图文“天”字笔画内为一种光栅结构,其他部分为另一种取向的光栅结 构,不同取向的光栅结构产生对比,形成微缩文字“天”。
微缩图文层3位于第一微透镜层1的透射焦平面附近,同时也位于第二微透镜层2的反射焦平面附近。
参见图2,图2a为第一微透镜11透射聚焦示意图,第一微透镜层1与微缩图文层3的距离d1与第一微透镜11的结构参数满足如下关系:
Figure PCTCN2015096764-appb-000001
(1)
其中:
D1为第一微透镜11的孔径,优选的第一微透镜11的孔径D1为20~500微米;
h1为第一微透镜11的球冠高度,优选的,第一微透镜11的球冠高度为6~100微米;
n1为第一微透镜11的材料折射率,优选的,第一微透镜11的材料折射率为1.4~1.8;
第一微透镜层1与微缩图文层3之间存在一层弧状的高折射率的功能层4,它对光线的传播会产生一定的影响。但功能层4只有几十纳米的厚度,因此对光线传播的影响微乎其微,可以忽略不计;
图2b所示为第二微透镜21的反射聚焦示意图。
第二微透镜层2与微缩图文层3的距离d2与第二微透镜21的结构参数满足如下关系:
Figure PCTCN2015096764-appb-000002
(2)
其中:
D2为第二微透镜21的孔径,优选的,第二微透镜21的孔径为20~1000微米;
h2为第二微透镜21的球冠高度,优选的第二微透镜21的球冠高度为2~100微米;
在上述的结构下,当观察者从第一微透镜层一侧观察时,功能层4对第一微透镜的成像来说是透明的(影响较小可忽略)。第一微透镜层与微缩图文层之间满足莫尔放大条件而产生诸如立体、晃动的第一视觉效果。当观察者从微缩图文层一侧观察时,对于第一微透镜层与微缩图文层二者来说,功能层4同样也是透明的,但此时微缩图文层与第一微透镜层1位置发生了倒置,不满足莫尔放大的条件,因此不能产生明显的视觉效果。但由于微弧形折射率差阵列的存在,从微缩图文层入射的光线会被部分全反射回来,这就相当于微缩图文3被第二微透镜层2进行了反射成像,微缩图文层与第二微透镜层之间满足莫尔放大的条件,产生诸如立体、晃动的第二视觉效果。第二视觉效果的亮度受到了周围光照强度以及功能层折射率差值大小的影响。周围光照强度越强,全反射的光线相对也就越多,第二视觉效果越明显。功能层折射率差值越大,其全反射光的能力就越强,第二视觉效果也就越明显。
参见图4,所述第一微透镜阵列、第二微透镜阵列和所述的微缩图文阵列为周期排布方式排列时,所述第一微透镜层1的第一微透镜、第二微透镜层2的第二微透镜和微缩图文层3的微缩图文,均为周期排布,在平面内具有A1、B1两个相互垂直的对称轴,A1为阵列X方向对称轴,B1为阵列Y轴方向对称轴,(三层结构,每一层内都是X.Y轴对称的。)每一层内各单元沿对称轴方向都有一个固定的排列周期。第一微透镜层1与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000003
(3)
其中:
m1为第一视觉效果宏观放大倍率,T1为所述的第一微透镜阵列层的排布周期,T3为所述的微缩图文阵列的排布周期,α1为第一微透镜 阵列对称轴与微缩图文阵列对称轴的夹角,如图5所示,图5中,A1、B1为第一微透镜阵列对称轴,A3、B3为微缩图文阵列对称轴;
N1为比例系数,N1=0.1~10;
T1=20~500微米,T3=20~500微米,α1=0~5°;
术语“第一视觉效果宏观放大倍率”指的是眼睛从第一微透镜层一侧看到的宏观微缩图文的大小与微缩图文实际大小的比值;
第二微透镜层2与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000004
(4)
其中:
m2为第二视觉效果的宏观放大倍率,T2为第二微透镜阵列的排布周期,T3为微缩图文阵列的排布周期,α2为第二微透镜阵列对称轴与微缩图文阵列对称轴的夹角;
N2为比例系数,N2=0.1~10;
T2=20~1000微米,T3与式(3)相同;
α2=0~5°;
术语“第二视觉效果的宏观放大倍率”指的是眼睛从微缩图文层一侧看到的宏观微缩图文的大小与微缩图文实际大小的比值;
参见图5,第一微透镜层1、第二微透镜层2和微缩图文层3均为随机排布时的示意图,各单元随机分布,在平面内没有对称轴。两层分布相同但具有很小尺寸和角度差异的随机点阵列叠加在一起可以产生另外一种莫尔条纹,也就是“Glass Pattern”现象。周期排列的点阵产生的莫尔条纹也是周期排列的,且可以一直延伸到整个平面。而Glass Pattern现象只会在整个平面的某个中心点位置产生单个莫尔条纹。当随机分布的微透镜层与随机分布的微缩图文层叠加时,利用Glass Pattern原理以及透镜成像作用,同样可以产生与周期排列相同的立体晃动效果。不同的是周期排列产生的是周期宏观图文的立体晃动效果,而随机分布排列产生的是单个宏观图文的立体晃动效果。
周期分布阵列和随机分布阵列都遵循莫尔条纹的基本原理,因此前文中提到的关于周期分布莫尔放大的相关理论公式,式(1)~式(2),同样适用于随机分布的情况。通过合理选择两层随机分布阵列的尺寸比和旋转角度,也可以产生裸眼立体和正交晃动的视觉效果。
本发明的制备方法,包括如下步骤:
(1)确定第一微透镜的结构参数D1、h1以及第二微透镜的结构参数D2、h2,计算出第一微透镜层1与微缩图文层3的距离d1和第二微透镜层2与微缩图文层3的距离d2
(2)在厚度为d2的第二微透镜层基材膜上,采用紫外模压方法,制备第二微透镜层2,然后在第二微透镜层表面,采用功能层材料进行真空镀膜,镀层厚度为10~1000纳米,获得镀覆了所述功能层的第二微透镜层;
优选的,采用不同折射率的功能层材料进行多次镀覆,优选镀覆1~3次;
(3)在功能层的另一侧涂布第一微透镜层基材层,使膜的整体厚度为d1,膜的整体厚度指的是第二微透镜基材、第二微透镜层、功能层以及第一微透镜层基材的总厚度。其中第一微透镜层基材选自热压型材料如聚醋酸乙烯酯、三醋酸纤维素、聚甲基丙烯酸甲酯、聚苯乙烯、醇酸树脂和甲苯二异氰酸酯的混合物、聚氨酯、聚丙烯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯;也可选自紫外固化型材料如环氧丙烯酸酯、脂肪酸改性环氧丙烯酸酯、苯乙烯和环氧丙烯酸酯的混合物。然后在第一微透镜基材上制备第一微透镜层1,优选采用紫外模压方法进行制备,所述的紫外模压方法的方法为常规的,可参见文献C.Y.Chang,S.Y.Yang,M.H.Chu,“Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process”[J].Micromech.Microeng.84(2007)355-361文献报道的方法;
(4)在第二微透镜层基材的另一侧制备微缩图文层3,优选的,采用申请人的中国专利201110074244.0,公开了的微缩图文的印刷方 法进行制备,获得所述的双面成像的微光学器件。
本发明所述的双面成像的微光学器件,可用于制备票据安全线;
图9为采用本发明微光学器件的双侧开窗安全线票据示意图。票据的AB两侧面均部分露出本发明微光学器件,图10为票据切面示意图。
从A面开窗131处观察安全线可以看到本发明微光学器件的第一视觉效果,从B面开窗132处观察安全线可以看到本发明微光学器件的第二视觉效果,这大大增强了安全线的防伪特性。
实施例1
制备图1和图4结构的双面成像的微光学器件;
第一微透镜11的孔径D1为30微米,球冠高度h1为6微米,第二微透镜21的孔径D2为60微米,球冠高度h2为10微米;α1=0.3°,α2=0;
第一微透镜11和第二微透镜21的基部几何形状为正六边形;
第一微透镜11、第二微透镜21和微缩图文均采用周期排布;
第一微透镜11和第二微透镜21均为球面透镜。
第一微透镜1的填充率为80%;
二微透镜层2的填充率为79%;
功能层为65纳米厚的硫化锌镀层,折射率为2.35;
微缩图文层3位于第一微透镜层1的透射焦平面附近,第一微透镜层1与微缩图文层3的距离d1与第一微透镜11的结构参数,满足如下关系:
Figure PCTCN2015096764-appb-000005
(1)
其中:
将第一微透镜参数代入上述公式,可得第一微透镜层1与微缩图文层的距离d1,d1=43.5微米;
微缩图文层3同时也位于第二微透镜21的反射焦平面附近。第二微透镜2与微缩图文层3的距离d2与第二微透镜21的结构参数满足如下关系:
Figure PCTCN2015096764-appb-000006
(2)
其中:
将第二微透镜参数代入公式,可得第二微透镜层与微缩图文层的距离d2,d2=15微米;
第一微透镜层1与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000007
(3)
其中:
T1为第一微透镜阵列层的排布周期=32微米;
T3为所述的微缩图文阵列的排布周期=32微米;
α1为第一微透镜阵列对称轴与微缩图文阵列对称轴的夹角=0.3°;
N1=1;
第二微透镜层2与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000008
(4)
其中:
T2为第二微透镜阵列的排布周期=64.32微米;
T3为微缩图文阵列的排布周期=32微米;
α2为第二微透镜阵列对称轴与微缩图文阵列对称轴的夹角=0°;
N2为比例系数,N2=2;
计算结果:m1=190,m2=100;
制备方法:
(1)根据第一微透镜和第二微透镜的结构参数,计算出d1=43.5 微米,d2=15微米。
(2)在15微米后的PET基材上,通过紫外模压工艺制备孔径为60微米,球冠高度为10微米的第二微透镜层,并在第二微透镜层表面镀65纳米厚度的硫化锌镀层。
(3)在硫化锌镀层表面涂覆聚乙烯树脂,使膜层的总体厚度达到43.5微米。然后在聚乙烯树脂通过紫外模压工艺制备孔径为30微米,球冠高度为6微米的第一微透镜层。
(4)最后在PET基材的另一面制备微缩图文层。采用申请人的中国专利201110074244.0,公开了的微缩图文的印刷方法进行制备。
从公式(3)和(4)中可知,微透镜阵列与微缩图文阵列的周期比以及夹角α对视觉效果有最直接的影响。当α=0,即微透镜阵列层与微缩图文阵列层的对称轴相互平行时,系统会产生裸眼立体的视觉效果。若微透镜阵列与微缩图文阵列的周期比大于1,视觉效果体现为立体下沉;微透镜阵列与微缩图文阵列周期比小于1,视觉效果体现为立体上浮。当微透镜与微缩图文周期比等于1,且α≠0时,系统会产生正交晃动的视觉效果。
本发明器件中,有三层关系组合:第一微透镜层与微缩图文层,第二微透镜层与微缩图文层以及第一微透镜层与第二微透镜层。
在微缩图文参数固定情况下,通过设计不同的第一微透镜参数和第二微透镜参数可以实现多种视觉效果的组合;
本实施例中,D1=30μm,D2=60μm,T1/T3=1,α1=0.3°,T2/T3=0.995,α2=0,最终效果是第一视觉效果为正交晃动,第二视觉效果为立体下沉,且第一视觉效果和第二视觉效果均可看到一层淡淡的摩尔条纹。
实施例2
制备图1和图6所示结构的双面成像的微光学器件;
第一微透镜11的孔径D1为40微米,球冠高度h1为8微米,第二微透镜21的孔径D2为80微米,球冠高度h2为12.3微米;α1=0.4°,α2=0;
第一微透镜11和第二微透镜21的基部几何形状为圆形;
第一微透镜11、第二微透镜21和微缩图文均采用随机排布;
第一微透镜11和第二微透镜21均为球面透镜。
第一微透镜层1的填充率为68%;
第二微透镜层2的填充率为68%;
功能层为30纳米厚的硫化锌镀层和40纳米后的钇镀层,折射率分别为2.35和1.8。
微缩图文层3位于第一微透镜层1的透射焦平面附近,第一微透镜层1与微缩图文层3的距离d1与第一微透镜11的结构参数,满足如下关系:
Figure PCTCN2015096764-appb-000009
(1)
其中:
将第一微透镜参数代入上述公式,可得第一微透镜层1与微缩图文层的距离d1,d1=58微米;
微缩图文层3同时也位于第二微透镜21的反射焦平面附近。第二微透镜2与微缩图文层3的距离d2与第二微透镜21的结构参数满足如下关系:
Figure PCTCN2015096764-appb-000010
(2)
其中:
将第二微透镜参数代入公式,可得第二微透镜层与微缩图文层的距离d2,d2=23微米;
第一微透镜层1与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000011
其中:
T1为第一微透镜阵列层的排布周期=43微米;
T3为所述的微缩图文阵列的排布周期=43微米;
α1为第一微透镜阵列对称轴与微缩图文阵列对称轴的夹角=0.4°;
N1=1;
第二微透镜层2与微缩图文层3,各参数间满足下列关系:
Figure PCTCN2015096764-appb-000012
(4)
其中:
T2为第二微透镜阵列的排布周期=85.14微米;
T3为微缩图文阵列的排布周期=43微米;
α2为第二微透镜阵列对称轴与微缩图文阵列对称轴的夹角=0°;
N2为比例系数,N2=2;
计算结果:m1=143,m2=100;
制备方法:
(1)根据第一微透镜和第二微透镜的结构参数,计算出d1=58微米,d2=23微米。
(2)在23微米厚的PET基材上,通过紫外模压工艺制备孔径为80微米,球冠高度为12微米的第二微透镜层,并在第二微透镜层表面分别镀30纳米厚度的硫化锌镀层和40纳米厚度的钇镀层。
(3)在钇镀层表面涂覆聚乙烯树脂,使膜层的总体厚度达到58微米。然后在聚乙烯树脂通过紫外模压工艺制备孔径为40微米,球冠高度为8微米的第一微透镜层。
(4)最后在PET基材的另一面制备微缩图文层。采用申请人的中国专利201110074244.0,公开了的微缩图文的印刷方法进行制备。
实施例3
制备图11所示的双面成像的微光学器件,其中:
第二微透镜21的孔径D2=51.5μm,排列周期T2=63.36μm,填充率为60%,功能层4材料为二氧化铪,厚度为50纳米,折射率为2.0,其他结构参数同实施例1,在该结构参数下,第二视觉效果的信息无法直接识别,需要在额外点光源或平行光源照射下才可被识别。
实施例4
如图12所示,本实施例为实施例1的一个变种方案,其他结构不变,在第一微透镜层与第二微透镜层之间增加一层全息信息层9。目前全息技术已经非常成熟,光刻全息可以制作出各式各样炫彩的全息效果。全息效果的产生本质上是不同入射波长的光线在不同取向不同参数的光栅结构产生的干涉条纹。微透镜阵列是由许多微米级的球面透镜组成的,每一个小透镜都会将光线进行会聚,形成高度发散的光锥。微透镜阵列直接与全息相结合,微透镜这种会聚光线的特性会破坏干涉条纹的传播路线,而使全息效果消失。本发明中,微弧面功能层的存在只是在材料中产生一层微弧状的折射率差,而这层折射率差对光线传播的影响很小,全息信息层产生的干涉光线可以透过微弧面功能层而被人眼所观察到。因此在本实施例中,从第一微透镜一侧观察时,只能看到第一视觉效果,看不到全息信息。而从微缩图文层一侧观察时,不仅可以看到第二视觉效果,还能看到全息信息。当前由于全息技术的普及和大众化,使得单纯全息作为防伪的功能越来越弱,本实施例将全息技术和微光学技术有效结合,不仅大大提高产品的可观赏性,还增加了其技术难度。
制备方法:
(1)根据第一微透镜和第二微透镜的结构参数,计算出d1=43.5微米,d2=15微米。
(2)在15微米后的PET基材上,通过紫外模压工艺制备孔径为60微米,球冠高度为10微米的第二微透镜层,并在第二微透镜层表面镀65纳米厚度的硫化锌镀层。
(3)在硫化锌镀层表面涂覆聚乙烯树脂,使膜层的总体厚度达到30微米。在聚乙烯树脂上通过热模压工艺制备特定的全息信息层,并进行表面处理,然后再次涂覆聚乙烯树脂,使膜层的总厚度达到43.5微米,通过紫外模压工艺制备孔径为30微米,球冠高度为6微米的第一微透镜层。
(4)最后在PET基材的另一面制备微缩图文层。采用申请人的中国专利201110074244.0,公开了的微缩图文的印刷方法进行制备。
图13为结构的另一个变种。
将全息信息层放于第二微透镜层2与微缩图文层3之间,可以达到与图12同样的效果。

Claims (19)

  1. 双面成像的微光学器件,其特征在于,包括依次相互复合的第一微透镜层(1)、功能层(4)、第二微透镜层(2)和微缩图文层(3);
    所述第一微透镜层(1)为由复数个第一微透镜(11)排列的第一微透镜阵列;
    所述第二微透镜层(2)为由复数个第二微透镜(21)排列的第二微透镜阵列;
    所述功能层设置于第二微透镜层(1)表面,功能层的材料具有不同于周围材料的折射率。
  2. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述第一微透镜层(1)由所述的第一微透镜(11)采用周期排布方式或者随机排布方式排列成为第一微透镜阵列,所述第二微透镜层(2)由复数个第二微透镜(21)采用周期排布方式或者随机排布方式排列的第二微透镜阵列。
  3. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述的第一微透镜层(1)的基材的折射率为1.4~1.8,所述的第二微透镜层(2)的基材的折射率为1.4~1.8。
  4. 根据权利要求2所述的双面成像的微光学器件,其特征在于,所述的第一微透镜层(1)的基材的折射率为1.4~1.8,所述的第二微透镜层(2)的基材的折射率为1.4~1.8。
  5. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述第一微透镜11或第二微透镜21为球面透镜或非球面透镜。
  6. 根据权利要求5所述的双面成像的微光学器件,其特征在于, 所述第一微透镜或第二微透镜的基部几何形状为圆形、三角形、矩形或正六边形的一种或组合。
  7. 根据权利要求6所述的双面成像的微光学器件,其特征在于,第一微透镜的总面积与第一微透镜层的总面积之比为40%~90%;第二微透镜与第二微透镜层的总面积之比为40%~90%。
  8. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述的功能层的层数为1层或多层。
  9. 根据权利要求8所述的双面成像的微光学器件,其特征在于,功能层的层数为两层,第一功能膜层(41)复合在所述的第二微透镜层表面,第二功能膜层复合在所述的第一功能膜层表面;第一功能膜层(41)的折射率大于第二功能膜层(42)的折射率,第二功能膜层(42)的折射率大于周围材料的折射率,第一功能膜层(41)的折射率与第二功能膜层的折射率的差值为0.3~0.8。
  10. 根据权利要求9所述的双面成像的微光学器件,其特征在于,所述的功能层材料折射率为1.6-3.5,功能层材料的折射率与周围材料的折射率的差值为0.3~2.0。
  11. 根据权利要求8所述的双面成像的微光学器件,其特征在于,所述功能层的材料选自氧化物、氮化物、碳化物、无机金属盐、金属或金属合金;
    所述的氧化物选自一氧化硅SiO、二氧化硅SiO2、二氧化钛TiO2、二氧化锆ZrO2、二氧化铪HfO2、一氧化钛TiO、五氧化三钛Ti3O5、五氧化二铌Nb2O5、五氧化二钽Ta2O5、氧化钇Y2O3或氧化锌ZnO;
    所述的氮化物物选自氮化钛TiN、氮化硅Si3N4或氮化硼BN;
    所述的碳化物选自碳化硅SiC或碳化硼B4C;
    所述的无机金属盐选自氟化钕NbF3、氟化钡BaF2、氟化铈CeF3、 氟化镁MgF2、氟化镧LaF3、氟化钇YF3、氟化镱YbF3、氟化铒ErF3、硒化锌ZnSe、硫化锌ZnS、钛酸镧LaTiO3、钛酸钡BaTiO3、钛酸锶SrTiO3、钛酸镨PrTiO3或硫化镉CdS;
    所述的金属选自铝Al、铜Cu、钛Ti、硅Si、金Au、银Ag、铟In、镁Mg、锌Zn、铂Pt、锗Ge、镍Ni;
    所述的金属合金选自金锗合金AuGe、金镍合金AuNi、镍铬合金NiCr、钛铝合金TiAl、铜铟镓合金CuInGa、铜铟镓硒合金CuInGaSe、锌铝合金ZnAl或铝硅合金AlSi。
  12. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述的微缩图文层为周期排布方式或者随机排布方式排列的微缩图文阵列。
  13. 根据权利要求12所述的双面成像的微光学器件,其特征在于,微缩图文层位于第一微透镜层的透射焦平面附近,同时也位于第二微透镜层的反射焦平面附近。
  14. 根据权利要求13所述的双面成像的微光学器件,其特征在于,第一微透镜层(1)与微缩图文层(3)的距离d1与第一微透镜(11)的结构参数满足如下关系:
    Figure PCTCN2015096764-appb-100001
    其中:
    D1为第一微透镜11的孔径;
    h1为第一微透镜11的球冠高度;
    n1为第一微透镜的材料折射率;
    第二微透镜层与微缩图文层3的距离d2与第二微透镜的结构参数满足如下关系:
    Figure PCTCN2015096764-appb-100002
    其中:
    D2为第二微透镜21的孔径;
    h2为第二微透镜21的球冠高度。
  15. 根据权利要求1所述的双面成像的微光学器件,其特征在于,所述第一微透镜阵列、第二微透镜阵列和所述的微缩图文阵列为周期排布方式排列时,各参数间满足下列关系:
    Figure PCTCN2015096764-appb-100004
    其中:
    m1为第一视觉效果宏观放大倍率,T1为所述的第一微透镜阵列层的排布周期,T3为所述的微缩图文阵列的排布周期,α1为第一微透镜阵列对称轴与微缩图文阵列对称轴的夹角,如图5所示,图5中,A1、B1为第一微透镜阵列对称轴,A3、B3为微缩图文阵列对称轴;
    N1为比例系数,N1=0.1~10;
    T1=20~500微米,T3=20~500微米,α1=0~5°;
    第二微透镜层与微缩图文层,各参数间满足下列关系:
    Figure PCTCN2015096764-appb-100005
    其中:
    m2为第二视觉效果的宏观放大倍率,T2为第二微透镜阵列的排布周期,T3为微缩图文阵列的排布周期,α2为第二微透镜阵列对称轴与微缩图文阵列对称轴的夹角;
    N2为比例系数,N2=0.1~10;
    T2=20~1000微米,T3与式(3)相同;
    α2=0~5°。
  16. 根据权利要求1~7任一项所述的双面成像的微光学器件,其特征在于,在第一微透镜层与第二微透镜层之间设有一层全息信息层(9),或者在第二微透镜层与微缩图文层之间设有一层全息信息层(9)。
  17. 根据权利要求8所述的双面成像的微光学器件,其特征在于,在第一微透镜层与第二微透镜层之间设有一层全息信息层(9),或者在第二微透镜层与微缩图文层之间设有一层全息信息层(9)。
  18. 根据权利要求1~17任一项所述的双面成像的微光学器件的制备方法,其特征在于,包括如下步骤:
    (1)确定第一微透镜的结构参数D1、h1以及第二微透镜的结构参数D2、h2,计算出第一微透镜层1与微缩图文层的距离d1和第二微透镜层与微缩图文层的距离d2
    (2)在厚度为d2的第二微透镜层基材膜上,制备第二微透镜层,然后在第二微透镜层表面,采用功能层材料进行真空镀膜,获得镀覆了所述功能层的第二微透镜层;
    (3)在功能层的另一侧涂布第一微透镜层基材层;
    (4)在第二微透镜层基材的另一侧制备微缩图文层,即可获得所述的双面成像的微光学器件。
  19. 根据权利要求1~17任一项所述的双面成像的微光学器件的应用,其特征在于,用于制备票据安全线。
PCT/CN2015/096764 2015-04-16 2015-12-09 双面成像的微光学器件及其制备方法和应用 WO2016165356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/565,859 US20180111405A1 (en) 2015-04-16 2015-12-09 Micro-optical device double-sided imaging, preparation method therefor and application thereof
EP15889052.5A EP3285096A4 (en) 2015-04-16 2015-12-09 MICRO-OPTICAL DEVICE FOR FORMING A RECTO-VERSO IMAGE, PREPARATION METHOD THEREFOR, AND APPLICATION THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510181774.3 2015-04-16
CN201510181774.3A CN104834029B (zh) 2015-04-16 2015-04-16 双面成像的微光学器件及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016165356A1 true WO2016165356A1 (zh) 2016-10-20

Family

ID=53812024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096764 WO2016165356A1 (zh) 2015-04-16 2015-12-09 双面成像的微光学器件及其制备方法和应用

Country Status (4)

Country Link
US (1) US20180111405A1 (zh)
EP (1) EP3285096A4 (zh)
CN (1) CN104834029B (zh)
WO (1) WO2016165356A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834029B (zh) * 2015-04-16 2016-09-28 上海天臣包装材料有限公司 双面成像的微光学器件及其制备方法和应用
AU2015100670B4 (en) * 2015-05-21 2015-10-08 Ccl Secure Pty Ltd Combination microlens optical device
AU2016265045B2 (en) 2015-05-21 2021-04-01 Ccl Secure Pty Ltd Combination microlens optical device
CN109263326A (zh) * 2018-11-14 2019-01-25 江苏鑫城包装科技有限公司 裸眼3d防伪材料
US11137246B2 (en) * 2019-01-31 2021-10-05 Himax Technologies Limited Optical device
CN111716935A (zh) * 2019-03-19 2020-09-29 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
CN110333606A (zh) * 2019-05-06 2019-10-15 苏州大学 一种基于微聚焦元件的光学成像薄膜
CN112305708B (zh) * 2019-07-29 2023-04-18 英属开曼群岛商音飞光电科技股份有限公司 薄膜光学镜头装置
CN111216446B (zh) * 2019-12-05 2022-03-25 苏州美盈森环保科技有限公司 一种具有动态立体效果的结构的成型方法、成型设备及印刷品
CN111638568A (zh) * 2020-06-02 2020-09-08 成都美塔科技有限责任公司 一种动态显示膜及其制备方法
CN114428391B (zh) * 2020-10-29 2023-06-02 中钞特种防伪科技有限公司 光学防伪元件及包含该光学防伪元件的防伪产品
CN113031129A (zh) * 2021-03-04 2021-06-25 中国科学院光电技术研究所 光刻和湿法刻蚀相结合制备双面随机微透镜阵列的方法
WO2023100512A1 (ja) * 2021-12-03 2023-06-08 ソニーグループ株式会社 照明光学系および投射型表示装置
CN118474330A (zh) * 2023-02-07 2024-08-09 苏州苏大维格科技集团股份有限公司 3d集成成像装置及其制备方法
CN116577854B (zh) * 2023-06-12 2023-11-21 广州市雄冠条码实业有限公司 一种防伪标签

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171883B1 (en) * 1999-02-18 2001-01-09 Taiwan Semiconductor Manufacturing Company Image array optoelectronic microelectronic fabrication with enhanced optical stability and method for fabrication thereof
KR20010003498A (ko) * 1999-06-23 2001-01-15 김영환 고체 촬상 소자 및 그의 제조 방법
CN101120139A (zh) * 2005-02-18 2008-02-06 捷德有限公司 安全元件及其制造方法
CN103625154A (zh) * 2012-08-21 2014-03-12 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104834029A (zh) * 2015-04-16 2015-08-12 上海天臣包装材料有限公司 双面成像的微光学器件及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9309673D0 (en) * 1993-05-11 1993-06-23 De La Rue Holographics Ltd Security device
ES2255921T3 (es) * 2000-07-07 2006-07-16 Sola International Holdings Limited Elemento optico que comprende un recubrimiento especular superficial y procedimiento para formar dicho recubrimiento.
ES2883851T3 (es) * 2003-11-21 2021-12-09 Visual Physics Llc Sistema de presentación de imágenes y de seguridad micro-óptico
DE102009022612A1 (de) * 2009-05-26 2010-12-02 Giesecke & Devrient Gmbh Sicherheitselement, Sicherheitssystem und Herstellungsverfahren dafür
DE112011100983T5 (de) * 2010-03-24 2013-04-11 Securency International Pty Ltd. Sicherheitsdokument mit integrierter Sicherheitsvorrichtung und Herstellungsverfahren
GB201107657D0 (en) * 2011-05-09 2011-06-22 Rue De Int Ltd Security device
CN103309047A (zh) * 2013-06-09 2013-09-18 上海天臣控股有限公司 视觉立体漂浮图像的薄膜及其制备方法
CN104118236B (zh) * 2014-07-10 2016-08-24 中钞特种防伪科技有限公司 一种聚焦微反射元件阵列光学防伪元件及有价物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171883B1 (en) * 1999-02-18 2001-01-09 Taiwan Semiconductor Manufacturing Company Image array optoelectronic microelectronic fabrication with enhanced optical stability and method for fabrication thereof
KR20010003498A (ko) * 1999-06-23 2001-01-15 김영환 고체 촬상 소자 및 그의 제조 방법
CN101120139A (zh) * 2005-02-18 2008-02-06 捷德有限公司 安全元件及其制造方法
CN103625154A (zh) * 2012-08-21 2014-03-12 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN104834029A (zh) * 2015-04-16 2015-08-12 上海天臣包装材料有限公司 双面成像的微光学器件及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285096A4 *

Also Published As

Publication number Publication date
EP3285096A1 (en) 2018-02-21
CN104834029A (zh) 2015-08-12
CN104834029B (zh) 2016-09-28
US20180111405A1 (en) 2018-04-26
EP3285096A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
WO2016165356A1 (zh) 双面成像的微光学器件及其制备方法和应用
US11981157B2 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product using the same
KR102630381B1 (ko) 광학 제품, 광학 제품을 제작하기 위한 마스터, 그리고 마스터 및 광학 제품을 제조하기 위한 방법
JP5788886B2 (ja) セキュリティデバイス
WO2017092667A1 (zh) 一种光学防伪元件及使用该光学防伪元件的光学防伪产品
US10155408B2 (en) Optical anti-counterfeiting element, product using same and preparation method therefor
WO2014198206A1 (zh) 视觉立体漂浮图像的薄膜及其制备方法
CN106324726B (zh) 一种3d成像光学薄膜
CN105313529B (zh) 光学防伪元件及使用该光学防伪元件的防伪产品
US20220276501A1 (en) Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products
CN110450560B (zh) 光学防伪元件及其制备方法和光学防伪产品
CN108454266B (zh) 光学防伪元件及光学防伪产品
WO2020187285A1 (zh) 光学防伪元件及光学防伪产品
US9268146B2 (en) User interface with a composite image that floats
CN113687522B (zh) 一种反射式成像薄膜
CN205280964U (zh) 一种三维悬浮成像光学薄膜
WO2017181442A1 (zh) 一种光学防伪元件及光学防伪产品
WO2013143089A1 (zh) 一种光学防伪元件及使用该光学防伪元件的产品
CN114958032A (zh) 一种高色饱和度的光致变色颜料
CN217278994U (zh) 一种相交式微浮雕立体结构的光学防伪元件及产品
CN217278993U (zh) 一种相加式微浮雕立体结构的光学防伪元件
CN117485046A (zh) 光学防伪元件和光学防伪产品
CN112848744B (zh) 光学防伪元件及防伪产品
WO2023111864A1 (en) Diffractive displays
CN114815006A (zh) 一种动态放大的光致变色薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE